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Abstract

Diagnostic expectations constitute a realistic behavioral model of inference. This pa-
per shows that this approach to expectation formation can be productively integrated into
the New Keynesian framework. To this end, we start by offering a technical treatment of
diagnostic expectations in linear macroeconomic models. Diagnostic expectations generate
endogenous extrapolation in general equilibrium. We show that diagnostic expectations gen-
erate extra amplification in the presence of nominal frictions; a fall in aggregate supply gen-
erates a Keynesian recession; fiscal policy is more effective at stimulating the economy; with
imperfect information, diagnostic expectations generate delayed overreaction of aggregate
variables. We perform Bayesian estimation of a rich medium-scale model that incorporates
consensus forecast data. Our estimate of the diagnosticity parameter is in line with previous
studies. Moreover, we find empirical evidence in favor of the diagnostic model. Diagnostic

expectations offer new propagation mechanisms to explain fluctuations.
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1 Introduction

Diagnostic expectations (DE) have emerged as an important departure from rational
expectations in macroeconomics and finance. Among the host of possible deviations
from rational expectations, there are three broad reasons that make diagnostic expec-
tations a leading alternative to consider for macroeconomic modeling. First, diagnostic
expectations constitute a microfounded deviation immune to the Lucas critique. Sec-
ond, this approach lends itself to a great deal of tractability, as a number of recent
efforts in macroeconomics and finance have demonstrated (see Bordalo, Gennaioli, and
Shleifer 2018; Bordalo, Gennaioli, Ma, and Shleifer 2020; Bordalo, Gennaioli, Shleifer,
and Terry 2021, among others). Third, based on the pathbreaking and influential work
on the “representativeness heuristic” by Kahneman and Tversky (1972), one ought to
consider this behavioral model as fundamentally realistic, and thereby portable across
fields of economics.*

In this paper, we argue that diagnostic expectations can be productively incorpo-
rated into the New Keynesian (NK) framework. We demonstrate this claim in two
parts, analytical and empirical. Analytically, using a three-equation NK model, we
show how diagnostic expectations bring rich insights on four issues raised by the lit-
erature. Empirically, by integrating diagnostic expectations into a rich medium-scale
DSGE model, we find that diagnostic expectations provide a superior fit of business
cycle and consensus forecast data. Our analysis brings novel implications for the in-
terpretation of fluctuations.

The first analytical issue we tackle is that of amplification and propagation in
general equilibrium. As shown in previous work (Bordalo, Gennaioli, and Shleifer
2018, henceforth BGS), diagnostic expectations (DE) imply an extrapolation of current
shocks into the future. Intuitively, this could generate extra volatility for endogenous
variables. We show that this intuition is in fact not guaranteed. In the presence of
nominal frictions (as in the NK model) DE generate extra volatility; in a frictionless
representative agent real business cycle (RBC) model, general equilibrium channels
shut down the effect of DE, and output is less volatile under DE than under rational
expectations (RE).?

The second issue considered is whether a fall in aggregate supply can cause a de-

mand shortage. Since the onset of the COVID-19 pandemic, there is a renewed interest

1Simply put, the representativeness heuristic is the general human tendency to over-estimate how representative
a small sample is, a pattern documented in a large body of literature in psychology and behavioral economics. For
a survey and more detailed discussion, see Kahneman, Slovic, and Tversky (1982).

2Bordalo, Gennaioli, Shleifer, and Terry (2021) consider financial frictions and how DE generate realistic credit
cycles in a real economy. See Section 4 for a broader discussion.



on whether supply-side disruptions can ultimately generate shortfalls in aggregate de-
mand (see Guerrieri, Lorenzoni, Straub, and Werning 2022; Fornaro and Wolf 2021;
Caballero and Simsek 2021; Bilbiie and Melitz 2020, among others.) Whereas the
rational expectations NK (RE-NK) model generates the opposite prediction, we show
that adding DE into the NK framework (DE-NK) allows for the possibility of “Keyne-
sian supply shocks”: Following a negative supply shock, diagnostic agents extrapolate
the shock into the future, and hence become excessively pessimistic. This pushes them
to reduce consumption drastically, generating a Keynesian recession. Later, beliefs
systematically revert, and the economy features a boom, as in the RE-NK model.

The third issue we tackle concerns government policy. We show how endogenous
extrapolation arising from the evaluation of the inflation process by diagnostic agents
can significantly raise the government spending multiplier. Current surprise inflation
causes the diagnostic agent to expect future inflation thereby reducing the subjective
real interest rate. When the diagnosticity parameter is higher than the coefficient
governing the reaction of the monetary authority to inflation, the DE-NK model is
able to generate a multiplier greater than 1 even with i.i.d. government spending
shocks. We show how this analytical conclusion can be challenged by the degree of
extrapolation of the exogenous shock process, which depends on the persistence of this
shock. If the shock is persistent enough, the DE of future spending can completely
crowd out current consumption and lead to a multiplier that is equal to 0, or even
negative. Hence, the degree of diagnosticity allows the model to span a wide range of
multipliers, highlighting the importance of the behavioral friction in this context.

With an eye to the large macroeconomics literature on information frictions, the
fourth question we consider concerns under- and overreaction of expectations (Coibion
and Gorodnichenko 2015a; Bordalo, Gennaioli, Ma, and Shleifer 2020). Based on pre-
vious work (Lorenzoni 2009; Blanchard, L’Huillier, and Lorenzoni 2013), we extend
DE-NK model to a setting where the consumers receive noisy signals about the future
path of their income. Beliefs about their long-run income determine aggregate con-
sumption and output due to nominal rigidities. We show that a plausible calibration
of the imperfect information DE-NK model can generate both short-run underreac-
tion, and an overreaction over the medium-term. Combining diagnostic expectations
with information frictions can deliver rich implications for the path of agents’ beliefs
in general equilibrium models.

On the empirical front, we let DE and RE compete within a standard medium-
scale DSGE model. Using Bayesian methods, we evaluate the relative fitness of both

approaches when applied to post-war U.S. data. We include both business cycle and



forecast data in the estimation. In order to submit the behavioral expectational friction
to a stringent empirical test, the model we consider contains a large number of bench-
mark frictions and shocks drawn from the seminal works by Christiano, Eichenbaum,
and Evans (2005) and Smets and Wouters (2007). For the same reason, we include
news shocks and information frictions in the form of noise shocks to expectations. We
find empirical evidence in favor of DE. In comparison with the RE model, variance
decomposition and parameter estimates indicate that the DE model relies significantly
less on noise shocks when explaining expectations errors. Moreover, the DE model
relies more on internal propagation mechanisms than on exogenous shocks to account
for the dynamics of price and wage inflation in the data.

An organizing theme across applications is that diagnosticity generates extra volatil-
ity and systematic reversals in beliefs. In dynamic settings, diagnostic expectations
(DE) introduce an extrapolative mechanism. Upon impact of a shock, beliefs over-
react. Subsequently, beliefs systematically revert, which the diagnostic agents fail to
anticipate. Our work shows that those two insights from BGS have implications for
NK models.

A recurrent theme in our paper is that when agents have diagnostic beliefs about
endogenous variables, instead of exogenous processes, new behavioral insights emerge.
Endogenous extrapolation, as highlighted in our fiscal policy exercise, has remarkable
economic implications. We provide two examples of models with endogenous extrap-
olation at the end of Section 3.

The paper provides a substantial technical contribution: We develop a solution
method for a general class of linear DSGE models with diagnostic expectations. The
key to our method is to formally establish the existence and uniqueness of a rational
expectations representation of the diagnostic expectations model, a challenging task
in the presence of endogenous states. This result allows us to compute the equilib-
rium diagnostic expectation of endogenous variables. We briefly make a few technical
remarks about our solution method. First, we show that incorporating DE requires
researchers to loglinearize the model from scratch rather than simply replacing the ra-
tional expectations operator with the corresponding diagnostic expectations operator
in linear economies. For a given set of equilibrium conditions obtained from first prin-
ciples, the presence of DE actually changes the loglinear equilibrium conditions that
constitute a correct approximation.®> We explain, in detail, how to obtain the correct

approximation and provide a few examples. Loglinearization under DE brings forward

3This is different from many other departures from the full-information rational expectations case, as for exam-
ple the introduction of imperfect information (Woodford 2002) or other behavioral models (Garcia-Schmidt and
Woodford 2019), where the structure of equilibrium conditions of the loglinear model does not change.



novel economic insights in forward looking models. For instance, the Euler equation
for the diagnostic consumer features a real rate that contains a new term pertaining
to surprise in current inflation from previous forecasts (see Section 3.4.2). Second, we
provide sharp results on the stability and the existence of a bounded solution with
DE. While the stability conditions are same as in the corresponding RE model, we
note that the solution under DE can be explosive for certain limiting values of the
diagnosticity parameter. Researchers may need to exercise caution when applying DE

to endogenous variables.

Related Literature. The paper is primarily related to the emerging literature on
DE. See Gennaioli and Shleifer (2018) for a review. Most closely related are papers by
Maxted (2022) and Bordalo, Gennaioli, Shleifer, and Terry (2021), who incorporate
DE in macro-finance frameworks.? Maxted (2022) shows that incorporating DE into
a macro-finance framework can reproduce several facts surrounding financial crises
(see also Krishnamurthy and Li 2020). Bordalo, Gennaioli, Shleifer, and Terry (2021)
show that DE can quantitatively generate countercyclical credit spreads in a heteroge-
neous firms business-cycle model. We complement these efforts by providing a general
treatment of DE in linear macroeconomic models. In particular, we show how incor-
porating DE into NK models (Woodford 2003; Gali 2015) delivers rich new insights
and significantly improves the fit to the data.

In parallel and complementary work, Bianchi, Ilut, and Saijo (2022) also investigate
applications of DE in linear models. Although their work, like ours, is comprehensive,
the main focus of their paper is distant memory, the notion that agents’ reference
distribution looks back more than one period. In such settings, the law of iterated
expectations fails, and therefore the model with distant memory is time inconsistent.
Our paper focuses exclusively on linear settings with time consistency, and shows
that this baseline setup offers a number of insights useful for the NK literature. We
outline, in detail, the steps from the exact equilibrium conditions to the loglinear
approximation of medium-scale models. Our main empirical focus is evaluating the role
of diagnosticity in a rich medium-scale DSGE model with news shocks and information
frictions.

