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Abstract

We use a Trend-Cycle VAR model to study the relation between inflation and the real economy
over the business cycle. The Trend-Cycle VAR model allows us to control for low-frequency
movements in inflation and real activity. We show that at business-cycle frequencies, fluctua-
tions of inflation are tightly related to movements in real activity, in line with what is implied
by the New Keynesian framework. We explain why our results differ from previous studies

that argue inflation is unrelated to real activity at business-cycle frequencies.
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1 Introduction

A proper understanding of the empirical relationship between real and nominal macroeconomic
variables is central to our ability to discern across different macroeconomic models and to validate
their theoretical foundations. In turn, these models provide a rigorous framework to describe
how shocks transmit through the economy and to design policies meant to deliver a more stable
macroeconomic environment.

A large New Keynesian literature relies on empirical evidence suggesting that, in response to
demand shocks, various measures of real economic activity are related to inflation at business-cycle
frequencies. In New Keynesian models, this relationship is explained in light of nominal rigidities,
leading to a structural price Phillips curve. In this theoretical framework, a positive demand shock
generates a positive gap of the measures of real economic activity relative to their flexible-price
counterparts and ultimately leads to inflationary pressures.

However, the increasing evidence of a weaker relationship between real economic activity and
inflation since the 1990s has led some economists to rethink the empirical foundations of New
Keynesian models. This apparent weak relation between inflation and real activity has led to
different, but not necessarily mutually exclusive responses. A series of recent contributions fo-
cuses on identifying explanations for the weakening of this empirical relationship (Primiceri, 2013,
Del Negro et al., 2020 and references therein) or on modifying features of the New Keynesian
model to improve its empirical fit (Gust et al., 2022). By contrast, other authors have interpreted
this evidence as a reason to abandon the New Keynesian apparatus and have proposed different
frameworks in which non-inflationary demand shocks are the main drivers of business-cycle fluc-
tuations (Beaudry and Portier, 2013; Angeletos et al., 2018). Alternatively, other studies develop
business-cycle theories that entirely abstract from discussing implications for inflation (Beaudry
et al., 2020; Basu et al., 2021).

An important empirical justification for these alternative theoretical frameworks is offered by
Angeletos et al. (2020). Looking at the U.S. post-war period, Angeletos et al. (2020) find that
business-cycle fluctuations are explained by a real activity shock which is largely disconnected from
movements in inflation. In their clever empirical analysis, the authors follow an extensive empirical
literature that uses vector autoregressions (VARs) as a “model free,” but still structural way to look
at the data. The authors use the VAR to identify a “business-cycle” shock (or a combination of
shocks) that explains the largest possible share of real activity variation at business-cycle frequency.
They then show that while this single shock can explain most of real activity at business-cycle
frequency, it explains close to nothing of the business-cycle variation of inflation. They conclude
that their results are at odds with the premise of the NK framework that demand shocks lead to
business cycle fluctuations because of nominal rigidities that prevent an immediate adjustment in

prices.



As we argue next, the approach of using a VAR to identify shocks is conventional in the literature,
but has relevant implications when focusing on the specific question that Angeletos et al. (2020)
were after, the business-cycle relationship between real and nominal variables. The main reason
is that a standard VAR might be unable to correctly disentangle business-cycle and low-frequency
movements in those variables over a relatively short period of time. This is because in a VAR,
a single set of parameters and reduced form shocks need to accommodate the variation at all
frequencies observed over a relatively short period. As a result, a procedure that uses the estimated
parameters and reduced form shocks to identify variation at business-cycle frequency might be
biased. The problem is particularly severe if one of the variables of interest shows significant
variation at low frequency, as it is the case with inflation. Ultimately, the identified shock might
fail to capture a business-cycle relationship between the two variables even when such a relation
is in fact in the data. To remedy this limitation of the VAR for the specific question at hand,
we adopt a more flexible model that explicitly extracts business-cycle movements in the variables
of interest. Specifically, we argue that a Trend-Cycle VAR (TC-VAR) model is better suited to
analyze the relation between inflation and real activity at business-cycle frequencies.

We start by presenting simple, but insightful, evidence that serves as motivation for our anal-
ysis. We consider a measure of inflation—the GDP deflator—and two measures of real economic
activity—the level of real GDP per capita and the unemployment rate—over the period between
1960 and 2019. Using a bandpass filter, we extract movements in those measures at frequencies
between 6 and 32 quarters—labeled “business-cycle frequencies”—and between 8 and 30 years—
labeled “medium-cycle frequencies”. After filtering out movements at high and low frequencies,
the correlation of current inflation and real per-capita GDP (unemployment rate) over the busi-
ness cycle is positive (negative) and roughly equal to about 0.2 (negative 0.4). The correlations
become larger (in absolute value) when considering the relationship between current inflation and
lagged measures of real economic activity, peaking at about 0.45 (negative 0.45) when considering
real per-capita GDP (unemployment rate) lagged by four (two) quarters. In addition, over the
medium cycle, these estimates can be up to nearly 50% larger (in absolute value) than those over
the business cycle. This evidence is puzzling in light of the existing literature because it seems to
suggest that inflation is related to real activity, at least to some extent.

Motivated by this analysis, we adopt a more rigorous empirical framework and estimate a multi-
variate Trend-Cycle VAR model building on the work of Watson (1986), Stock and Watson (1988,
2007), Villani (2009) and, more recently, Del Negro et al. (2017). We consider the sample between
1960 and 2019 using six time series. The first four time series are commonly used in previous
studies: i) the growth rate of real GDP per capita; ii) the unemployment rate; iii) the effective

federal funds rate; and iv) inflation. Importantly, we include two additional time series. First, to

"We do not mean that the approach that we propose in the paper is always superior to using a VAR. In many
cases, the goal is not to isolate the effects of a shock at a particular frequency.



better capture low-frequency movements in inflation, we add a measure of average 10-year-ahead
inflation expectations by combining information from the Survey of Professional Forecasters (SPF)
and Blue Chip (BC) Economic Indicators survey as in Del Negro and Schorfheide (2013). Second,
we use the median 1-year-ahead average inflation expectations from the SPF as a measure of in-
flation that abstracts from the high-frequency movements observed in the time series for inflation,
but it is still likely to be related to business-cycle movements in inflation.

In our baseline specification, we assume that the trend of the real per-capita GDP growth,
unemployment rate, and real interest rate are uncorrelated with each other and trend inflation. By
contrast, we consider a common trend that captures low-frequency movements in realized inflation
and 1- and 10-year-ahead inflation expectations. Each of the three inflation measures is driven by
a cyclical component. We also allow for a (negative) moving average component in inflation to
control for high-frequency movements in inflation. The moving average component allows to purge
movements in inflation from observation errors and transitory movements in prices. Given that our
model already separates trend- from cyclical variation, we identify the shock that maximizes the
variation of the latent cyclical component of the unemployment rate and study its contribution to
the volatility of the cyclical components of the remaining variables. We also consider an alternative
specification in which we remove frequencies that correspond to fluctuations with duration of less
than 1.5 years. This allows us to clean the results from residual high-frequency movements that
are arguably unrelated to the business cycle.

This approach has four clear advantages with respect to identifying shocks in the frequency
domain based on a VAR.? First, the inference exercise automatically separates the trends from
the cycles. Second, cyclical variation is controlled by a different set of parameters with respect
to low-frequency variation. Third, we do not need to take a stance on the typical length of the
business cycle. This is important in light of the fact that expansions have become progressively
longer in the sample under consideration. Finally, by allowing for changes in trend growth, trend
inflation, and variation in long-run unemployment, the model accommodates the notion that what
matters for cyclical movements in inflation is the output (or unemployment) gap.

A series of important results emerge from this exercise. First, under our baseline specification,
the shock targeting the unemployment rate explains about 45% of the volatility of inflation over
the 1960-2019 period. This result suggests that it is important to account for the low-frequency
movements in real and nominal variables when studying their relationship at business-cycle fre-
quencies. Second, the shock targeting the unemployment rate explains nearly 60% of the business-
cycle volatility of both inflation expectation measures. This result provides further support for the
notion that business-cycle movements in inflation are in fact related to the business cycle, given

that expected inflation is obviously related to actual inflation, but less affected by high-frequency

2The approach of identifying shocks in the frequency domain starting from a VAR was pioneered by Uhlig
(2003). The approach has lately adopted by many others, including Giannone et al. (2019a), Angeletos et al. (2020)
and Basu et al. (2021).



fluctuations. Furthermore, the result is in line with the NK framework, in which agents’ inflation
expectations depend on the state of the economy. In line with this reasoning, when we focus on
frequencies that correspond to fluctuations in the cyclical component with duration of at least
1.5 years, the results become stronger. In this case, the shock identified targeting the rate of un-
employment explains a higher percentage of the business-cycle volatility of all inflation measures
compared to when all the frequencies are considered: 50% for realized inflation and 65% for both
inflation expectation measures. Once again, this result is in line with the evidence presented in
our motivating evidence exercise, suggesting a strong relation between inflation and real activity
over the business-cycle.

All previous results are robust to two alternative specifications. Rather than allowing for an id-
iosyncratic cyclical component for realized inflation and the two measures of inflation expectations,
the first alternative specification admits a cyclical component in realized inflation and a common
cycle for the two measures of inflation expectation. The second alternative specification instead
allows a common cycle between realized inflation and the one-year-ahead inflation expectations.
The 10-year-ahead inflation expectations are instead driven only by the common inflation trend
in addition to being subject to measurement errors. For both alternative specifications, the main
result applies: the shock identified targeting the cyclical component of the unemployment rate
explains large portions of the variability of the alternative cyclical inflation measures considered.

In addition, we assess the importance for our results of modeling time-varying latent trends. If
we model the latent trends as constant, rather than time-varying, we find evidence of a disconnect
between nominal and real variables, thus recovering the results of a disconnect between real and
nominal variables commonly found when adopting a standard VAR model (Giannone et al., 2019b;
Angeletos et al., 2020). Crucially, this finding shows that the TC-VAR model is flexible enough
to deliver results in line with the existing literature, but the data do not support this evidence,
given that they present important trends that can confound the business-cycle analysis.

We then verify that a standard VAR model cannot easily capture the uncovered business-cycle
relationship between nominal and real variables even if we choose priors and sample periods to
account for low-frequency movements in the data. Given our focus on the U.S. economy, we
borrow the framework of Angeletos et al. (2020) who estimate a VAR model with a Minnesota
prior on U.S. data. Extending their dataset by two years to the end of 2019, we estimate their
baseline VAR model with a Minnesota prior as well as combining it with long-run priors a la
Giannone et al. (2019a). For each specification, we follow their approach and identify a shock that
targets the unemployment rate at business-cycle frequencies. The contribution of the shock to
the variability of inflation at the same frequencies only marginally increases from about 8% when
using a Minnesota prior to about 11% when also assuming long-run priors. Both estimates are
significantly lower than our baseline estimates between 45% and 50%.

Better results emerge when we focus on the Great Moderation period, a sample that presents



less low-frequency variation in inflation. As before, we use the dataset of Angeletos et al. (2020).
However, we estimate a VAR model over the period between 1984 and 2008 and assuming alter-
native priors. Specifically, we allow for combinations of both Minnesota and long-run priors for
which either we set the corresponding hyperparameters in a dogmatic way or we optimize them.
The largest contributions of the unemployment-identified shock results when the hyperparameters
of the long-run priors are either optimized or set in a dogmatic manner, regardless of whether we
also assume a Minnesota prior. However, those estimates are still between 30% and 45% lower
than under our baseline specification, respectively. For a more direct comparison to our results,
we also consider our dataset over the period of the Great Moderation. We estimate a VAR model
using a Minnesota prior alone or combining it with long-run priors. The contribution of the
unemployment-identified shock ranges between 13% and 20%, thus substantially lower than our
baseline estimate.

Finally, we lay out theoretical arguments for why our results differ from recent contributions that
challenge the validity of the New Keynesian paradigm. We demonstrate that a fixed-coefficient
VAR estimated over a period of time that presents structural changes is misspecified, if the goal
is trying to assess the comovement at business-cycle frequency. The misspecification problem
associated with the use of a VAR model to describe a data generating process characterized by
both low- and high-frequency movements cannot be resolved. An econometrician would need
infinite data to reconstruct the VAR representation of a TC-VAR model. Even in that case, the
reduced-form innovations that she would recover would map into the innovations affecting the
latent persistent and stationary components as well as the error associated with the estimates
of the latent components. In reality, these issues are exacerbated by the fact that the VAR
parameters estimated over a finite sample would be distorted because a single set of parameters
need to account for both trend and cycle fluctuations.

We provide an illustration of these issues with a simple example. We generate a Monte Carlo
simulation of a TC-VAR model of unemployment rate and inflation under alternative calibrations
that reflect different degrees to which the cyclical component of inflation depends on the cyclical
component of unemployment rate. Even for a long simulation in which realized inflation is unreal-
istically assumed to depend exclusively on the cyclical component of the unemployment rate, the
estimation of a VAR leads to an unemployment-identified shock explaining up to only 9% of the
variability of inflation over the business cycle.

Overall, our findings have implications for both the New Keynesian literature and the recent and
growing literature that proposes alternative explanations for the sources of business-cycle fluctua-
tions. For the former, the results support the evidence of a relationship between real and nominal
variables over the business cycle, while highlighting the importance of accounting for both low-
frequency movements in real and nominal variables and the observed high-frequency movements

in inflation to properly quantify that relationship. For the latter, the results suggest that the



alternative explanations for the drivers of business cycles should also propose transmission mech-
anisms which are consistent with the empirical evidence on the connection between movements in
inflation and measures of real economic activity.?

Our results connect to Sargent and Sims (1977) that shows that two dynamic factors could
explain a large fraction of the variance of a series of important macroeconomic variables, including
output, employment, and prices. Two factors are in fact necessary to control for the low-frequency
movements in nominal variables. The subsequent factor-analysis literature has repeatedly con-
firmed this key insight (Giannone et al., 2006; Watson, 2004; Stock and Watson, 2011). A re-
lated literature uses unobserved component models to estimate measures of long-run interest rates
(Laubach and Williams, 2003, 2015; Lubik and Matthes, 2015; Del Negro et al., 2017; Del Negro
et al., 2019; Holston et al., 2017; Lewis and Vazquez-Grande, 2019; and Johannsen and Mertens
(2021) only to cite a few).

Ascari and Fosso (2021) use a TC-VAR to study the role of imported intermediate goods in
explaining the lack of sensitivity of inflation to business-cycle movements in the post-Millennial
period. These authors focus on the changes in the importance of the business-cycle shock for
inflation. They find that the contribution of the shock decreases from about 60% for the period
starting in 1960 and ending in 1984 to nearly 30% for the period between 1985 and 2019. In
line with our results, these estimates are about four and six times larger than the counterparts
of 17% and 5% that Angeletos et al. (2020) find for the pre- and post-Volcker periods using a
VAR and interpret as evidence of a disconnect. Our paper provides an explanation to reconcile
these differences. Our results are also consistent with Justiniano et al. (2013). These authors use
an estimated NK DSGE model to show that most inflation fluctuations are demand driven and
commove with the output gap. Our results are obtained without imposing at the onset the NK
framework, something that we find valuable if the goal is to provide external validation for such

framework.

2 DMotivating Empirical Evidence

In this section, we provide motivating evidence for our subsequent empirical analysis. We aim to
show that inflation and real activity are related over the business cycle once we control for their
trends. In particular, we underscore the importance of adopting a unified empirical framework that
distinguishes between business-cycle and low-frequency movements in these variables. Moreover,
given that our goal is to study the relationship between inflation and real economic activity over
the business cycle, we also want to control for higher-frequency movements. These are especially

important for the dynamics of inflation.

3For an alternative theory that integrates Keynesian economics with general equilibrium theory without relying
on nominal rigidities, refer to Farmer and Platonov (2019) and Farmer and Nicolo (2018, 2019).



Table 1: Correlations of inflation with lagged measures of real economic activity

Business-cycle frequencies (6-32 quarters)

Jj=8 j=6 j=4 j=2 j=0
Output 0.15 0.36 0.47 0.42 0.22
Unemployment rate 0.09 -0.13 -0.34 -044 -0.36

Medium-cycle frequencies (8-30 years)

Jj=8 j=6 j=4 j=2 j=0
Output 0.64 061 054 045 0.33
Unemployment rate -0.54 -0.50 -0.44 -0.36 -0.25

Notes: The inflation rate is defined as the log difference in the GDP deflator. For the two measures of real economic
activity, we consider the log level of real, per-capita GDP and the unemployment rate. Data sample is from 1955:Q1
t0 2019:Q4. Using the bandpass filter proposed by Christiano and Fitzgerald (2003), we extract the corresponding
filtered time series over two frequency bands: the business cycle—defined as the period between 6 and 32 quarters—
and the medium cycle—defined as the period between 8 and 30 years. We provide the correlations between current
(filtered) inflation and current and lagged (filtered) levels of real per-capita GDP and unemployment rate at time
(t—j) for j ={0,2,6,8}.

We consider the inflation rate—measured as the log difference in the GDP deflator—and two
measures of real economic activity—the log level of real, per-capita GDP and the unemployment
rate—over the period starting from 1955:Q1 to 2019:Q4. Using the bandpass filter proposed
by Christiano and Fitzgerald (2003), we extract the corresponding filtered time series over two
frequency bands: the business cycle—defined as the period between 6 and 32 quarters—and the
medium cycle—defined as the period between 8 and 30 years.

Panel (A) of Figure 1 plots the filtered time series at business-cycle frequencies for inflation
and real per-capita GDP as well as for inflation and the rate of unemployment. Panel (B) of
Figure 1 plots the corresponding filtered time series at medium-cycle, rather than business-cycle,
frequencies. The plots offer two main empirical facts. First, after filtering out movements at
high and low frequencies, inflation is correlated with both measures of real economic activity at
both business-cycle and medium-cycle frequencies. As expected, inflation is positively correlated
with real per-capita GDP and negatively with the unemployment rate. Second, movements in
both measures of real economic activity lead changes in the inflation dynamics at business-cycle
and medium-cycle frequencies. High (low) levels of real per-capita GDP (unemployment rate) are
associated with subsequent high levels of inflation, and vice versa.

To formalize the notion that cyclical fluctuations in inflation appear to comove with real activity,
Table 1 reports the correlations between current (filtered) inflation and current and lagged (filtered)

levels of real per-capita GDP and unemployment rate at time (t—j) for j = {0, 2,6,8}. We consider



Figure 1: Inflation and real economic activity at business- and medium-cycle frequencies

(A) Business-cycle frequencies (6-32 quarters)
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Notes: The inflation rate is defined as the log difference in the GDP deflator. For the two measures of real
economic activity, we consider the log level of real, per-capita GDP and the unemployment rate. Data sample is
from 1955:Q1 to 2019:Q4. Using the bandpass filter proposed by Christiano and Fitzgerald (2003), we extract the
corresponding filtered time series over two frequency bands: the business cycle—defined as the period between 6
and 32 quarters—and the medium cycle—defined as the period between 8 and 30 years.



both business-cycle and medium-cycle frequencies. Over the business cycle, the positive (negative)
correlation of inflation peaks with real per-capita GDP (unemployment rate) lagged by four (two)
quarters at about 0.45 (negative 0.45). Over the medium cycle, the correlation of inflation with
real per-capita GDP (unemployment rate) lagged by eight quarters peaks at about 0.65 (negative
0.55). These correlations are larger (in absolute value) than the counterparts with real per-capita
GDP and the rate of unemployment lagged by four quarters over the business cycle.

The empirical evidence presented in this section motivates us to adopt a dynamic, multivariate
framework that allows to study the relationship between inflation and real economic activity over
the business cycle and without the analysis being contaminated by movements at high and low

frequencies. We discuss the adopted framework in the next section.

3 The Trend-Cycle VAR Model

In this section, we present the TC-VAR used to model the joint dynamics of the growth rate of
real GDP per capita, the unemployment rate, the federal funds rate, the inflation rate, and the 1-

and 10-year-ahead inflation expectations.

3.1 Baseline specification

Our baseline specification allows for four trend and six cycles. Real per-capita GDP growth g,

and the unemployment rate u; evolve according to

gt = Tgt + (cyt — cyt-1),

Ut = Tyt + Cuts

where we assume that the trend of the unemployment rate 7,; and the growth rate of real, per-
capita GDP 74, are unrelated. It is worth emphasizing that we model the cycle in real GDP, as
opposed to GDP growth. This is consistent with typical macroeconomic models in which output
moves around a stochastic trend.