Our paper also speaks to the literature proposing deviations from the full-information
rational expectations (FIRE) hypothesis. See, for example, Mankiw and Reis (2002),
Coibion and Gorodnichenko (2015a), Angeletos, Huo, and Sastry (2020), Bordalo,

4D’ Arienzo (2020) investigates the ability of DE to reconcile the overreaction of expectations of long rates relative
to the expectations of short rates to news in bond markets. Ma, Ropele, Sraer, and Thesmar (2020) quantify the
costs of managerial biases.



Gennaioli, Ma, and Shleifer (2020), Kohlhas and Walther (2021), among others.

Angeletos, Huo, and Sastry (2020) document delayed overreaction of beliefs in re-
sponse to business cycle shocks. Bordalo, Gennaioli, Ma, and Shleifer (2020) propose
a model of DE with dispersed information to study underreaction and overreaction in
survey forecasts. See also Ma, Ropele, Sraer, and Thesmar (2020) and Afrouzi, Kwon,
Landier, Ma, and Thesmar (2020). We complement these analyses by showing that
one can obtain delayed overreaction in an imperfect information DE-NK model. With
respect to earlier work, there are two innovations in our procedure. First, we use a mi-
crofounded behavioral friction. Second, we generate these patterns with expectations
in general equilibrium models. In a related vein, our estimated DSGE model builds on
work exploring business cycle models where agents receive advance information about
future productivity that is subject to an information friction (Blanchard, L’Huillier,
and Lorenzoni 2013; Chahrour and Jurado 2018).

Our paper fits into the macroeconomics literature that models departures from
rational expectations with various behavioral assumptions. Some of the recent ap-
plications have focused on resolving puzzles in New Keynesian models by introducing
behavioral assumptions. Angeletos and Lian (2018), Farhi and Werning (2019), Gabaix
(2020), and Garcia-Schmidt and Woodford (2019) are some of the papers that propose
departures from rational expectations to attenuate the strength of forward guidance.
Tovino and Sergeyev (2020) study the effectiveness of central bank balance sheet policies
with level-k thinking. Bianchi-Vimercati, Eichenbaum, and Guerreiro (2022) study the
effectiveness of fiscal policy at the zero lower bound in a model with level-k thinking.
Angeletos, Huo, and Sastry (2020, Sec. 6.4) argue that these leading departures from
rational expectations exhibit a form of under-extrapolation. In contrast, DE allow
beliefs to generate overreaction and systematic reversals as we demonstrate. Farhi and
Werning (2020) study the role of monetary policy as a macro-prudential tool when

agents form extrapolative expectations.

Paper Organization. The paper is organized as follows. Section 2 starts with an
example based on the classic demand and supply model by Muth (1961) to demonstrate
the two key insights we get from diagnostic expectations: extra volatility and system-
atic reversals in beliefs. Section 3 presents our solution method, discusses stability,
and provides examples illustrating endogenous propagation of diagnostic beliefs. Sec-
tion 4 presents the analytical results from a 3-equation NK model. Section 5 presents
the empirical evaluation of diagnostic expectations in a medium-scale DSGE model.

Section 6 concludes. The Appendix provides supplementary materials and collects all



the proofs.

2 Diagnostic Expectations on Endogenous Variables:

A Demand and Supply Example

We begin by presenting the economic implications of diagnostic expectations on en-
dogenous objects in a simple setting. To this end, we consider the classic model by
Muth (1961), which we augment with the inference biases generated by diagnosticity
(Kahneman and Tversky 1972). The benchmark for comparison is the case of rational
expectations. The model by Muth is simple and transparent, allowing us to distill
the behavioral insights offered by diagnostic expectations in the context of more com-
plex models of forward-looking agents. This discussion will concentrate on two main
features of diagnostic expectations: the excess volatility implied by belief overreac-
tion, together with the systematic reversals that occur when uncertainty is realized.
Appendix A provides details and proofs.

The model is as follows.?

There is an isolated market for a commodity. The
commodity demand at time ¢, Q¢, is a downward-sloping function of the price P

(model variables are denoted in deviation from steady state):

Q=-3pP, B>0 (1)

The supply side is modeled with a time-to-build assumption. Suppliers invest, one

period in advance, as a function of their expectations of the price next period:
Iy = WE[B,H], 7>0 (2)

where [; is the quantity invested and E, is an expectation operator (rational or diag-
nostic). Supply at time ¢, Qf, is equal to the quantity invested at time ¢ — 1 plus a

persistent disturbance wuy:
QF = L1+ uy (3)

where u; = pyui—1 + €, and € is i.i.d. N(0, 062). An absence of storage opportunities
implies the market clearing condition: Q¢ = Q4.

We are interested in solving for the equilibrium behavior of suppliers, which depends
on expectation formation, and on the implied equilibrium price dynamics. Under

RE (E = E;), suppliers’ expectations are, on average, correct, with the exogenous

5See Muth (1961), Section 3, pp. 317-22.



disturbance as the only source of discrepancy between expectations of the price and
actual realizations. In other words, deviations of the realized price from expectations

are unpredictable. To see this, combine the equations above to get the equilibrium

condition .
P, = _%Et—l[Pt] - EUt (4)
Conjecture that the solution takes the form
It = Alut -+ A2€t (5)
P, = Biuy_1 + Baey + Bseq (6)

where Ay, Ay, By, By and Bj are parameters to solve for. The RE solution is given by
Ay = —vypu/(B+7), Bi = A/, and By = —1/8 (with Ay = B3 = 0).

Taking the RE expectation on both sides of (4) shows that, in equilibrium, the
expected price needs to satisfy E, 1[F;] = —(1/(8 + 7))E;_1[u], which is guaranteed
by the RE solution. Moreover, the only ex-post deviation from this forecast is Bse;,
which is unpredictable.

Under DE (denoted as E, = E?, where 6 > 0 is a diagnosticity parameter), suppliers’
expectations are, on average, excessively volatile. The BGS formula for the DE of an
endogenous object, say the price, is E¢[Pi1] = Ei[Pi1] + 0 (E¢[Prp1] — Er1[Piyq]).C
This formula says that the DE is equal to the RE plus a distortion term capturing
the extrapolative behavior of the agent. The solution under DE is given by Ay =
—Bv0p./[(B+7)(B+~(1+0))], Bs = —Ay/3 (with Ay, By and By identical to the RE
case).

The implications of DE for the Muth model are as follows. First, investment is
excessively volatile. By way of example, suppose that the economy is in steady state
at t — 1 and that a negative shock ¢; < 0 hits. As under RE, suppliers anticipate a
higher price to prevail at time ¢ + 1 due to the exogenous supply contraction at time
t. Consequently, they increase their investment at time ¢ (A4; < 0). However, under
DE, suppliers extrapolate the shock into the future. Their expectations about prices
overreact. Thus, they increase investment by more than under rational expectations
(A2 < 0). Ex-post, at time ¢ + 1, there is a reversal. The market is glutted with
an excessively high quantity of the commodity. The rosy expectations of diagnostic
suppliers are disappointed, with the price rising by less than in the RE economy (B3 >

0). Moreover, this discrepancy from expectations is systematic and predictable, since

6Section 3 will show that the same formula, obtained in BGS for exogenous objects, can indeed be applied to
endogenous objects.



it depends purely on the past shock. These dynamics are neglected by agents. In sum,
DE deliver excess investment volatility and a subsequent reversal. We will return to
these two features in various applications of the New Keynesian model.

In his seminal article, Muth also was interested in the possibility of ad-hoc devi-
ations from rational behavior. For a general MA(oo) specification for the exogenous
process, Muth explored expected price dynamics that “over- or under-discount” the
recent price history. A fascinating lesson that emerges is that the DE specification by
BGS turns out to microfound this early idea. The diagnostic supplier over-reacts to
the shock at t, resulting in an excessive discounting of information contained in prices
up to time t — 1.7

In variant of this simple model that includes inventory dynamics, a novel extrapola-
tion mechanism emerges when DE is taken over endogenous variables. Muth introduced
inventory speculation that gives rise to an inventory demand equation. Inventory de-
mand, Sy, depends on the difference between the expected future price and the current
price. The market clearing condition is now replaced with Q¢+S; = Q¢+S;_;, allowing
for storage without depreciation.® Because now inventory stock holdings constitute an
endogenous state variable, the DE and the RE solutions of the model do not coincide
even when the shock is i.i.d. (p, = 0). This is in contrast to the baseline case without
inventory accumulation, where the two solutions coincide when shocks are i.i.d. This
particular feature is attractive since endogenous state variables (such as capital, con-
sumption habits, etc.) are ubiquitous in DSGE models. In the next section, we zoom
into this point in the context of a tractable, univariate endogenous-state model. But
first, we present a general solution method for linear DSGE models when diagnostic

expectations are computed on endogenous variables.

3 Solution Method

We present a solution method for a general class of linear models. Agents use diag-
nostic expectations to form beliefs about the evolution of all variables, exogenous and
endogenous. Our strategy consists in obtaining a rational expectations (RE) represen-
tation of the diagnostic expectations (DE) model. Based on this step, the model can
be solved using standard techniques. We also establish results for the existence and
stability of the solution under DE.

"Specifically, as the appendix shows, solving the Muth model under the general process (3.6) (p. 319) and DE,
microfounds the Muth factor f; = 1+ 6 (where, following the author’s terminology, the case f; > 1 corresponds to
over-discounting).

8See Muth (1961), Section 4, pp. 322-330.