We assume that the Fisher equation holds in the long run. This implies that the federal funds

rate can be expressed as

fet=Tre+cre = Trt + g+ Cpps

where 7,4 and 7r; correspond to the trend of real interest rate and inflation respectively, and

Tft = Trt + Tr¢. Finally, realized inflation and the 1- and 10-year-ahead inflation expectations are
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decomposed as

Tt = Trt+Crp+ (nﬂ,t - 777r,t71) s (11)
Wf:ly — Tﬂ‘,t _|_ C;’;y, (1.2)
7_{_te,loy = Teit C;’;Oy. (1 3)

thus sharing a common trend 7, ;. We allow for an iid measurement error in the log-level of the
GDP deflator, 7, ¢, which implies that, after taking log difference, realized inflation features a
negative moving average measurement error component. In the baseline, inflation and inflation
expectations feature their own cyclical components. The VAR component below allows these
cyclical components to comove over time, but we do not impose such a restriction here.

For ease of exposition, we collect observables and state variables in vectors

/ !
_ e,ly __e,10y _ / _ e,ly e,10y
Yt = {gta Ut, fta T, 7Tt’ ) ﬂ-t, } ) Tt = {Tg,t> Tu,ta Tr,b Tﬂ,t} ) Ct = {Cy,ta Cu,ta Cf,t7 C7r,ta Cﬂ—:t ) C7r77t 9

_ _ / _ ely _e, 10y !
N =MNnt, Ert= {&',g,ta Eruty €Tty 8‘1',71',t} y o Eet = Y€yt Ecunts Ec,fits Eemits ety Syt

The dynamics of trend 73 and cyclical component ¢; are given as

Tt = T—1+Erg, (2.1)

Ct = @1@_1 + CI)QCt_Q + ...+ @pct_p + Ec,ta (22)
and the measurement errors follow
Nt = Enyt-

We assume that the shocks are independent and identically distributed as

Ert o] [ 0 o
et = |ece| ~N [ |0],]0 = 0]],
Ent o] [0 0 %,

where the Ys are conforming positive definite matrices, ¥ = E (QQ'), and N (-,-) denotes the
multivariate Gaussian distribution.
3.2 Alternative specifications

For robustness, we also consider two alternative specifications for the 1- and 10-year-ahead inflation
expectations, while leaving unchanged the decomposition assumed for the other variables. In the

first alternative specification, we consider the following alternative decomposition for the two
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inflation expectations surveys

el
ﬂ-t Y — 7-7T,t + Cf‘(‘,t? (31)
;10 ,10
T = Tept Och ¢+ 777er,t Y. (3.2)

The 1- and 10-year-ahead inflation expectation surveys are assumed to share a common cyclical

e
Tt

. . . 10 "
component, ¢ Because the 10-year inflation expectations 7y ™Y are by definition related to
short-term inflation expectations but less volatile over time, we assume that its loading is less than
one § < 1. Lastly, we allow for idiosyncratic errors for the 10-year-ahead inflation expectations.
Under our baseline specification, we collect observables and state variables in vectors (6) where
— / — ! — e \/ —
Tt = {Tg,t,Tu,t,Tr,t, 7_7r,t} y Ert = {ET,g,tng,u,taET,T,tagT,W,t} , Gt = {Cy,t,Cu,t, Cf,tycw,hcﬂ—,t} , e =
!/

e, 10y _ !

{T]Tryt7 "77T7t } ’ and €Cvt - {gcay7t7 5c,u,t7 gcvf)t’ 80,7{'7157 Ezaﬂ—yt} :
In the second alternative specification, we assume that the 1- and 10-year-ahead inflation ex-

pectation measures are decomposed as

e,ly e,ly

Ty = Trtt+Crt+ Nrt > (4.1)
e, 10y e,10y

T = Tat TNzt > (4.2)

thus assuming that there is one common cyclical component c,; for inflation which is shared
across realized inflation in (1.1) and the 1-year-ahead inflation expectation. Because the 10-year

10y ig fairly stable over time, we assume that it proxys for the trend

inflation expectation 7}’
component but does not include any cyclical component. Under this alternative specification, we
keep the same assumptions on the standard deviation of the shocks to the trends as under the

. . . /
baseline. In this case, the vectors of observables and state variables are 7, = {7, T}L,t, Trt, Tt} s
o / o / _ e,ly e,10y _
5T,t - {5T,g,t7 ET,u,t) 57’,’/‘,1‘,7 57’,71’,15} , Ct = {Cy7t7 Cu,t7 Cf,ta cﬂ,t} , Tt = {nﬂ',t’ 777r7’t ) 7771-:1‘, } 5 and €C,t =

!
{5c,y,t7 Ecuty Ec, 1t 50,7r,t} .

3.3 State-space representation

Our baseline and alternative specifications can be cast into a stace-space representation.* Using
generic notation, let us begin with n observables which can be decomposed into n, trends and n,
cycles, where 0 < n, <n and 0 < n, <n.

Measurement equation. Allowing for n, measurement errors 7, observables can be expressed
as

yr = Axy = Arxr,t + AcJ?c,t + An%y,ty (5>

/ / /
where x; = {CUT,t,xc,uﬂ?n,t}, Trt = Tty Tegt = {Cuct—l;---,ctf(pfl)}, Int = {nt777t—1} and p

4 Appendix A provides details on the construction of the matrices in (5) and (6) for our baseline specification
described in Subsection 3.1.
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denotes the number of lags used to model the stationary cyclical component. The n x n, matrix
A; captures (n—n;) cointegrating relationships, while Ac = [Acp, ..., Acp—1] and Ay = [Ay 0, Ay 1)

State-transition equation. The vector of states x; evolves as

ry = Pry_1 + Rey, (6)
or equivalently,
Trt I 0 0 Trt—1 I 0 0 Ert
Tet| = 0 (Dc 0 Tet—1 + 10 RC 0 Eet | s
l‘n’t 0 0 q)W wﬁ:t—l 0 0 Rﬁ 6,7,15
where ) o
P, Py @, I
I 0 O 0 0
00 I
. =0 1 , Re= 141, = , =
.0 0
| 0 0 I 0] _0_

The initial conditions are distributed as
70 NN (Ia E) 9 Co ~ N (O)E) ’ (7)

where V; is an identity matrix, and V is the unconditional variance of ¢y consistent with (6) and
thus a function of the VAR coefficients ¢ = {®1,...,®,}" and variance X...

4 Inference

We now describe the data and priors used in our analysis and the methodology used to assess the

strength of the relation between inflation and real activity over the business cycle.

4.1 Data

We estimate the TC-VAR model using the following six quarterly time series which are expressed
at annualized rates: i) the growth rate of real, per-capita GDP g; ii) the unemployment rate uy;
iii) the effective federal funds rate (EFFR) f; by treating observations at the zero lower bound
(ZLB) as missing following Del Negro et al. (2017); iv) the inflation rate m;, measured as the log
difference in GDP deflator (PGDP); v) the median four-quarter-ahead average PGDP inflation
expectations, Y from the SPF; vi) a measure of 10-year-ahead inflation expectations, Ty 10y

which, following Del Negro and Schorfheide (2013), we construct by combining survey expectations
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on average 10-year-ahead CPI inflation from the SPF and BC Economic Indicators survey, and
adjusting it for the historical difference between CPI and PGDP inflation. We use the period
between 1955:Q1 and 1959:Q4 as pre-sample and estimate the TC-VAR model over the period
from 1960:Q1 to 2019:Q4. Finally, in Appendix B, we report details about the Bayesian inference,
including settings and the Gibbs sampler adopted to estimate the TC-VAR model.

4.2 Priors and initial conditions

For our assumptions about initial conditions and prior distributions, we mainly follow the approach
of Del Negro et al. (2017). We consider standard priors for covariance matrices ¥, and X, and for
the VAR coefficients ¢ = {®1,...,®,}’

p(Er) =IW (kr(kr + 1+ 1), ), (8.1)
p(Ze) =IW (ke(ke+ne+ 1)), (8.2)
P(PZ) =N (& Z. Q) I(9), (83)

where ¢ = vec(p), ¢ = vec(p), IW = (k(k+n+1)X) corresponds to the inverse Wishart
distribution with mode ¥ and & degrees of freedom, and Z(¢) is an indicator function that equals
0 if the VAR in (6) is explosive and 1 otherwise.

We center the prior distribution for the initial conditions of the trends 7y in (7) to the pre-
sample mean of the corresponding variables. For the annualized trend real, per-capita GDP
growth and the unemployment rate, the prior for their initial condition is set to 1% and 5%. For
the trend real interest rate and inflation at annualized rate, the priors for their initial condition are
centered at 0.1% and 2.5%. Therefore, the vector of initial conditions for the trend components
is 7 ={1,5,0.1,2.5}.

To specify the prior for the covariance matrix of the shocks to the trends ¥, in (8.1), we
assume that those shocks are a priori uncorrelated. We then set the standard deviation for the
expected change in the annualized trend of real, per-capita GDP growth to 1% over a time period
of 40 years. For all the remaining variables, we assume a one-percent standard deviation for the
expected change in their trends over 20 years. These assumptions imply that the prior covariance
matrix of the shocks to the trends is diagonal with the following elements on the main diagonal
diag (X;) = [1/40,1/20,1/20,1/20]. As in Del Negro et al. (2020), we assume a tight prior by
setting x+ to 100.

The shocks to the cyclical components ¥, in (8.2) are also assumed to be uncorrelated a pri-
ori. We calibrate the standard deviation of the shocks affecting the stationary component of the
(annualized) real, per-capita GDP growth and the unemployment rate to 5% and 1.1%, reflecting
their pre-sample standard deviations. The standard deviation of the shocks affecting the cycle

of the nominal interest rate and inflation are also set to their pre-sample standard deviations of
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0.8% and 1.5% respectively. We also need to specify assumptions for the priors on the standard
deviation of the cyclical components of the two measures of inflation expectations. Because these
surveys are not available for the pre-sample period, we assume those standard deviations to be
smaller than the pre-sample counterpart of 1.5% for realized inflation. For the one-year-ahead
inflation expectations, we set the prior for the standard deviation of the cyclical component to
1.2% and assume it to be 0.3% for the ten-year-ahead inflation expectations. As a result of these
assumptions, the prior covariance matrix of the shocks to the cycles is diagonal and such that the
values on the main diagonal approximately correspond to diag (&) = [25,1.3,0.6,2.2,1.4,0.1].
As in Kadiyala and Karlsson (1997) and Giannone et al. (2015), we set . = n. + 2.

For the prior of the VAR coefficients ¢ in (8.3), we assume a conventional Minnesota prior with
hyperparameter for the overall tightness equal to 0.2 in line with Giannone et al. (2015). Because
the cyclical component in (2.2) is assumed to be stationary, we then center the prior for each

variable’s own lag to 0, rather than 1, as in Del Negro et al. (2017).

4.3 Identifying shocks that drive business-cycle fluctuations

As discussed in the Introduction, the TC-VAR model delivers a decomposition between trends and
cycles. Given that the cyclical components are already cleaned of movements at frequencies other
than business cycles, we do not need to remove the low-frequency variation by using spectral anal-
ysis. Instead, we look for the combination of reduced-form shocks that explains the largest possible
share of unemployment or output cycles, without having to take a stance on which frequencies
correspond to the business cycle. In our baseline analysis, we ask how much the unemployment-
identified or output-identified shock contributes to the volatility of the cyclical component of the
other variables, with a special focus on inflation and inflation expectations. As a robustness check,
we also ask if the results are sensitive to further removing high-frequency movements in the cy-
cles. In this second case, we ask how much the unemployment-identified shock contributes to
the volatility of the cyclical component of the other variables at frequencies that correspond to
fluctuations with duration of at least 1.5 years. Thus, in this second methodology we take into
account that the cyclical component of the variables could present some residual high-frequency

movements that are not related to the business cycle.

5 Results

In this section, we present the main results of the paper. We first present the decomposition of
the variables in trends and cycles. We then proceed to analyze how much of the cyclical variation
of inflation and inflation expectations can be explained by the unemployment-identified shocks.

We conclude with two robustness checks.
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Figure 2: Data, trends and cycles
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(B) Cycles
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Notes: The figure plots the data (red lines) used for the estimation of the TC-VAR model over 1960-2019 period as
well as the posterior median of their latent trends (blue lines) in panel (A) and latent cycles (blue lines) in panel (B)
and the corresponding 68-percent posterior-coverage intervals (shaded blue areas). NBER recessions are denoted
by shaded grey areas.

5.1 Estimated latent trends and cycles

Panel (A) of Figure 2 plots the data (red lines) used for the estimation of the VAR with common
trends over the 1960-2019 period as well as the posterior median of their latent trends (blue
lines) and the corresponding 68-percent posterior-coverage intervals (shaded blue area). Panel
(B) of Figure 2 plots the posterior median of the latent cycles (blue lines) and the corresponding
68-percent posterior-coverage intervals (shaded blue area) in addition to the data (red lines).

The results confirm some stylized facts about the US economy that are commonly accepted.
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First, in the 1960s and 1970s the US economy experienced an increase in trend inflation. This
was possibly caused by the attempt of the Federal Reserve to counteract a break in productivity
that manifested itself with an increase in the natural rate of unemployment. These two stylized
facts are captured by an increase in the trend components of inflation and unemployment rate
during those years. The appointment of Volcker marked a change in the conduct of monetary
policy. Trend inflation declined, and so did the long-term inflation expectations. Note that even
if we do not impose any restriction on the mapping from the trend component of inflation to long-
term inflation expectations, the two variables largely coincide. Thus, including long-term inflation
expectations helps in separating trend and cycle fluctuations.

The behavior of the cycles is reported in panel (B) of Figure 2. From this figure, a clear
pattern emerges, consistent with our understanding of how the economy behaves over the business
cycle. The unemployment rate increases during recessions and smoothly declines over time as
the economy recovers. What is interesting is that, visually, inflation seems to behave as the New
Keynesian framework would suggest: Declining during a recession, when the unemployment rate is
high, and increasing during an expansion when the unemployment rate is low. This is particularly
visible when focusing on inflation expectations at the one-year horizon. The cyclical component

of this variable behaves very much like inflation, but it is smoother.

5.2 Inflation and unemployment over the business cycle

We now move to formally study the relation between the real economy and inflation over the
business cycle. We use the estimated TC-VAR to identify the unemployment cycle shock using
the method described in subsection 4.3. Specifically, the shock is identified by maximizing its
contribution to the volatility of the cyclical component of the unemployment rate. As explained
above, we consider two cases. In the first case, the shock is chosen to maximize the fraction of the
volatility over all the frequencies of the cycle, while in the second case we exclude frequencies that
imply cycles less than 1.5 years.

Table 2 reports the median contribution—and the corresponding 68-percent posterior-coverage
interval—of the identified shock to the variance of the cycle of all the other variables over two
frequency bands: a band that considers all the frequencies of the cycle—as for the construction
of the shock—and the alternative band specified over all-but-short-run frequencies, thus starting
from 6 quarters onward—as for the construction of the shock. By construction, the shock can
explain a large share of the fluctuations of the unemployment-rate cycle. However, the shock
can also explain a sizable fraction of the cyclical component of realized inflation. In the baseline
scenario, the unemployment-identified shock can explain around 46% of the inflation cycle. When
excluding cycles shorter than 1.5 years, the unemployment-identified shock explains about 50% of
inflation variability. The result is even more striking when looking at the cyclical component of

the one-year-ahead inflation expectations: approximately 58%, in the baseline scenario, or 64%, in
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Table 2: Variance contributions of unemployment shock

All frequencies (0 — oo quarters)

Unemployment ~ Output FFR Inflation Inflation Inflation
Exp.(ly) Exp.(10y)
72.7 81.1 58.9 46.3 57.7 56.6

62.5,83.2]  [70.0,89.4] [21.4,85.2] [31.9,63.3] [28.7,81.8] [19.9,84.3]

All-but-short-run frequencies (6 — co quarters)

Unemployment  Output FFR Inflation Inflation Inflation
Exp.(ly) Exp.(10y)
73.6 81.8 58.5 51.5 64.3 65.8

63.1,83.9]  [71.1,89.9] [21.5,85.2] [35.9,67.8] [34.5,87.1] [24.8,88.3]

Notes: The shock is identified by maximizing its contribution to the volatility of the cyclical component of the
unemployment rate. We consider two cases. In the first case, the shock is chosen to maximize the fraction of the
volatility over all the frequencies of the cycle, while in the second case we exclude frequencies that imply cycles less
than 1.5 years. We report the median contribution and the corresponding 68-percent posterior-coverage interval of
the identified shock to the variance of the cycle of all the other variables over the corresponding frequencies.

the alternative scenario, of the business-cycle variability of one-year-ahead inflation expectations
is explained by the unemployment-identified shock. Given that the cycle of the one-year-ahead
inflation expectations appears to be a smoother version of the cycle of realized inflation, this result
corroborates the finding that inflation over the business cycle moves in a way consistent with the
New Keynesian framework.

When comparing the baseline results with the alternative specification in which we remove cycles
shorter than 1.5 years, we find that the contribution for inflation and inflation expectations goes
visibly up when removing the short cycles. This implies that there is likely to be some residual
high frequency variation in these variables that it is not related to the business cycle. The shock
explains about 58% of the volatility of cyclical nominal interest rate over both frequency bands.
Combined with the previous two findings, this result implies that the shock also explains the
volatility of the cyclical component of the real interest rate, defined as the FFR minus expected
inflation. Finally, the identified shock explains a large portion of the volatility of cyclical real GDP
(in loglevels) over all frequencies and also when excluding frequencies associated with the first 6
quarters of the cycles. This finding supports the evidence of a main driver of U.S. business-cycle
fluctuations as found by Angeletos et al. (2020).

In Figure 3, we show the contribution of the unemployment-identified shock to the forecast er-
ror variance (FEV) of the cyclical component of all the variables at different time horizons. The
explanatory power of the shock reaches about 70% and 80% of the cyclical movements in unem-

ployment and output after the first five years and about 60% of the movements in the nominal
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Figure 3: Forecast error variances
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Notes: The figure plots the posterior median (blue lines) and the corresponding 68-percent posterior-coverage
intervals (shaded blue area).

interest rate at any horizon. Moreover, the shock explains a large portion of the movements in
inflation, reaching about 40% after five years. The result for inflation and inflation expectations
is consistent with the motivating evidence of Section 2 that shows that inflation cycles lag output
cycles. This percentage rises above 50% after the first year for the one-year-ahead inflation expec-
tations and after about five years for the ten-year-ahead inflation expectations. These results are
in line with the shock’s contributions reported in Table 2 and clearly point to the large explana-
tory power of the unemployment-identified shock for the business-cycle movements in all inflation

measures.

5.3 Robustness checks

In this subsection, we present results for the two alternative specifications described in Subsection
3.2. As discussed next, the results of our baseline specification are robust to both specifications.”
To save space, we only discuss the variance contribution of the unemployment shock on inflation.

In the first alternative specification, the one- and ten-year-ahead inflation expectations are de-
composed as described in equation (3). Namely, we assume that the one- and ten-year-ahead
inflation expectation surveys share a common cyclical component. Over the business-cycle fre-
quencies, the identified shock explains nearly 50% of the cyclical component of realized inflation
and nearly 60% of the cyclical component of inflation that is assumed to be shared between the
two inflation-expectation measures. Over the frequencies that exclude the first 1.5 years, the shock

explains 50% and just above 60% respectively. The second alternative decomposition defined in

5In Appendix C, we present details on the alternative specifications, describe the assumptions about initial
conditions and priors used for the model estimation, and report the corresponding results.
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Table 3: Variance contributions of unemployment shock: When trends are constant

Unemployment  Output FFR Inflation Inflation  Inflation
Exp.(ly) Exp.(10y)
93.9 34.0 38.3 8.0 10.4 3.8
[90.5,96.6] [27.0,40.9] [28.7,46.8] [3.8,13.4] [5.6,16.4]  [1.2,8.4]

Notes: The shock is identified by maximizing its contribution to the volatility of the cyclical component of the
unemployment rate over business-cycle frequencies (6-32 quarters). We report the median contribution and the
corresponding 68-percent posterior-coverage interval of the identified shock to the variance of the cycle of all the
other variables over the same frequencies.

(4) is based on the assumption that realized inflation and one-year-ahead inflation expectations
share a common cycle, while the measure of ten-year-ahead inflation expectations does not. We
find that the shock explains nearly 40% of the volatility of the common cyclical component of
inflation. When excluding movements in cyclical components at frequencies higher than 1.5 years,
the results point to an explanatory power of nearly 45% of the identified shock for the common
cyclical component of inflation.

We conclude that our results are robust to additional restrictions on the trend-cycle decompo-

sition. We favor our baseline specification because more flexible.