3.1 General Formulation and Rational Expectations Repre-

sentation
3.1.1 Exogenous Processes

We start by specifying the exogenous drivers of the economy. Exogenous variables
are stacked in a (n x 1) vector x; that is assumed to follow the multivariate AR(1)
stochastic process

X = Ax;_ 1 + vy (7)

where v; is a (k x 1) vector of Normal and orthogonal exogenous shocks, v, ~ N(0, ¥, ),
and A is a diagonal matrix of persistence parameters. Since vector x;.; follows
a multivariate normal distribution, we can write its true (or non-distorted) pdf as
f(xea1]xe) o (X1 — Axy)' S5 (x40 — Axy)), where () is the density of a standard

normal distribution, ¢(x) = \/%e_ 72

3.1.2 Diagnostic Expectations

Extending the approach by Bordalo, Gennaioli, and Shleifer (2018) (henceforth BGS),

the multivariate diagnostic distribution of x;,; is defined as

J(xe1|Gh) 9‘
J ¢ ®)

f (xen1) = f(xen1|Go) - |:f(Xt+1| ey

where GGy and —@, are conditioning events. G, encodes current conditions: G, = {x; =
%;}, where %; denotes the realization of x;.” —G; encodes a reference group (i.e. a
reference event), that is used to compute the reference distribution f(x;1| —G¢). Due
to the representativeness heuristic, agents overweight the last realization of x; (relative
to the reference group) when forming beliefs about the future realization of x;.;. The
likelihood ratio f(x:4+1|Gt)/f(xes1] — Gi) distorts beliefs to a degree governed by the
diagnosticity parameter § > 0. (' is a constant ensuring that ff (x,,,) integrates to 1.

Following BGS, we impose that, in the presence of uncertainty about x;,;, the
reference event —G; carries “no news” at time ¢ (henceforth no-news assumption or

NNA).

Assumption 1 (Multivariate No-News Assumption)

f(xe1| = Gt) = f(xepalxe = Ax; 1) (9)

9We do not use the same notation %X, for realizations as BGS, since we have reserved hats over variables for
loglinear deviations below.

10



We make Assumption 1 throughout the paper. To understand the meaning of this
assumption, consider an agent forming beliefs about future x;,;. Under the NNA | these
beliefs are formed conditional on the event that the random variable x;, conditional
on the past realization x;_1, is what it was expected to be, so v; = E[v;] = 0, which is

equivalent to x; = Ax;_;. The diagnostic distribution is thus written as

0

f(Xeqa|x = %y) C (10)

X+l ‘Xt = Aktfl)

fte (x¢41) = f(Xpp1|xe = %¢) - 7

Notice that the distribution (10) is conditional on two elements: first, it is conditional
on the current realization of x;, written X;, because this enters the true distribution
of x441; second, it is conditional on the reference event —G; = {x; = AX;_1}, which
depends on the realization at t — 1, x;_;.

Extending the definition of BGS to the multivariate normal vector x;.1, the DE is
the expectation, element by element, under the density (10). We write this expectation

10

as EY[x;+1].1% Using a multivariate version of Proposition 1 in BGS, we obtain the

formula'!
Ef[xe1] = Ee[Xipa] + O(Ee[Xei1] — Eooa[xe11]) (11)

3.1.3 Stochastic Difference Equation

The class of forward-looking models we analyze is written as a stochastic difference
equation. Uncertainty is modeled under the diagnostic distribution (10). Let y, denote
a (m x 1) vector of endogenous variables (including jump variables and states) and x,

as above, denote the (n x 1) vector of exogenous states. The model is:
E{[Fyis1 + G1y: + Mxy1 + Nixy] + Gy, + Hy, 1 + Nox, = 0 (12)

where F, Gy, G2, M, Ny, N», and H, are matrices of parameters. F, Gy, Go, and H
are (m x m) matrices, N1 and Ny are (m x n) matrices. This diagnostic expectation
is taken over the diagnostic density of Fy, 1 + G1y; + Mx;1 + N1x,. For generality,
in equation (12), we specify current variables both inside the diagnostic expectations

operator in linear combination with future variables (e.g. N1x;) as well as outside the

10The diagnostic distribution depends on two separate information sets, Gy and G_;, drawing information avail-
able at dates ¢t and ¢t — 1. So, one could denote it by Et@’tfl. However, to avoid confusion, we prefer to stick to the
notation used in BGS and the surrounding literature. Similarly, when denoting the RE operator E;, the subindex
indicates the date at which the expectation is taken (in which case it coincides with the information set’s date.)
11Gee Lemma 2 in the appendix.

11



expectations operator (e.g. Nax;).'?

3.1.4 Solution Procedure

The remaining steps are the following. First, postulate a form for the solution. Second,
determine how to handle the diagnostic expectation EY[Fy;, 1+ G1y; +Mx; 1 +Nix,],
which is a linear combination of endogenous and exogenous variables, some of which
are future, and some of which are current (known at time ¢). Third, obtain a rational
expectations representation of the model. Fourth, solve for the model expressed in
terms of rational expectations using standard tools (as the method of undetermined

coefficients, for instance).

Form of the Solution. We look for a solution of the form
y: =Py 1+ Qx; + Rvy (13)

We make this guess based on the behavioral properties afforded by DE. In the context
of RE models, the correct conjecture is of the form y, = Py, ; + Qx;. As shown by
BGS, DE generate overreaction in the context of exogenous processes. We allow for
this possibility in the context of the endogenous dynamics of y,; using the extra term
Ryv;.

Diagnostic Expectation of Linear Combinations of Endogenous and Exoge-
nous Variables. Under (13), y;;; follows a multivariate normal distribution. Since
the vector of exogenous drivers x;,1 also follows a multivariate normal distribution, we
know that the linear combination Fy,,; + G1y; + Mx;,1 + N1X; is also distributed
following a multivariate normal density. This Gaussian property is the key to the
solution to the model. Using (11), it allows us to express the diagnostic expecta-
tion E/[Fy;1 + G1y: + Mx;,1 + Nix,] in terms of the RE operator E;. Indeed, the

expression for the DE present in model (12) can be expressed as:

E}[Fyii1 + Giy: + Mxy 1 + Nixi] = E[Fyi1 + Grye + Mxpq + Nix)
+0(Ey[Fyi1 + Gry: + Mxg 1 + Nix,]
—Ei1[Fyin + Gay + Mxyq + Nixy])  (14)

12 After loglinearization we will encounter expressions of this form. Throughout the paper we present a few
examples to make this point concrete.

12



Notice that even the current vectors x; and y, undergo a diagnostic transformation in
equation (14), since expectations are taken over a linear combination involving future
variables. This does not however mean that if an agent were to be asked about their
expectation of x; in the absence of uncertainty, they would respond something different
than x;. We return to this discussion in Section 3.3.

We are now in a position to obtain the representation of the model in terms of

rational expectations.

Proposition 1 (Multivariate Rational Expectations Representation) Under the

multivariate NNA, model (12) admits the following RE representation:

FE[y:11] + Gy: + Hyi o1 + ME[x;41] + Nx,
+FO(Eifyia] - Et—l[)’tﬂ])

+M6 (Et [X¢41] — 1[Xet1 )

+G H(yt Ee_1ly+])

0

+N10(x; — Eeq[x]) = (15)

where G = G1 + Gy and N = Ny 4+ Ny. Moreover, this representation is unique.

The proof of this result is based on equality (14), together with the additivity
property of the RE expectations operator.

Solution. Armed with this representation, we verify that equation (13) indeed con-
stitutes a solution. Appendix C presents the detailed steps to solve for the relevant
matrices following Uhlig (1995).

3.2 Stability

It turns out that the model under DE is subject to the same stability conditions as the
model under RE. More precisely, consider the same model above, but under rational

expectations (0§ = 0):
FE.[yir1] + Gy: + Hy, 1 + ME[x;1] + Nx;, = 0 (16)

where the matrices F, G, H, M and N are defined above. The following result holds.

Proposition 2 (Stability) Assume a bounded solution ezists for the DE model given
by equations (7) and (12). The stability conditions for this DE model are identical to
the stability conditions for the RE model given by (7) and (16).

13



While the stability conditions are exactly same as under the RE model, we note
that the existence of a bounded solution under DE requires an additional assumption.

We formalize this requirement in the following proposition.

Proposition 3 (Existence of a Bounded Solution) Assume a bounded solution ex-
ists for the RE model given by equations (7) and (12) with 6 = 0. Then a bounded
solution for the DE model exists if (1 + 0)FP + G + 0Gy is full-rank.

Example 1 below will illustrate how DE can affect the existence of a bounded

solution, even when RE models have a bounded and stable solution.

3.3 Technical Remark: Predetermined Variables and the Di-

agnostic Expectations Operator

A novelty in DSGE models, when compared to earlier DE models in the literature,
is the presence of predetermined variables. This fact raises the question of how to
compute the DE of such variables. Thus far, this issue was not explicit since in models
of class (12), agents do not compute the DE of predetermined variables in isolation,
but in combination with future variables. Nevertheless, from a technical perspective,
some readers may wonder about the right way to think about this question. For
completeness, here we provide a brief discussion.

The main aspect to recognize is that, because in these models predetermined vari-
ables are in linear combination of normally distributed future variables, the linear
combination is also normally distributed. By implication, uncertainty is present, and
diagnosticity is active in the mind of the agent. This carries implications for predeter-
mined variables. This can be seen from (14), since even the vectors x; and y,; undergo
a diagnostic transformation when expectations are taken over the linear combination.

This observation offers the following approach to define the DE of a predetermined
variable, say x;.'* Suppose that x; follows an univariate AR (1) process, T; = p,x; 1+,
where ¢; ~ i.i.d. N(0,02). Introduce an arbitrarily small amount of uncertainty by
adding white noise d;, 1, with variance o2. We are interested in beliefs about the linear

combination z; + d;41. Since this object is also normally distributed, we obtain, using
the BGS formula:

]Ef[:ct + O141] = (14 0)Ey[zs + 6441 — OE—1 [zt + p41] (17)

Taking the limit when o5 approaches 0 from above, we obtain the following expression

13We thank an anonymous referee for suggesting this approach.
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for the DE of the predetermined variable:

Elx) = lim Ellz, +81] = (14 0)z, — OE,_[z] (18)
os—0t
These steps show that, in these models, inference on predetermined variables is also
affected by the representativeness heuristic.'* In the appendix, we provide a formal
derivation of (18) recurring to the Dirac delta distribution.

What is the behavioral basis for equation (18)7 For the purpose of providing
intuition, consider a recursive equation for a price, say p;y1 = a + bp; + 141, with
b > 0 and a white noise v4,1. A higher current price p; signals a higher future price
per1- Memory is overly influenced by the statistical positive association of current and
future prices. Indeed, the presence of the future shock ;.1 introduces uncertainty and
activates the representativeness heuristic. Seeing a higher p; causes the agent to over-
sample past histories in which next period’s price was high. In sum, p; cues the agent
to extrapolate into the future period’s price, p;11. In a way, one might interpret this
behavior as one where beliefs overshoot already for date-t variables, as (18) shows.

Note, however, that the validity of this limit argument rests on the presence of
uncertainty surrounding predetermined variables in these models. This does not mean,
of course, that if an agent were to be asked, hypothetically, about their expectation
of x; in the absence of uncertainty (o5 = 0), they would respond something different
than x;. Consistent with BGS and Gennaioli and Shleifer (2010), a complete absence
of uncertainty would deactivate diagnosticity (equivalently, dropping the NNA) and

eliminate any inference bias:!©
Ef [21]os = 0] = z, (19)

As we explain in Example 1 below, expression (18) carries interesting behavioral
insights into the amplification mechanism operating in DSGE models. Moreover, the
limit argument offers an approach to operationalize the definition of the DE of prede-
termined variables, in a way preserves consistency within the DSGE. Also, it delivers
an additivity result for the DSGE model, which is however relegated to the appendix.

We conclude this technical remark by emphasizing that adhering to this limit ar-

14Note that this bias appears even for i.i.d. shocks in the presence of surrounding uncertainty: take a white noise
process z; = €;. We have that lim,, ,o+ Ef[e; + 6¢+1] = (1 + 0)e;, despite Ef [e;11] = 0.

15To see how the date-t variable undergoes a transformation, notice that Ef[p;y1] = a + El[bp; + viy1] =
a+b(p:+0(pr — Ei—1[pt])).

16In technical terms, beliefs feature a discontinuity at the point of no uncertainty: no bias at exactly zero
uncertainty, together with a discrete jump for strictly positive uncertainty about the future.
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gument is not crucial for the purposes of solving these models. One can directly
apply (14) to the linear combination of future and contemporaneous variables present
in model (12) by acknowledging that the combination is normally distributed. See
Bianchi, Tlut, and Saijo (2022), who also take this approach.!” Both approaches are

equivalent.

3.4 Examples: Endogenous Extrapolation

These two examples illustrate how DE generate endogenous extrapolation in dynamic
models. (Example 1 also discusses unbounded solutions; Example 2 also discusses the

loglinearization of equations with non-stationary variables.)

3.4.1 Example 1: Univariate Endogenous State Variable Model

The main purpose of this example is to illustrate the following point. When DE are
taken over exogenous variables, there is no extrapolation if shocks are i.i.d. There is
in fact an equivalence between RE and DE. To see this, consider the AR(1) process
7y, assume p, = 0 and compute EY[z;,;]. A simple calculation using formula (11)
shows that RE and DE are equivalent in this case. Instead, in the context of DE over
endogenous variables, state variables can activate extrapolation even when shocks
are i.i.d. We label this property ‘endogenous extrapolation’.'®* Modeling diagnostic
expectations on endogenous variables provides a novel, internal propagation mechanism
for DSGE models.

Consider the following model:
Y = aB[ye1] + cyer + & (20)

where |a + ¢| < 1 and &, is white noise.

The solution of the RE model (6§ = 0) can be derived analytically using the minimum
state variable solution method:
(21)

Yy = O1Yp—1 + 1= adn e €4

"In this vein, notice that all of the results of subsections 3.1 and 3.2 did not use the limit argument.
18We briefly discussed this endogenous extrapolation property in the context of the Muth model with inventory
dynamics in Section 2.
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Figure 1: Amplification in the Univariate Model
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where ¢; = 19 Under DE, the minimum state variable solution is given by

1
1—(1+6)ag; '

Yr = Q1yp—1 + (22)

Notice from equation (22) that computing the DE over the endogenous variable ;4
delivers extrapolation and amplification, even though the exogenous process is i.i.d.
To see this, notice that since 1 — a¢; > 0, for small enough 6 (more on this below), a
positive shock g, generates an overreaction of ;.

To get intuition, consider Figure 1. On the (y;41,%:) plane, we plot the form of
the solution, y;11 = ¢1y; (dotted line) and the forward-looking reaction functions
yr = alEfys11] + & (full line) and y; = aE[y;1] + &; (dashed line). We assume the
economy is in steady state before the shock, and thus 3,_; = 0. Under RE, the
reaction function collapses to y; = ays11 + ;. Under DE, the reaction function is,
instead, y; = a(1+ 0)y; 11+ 4. The intersection of the dotted line with either reaction
function (RE or DE) gives the solution. Because of extrapolation, the reaction function
is steeper under DE; signifying the higher expectation of 3;,; in the mind of the agent.
This extrapolation is the source of amplification at date ¢.2°

With this example, we can also illustrate the result obtained in Proposition 3:

When 6 — Til — 1 or § — o0, then the DE solution explodes even though there exists

9Specifically, using the method of undetermined coefficients, we get the following requirement: ¢; = a¢} + c.
Imposing that ¢, — 0 as ¢ — 0, we arrive at the solution. |a + ¢| < 1 ensures that the model is stable in the sense

of Proposition 2 and that the RE solution is bounded.

20In other words: Given the solution y; 11 = ¢1y: + 1/(1 — (1 + 0)agy)esy1, the uncertainty about e;,;1 acti-
vates diagnosticity in the mind of the agent when computing EY[y;; 1], which becomes ¢ (y; + 0(y: — E¢_1[ys]))-

Therefore, there is a transformation of the DE of y;, which generates amplification.
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a unique bounded RE solution. The lesson of this example is therefore that in practice
the researcher may need to be mindful of bifurcation points. In particular, bifurcation
values could affect search over the parameter space in the context of structural esti-
mation. In our application to NK models, we compute the conditions such that the
DE solution explodes, and verify that the associated limit values for 6 are very large.

Therefore, this does not materially affect our results.

3.4.2 Example 2: Nominal Euler Equation

Consider the following Fuler equation of a nominal economy:

= B(1 +4,)E! {M} (23)

where C; is consumption, P; is the price level, i; is the nominal rate, u(-) = log(+) is
period utility, and f is the discount factor.?!

In order to loglinearize (23) one needs to take the path dependence implied by DE
into consideration. Because of the reference distribution, previous beliefs held at date
t — 1 constitute a state variable. One way to appreciate this fact is, for instance, by
looking at the BGS formula (11) and notice that the DE involves past held beliefs
E; 1. Therefore, different from the RE case, one cannot multiply by F; on both sides
of the equation and introduce P, inside the DE operator. Instead, loglinearizing (23)

directly, we obtain:
& = E] [era] — (i — (B [prsa] — Pr)) (24)

where {¢;, it pr} denote loglinear deviations of consumption and the interest rate from
their respective steady states, and of the price level from an initial price level, respec-
tively. Using the BGS formula (11) and algebraic manipulation delivers the loglinear

diagnostic Euler equation??
& = B [erna] — (i — B [fa]) + 0(7 — By a[f)) (25)

According to the last term, current surprise inflation induces an expansionary chan-
nel by reducing the subjective real rate computed by diagnostic agents. The reason

is as follows. Due to path dependence, computation of a real rate of interest involves

21Section 4 derives this equation from first principles. Following BGS, the diagnostic distribution for non-linear
processes is also defined as a distorted likelihood that over-weights states representative of recent news. We provide
a formal definition in Appendix D.

22See Appendix D for the derivation.
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the price level at ¢t — 1.2* Since the agent is extrapolating from yesterday (¢ — 1)
into tomorrow (¢ + 1), today’s inflation innovation 7, — E,_4[7] is also extrapolated
into tomorrow when making a forecast for price level p;,;: Current surprise inflation
causes the diagnostic agent to expect future inflation, to a degree 6, thereby reducing
the subjective real interest rate. The intuition for why this is the case is same as
discussed above. Uncertainty about future variables, p;1; in this instance, entails a
transformation of the current variables when they enter in linear combination with
future variables. Furthermore, this effect is present even in the case of i.i.d. shocks,
once again underscoring the novelty of computing DE on endogenous variables. We

will exploit this channel in Section 4 by emphasizing its implications for fiscal policy.

3.5 A Practical Guide to the Implementation of Diagnostic
Expectations in DSGE Models

We conclude this section with the following summary. A researcher interested in using

diagnostic expectations within a DSGE model can take the following steps.

1. Obtain the exact equilibrium conditions of the model. (Section 4 provides an
example in the context of a 3-equation NK model, and Section 5 in the context
of a medium-scale DSGE model.)

2. Loglinearize the model, being careful not to introduce contemporaneous variables

in-and-out of the DE operator. (See the appendix for examples.)
3. Obtain the RE representation of the model (Proposition 1).

4. Solve the RE model based on a software package that can handle expectations

conditional on previous period’s information set (E; ;).

5. Check that the parameter values considered does not cover bifurcation values

(Proposition 3 and Example 1).

4 Analysis Using a New Keynesian Model

In this section, we derive a three-equation New Keynesian model augmented by di-

agnostic expectations. Our goal is to revisit a number of prominent themes in this

23To see this, multiply on both sides of (23) by P;_; and use P; inside the DE to obtain:

P
Py

. P, P
= B(1 +i,)E? “/(Ct“)tTtPtil

u'(Cy)

which can then be loglinearized to arrive at (25).
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context.

4.1 Diagnostic New Keynesian Model

We set up the model from first principles. There are three sets of agents in the economy:

households, firms and the government.

4.1.1 Households

Households maximize the following lifetime utility

W v 0 ) s— W v
log Cy — H—VL;& + |:Zs=t+1ﬂ ' (log(Cs) - H—uLi+ >] (27)
where L; is labor supply, v > 0 is the inverse of the Frisch elasticity of labor supply,
[ is the discount factor 3, satisfying 0 < 5 < 1, w > 0 is a parameter that pins down

the steady-state level of hours.?* Maximization is subject to a budget constraint:

P.C, + (13;—2) — B+ W,L+ D, + T, (28)

where P, is the price level, By, is the demand of nominal bonds that pay off 1 + 4,

interest rate in the following period, W, is the wage, D, and T, are dividends from
firm-ownership and lump-sum government transfers, respectively.

Notice that we write dynamic maximization problems, as this one, by explicitly

separating time t choice variables from the expectation of future choice variables.