6 Importance of Time-varying Trends

Our previous results highlight the importance of properly capturing low-frequency movements in
real and nominal variables. By treating the latent trends as time-varying objects, our model is
able to assess the relationship between those variables at business-cycle frequencies. To further
support our claim, we show that, by considering a constrained specification of our model in which
the trends are constant, the model reproduces the findings of Angeletos et al. (2020) who argue
for a disconnect between real activity and inflation over the business cycle.

Specifically, we leave unchanged all other assumptions about priors and initial conditions and
simply set the standard deviation of shocks to the trends to zero. Table 3 reports the contributions
of the identified shock to the volatility of the cyclical components of the unemployment rate as
well as the remaining variables over the same frequencies.

In this specification which does not allow for low-frequency movements in the variables of in-
terest, the shock only explains 8% of the volatility of the realized inflation cycle and about 10%
and 3% of the volatility of the one- and ten-year-ahead inflation expectations cycle. The estimate
of the shock’s contribution to the volatility of inflation is well within the range of estimates pro-
vided in Angeletos et al. (2020). The similarity of our findings under this scenario with those of

Angeletos et al. (2020) is not surprising. Once the latent trends are assumed to be constant, our
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model collapses to a VAR model, with the only distinction that output is modelled in deviations

from a liner trend and the other variables are demeaned.

7 Revisiting VAR models

Given the empirical evidence provided in the two previous sections, our goal is now to demonstrate
that the adoption of a standard VAR, as opposed to a TC-VAR, induces very different conclusions
about the disconnect between real activity and inflation over the business cycle. Results are more
similar when considering subsamples over which trends are less relevant, but we are never able to
recover the same results obtained with the TC-VAR. We proceed in two ways. In Subsection 7.1,
we consider the data and specification proposed by Angeletos et al. (2020) and explore alternative
sample periods and assumptions about the priors. The evidence strongly points to a disconnect
between real activity and inflation over the business cycle. In Subsection 7.2, we bring our attention
back to the data used in Section 5. Even when using the same data, the adoption of a VAR model
leads to the conclusion of a disconnect between inflation and real activity over the business cycle.

This is true even after exploring alternative assumptions about the priors.

7.1 Using a VAR to assess the link between inflation and real activity

Alternative priors. In this subsection, we revisit the results obtained by Angeletos et al. (2020)
by allowing for different priors and data periods. We start by extending the estimation sample
of Angeletos et al. (2020) by two years so that the periods match those of our baseline analysis,
ie., 1955:Q1 to 2019:Q4. As detailed in Section I of their paper, the data consist of quarterly
observations on the following macroeconomic variables: the unemployment rate (u;); the real,
per-capita levels of GDP (Y}), investment (I;), consumption (C;); hours worked per person (h);
the level of utilization-adjusted total factor productivity (T'F P;); the labor share (w¢h:/Y;); the
inflation rate (7¢), as measured by the rate of change in the GDP deflator; and the nominal interest
rate (R;), as measured by the federal funds rate.

As in their baseline, we proceed to estimate a VAR model with two lags using Bayesian methods.
However, we consider two sets of priors. In one case, we follow their approach and use a Minnesota
prior (“Minnesota”). In the other case, we combine a long-run prior & la Giannone et al. (2019a)
with the Minnesota prior (“Minnesota+ Long-run”). The cointegrating relationships that we assume
among the variables in the long run are in line with those of Giannone et al. (2019a) and are
described in Appendix D.1. We allow for separate shrinkage for each active row of the matrix
that captures the cointegrating relationship among the variables. In the estimation, we consider

the same number of draws and pre-sample years as in our baseline analysis. Hyperparameters for

SWe drop labor productivity in the VAR model because it can be measured by the ratio between output and
hours worked.
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Table 4: Variance contributions of unemployment shock: 1955-2019

Unemployment Output Investment Consumption Hours
Minnesota, 91.9 714 74.4 47.3 75.1
[88.3,94.5] [66.9,77.5]  [69.4,79.5] [37.9,54.4] [70.7,78.8]
Minnesota 92.4 72.8 74.6 49.7 75.9
+ Long-run [88.7,94.7] [68.6,76.1] [70.7,77.6]  [44.2,58.4]  [73.1,79.4]
TFP Labor share  Inflation FFR
Minnesota, 19.2 15.1 7.6 36.3
[11.3,28.1] [9.8,22.7] [3.9,17.9] [26.5,45.4]
Minnesota 18.5 14.9 11.5 38.2
+ Long-run [10.2,24.4] [11.0,21.6] [5.9,17.8] [32.2,45.9]

Notes: The shock is identified by maximizing its contribution to the volatility of the unemployment rate over
business-cycle frequencies (6-32 quarters). We report the median contribution and the corresponding 68-percent
posterior-coverage interval of the identified shock to the variance of all the other variables over the same frequencies.

priors are optimized following Giannone et al. (2019a). For each estimation, we then identify the
shock targeting the unemployment rate at business-cycle frequencies using the method described
in section 4.3. Table 4 reports the contribution of that shock for each of the variables of the VAR
model over the same frequencies.

The results in Table 4 indicate that, even when combining the Minnesota and long-run priors, we

still recover the evidence of a disconnect between real and nominal variables. While the identified
shock explains nearly 8% of the volatility of inflation over the business-cycle when only using
Minnesota priors, its contribution slightly increases to about 11% when those priors are combined
with long-run priors a la Giannone et al. (2019a). These results are in line with those obtained
from a vast variety of specifications that Angeletos et al. (2020) consider including vector error
correction models.
Alternative samples. We now consider an estimation sample that is least impacted by time-
varying trends. Specifically, our sample now starts in 1984:Q1 and ends in 2008:Q4. We estimate
the VAR model with two lags and use the two alternative assumptions about the priors: only a
Minnesota prior or combining that prior with the long-run priors. Table 5 reports the contribution
of the shock identified targeting the unemployment rate for the volatility of the other variables at
business-cycle frequencies. As expected, the results in Table 5 show that restricting the sample to
the period of the Great Moderation improves the contribution of the identified shock on inflation.
However, such contribution is overall small (about 16%) regardless of priors.

Dogmatic priors. As a final check, we explore if these results can be changed if priors are not
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Table 5: Variance contributions of unemployment shock: 1984-2008

Unemployment Output Investment Consumption Hours
Minnesota 92.8 54.3 55.3 34.9 69.4
[85.5,95.6] [43.2,67.7]  [44.8,67.9] [21.0,49.5] [61.3,79.5]

Minnesota 92.8 52.7 55.9 33.1 69.6
+ Long-run [87.7,95.3] [42.2,66.6] [45.8,66.1] [21.3,53.4] [61.7,78.1]
TFP Labor share Inflation FFR
Minnesota 9.4 11.6 15.8 63.2
[3.5,22.1] [3.7,21.3] [7.3,39.3] [56.9,73.9]
Minnesota 9.6 9.9 16.3 63.5
+ Long-run [3.4,21.5] [3.1,17.5] [7.7,29.1] [54.9,72.3]

Notes: The shock is identified by maximizing its contribution to the volatility of the unemployment rate over
business-cycle frequencies (6-32 quarters). We report the median contribution and the corresponding 68-percent
posterior-coverage interval of the identified shock to the variance of all the other variables over the same frequencies.

optimized and instead are imposed dogmatically. The objective is to understand if one can still use
VAR models with the help of priors. We consider several different combinations of hyperparameters
such that the two Minnesota and long-run priors can be either not imposed, optimized, or set
dogmatically. For this exercise, it is important to understand that we are imposing same degree
of shrinkage for each active row of the matrix that captures the cointegrating relationship among
the variables.

Table 6 reports the contribution of unemployment-identified shock on inflation at business-cycle
frequencies. The results are straightforward to understand. When only dogmatic Minnesota
priors are imposed (see lower left corner of Table 6), the inflation variance contribution of the
unemployment shock is nearly zero. It is not exactly zero because the shocks are correlated even
when the individual series follows a random-walk process. However, the opposite case of dogmatic
long-run priors (see upper right corner of Table 6) leads to about 33%.7 While the numbers are
certainly lower than those reported in Table 2, our findings strongly suggest that it is important
to consider long-run relationship amongst variables and not properly accounting those features in
the data could lead to imprecise conclusions about how real activity and inflation are connected

over the business cycle.

"The fact that the number 26.2% in the middle of Table 6 does not coincide with 16.3% in Table 5 is because we
are imposing same degree of shrinkage for each active row of the matrix that captures the cointegrating relationship
among the variables in Table 6 but not in Table 5 which allows for separate shrinkage.
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Table 6: Inflation variance contribution of unemployment shock: 1984-2008

No long-run  Optimized long-run  Dogmatic long-run

No Minnesota 25.2 26.2 33.1
[9.2,42.6] [13.3,52.4] [11.0,49.0]
Optimized Minnesota 20.1 26.2 33.1
[11.0,31.5] [13.3,52.4] [11.0,49.0]
Dogmatic Minnesota 2.0 26.2 -
[0.4,5.6] [13.3,52.4]

Notes: The shock is identified by maximizing its contribution to the volatility of the unemployment rate over
business-cycle frequencies (6-32 quarters). We report the median contribution and the corresponding 68-percent
posterior-coverage interval of the identified shock to the variance of all the other variables over the same frequencies.
For long-run priors, we are imposing same degree of shrinkage for each active row of the matrix that captures the
cointegrating relationship among the variables.

7.2 Estimating our data with a VAR model based on alternative priors

As a final exercise, we bring our attention back to the data used in Section 5 and described in
Section 4.1. We focus on the period of the Great Moderation between 1984 and 2008 and examine
the extent to which the estimated VAR model can reproduce empirical evidence provided by our
baseline TC-VAR model.® We estimate the model using only a Minnesota prior (“Minnesota”) or
combining it with long-run priors (“Minnesota-+Long-run”). The cointegrating relationships that
we impose across variables are reported in Appendix D.2. For both specifications, we identify
the shock targeting the unemployment rate at business-cycle frequencies and report in Table 7 its
contribution for other variables. In sum, while the long-run priors are better at delineating long-
run from short-run dynamics, the evidence suggests one needs to go beyond the VAR dynamics

to examine the (dis)connect between real activity and inflation over the business cycle.

8 Explaining VARs Through the Lens of Trend-cycle-VARs

In this section, we provide theoretical arguments that motivate the adoption of a TC-VAR model,
rather than a standard VAR model, for the results presented in Section 5. In Subsection 8.1,
we show that a fixed-coefficient VAR model estimated over a period of time that presents struc-
tural changes is misspecified. The misspecification problem associated with the use of a VAR

model to describe a data generating process characterized by both low- and high-frequency move-

8Relative to the baseline specification, we drop the ten-year-ahead inflation expectations as it is not straight-
forward to impose long-run relationships across two inflation expectations series.
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Table 7: Variance contributions of unemployment shock: 1984-2008

Unemployment Output FFR Inflation  Inflation
Exp.(1ly)

Minnesota 88.3 61.5 70.7 13.4 28.2
[78.2,92.1] [48.0,74.0] [61.7,78.9] [6.0,27.3] [13.5,42.2]

Minnesota 88.4 65.7 74.5 20.1 28.6
+ Long-run [82.3,93.2] [63.5,73.2] [60.1,80.5] [7.0,29.1] [12.6,47.1]

Notes: The shock is identified by maximizing its contribution to the volatility of the unemployment rate over
business-cycle frequencies (6-32 quarters). We report the median contribution and the corresponding 68-percent
posterior-coverage interval of the identified shock to the variance of all the other variables over the same frequencies.

ments cannot be easily resolved.? Even if an econometrician could correctly reconstruct the VAR
representation of the TC-VAR model, the parameter estimates of the misspecified model would
confound low-frequency movements associated with the trend with those at business-cycle frequen-
cies related to the cycle. Moreover, the reduced-form innovations that she would recover would
not only map into the innovations affecting the latent persistent and stationary components. By
contrast, the reduced-form innovations would also capture the error associated with the estimates
of the latent components. Of course, in reality, these issues would be exacerbated by the fact
that the VAR parameters estimated over a finite sample would be distorted because a single set
of parameters would need to account for both trend and cycle fluctuations.

To build the intuition about the underlying issues, in Subsection 8.2, we generate data from
a Monte Carlo simulation of a bivariate TC-VAR model and show that a VAR model does not
succeed in capturing the assumed cyclical relationship between the two variables, even with a
long data sample. Moreover, in Appendix E.3, we consider a univariate trend-cycle autoregressive
(TC-AR) model of U.S. inflation based on Stock and Watson (2007) and derive analytically its

infinite-order autoregressive (AR) representation.

8.1 Trend-Cycle models and their VAR(c0) representation

In Subsection 3.3, we provide the state-space representation of our model in (5) and (6) and that

we report below in (9)

ye = Ay, (9.1)
Ty = (I)l’t_l-i-R&t, (92)

Watson (1986) discusses the equivalence between an unobserved component model and its autoregressive,
integrated, moving average (ARIMA) representation, thus pointing to the misspecification problem characterizing
a VAR representation of a TC-VAR model.
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where &, = Quw; and E (wyw}) = Z. Our goal is to map the state-space representation in (9) into
a VAR model. Importantly, for all the considered specifications, the overall number of shocks of
the TC-VAR model is strictly larger than the number of observables. Equivalently, dim (w;) =
(nr +ne+ny) > n = dim (y;). As a result, the ‘poor man’s invertibility condition’ proposed in
Fernandez-Villaverde et al. (2007) cannot be tested because it requires the number of shocks and
observables to coincide. We therefore seek to find the ‘innovations representation’ of (9).

Because the innovations representation results from the application of the Kalman filter to
the state-space representation, we first ensure the suitability of the filter for our purpose and
more specifically its asymptotic stability and convergence. Clearly, these properties of the filter
depend on the properties of (9) and should not be taken for granted in our setup: In the transition
equation (9.2), the cyclical components are assumed to be stationary, while trends follow unit-root
processes. However, we follow Anderson and Moore (1979) who suggest to verify two conditions: i)
the pair (®, RQ) is stabilizable; ii) the pair (®, A’) is detectable—or equivalently, the pair (@', A’)
is stabilizable.!? For all the specifications of the TC-VAR model that we consider in Section 3,
both conditions are satisfied for each draw obtained from the model estimation.

Having verified the suitability of the Kalman filter for our purpose, we follow Fernandez-
Villaverde et al. (2007) to derive the innovations representation. Specifically, we write the repre-

sentation in (9) as

Tip1 = Al’t—i-Bwt_H, (10.1)
Yir1 = Czyp+ Dwyyq, (10.2)

where A =®, B=RQ, C =AA, D =AB and E (ww;) = Z. Defining the linear projection of z;
on y' = {y; };:1 as &y = E (x|y"), the one-step-ahead error associated with the forecast of y;41 as
ﬁt+1ut+1 and the term updating the estimator of the state for the next period Z;41 as Bt+11/t+1,

the application of the Kalman filter to (10) delivers the innovations representation

Tey1 = A-i't'i‘Bt—f—th-i-ly (11.1)

Yir1 = Ciy+ Dipivig, (11.2)

where xg ~ (Zg, Xg), the covariance matrix ¥ is positive semi-definite, and 14 is a vector of mean-
zero, normal and uncorrelated white-noise innovations such that F (1)) = Z. Notably, under this
representation, the number of shocks and observables coincide. Also, because the innovation vy

is fundamental for g, by definition, it is thus uncorrelated with 3;_s and ultimately v;_, for any

10%We provide the definition of stabilizability in Appendix E.1. For further details, refer to Burridge and Wallis
(1983), Sargent (1988), Anderson et al. (1996) and Hansen and Sargent (2008, 2013) among others. We refer the
reader to pp. 76-82 and Appendix C in Anderson and Moore (1979) for the details on the conditions mentioned
here and the definition of stabilizability.
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s> 0.

Importantly, the innovations representation in (11) shows that, with a finite sample {yt}thl
where T' < oo, it is not possible to derive a VAR representation because the matrices By and D,
depend on time t. As a result, we consider the limit case for 1" approaching infinity. Because
the asymptotic stability and convergence of the Kalman filter hold, the matrices B, and Dy also
converge to their time-invariant counterparts B and D.1 Therefore, we can derive the infinite-

order VAR representation. Solving (11.2) for 1441 and combining with (11.1), we obtain
[I - (A - BD—lo) L} 41 = BD (12)

where L denotes the lag operator. Importantly, the asymptotic properties of the Kalman filter
also guarantee that all the eigenvalues of the matrix (A — Bf)*lC) are all strictly inside the unite
circle in modulus (Anderson and Moore, 1979). Therefore, we solve equation (12) for Z;y; and
plug the solution in the time-invariant version of equation (11.2) to obtain the following VAR (oc0)

representation
~ A -1 . . ~
g1 = C [I - (A - BD*lc*) L] BD 'y, + Dy

_ i C (A — Bﬁ*lc)s BD Yy, + Dvyyy, (13)
s=0

where the inverted matrix in square brackets in the first equation is a square summable polynomial
in L. Equation (13) shows three important conclusions. First, the state-space representation of
the TC-VAR model in (9) maps into the infinite-order VAR representation in (13) under the
assumption that infinite data are available. As a result, a finite-order VAR with finite data
cannot capture the dynamics described by the decomposition of the observables y; into trends
and cycles. Second, even if infinite data were available, equation (13) clarifies that estimates of
the autoregressive parameters associated with the VAR(co) representation confound movements
of yr41 that are driven by both the trend and cycle. Equivalently, the VAR (oc) representation
cannot disentangle movements of y;41 at low frequencies from those at cyclical frequencies. Finally,
as shown in Fernandez-Villaverde et al. (2007), the innovations associated with the VAR(co)
representation, ﬁz/tﬂ, capture not only the shocks to the latent trends and cycles, Dw;yq, but
also the error associated with the estimate of those latent components, C' (x; — ).

Finally, in Appendix E.3, we provide a simple analytical example based on an unobserved
components model of U.S. inflation by Stock and Watson (2007) to show the intuition for these
results.

With these results, we are not arguing for the unconditional superiority of a TC-VAR over a

1 Appendix E.2 provides the details on the equations for matrices B and D.

27



VAR. Over the past four decades, economists have used VARs as extremely flexible econometric
models capable of uncovering enlightening empirical results. Our point is that for the specific
question of assess the strength of the relation between inflation and real activity over the business

cycle, a TC-VAR appears to be a more effective tool.

8.2 A Monte Carlo simulation of a bivariate TC-VAR model

To provide an intuitive example, let us assume that the data generating process for the unemploy-
ment rate and inflation rate, y; = {us, 7}, is described by the measurement equation y; = 7 + ¢y,
where the dynamics of trend 7 and cyclical component ¢; can be modeled as in (2) and that we

report below in (14)

Tt = Ti-1tErt, (14.1)
¢t = Pic1 +ecy, (14.2)

/ / / / .
where 7, = {Tu,thw,t}a Ct = {Cu7t7c7'(7t}7 Ert = {5T,u,tu5777r,t} and Ect = {5C,u,t7€C,ﬂ‘7t}' In this

example, we assume that (14.2) is
Eu,t
€7r,t

Cu,t _ Puu 0 Cut—1
Crt _(1 - p7r7r) Prr Crit—1

implying that, while the cyclical component of the unemployment rate only depends on its lag, the

cyclical component of inflation depends on its own lag as well as on the lagged cyclical component

of the unemployment rate. We also assume that the shocks are independent and identically

distributed as
’ > 0 L ow = oru 0 Con. = Ocu O '
0 EC 0 Orm 0 Oc,m

Ll
Eet 0

To generate a Monte Carlo simulation, we consider a parameterization that would help the mis-

specified VAR model to capture a relationship between the two series over the business cycle.
For the unemployment rate, we set py, to 0.9, thus assuming a persistent process for the cyclical
component of the unemployment rate. Additionally, we standardize the gaussian innovations to
the trend and cycle of the unemployment rate, that is o7, = 0., = 1. For the inflation rate, we
assume that its process is fully explained by the (lagged) cyclical component of the unemployment
rate. This assumption is evidently unrealistic but is chosen to ensure that the innovations to
the cyclical component of the unemployment rate are the only source of fluctuations for realized
inflation. Implementing this assumption requires setting the innovations to both the trend and

cyclical components of inflation to zero, that is 0, = 0. = 0. Additionally, we set to zero
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Table 8: Variance contribution of unemployment shock

Unemployment Inflation
96.5 9.4
[94.9,97.8] [7.4,11.7]

Notes: The shock is identified by maximizing its contribution to the volatility of the unemployment rate over
business-cycle frequencies (6-32 quarters). We report the median contribution and the corresponding 68-percent
posterior-coverage interval of the identified shock to the variance of all the other variables over the same frequencies.

the autoregressive parameter p;.. These assumptions imply that the simulated inflation rate is
described by the process'?