This separation is crucial for solving the model with diagnostic expectations, and is a

consequence of the DE path dependence discussed in Section 3.2°

4.1.2 Firms

Monopolistically competitive firms, indexed by j € [0, 1], produce a differentiated good,

Y;(j). We assume a Dixit-Stiglitz aggregator that aggregates intermediate goods into

a final good, Y;. Intermediate goods’ demand is given by Y;(j) = (PtT(tj))_ ’ Y;, where

€, > 1 is the elasticity of substitution, P;(j) is the price of intermediate good j, and P,
is the price of final good Y;. Each intermediate good is produced using the technology

24Following BGS, the diagnostic distribution for non-linear processes is also defined as a distorted likelihood that

overweights states representative of recent news. We provide a formal definition in Appendix D.

25The reader may wonder whether DE introduces time inconsistency in agents’ choices. It turns out that this is
not the case in the loglinear approximation when the reference distribution is based on ¢t — 1. By the law of iterated
expectations (which then holds for the diagnostic expectation), time ¢ + 1 policy functions are in fact consistent

with agents’ expectations (about their time ¢ + 1 policy functions).
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Yi(j) = AiLi(j), where a; = log(A;) is an aggregate TFP process that follows an AR(1)

process with persistence coefficient p,:

At = Pali—1 + Eqy (29)

: 2
and g, ~ 4id N(0,02). The firm pays a quadratic adjustment cost % <Pfj—(1j()j) — 1) PY;,

in units of the final good (Rotemberg 1982) to adjust prices. Firms’ per period profits

. 2
are given by D, = P,(j)Yi(j) — WiL(j) — % (PP_—U()]) - 1) PY,. The firm’s profit

maximization problem is

o ¥y (PG ’ 0\
P.())Y:(5) — W,L - = —-1) PRY,+E s s Dy s
T}g%?)({ (7)Y (5) Le(5) 2 \P.(j) 11y 1 1y ;5 Qttrs Dy
(30)
where (); 445 is the household’s nominal stochastic discount factor.
4.1.3 Government
The government sets nominal interest rate with the following rule 1 4+ i, = (1 +
o
iss)Hf’T (%) , where Y;* = A, is the natural rate allocation, is, = % — 1 is the
t

steady state nominal interest rate, ¢, > 0, ¢, > 0, and steady state gross inflation
IT = 1. Total output produced is equal to household consumption expenditure and
adjustment costs spent when adjusting prices. We first consider a model where is no

government spending, and nominal bonds are in zero net supply.

4.1.4 Equilibrium

Appendix D presents the equilibrium conditions.?® In particular, it shows that the
household intertemporal first order condition is equation (23). This appendix also
goes over the log-linear approximation in detail. The resulting equilibrium is given by

the following four equations:

& = E] (6] — (i — (BY[pra] — Pr)) (31)
= BE 7] + R(6 — ay) + R (9, — ) (32)
it = Gufry + Gu(fe — ar) (33)

&= (34)

26The DE operator is the expectation over a continuous density, hence one gets these first-order conditions by
taking derivatives, as usual.
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ep—1
Yp
level, and the nominal interest rate respectively, and 7; is the log deviation of inflation

s Ui, Cty Dr, i; are the log deviation of output, consumption, the price

where k =

from the zero-inflation steady state. The shock process is given by:
At = PaGi—1 + Eay (35)

where ¢, ~ i.i.d. N(0,02).

As explain in the context of Example 2 in Section 3, equation (31) can be written
as (25), showing that DE change the expression for the approximated Euler equation
by introducing a current inflation surprise term. We obtain a similar Phillips curve
(32) to the RE case using Rotemberg (1982) pricing. The key to this result is that,
different than with Calvo pricing, Rotemberg pricing with DE allows one to obtain
a recursion that only involves one expectation forward. This turns out to be key for
tractability. The appendix presents the detailed derivation.?”

Define k = (1 + v)&. We make the following assumption in order to guarantee the

existence of a bounded solution (Proposition 3).%®

Assumption 2 (Boundedness) 0 < ¢, + £~ (1 + ¢,)

We provide an explicit solution for the model in Appendix D.

4.2 Diagnostic Expectations and the Possibility of Extra Am-

plification

A classic challenge in macroeconomic modeling is finding ways to generate realistic
business cycles with shocks of moderate size. The literature has relied on multiple
types of frictions (e.g. nominal, as in Christiano, Eichenbaum, and Evans 2005, or
financial, as in Bernanke and Gertler 1989; Kiyotaki and Moore 1997), interactions in
the form of strong complementarities (Benhabib and Farmer 1994), or multiple shocks
(Smets and Wouters 2007) to fit the data.

We demonstrate that diagnosticity provides a viable behavioral alternative to un-
derstand the large size of observed fluctuations within the NK model. Because di-
agnosticity leads agents to extrapolate the impact of exogenous shocks, expectations
are more volatile. Intuitively, one would expect the DE-NK model to predict a higher

volatility of output than under RE. Indeed, the following proposition establishes that

2"In a loglinearized RE model with perfect inflation indexation, one can obtain identical Phillips curves using
either the Calvo or the Rotemberg price setting assumption.
28We also assume that k(¢, — 1) + (1 — 8)¢, > 0 to ensure a stable solution in the sense of Proposition 2.
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Figure 2: Excess Volatility under DE, Baseline NK Model
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Notes: The figure presents percentage points of volatility under DE relative to RE as a function of the slope of Phillips curve, s, and
for various values of diagnosticity parameter, 6. The model is given by equations (31)-(35). See Footnote 30 for the default calibration.

diagnosticity can generate extra endogenous volatility in the NK model. We analyti-

cally prove this result when prices are completely rigid (v, — 00).?

Proposition 4 (Extra Volatility: NK Model) Consider the model given by (31)-
(35). Assume parameters are such that Assumption 2 is satisfied. When ), — oo (rigid
prices), output is more volatile under DE than under RE : Var(gP¥) > Var(glF).
When 1, — 0 (flexible prices), output volatility under DE is equal to that under RE.

In the flexible price limit, we obtain the efficient benchmark where output volatility
is equal to the stationary TFP process volatility. In the perfectly rigid price case,
diagnosticity interacts with price rigidity to amplify fluctuations in output whenever
6 > 0. In the intermediate range, we numerically illustrate how excess volatility under
DE varies with the degree of price rigidity, parameterized by x. Our default calibration
of the NK model is based on the textbook by Gali (2015).3° 6 is set to 1 following
Bordalo, Gennaioli, Shleifer, and Terry (2021). We obtain a standard deviation of
output of 2.96%, relative to 1.82% under RE. Thus, output volatility increases by 63%
due to DE.

DE interact with the nominal frictions embedded in the NK model in order to gen-
erate extra output volatility. Figure 2 plots the excess volatility under DE relative to
RE as a function of k plotted on the x-axis, for different values of #. & is inversely

related to v, the adjustment cost parameter. Given the default calibration, DE gen-

29 Away from this limit, we can use the solution of the model presented in the appendix and obtain a condition
for extra volatility, but this condition is messy and does not lend itself to any clear interpretation.

30We set 5 = 0.99, e =9, ¢ = 1.50, and ¢, = 0.5. We set v = 2, and ¢, such that x = 0.050. The TFP
process is calibrated with persistence 0.90 and standard deviation of 2%.
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erates highest excess volatility relative to RE when prices are perfectly rigid. Excess
volatility monotonically declines as prices become flexible.3! In the flexible price limit,
the excess volatility converges to zero. Also, the excess volatility is increasing in the
diagnosticity parameter as long as Assumption 2 is satisfied.

In order to further demonstrate the interaction of nominal rigidities with diagnos-
ticity, we consider the case of a frictionless real business cycle (RBC) model. The
model is standard and is provided in Appendix E. There, we analytically show that
output is less volatile under DE than under RE when there is full depreciation of cap-
ital (0 = 1) and TFP shock process has zero persistence (p, = 0). For a calibration
away from these analytical assumptions, we find that the standard deviation of output
is lower under DE than under RE.

It is useful to draw a parallel to the news shocks literature originating in the seminal
work by Beaudry and Portier (2004) and Beaudry and Portier (2006) in order to
understand these results. The addition of DE to the NK model can be seen as a
way of generating errors in expectations that resemble news about the future. For
instance, in the case of a positive TFP shock, agents extrapolate this shock, expecting
a further positive TFP shock in the next period. Therefore, the TFP shock generates
a contemporaneous raise in TFP, and an excessive increase in expectations about TFP
in the next period. Shocks to expectations can be seen as shifts in aggregate demand.
Whether aggregate demand can move away from aggregate supply depends on the
degree of nominal rigidities. When prices are sticky, output is demand determined:
The positive income effect raises consumption and in general equilibrium this effect
dominates. Output ultimately increases. This explains the extra volatility afforded by
the DE-NK model. Similarly, in the presence of capital, shocks to expectations also
face difficulties in generating comovement in a baseline, frictionless, RBC model with
flexible prices (Beaudry and Portier 2006; Jaimovich and Rebelo 2009). Indeed, in the
case of a positive news shock, the implied income effect produces a fall of labor supply
and hence output (Barro and King 1984). However, as shown in Blanchard, L'Huillier,
and Lorenzoni (2013), nominal rigidities are also a solution to this counterfactual
prediction of the RBC model. Indeed, we will return to this property of DE in the
case of an estimated medium-scale DSGE models.??

We note that the recent important paper by Bordalo, Gennaioli, Shleifer, and Terry

(2021) presents another case in which DE interact with frictions to generate extra

311t is possible to get lower volatility of output under DE relative to RE for different parameter configurations.
For example, when persistence of the TFP process p, = 0.1, kK = 1, and § = 1, we obtain dampening of output
volatility under DE relative to under RE.

32To be clear, we use this parallel to news shocks only for the purposes of providing intuition. In fact, compared
to news shocks, DE generate novel and different effects. Section 5 will expand more on this point.
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volatility. The paper looks at an RBC model with financial frictions on the firm side.
Firms are heterogeneous. The paper shows that the interaction of firms’ expectations
with financial frictions successfully generate amplification of investment and output

dynamics, and fits a number of facts relating to credit cycles.