Tt = —Cyt—1- (15)

Using this calibration, we produce a long Monte Carlo simulation and then estimate a VAR
model choosing the lags to deliver the lowest Bayesian Information Criterion (BIC) and using a
Minnesota prior as in Angeletos et al. (2020).'® We then identify the shock targeting the simulated
unemployment rate at business-cycle frequencies.

Table 8 reports the contribution of the identified shock for both series over business-cycle fre-
quencies. Even with a long data sample and in presence of strong assumptions about the cyclical
relationship between the unemployment rate and inflation, the results in the table lead to conclude
that the shock driving the unemployment rate does not explain the inflation rate. Intuitively, the
identification of the shock at business-cycle frequencies does not succeed in extracting the cyclical
relationship because of the misspecification of the standard VAR model that fails to separate cycle
and trend innovations in unemployment. It goes without saying, that if we were to complicate the

model further, for example by introducing a trend in inflation, the results would get even worse.

9 Conclusions

In recent years, a series of papers have called into question the validity of the New Keynesian
framework. One important argument is the observation that inflation seems to be unresponsive
to business-cycle movements in real activity. In this paper, we used a trend-cycle VAR model to
study the relation between inflation and the real economy over the business cycle. The trend-cycle
VAR model has the virtue to remove low-frequency movements in inflation and real activity that

can contaminate inference about the VAR parameters and innovations. We show that at business-

21y Appendix E.4, we also consider an alternative calibration by setting pr» = 0.5 and o, » = 1, therefore allow-
ing the inflation rate to also depend on its lagged cyclical component and the innovations to its trend component.
The results show that the contribution of the unemployment-rate shock to inflation at business-cycle frequencies is
about 70% lower than the corresponding contribution reported in Table 8.

13We generate a Monte Carlo simulation of 50,000 observations and keep the last 1,000 as simulated data. To
estimate the VAR, we set 50,000 draws and keep the last 1,000 to identify the shock as in Angeletos et al. (2020).
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cycle frequencies, fluctuations of inflation are tightly related to movements in real activity, in line

with what implied by the New Keynesian framework.
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A The State-space Representation

In Subsection 3.3, we discussed the state-state representation in (5) and (6) that we report below

in (16)

Ut

Tt

where A = [A7, Ac, Ay, Ac = [Acp, ...

in 3.1, these matrices are constructed as

ATxT,t + Acxc,t + Anxn,ta

bxy_1 + Rey,

(16.1)
(16.2)

sAcp—1] and Ay, = [Ay 0, Ay 1]. For our baseline specification

Iixa O4x6 Osxe Osx1 Osx1 Lixa Ogxe Osxi |
Oxa D1 P2 0Opx1 Opx1 O6x4  Iox6 Osx1
® = | O6xs Igx6 Opx6 Osx1 Oex1 | ;R = | Ogxs Opsx6 Opx1 (17)
O1x4 O1x6 Oi1x¢ O 0 O1x4 O1x6 1
| O1xa O1x6 O1xe¢ 1 0 ] O1x4 O1x6 O
[ ey Y Ouxe Osx1
Et= | €ct |2 { Osxs  Xc  Opx1 |, A= [ Aro Acop Aci Ao Ay ] s Aco = Isxe,
| Ent O1x4 O1x6 2y
(10 0 0] (-1 000 0 0] [0 ]
01 00 0O 0 0 0 0O 0
O O ] o ] e
0 0 0 1 0O 0 0 0 0 O 0
i 0 0 0 1 | i 0O 0 0 0 0 O | i 0 ]

B Estimation Details

B.1 Settings

For all the considered specifications, we assume that the cyclical components evolve according to
a VAR model with two lags (p = 2) following the baseline approach of Angeletos et al. (2020). For
each estimation, we adopt the Gibbs sampler described in Appendix B.2. We use 50,000 draws
to estimate the TC-VAR model. We then discard the first 25,000 draws and keep one in every 25

draws, thus leaving 1,000 draws, to use for the identification of the shocks.
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B.2 Gibbs Sampler

We assume that X, is known. We collect parameters that need to be estimated in
O, =1{%;}, O.={Py, P, % }.

We use the Gibbs sampler to estimate the model unknowns. We rely on the state-space repre-
sentation of (5) and (6). For the jth iteration,

e Run Kalman smoother to generate Tf:T and cé:T conditional on @j}, ©7: This is explained in
Section B.2.1.

e Obtain posterior estimates of G)J#l, 2" from the MNIW conditional on Tf:T and Cé:T: This

is explained in Section B.2.2.

B.2.1 Kalman smoother

We rely on the state-space representation in equations (5) and (6). Conditional on the jth draw
of @‘1, @ﬁ, we apply the standard Kalman filter as described in Durbin and Koopman (2001).
Suppose that the distribution of

st—1[{y1:t-1, 9]}7 92} ~ N(3t71|t717 Pt71|t71)'

Then, the Kalman filter forecasting and updating equations take the form

Stit—1 = F3t71|t71

Pt|t—1 - FPt—1|t—1F/ + QEQ/
s = Stj—1 + (APyy_1) (APt A) 7 (g — Asy_q)
Pt|t = Pt|t—1 - (APt\t—l)/(APﬂt—lA/)_l(APt|t—1>'

In turn,

st {y1:e, @17 @f;} ~ N(3t|t7 Pt\t)'

Next, the backward smoothing algorithm developed by Carter and Kohn (1994) is applied to recur-
sively generate draws from the distributions s;|(Si+1.7, Y1.7, @3}, @f;) fort =T—-1,T-2,...,1. The

last element of the Kalman filter recursion provides the initialization for the simulation smoother:

Stlt41 = St + Pt‘tF/Pt:_lllt (141 — Fst\t) (18)
Pt|t+1 = Pt|t - Pt\tF/Pt;l”tFPﬂt

SJ ~ N(St‘t—l-l?Pt‘t-f—l)v t:T—l,T—Q,,l

35



In sum, we obtain smoothed estimates of le:T and cg):T.

B.2.2 Posterior draw

We treat the smoothed estimates of T{:T and cé:T as data points. The objective is to draw it
and 021,

VAR coefficients. For ease of exposition, we omit the superscript j below. For t € {2,...,T},
we express the VAR as

(I)/
¢ = [ o || g | T cor~ N(OZ). (19)
—_—— 2
w! ~—_——
! B

Define X = [cg,...cr], W = [we, ..., wr], and €. = [€c2, ..., €] conditional on the initial obser-

vations. If the prior distributions for 8 and X, are

then because of the conjugacy the posterior distributions can be expressed as

BIE~MN(B,X®@Vg), X.~IW(V,d) (21)
where
B o= (WW+Ve6) ) (WX + (V36)715). (22)
Vs = (WW+e)™)™
U = (X-WB)(X-WB)+(B-8) (V&) '(B-5)+ ¥,
d = T—-2+d

We follow the exposition in Giannone et al. (2015) in which £ is a scalar parameter controlling
the tightness of the prior information in (20). For instance, prior becomes more informative when
¢ — 0. In contrast, when & = 0o, then it is easy to see that § = B, i.e., an OLS estimate.

In sum, we draw $/*1 and /! from (21). Hence, we obtain eIt = {<I>ji+1, @%Jrl, Zg“}.

Trend component variances. Conditional on T{:T, the objective is to draw T = {E]}+1}.

For ease of exposition, we omit the superscript j below. Define X = [ro,...,7r] and W =
[T1, ..., 77—1]’. Similarly as before we draw from
Yo~ IWW,d), V=(X-W)(X-W)+¥ d=T-1+4d. (23)
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C Robustness Checks

In this appendix, we investigate the robustness of our results to different specifications of the
TC-VAR model. We consider two robustness analyses that relate to alternative specifications for

the one- and ten-year-ahead inflation expectations surveys.

C.1 Two inflation cycles

Specification and priors. In the baseline specification, we decompose the inflation rate and the

one- and ten-year-ahead inflation expectation measures as in (1) and that we report below in (24)

Tt = Tri+crp+ (Nrt — Nre—1), (24.1)

T S (24.2)
e, 10y e e, 10y

ur = Tt + 0, + Ne - (24.3)

While we leave unchanged the decomposition for the inflation rate in (24.1), we now consider the

following alternative specification for the two inflation expectations surveys

L ¢ 4 (25.1)
e, 10y e e,10y
7 = Tt 0+ (25.2)

The one- and ten-year-ahead inflation expectation surveys are assumed to share a common cyclical

0 : .
Y are fairly stable over time, we

component, c; ;. Because the ten-year inflation expectations Y /1
assume that its loading is less than one § < 1. In particular, we estimate § assuming a normal
prior distribution centered at 0 and with variance 0.1. Lastly, we allow for idiosyncratic errors
for the ten-year-ahead inflation expectations. Under our baseline specification, the joint dynamics
of trend and cyclical components are described in (6) where 7, = {Tg,t,Tuyt,Tnt,Tmt}/, Ert =
{ErgtsErats Erats Ermt} s € = {Cys Cus s oy} and eay = {Eeyts ot Ceufits Eemts Eoms ) -
Initial conditions and priors. Under this alternative specification, we modify the assumptions
on the prior for the standard deviation of the shocks to the trends. In particular, we set the
standard deviation for the expected change in the annualized trend of real GDP growth and
unemployment rate to 1% over a time period of 100 and 50 years respectively. For the annualized
real interest rate and inflation, we assume a one-percent standard deviation for the expected change
in their trends over 25 years. These assumptions imply that the prior covariance matrix of the
shocks to the trends is diagonal with the following elements on the main diagonal diag (&) =
[1/100,1/50,1/25,1/25].

Finally, because pre-sample data is not available for either the one- or ten-year-ahead inflation
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expectations, we set the prior for the standard deviation of the shocks affecting the common
cyclical component of the two inflation expectations survey to 1.5%, thus coinciding with the
corresponding standard deviation for the inflation rate. As a result of these assumptions, the prior
covariance matrix of the shocks to the cycles is diagonal and such that the value on the main
diagonal approximately correspond to diag (&) =[25,1.3,0.6,2.2,2.2].

Results. We estimate the TC-VAR model in (5) and (6) over the 1960-2019 period. We then
identify the shock targeting ¢, and report in Table 9 its contributions to the volatility of the
cyclical components of the other variables. Even in this case, the results are in line with those of

the baseline specification.