4.3 Keynesian Supply Shocks

Motivated by economic crisis caused by the COVID-19 pandemic, a rapidly growing
literature focuses on constructing models that have the ability to generate a demand
shortfall that is fundamentally caused by a disruption on the supply side of the econ-
omy, that is, a ‘Keynesian’ supply shock. Thus far, some of the candidate explana-
tions for this phenomenon include multiple consumption goods (Guerrieri, Lorenzoni,
Straub, and Werning 2022), endogenous firm-entry (Bilbiie and Melitz 2020), het-
erogenous risk-tolerance (Caballero and Simsek 2021), and endogenous TFP growth
(Fornaro and Wolf 2021). As the following proposition shows, DE present a behavioral

mechanism capable of producing Keynesian supply shocks.

Proposition 5 (Keynesian Supply Shocks) Consider the model given by (31)-(35).
Assume that 1, — oo and that the diagnosticity parameter is high enough, that is,
0 > 2(1 — po)(1 + ¢2)/(dupa). Then, the output gap Z; positively co-moves with the
unanticipated component of TFP: 8‘2’; > 0.

Similar to Proposition 4, the proposition imposes completely rigid prices for tractabil-
ity. The result extends to the case of moderately rigid prices, as Figure 3 shows. We
use the default calibration discussed in Footnote 30. The figure plots the evolution
of the output gap. Following a negative TFP shock, the economy enters a recession:
the output gap falls under DE. In the RE case, the output gap moves in the opposite
direction.

The key to this striking result is extrapolation: following the shock, agents extrap-
olate and become excessively pessimistic about future output. This leads to a large
drop in consumption, which due to nominal rigidities, leads to contemporaneous fall
in output. Due to diagnosticity, expectations become sufficiently pessimistic to induce
a fall in output larger than the initial drop in TFP, generating a Keynesian recession.
This is in contrast to the result under RE where the fall in TFP, being only transitory,
does not lead to a fall in aggregate demand. Hence, there is a boom: lower TFP for
the same level of aggregate demand increases the demand for labor; this generates a

boom in the labor market, together with a rise in the output gap.
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Figure 3: Output Gap Response to a Negative TFP Shock, Baseline NK Model
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Notes: The figure depicts the impulse response of the output gap to a unit negative shock to TFP. The productivity shock process is

given by equation (35). The blue solid line denote impulses responses with diagnostic expectations, whereas the red dotted line denote
responses with rational expectations. The dynamics of employment are exactly the same as the output gap.

A noteworthy result, following BGS, is that there is a systematic reversal in output
gap to the RE forecast when the extrapolation of current news turns out to be incorrect
under DE. When at time ¢ — 1 the news about productivity is bad, agents become
pessimistic and the output gap becomes negative. Next period, the excess pessimism
subsides and the output gap is corrected upwards. The forecast errors of output gap

are thus predictable: diagnostic forecasts neglect the systematic reversals in output

gap‘33

4.4 Fiscal Policy Multiplier

Here we address the implications of DE for the size of the fiscal policy multiplier.
There are two reasons to do this.

First, given the recent unprecedented fiscal response to the COVID-19 crisis in the
U.S. and other countries, understanding the effects of fiscal policy is central. Also,
substantial empirical evidence indicates that marginal propensities to consume are
large (see Fagereng, Holm, and Natvik 2021, among others), or similarly, that fiscal
multipliers are large in the cross section (Nakamura and Steinsson 2014).3* We show
that DE constitute a useful addition to the NK framework, because it generates novel,
rich implications for the fiscal multiplier.

Second, this exercise is a natural path for understanding the endogenous extrapo-

lation generated by the diagnostic Fisher equation embedded in equation (23). This

2
33The solution for output gap under DE, with rigid prices, is &; = %’(Jffﬂzﬁ(yf?—f“)&t - 150 ()1?1?&5 — )dt,l.

When 6 > 0, the second term denotes the reversal from revision in expectations.
34Gee Steinsson (2021) for a similar discussion.
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endogenous extrapolation channel highlights the implication of the extra term arising
due to belief path-dependence, as explained in Example 2, Section 3.

We add government spending shocks to the NK model. There is a balanced bud-
get government spending financed by lump-sum taxes. Now, the total output in the
economy is used for consumption and government expenditure. That is, we replace
equation (34) with:

Ut = Ct + Gy (36)

where ¢, is the percentage change of government spending from its steady state as

fraction of steady state output. g, follows an exogenous process:

Gt = PgGi—1 + Egt (37)

where €4, ~ 7id N(0,07). The equilibrium is given by equations (31), (32), (33), and
(36), for a given process (37).

For convenience, we write the diagnostic Fisher equation here:
=1y — E[mi1] — OE[me1] — Bea[meqa]) — O(m — By [m]) (38)

Extrapolation implied by DE reduces the real interest rate, and hence leads to higher
multipliers.

To make this point in a transparent way, we start by looking at i.i.d. govern-
ment spending shocks. The reason is that with i.i.d. shocks, there is no exogenous

extrapolation.?® We obtain the following proposition.

Proposition 6 (Fiscal Policy Multiplier) Consider the model given by equations
(31), (32), (33), (36), and (37). Assume that ¢, = 0 and that the persistence of the
shock py = 0. Then:

1. Under rational expectations, the fiscal policy multiplier is always strictly less than

1. Under diagnostic expectations, the fiscal policy multiplier is greater than 1 if
0 > ¢, and less than 1 if 0 < ¢y.

2. The fiscal policy multiplier is greater under diagnostic expectations than under

rational expectations.

3. The fiscal policy multiplier is increasing in 6, and tends to infinity as 0 —
Or + kL

35To see this, notice that equation (11) implies, for an AR(1) process, E[x;, 1] = po@: + Opiéy.
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Hence, when the degree of diagnosticity is above the reaction parameter of the mon-
etary authority, the multiplier is greater than one. The intuition for this result is as
follows. The diagnostic real rate moves, in response to current inflation, due to the
endogenous extrapolation (governed by #), and by the response of the central bank. In
the RE benchmark, the multiplier is always smaller than 1 because the central bank
moves the nominal rate to dampen the effect of fiscal policy. The condition 8 > ¢,
ensures that endogenous extrapolation offsets this dampening.

The degree of diagnosticity parametrizes the multiplier, increasing it above the RE
multiplier, and spanning the full range of values to infinity. We assume that ¢, = 0 in
order to get a clean and easy to interpret condition such that the multiplier is greater
than 1 in the DE model.?¢

This analytical case highlights that the higher multiplier under DE is only working
through the term 6(m;, — F;_1[m]) in the diagnostic Fisher equation. Extrapolation is
endogenous, generating the expansionary effect discussed in Example 2 above. Given
that the government spending shock is i.i.d., there is no exogenous extrapolation of
the shock due to diagnosticity.

We move away from the default calibration to illustrate the results in the case
¢ = 0. In order to illustrate a case where the multiplier is greater than 1, we consider
a dovish interest rate rule (¢, = 1.1) and a moderately higher diagnosticity parameter
of § = 1.5. Using a persistence of the government shock equal to 0.5 generates a DE
multiplier of 1.04, and an RE multiplier of 0.91. Raising the diagnosticity parameter
slightly generates much larger multipliers. Furthermore, using a steeper Phillips curve
(say, k = 0.20) strengthens the endogenous inflation extrapolation channel: the DE
multiplier is now 1.13, for an RE multiplier of 0.73.

We conclude this section by noting that DE do not always lead to higher multipliers.
When government shocks are persistent, the expectation of future spending crowds
out current consumption, reducing output. With DE, expectations of future spending
are exaggerated, and can considerably reduce multipliers when persistence is high. To
illustrate this, we go back to our default calibration. In addition, we set the persistence
of the shock to 0.9. In this case, the RE multiplier is 0.17, for a DE multiplier of -0.32.
In this simulation, the exogenous extrapolation channel is so strong that it dominates

the endogenous extrapolation channel, leading to a negative multiplier.

36The general condition is 6 > ¢, + (1:;3712),.@
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4.5 Overreaction and Delayed Overreaction

Whether beliefs as measured by surveys feature under- or overreaction is the subject of
an important debate in recent literature. Indeed, Coibion and Gorodnichenko (2012)
provide evidence of underreaction of consensus forecasts, whereas Bordalo, Gennaioli,
Ma, and Shleifer (2020) provide evidence of overreaction at the level of the individual
forecaster. Kohlhas and Walther (2021) find that there is overreaction, in some cases,
even at the aggregate level. In a complementary way, Angeletos, Huo, and Sastry
(2020) stress that at the aggregate level one can observe both under- and overreation.
According to them, what matters is the horizon: there is underreaction in the short
run, whereas overreaction dominates in the medium run.

The importance of the horizon at which one observes the dynamics of forecasts
has also been stressed in an application to stock returns by Bordalo, Gennaioli, La
Porta, and Shleifer (2019). The authors stress that the key is to look at the medium-
term forecast errors to find evidence of overreaction to news. The explanation is the
following. A gradual arrival of news can happen some time after an anticipated event,
and a buildup of the overreaction can move forecasts away from the underreaction
generated by imperfect information on impact.

Based on the premise by Bordalo et al. (2019), our broad aim in this section is to
contribute to this debate by presenting an extension of the NK model in which long-
term beliefs are guided by the diagnostic Kalman filter. The key innovation of our
setup compared to previous exercises in the literature is that agents form beliefs about
a hidden component that features both sizeable persistence, and is also permanent (in
the sense that the underlying process has a unit root.) To model the long-term nature
of this hidden object, we calibrate this persistence to a high value, which conceptually
connects our exercise to the long-run risks approach (Bansal and Yaron 2004). How-
ever, ours is a general equilibrium representative-agent macroeconomic model where
consumers are concerned with the long run path of income.

Assume prices are completely rigid. Consumption is pinned down solely by beliefs
about long-run income.?” The information structure is as follows. TFP, in logs, now
has a permanent component (; and a temporary component &. Agents do not observe
these components separately. Instead, they observe realized TFP and a noisy signal
about the permanent component s, = ¢, + &5, where g5 ~ i.i.d. N(0,02), and form
beliefs using the diagnostic Kalman filter introduced by Bordalo et al. (2020).3®

3"We take the limit ¢, — 0 and Y, — o0o. For brevity we do not write down the equations more explicitly, but
this conclusion can be reached by iterating forward the Euler equation.