Table 9: Two inflation cycles: Variance contribution of unemployment shock

All frequencies (0 — co quarters)

Unemployment  Output FFR Inflation Inflation
Exp.(1y)
67.4 74.6 52.5 47.3 58.5

[58.5,78.3]  [54.7,85.3] [15.2,86.4] [24.2,67.2] [18.6,82.8]

All-but-short-run frequencies (6 — oo quarters)

Unemployment  Output FFR Inflation Inflation
Exp.(1y)
68.0 75.4 52.6 50.3 62.1

[59.2,78.9]  [55.8,85.9] [15.5,87.0] [25.9,70.6] [20.1,86.6]

Notes: The shock is identified by maximizing its contribution to the volatility of the cyclical component of the
unemployment rate. We consider two cases. In the first case, the shock is chosen to maximize the fraction of the
volatility over all the frequencies of the cycle, while in the second case we exclude frequencies that imply cycles less
than 1.5 years. We report the median contribution and the corresponding 68-percent posterior-coverage interval of
the identified shock to the variance of the cycle of all the other variables.

C.2 One common inflation cycle

Specification and priors. In addition to the decomposition for realized inflation in (24.1),
this specification assumes the following alternative decomposition for the one- and ten-year-ahead

inflation expectation measures

We,ly = Triterr+ n€,1y7 26.1
t 3 3 7T,t
ﬂ_f,lOy = Teit nfrﬁOy. (26.2)

The specification in (26) assumes that there is one common cyclical component ¢, for infla-

tion which is shared across realized inflation m; in (24.1) and the one-year-ahead inflation ex-

38



pectation 7y Y i (26.1). Because the ten-year inflation expectation m; A0y g fairly stable over

time, we assume that it proxys for the trend component but does not include any cyclical com-
ponent. In this case, the joint dynamics of trend and cyclical components are described in
(6) where 7, = {Tg,t’TuJyTr,taTﬂ,t}/a Ert = {8T,g,t>ET,u,tung,t)ETﬂr,t}/) Gt = {Cy,t,Cu,t,Cf,t,Cw,t}/,
Ect = {Ecyts Ecuts o fits Ecmit} -

Under this alternative specification, we keep the same assumptions on the standard deviation
of the shocks to the trends as under the baseline, that is diag (X,) = [1/40,1/20,1/20,1/20].
We also assume that the prior for the standard deviation of the shock to the common cyclical
component of inflation coincides with the pre-sample standard deviation of realized inflation.
Therefore, diag (X, ) = [25,1.3,0.6,2.2].

Table 10: One common inflation cycle: Variance contribution of unemployment shock rate

All frequencies (0 — oo quarters)

Unemployment  Output FFR Inflation

745 818 139 388
[64.4,85.0]  [71.1,90.1] [19.4,73.3] [25.1,54.2]

All-but-short-run frequencies (6 — co quarters)

Unemployment ~ Output FFR Inflation

75.7 82.7 437 43,9
65.4,85.9]  [71.9,90.8] [19.7,73.0] [28.6,60.0]

Notes: The shock is identified by maximizing its contribution to the volatility of the cyclical component of the
unemployment rate. We consider two cases. In the first case, the shock is chosen to maximize the fraction of the
volatility over all the frequencies of the cycle, while in the second case we exclude frequencies that imply cycles less
than 1.5 years. We report the median contribution and the corresponding 68-percent posterior-coverage interval of
the identified shock to the variance of the cycle of all the other variables.

Results. Estimating the proposed alternative specification of the TC-VAR model over the
1960-2019 period, we identify the shock targeting ¢, and report in Table 10 its contributions to
the volatility of the cyclical components of the other variables. The results show that the findings
under the baseline specification carry over. In fact, the shock explains nearly 40% of the volatility
of the common cyclical component of inflation. When excluding movements in cyclical components
at frequencies higher than 1.5 years, the results point to a somewhat stronger explanatory power

of the identified shock for the common cyclical component of inflation.
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D Details on Long-run Priors

D.1 Long-run priors for Angeletos et al. (2020)

When estimating the VAR model using the long-run priors, we consider the arbitrary ordering
of the observables y; = {Y;, Iy, Cy, us, he, TF Py, wihy /Yy, mp, R Y. We assume that the following

matrix H captures the cointegrating relationships in the long run

_ o O O O O o O
= O O O O O O O

O O O O O O O = =
O O O O O O = O =
SO O O O o = O o o
O O O O = O O o o
O O O B O O O o O
O O O O O O o O©

|
—_

D.2 Long-run priors for VAR model in Subsection 7.2

When estimating the VAR model using the long-run priors, we consider the arbitrary ordering of

/
the observables y; = {gt,ut, Jey e, ’ly} . We assume that the following matrix H captures the

cointegrating relationships in the long run

(1. 00 0 0]

010 0 0
H=]001 —-10 (27)
001 1 1

|00 0 —1 1|
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E Supplementary Material to Section 8
E.1 Definition of stabilizability
Definition 1 The pair (A, B) is stabilizable if any of the following conditions holds:

o There exists no left eigenvector of A associated with an eigenvalue having nonnegative real

part that is orthogonal to the columns of B;

v*A= v (Re[\(A)] >0)
v*B =0

=v=0.

o rank [\ — A B] = dim(A) for all Re[A\(A)] > 0.

E.2 Matrices for time-invariant innovations representation

As shown in Fernandez-Villaverde et al. (2007), the time-invariant matrices B and D satisfy the

following equations:

Y = ASA 4+ BB - (AXC' + BD') (CEC' + DD') ™ (ASC' + BD')',  (28.1)
K = (AXC'+ BD') (C=C'+DD')™, (28.2)
DD = DD +cCxc, (28.3)
B = KD. (28.4)

E.3 The AR representation of a univariate TC-AR model

In this appendix, we provide an intuitive, analytical example that considers the unobserved com-
ponents model used by Stock and Watson (2007) to test whether the U.S. inflation process expe-
rienced a structural change since the beginning of the Great Moderation. Inflation is described by

the following state-space representation

T = ATTﬂ—,t + Anéfn’ﬂ—,t, (291)
Trt = (I)-,—Tﬂ—’tfl + R&Tﬂr,t, (292)
where

d,=1, R=1, A, =1, A, =1,

and -5 = QWrryt, @ = 07, Enny = OyWyxy such that F (wyw;) = T where wy = {wy xy, wmm}/.
Defining y; = m and x; = 73, the representation in (29) coincides with (5) and (6) where, following

the notation in Anderson and Moore (1979), we appended the measurement error e, . ; directly
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in (5) as opposed to redundantly defining it as 7, ; in the transition equation (6). Thus, we verify
two conditions: i) the pair (®,, RQ) is stabilizable; ii) the pair (®/,A’) is stabilizable. Because

@, has only one (unit-root) eigenvalue, then
rank[I —®, RQ|=rank[0 o;]=1,

and
rank [I —®. A ] =rank[0 1] =1.

Therefore, the asymptotic properties of the Kalman filter hold, and we can derive the AR(c0)

representation of (29). In particular, we write (29) as in (10) where
a=1, B=[o. 0|, C=1, D=[0 o]

assuming that the shock to the trend is e;r; = o;w;r; and the measurement error is n.; =
oywy x¢ and E (wyw)) = T where wy = {wr x4, Wy 1} . Defining o7 = ¥ as the standard deviation
of the error associated with the estimate of the trend, (7 — 7r), we can use the equation (28)

in Appendix E.2 to derive the time-invariant matrices B and D as

1
2 _ 2 (_g24 /o4 2,52
0% 5 ( o;+\/oF+ 407%) > 0, (30.1)
K = 1-34, (30.2)
DD = (02402 + 0,27) , (30.3)
B = (1-9) (o2 + 02 + 0727)1/2 , (30.4)

where § = 072, /(624 0%+ 03]) < 1. Finally, using (13) and (30), we map the state-space represen-

tation in (29) maps into the infinite-order autoregression, AR (o0),
o ~ A S A A A~
T o= 3.C (A - BD’lC) BD Yy,_y + Dy
s=0

= ZC(A—KC)SKTFt—S+-DVt+17
s=0

o0
1/2
= (1-9) Z O°mi_g + (072_ + 03 + Ug) / Vi, (31)
s=0
where v ~ N (0,1). Equation (31) shows that, even with infinite data, the estimation of the
AR(o0) representation leads to parameter estimates and VAR residuals that confound the standard
deviation of both the measurement error o, and the innovations to the trend o with the standard

deviation o7 resulting from the error associated with the estimate of the trend, (7 — T ).
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E.4 Bivariate example: An alternative calibration

In this appendix, we consider an alternative parameterization of the model in Subsection 8.2. While
we leave unchanged the parameterization for the unemployment rate process, we set p, to 0.5,
thus assigning an equal loading on cyclical inflation of its lag and the cyclical unemployment rate
even though with opposite signs. We further assume that ¥; = 7, 0., = 1 and 0., = 0, where
the latter assumption ensures that the inference about the contribution of the unemployment-
identified shock is not affected by the shocks to the cyclical component of inflation. Finally, we
follow the same steps described for the previous specification and, after producing a new data
simulation, we estimate a bivariate VAR model and subsequently identify the shock targeting the

unemployment rate at business-cycle frequencies.

Table 11: Bivariate model: Variance contribution of unemployment shock

Unemployment Inflation
99.8 3.1
[99.6,99.9] [1.8,4.6]

Notes: The shock is identified by maximizing its contribution to the volatility of the unemployment rate over
business-cycle frequencies (6-32 quarters). We report the median contribution and the corresponding 68-percent
posterior-coverage interval of the identified shock to the variance of all the other variables over the same frequencies.

Table 11 reports the associated contribution of the shock for both series at those frequencies. As
expected, the results show that the contribution of the unemployment-rate shock to inflation at
business-cycle frequencies is lower—by about about 70%—than the shock contribution reported
in Table 8. Intuitively, under this alternative calibration, the inflation rate depends on its lagged
cyclical component and the innovations to its trend component in addition to the movements in the
lagged cyclical component of the unemployment rate. Consequently, the estimated bivariate VAR
confounds all these effects, implying a lower contribution of the unemployment-identified shock
on inflation at business-cycle frequencies. To conclude, even if the long simulation was generated
under the assumption that their cyclical components were evidently related, the identified shock

does not capture this feature of the simulated data.
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