38Even though the model does not explicitly have dispersed information as in Coibion and Gorodnichenko (2012),
we follow Lorenzoni (2009) by using a simple representative agent model with aggregate noisy signals. The filter
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Figure 4: Impulse Responses: Beliefs About the Long-Run
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Notes: The panels depict the impulse responses of beliefs about long-run productivity to a one unit positive shock to the permanent
component of TFP. The left-hand side panel presents the case of a precise signal (65 = 0.01 and 6 = 1.0); the right-hand side panel
with the case of an imprecise signal (05 = 0.03 and 6 = 1.0).

The following analytical result offers a simple comparison of beliefs about the long-
run under a) the diagnostic Kalman filter (DKF'), b) the rational Kalman filter (RKF),
and c) the full information RE benchmark (FIRE).

Proposition 7 (Overreaction) Assume that v, — 0o, ¢, = 0, and the persistence

of the permanent component p; = 0. Consider a positive shock to ;. Then,
1. Beliefs about the long-run are greater under the DKF' than under the RKF.

2. If 0 is high enough, beliefs about the long-run under the DKF are greater than
under FIRE.

When p > 0, delayed overreaction is possible. We offer a collection of numerical
results using the following calibration. In order to capture the idea that the agent
is forming beliefs about a very long-run object, we calibrate the persistence of the
permanent component to a high value, p; = 0.98. We normalize the standard deviation
of TFP to 1. We consider two values of the standard deviation of the signal: a relatively
precise signal (of standard deviation 0.01), or a relatively imprecise signal (of standard
deviation 0.03). Figure 4 presents the dynamics for beliefs about long-run productivity
in response to a one standard deviation permanent shock. The left-hand side (LHS)
panel presents the case of a precise signal, and the right-hand side (RHS) panel presents
the case of an imprecise signal.

Under FIRE, long-run beliefs jump to 1 on impact and stay there. This is because

the standard deviation of TFP innovations has been normalized to 1, and beliefs im-

needs to be adapted to the particular information structure here, but the ideas are the same. For details of the
model specification, see Blanchard et al. (2013), or Appendix F for a full specification in the context of the
medium-scale DSGE.
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mediately adjust to the long-run value of TFP after the shock. In the case of a precise
signal (LHS panel), beliefs under the RKF underreact on impact, starting off at 0.70.
As learning happens over time, these beliefs rise, gradually reverting back to 1 in the
long run.?® Instead, beliefs under the DKF strongly overreact on impact. This because
the signal is so precise that diagnosticity overwhelms imperfect information.

Turning to the case of an imprecise signal (RHS panel), beliefs under the RKF
underreact significantly, starting off at 0.41. Given that now imperfect information
is more severe, DKF beliefs also slightly underreact on impact, starting off at 0.84.
However, because agents receive a new signal every period, there is gradual learning.
Therefore, as they gather more information, DKF implies a sizeable overreaction over
periods 2 to 6, with a peak at 1.16. Notice, the RKF also slightly overreacts around
period 5. This is due to a mechanical effect induced by the persistence of beliefs.
However, diagnosticity induces overreaction above and beyond this mechanical effect,
with a subsequent systematic reversal.

We conclude by noting that we reported results only varying the precision of the
signal. By varying the degree of diagnosticity one modifies the degree of overreaction
independently. For instance, increasing 6 to 1.5 (which is within the range of estimates
reported by Bordalo, Gennaioli, Ma, and Shleifer 2020) can generate a slight overre-
action in the short run and a stronger overreaction in the medium run, leading to a

hump-shaped pattern of beliefs.

5 Empirical Evaluation

Given the theoretical findings of the previous sections, we undertake an empirical eval-
uation of diagnostic expectations using standard structural methods. The primary
goal is to ask the following question. Consider a baseline, medium scale, rational ex-
pectations DSGE model. Replace rational expectations with diagnostic expectations.
(The diagnostic model nests the rational expectations model via the diagnosticity pa-
rameter.) Is there evidence that diagnostic expectations improve the ability of the
DSGE model to fit business cycle data?

With this formulation of the broad question that will guide our empirical inves-
tigation, four interrelated subquestions emerge: What is the estimated value of the
diagnosticity parameter? Does the credible interval span the RE limit? Ultimately, is

there statistical evidence that diagnosticity provides an advantage when fitting busi-

39There is a light overreaction in period 3 even in the case of the RKF. This is simply a mechanical implication
of the persistence of beliefs inherited from the highly persistent permanent component.
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ness cycle data? If so, what changes in the interpretation of the data?

Given the recent interest in the literature on survey data (see Bordalo, Gennaioli,
Ma, and Shleifer 2020, Coibion and Gorodnichenko 2015b, among others), we include
five survey forecast series from the Survey of Professional Forecasters (SPF) among the
set of observable variables. Recently, Milani and Rajbhandari (2020) and Miyamoto
and Nguyen (2020) have shown that DSGE models featuring news shocks can fit SPF
data.*® Hence, we also include news and noise shocks in the estimation, based on
the specification by Blanchard, L’Huillier, and Lorenzoni (2013) (henceforth BLL). In
model evaluation, Chahrour and Jurado (2018) find BLL to be the best candidate for
fitting the data with shocks to rational expectations, such as news or noise.*!

Thus, we highlight that our empirical exercise is disciplined by the addition of a
host of ingredients in the baseline model: a rich set of frictions, shocks and compet-
ing channels. This includes the frictions introduced in the seminal work by Chris-
tiano, Eichenbaum, and Evans (2005). We include the exogenous driving processes
introduced by Smets and Wouters (2007). We include news shocks as an alternative
channel to explain expectations. We include information frictions in the form of noise
shocks (included in the news and noise specification by BLL). By adding all these
bells and whistles (nominal, real, and information frictions), driving processes, and
the alternative expectation channel, we aim to perform a tough test of the usefulness
of the behavioral friction embodied by diagnostic expectations. Indeed, we want to
assess whether it provides a significant empirical advantage, even when all the other
commonly used ingredients have been included.

We note that the inclusion of information frictions leads to a diagnostic Kalman
filter, as introduced by Bordalo, Gennaioli, Ma, and Shleifer (2020). Coibion and
Gorodnichenko (2015b) have also emphasized the importance of expectation underre-

action in the aggregate, which our information structure is able to account for.

5.1 Medium-Scale DSGE Model

Since the model is standard (Christiano, Eichenbaum, and Evans 2005), we describe
here its main ingredients and relegate the details to the appendix. The preferences of

the representative household feature habit formation and differentiated labor supply.

40Related work by the Federal Reserve Bank of New York has included data on inflation and Federal Funds rate

expectations in DSGE estimation (Del Negro et al. 2013).

41‘News and noise’ models of belief-driven fluctuations are models where rational agents receive noisy advance
information about fundamental shocks hitting the economy. In a series of representation results for this type of
theories of the business cycle, Chahrour and Jurado (2018) show that, generally, “news and noise” models admit

both a pure news representation of beliefs and fundamentals, and a noise representation.
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The capital stock is owned and rented by the representative household, and the capital
accumulation features a quadratic adjustment cost in investment, as introduced by
Christiano et al. (2005). The model features variable capacity utilization.

The final good is a Dixit-Stiglitz aggregate of a continuum of intermediate goods,
produced by monopolistic competitive firms, with Rotemberg (1982) costs of price
adjustment. Similarly, specialized labor services are supplied under monopolistic com-
petition, with Rotemberg (1982) costs of nominal wage adjustment. The monetary
authority sets the nominal interest rate following an inertial Taylor rule.

The model features eight persistent structural shocks: shocks to temporary and
permanent productivity, a noise shock to the signal about permanent productivity,
a shock to the marginal efficiency of investment, shocks to price and wage markups,
shocks to monetary and fiscal policy. We introduce i.i.d. measurement errors for SPF
forecasts.*?

Following Smets and Wouters (2007) and Justiniano, Primiceri, and Tambalotti
(2010), the model is estimated based on U.S. time series for GDP, consumption, in-
vestment, employment, the federal funds rate, inflation, and wages, for the period
1954:111-2004:1V. This sample period facilitates comparison of our results across mod-
els in the robustness section, and avoids complications arising from the zero lower
bound. We also include SPF data on consumption growth, investment growth, output
growth, short-term inflation and short-term interest rate forecasts. The data appendix
presents more details. We set up a Kalman filter to get smoothed estimates of the
permanent component of productivity and the associated agents’ beliefs. Table 7 in
the appendix presents the parameter prior distributions. We generate 5,000,000 draws
using a Metropolis-Hastings algorithm and discard the first 20% as initial burn-in.

5.2 Results

The parameter estimates are reported in Table 1. We report mean posterior estimates,
along with the 90% credible interval. We present estimates for the diagnostic model
and the rational model, side-by-side. The bottom row reports the marginal likelihood
for both models.

Let us first look at the estimate for the diagnosticity parameter 6. Our prior
distribution is normal with mean 1 and standard deviation 0.3. The estimated posterior

mean for # is 0.7325. This estimate is close to the one obtained in the previous empirical

42The two productivity shocks are not separately observed by the agent. Instead, a public signal on permanent
productivity is available. These three variables imply a distributed lag model for TFP and beliefs that admit a
pure news representation, as shown by Chahrour and Jurado (2018).
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Table 1: Posterior Distribution

Diagnostic Rational
Parameter Description Mean [05, 95] Mean [05, 95]
0 diagnosticity 0.7325 [0.5917, 0.8746]
« cap. share 0.1340 [0.1226, 0.1453] 0.1390 [0.1278, 0.1505]
h habits 0.7211 [0.6922, 0.7502] 0.5803 [0.5424, 0.6178]
L cap. util. costs 5.0666 3.4432, 6.6709]  5.5929 3.9095, 7.2242)]
Uy Rotemberg prices 125.58 [98.710, 152.17] 181.84 [126.66, 188.88]
Dw Rotemberg wages 582.13 [256.01, 897.76] 9710.9 [4510.5, 14712.]
v inv. Frisch elas. 3.8520 [2.4474, 5.2254] 1.2832 [0.5012, 1.9475]
S”(1) inv. adj. costs 6.9588 [5.8400, 8.0723] 7.0701 [6.0111, 8.1332]
PR m.p. rule 0.5818 [0.5429, 0.6209] 0.5563 [0.4380, 0.6806]
Or m.p. rule 1.5363 [1.4173, 1.6537] 1.0682 [1.0001, 1.2046]
O m.p. rule 0.0061 [0.0001, 0.0109] 0.0013 [0.0001, 0.0030]
Technology Shocks
P persist. 0.8573 [0.8368, 0.8780] 0.9535 [0.9352, 0.9716]
Oq tech. shock s.d. 1.3772 [1.2603, 1.4947] 1.5258 [1.3896, 1.6601]
Os noise shock s.d. 0.5400 [0.3196, 0.7531] 1.0594 [0.3781, 1.7574]
Investment-Specific Shocks
Pu persist. 0.3027 [0.2474, 0.3575] 0.3310 [0.2631, 0.4003]
o s.d. 18.905 [15.017, 22.716] 20.212 [16.369, 23.989]
Markup Shocks
Pp persist. 0.8749 [0.8303, 0.9209] 0.8205 [0.7663, 0.8769]
op ma. comp. 0.5858 [0.4728, 0.7022] 0.5563 [0.4380, 0.6806]
op s.d. 0.1591 [0.1306, 0.1877] 0.1988 [0.1700, 0.2271]
Pw persist. 0.9969 [0.9939, 0.9999] 0.6543 [0.5146, 0.7978]
buw ma. comp. 0.5765 0.3942, 0.7630] 0.5142 0.2882, 0.7444]
Ow s.d. 0.4383 [0.3434, 0.5300] 0.4490 [0.3836, 0.5142]
Policy Shocks
Pmp persist. 0.0295 [0.0100, 0.0514] 0.0197 [0.0009, 0.0383]
Tmp s.d. 0.3801 [0.3440, 0.4158] 0.3283 [0.3000, 0.3556]
Pg persist. 0.9341 [0.9058, 0.9626] 0.8974 [0.8682, 0.9275]
ag s.d. 0.3699 [0.3384, 0.4017] 0.3706 [0.3384, 0.4022]
Measurement Errors
oME s.d. 0.4975 [0.4467, 0.5471] 0.5034 [0.4529, 0.5533]
O'?E s.d. 0.4089 [0.3594, 0.4575] 0.4255 [0.3739, 0.4764]
oME s.d. 1.4320 [1.2539, 1.6039] 1.4514 [1.2692, 1.6284]
oME s.d. 0.2692 [0.2417, 0.2966] 0.2285 [0.2018, 0.2551]
oME s.d. 0.1639 [0.1432, 0.1845] 0.1482 [0.1267, 0.1693]
log Marg. Likelihood -1812.71 -1847.38
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exercises reported by Bordalo, Gennaioli, Ma, and Shleifer (2020), and to the value
used by Bordalo, Gennaioli, Shleifer, and Terry (2021). Figure 7 in the appendix shows
that the posterior distribution of € is unimodal. The 90% credible interval covers values
from 0.5917 to 0.8746, away from the RE limit of zero.

In order to understand the implications of DE, we analyze the impulse response
functions (IRFs) to the main driving processes.*> Figure 5 plots IRFs for the one-
step-ahead consumption forecast, and for selected quantities (consumption and output
growth, specifically). Figure 6 plots these IRFs for selected prices (price inflation,

nominal and real interest rates).

Figure 5: Impulse Responses: Quantities
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Notes: The panels depict the impulse responses of one-step-ahead consumption forecast, consumption, and output to a one standard
deviation shock to noise signal, temporary TFP, and wage markup. The blue solid lines denote impulses responses with diagnostic
expectations, whereas the red dashed lines denote responses with rational expectations. See Table 1 for parameters.

Consider the IRFs to the noise shock. In this model, the noise shock raises expec-

tations of future income. This pushes the consumer to increase demand, and firms

43We plot the IRFs of the shocks that explain the highest share of consumption volatility on impact.
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to invest in anticipation of higher profits. Therefore, it can be intuitively thought of
as an aggregate demand shock. The noise shock increases consumption and output
in the DE model (full line, blue). The same happens in the rational counterfactual,
obtained by shutting down diagnosticity (6 = 0, dashed line, red). Focusing on the
consumption forecast, we see that the behavioral consumer’s beliefs overreact to the
shock, exhibiting a more volatile conditional response to the noise shock, and a rapid
reversal relative to RE. The combination of excess volatility and reversal results in
a boom-bust in actual consumption and economic activity more broadly, above and
beyond the mechanical reversal generated with the Kalman filter in the RE counter-
factual. The boom-bust in consumption forecast is sharper than response of actual
consumption due to the presence of habits in consumption.

Turning to the IRFs of prices, we note that price inflation tends to feature an
overreaction on impact. This is due to the forward-looking behavior of prices: By the
logic of the NK Phillips curve, current inflation depends on the expectation of future
inflation. For instance, following a positive TFP shock, inflation falls by a larger
amount under DE than under RE. This overreaction is particularly acute in the case
of the noise and the temporary TFP shock. Another noticeable difference between the
DE model and the RE counterfactual comes from the responses of the real rate. As
highlighted earlier in the paper, the diagnostic real rate expression features an extra
term, whereby current surprise inflation is extrapolated. As in Bianchi et al. (2022),
this term generates an additional propagation mechanism in the DE model.

Overall, comparing the IRFs of the DE model and the RE counterfactual suggests
that the DE model affords extra volatility of endogenous variables in general equilib-
rium. This theme was developed analytically at the beginning of Section 4, and linked
to nominal rigidities. To quantify this point we compute the excess unconditional
volatility afforded by DE for consumption growth, output growth, price and wage in-
flation, and the real rate. Among these, the largest increase is the one of the real rate,
with a 37% increase in volatility. The increase of consumption volatility is particularly
strong as well, at 23%. This is consistent with the view that consumers overreact
in their expectations of future consumption via the Euler equation. The volatility of
other variables increase as well (see Table 8 in the appendix).

We use the Bayes factor to empirically evaluate the fit of the diagnostic model
against the rational model. The log marginal likelihood of the data given the estimated
diagnostic model is -1812.71. This statistic is lower, -1847.38, in the case of the rational

counterpart.** This difference in log marginal likelihoods represents evidence in favor

4“Following the Kass and Raftery (1995) classification, 2log(BF) = 2 x 34.67 = 69.34 statistic represents “very
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Figure 6: Impulse Responses: Prices
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Notes: The panels depict the impulse responses of inflation, the nominal interest rate, and the real rate to a one standard deviation
shock to noise signal, temporary TFP, and wage markup. The blue solid lines denote impulses responses with diagnostic expectations,
whereas the red dashed lines denote responses with rational expectations. See Table 1 for parameters.

of the diagnostic model.

We look at the forecast error variance decompositions to get intuition into how
the DE model fits the data and outperforms the RE model. Table 2 presents the 1Q
ahead variance decomposition across all structural shocks for quantities and prices.
For each, we first present the case of the DE model. Then, for comparison, we present
the variance decomposition for the estimated RE model (with parameter estimates
presented in Table 1). A striking finding is that the DE model relies much less on
noise shocks to explain consumption fluctuations. The contribution of noise shocks
to consumption volatility is only 12% in the DE model (compared to 43% in the RE
model), and to output is 7% in the DE model (compared to 25% in the RE model).
Other shocks explain these variables, with temporary TFP shocks explaining 30% of

strong evidence” in favor of the diagnostic model. This statistic has been used for model comparisons in the DSGE
literature. See, for example, Ascari, Bonomolo, and Lopes (2019).
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consumption and 18% of output volatility in the DE model (versus 15% and 7% in the
RE model), and with wage markup shocks explaining 30% of consumption and 19%
output volatility (versus 1% and 0% in the RE model).*>

Table 2: Variance Decomposition: Quantities and Prices

Variable Noise Perm. Temp. Invest. Price Wage Monet. Fiscal
TFP TFP Markup  Markup

Consumption

DE 0.1158 0.0432 0.2976 0.0013 0.0313 0.3010 0.1814 0.0283

RE 0.4310 0.0039 0.1509 0.0006 0.0334 0.0121 0.3680 0.0001

Investment

DE 0.0020 0.0018 0.0279 0.9347 0.0102 0.0187 0.0035 0.0012

RE 0.0156 0.0002 0.0104 0.9585 0.0050 0.0014 0.0089 0.0001

Output

DE 0.0707 0.0262 0.1776 0.2842 0.0373 0.1942 0.1093 0.1005

RE 0.2493 0.0021 0.0716 0.2867 0.0278 0.0059 0.2017 0.1547

Price Inflation

DE 0.0658 0.0000 0.4055 0.0880 0.3259 0.0314 0.0656 0.0179

RE 0.0175 0.0003 0.2859 0.0025 0.5902 0.1023 0.0007 0.0006

Wage Inflation

DE 0.1285 0.0216 0.0115 0.1120 0.4138 0.2210 0.0814 0.0101

RE 0.0046 0.0003 0.0835 0.0004 0.2449 0.6662 0.0000 0.0000

Nominal Rate

DE 0.0279 0.0000 0.1737 0.0378 0.1350 0.0125 0.6053 0.0077

RE 0.0026 0.0000 0.0413 0.0003 0.0840 0.0146 0.8571 0.0001

Real Rate

DE 0.0319 0.0000 0.1647 0.0431 0.0360 0.0147 0.7006 0.0090

RE 0.0077 0.0001 0.0848 0.0019 0.0006 0.0391 0.8656 0.0002

What explains this pattern? The DE model exploits the rich propagation afforded
by extrapolation in the forward-looking behavior of consumers, firms, workers, and
financial markets. Consumers extrapolate, generating extra volatility and reversals of
consumption. Firms extrapolate, generating extra volatility and reversals of invest-

ment. Price and wage setters extrapolate, generating extra volatility and reversals

45Chahrour and Jurado (2018) propose a variance decomposition of news and noise in terms of fundamental

shocks and noise. For ease of comparison, we retain the original BLL decomposition.
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in price and wage inflation. Financial markets extrapolate, generating extrapolation
of current surprise inflation when pricing nominal bonds, together with implied dy-
namics of the real rate. Instead, in the case of the RE model, errors in expectations
arise only about future income, following the permanent income channel emphasized
by BLL, who build on Lorenzoni (2009). Overall, the DE model affords a more flex-
ible structure of errors in expectations, and is able to explain deviations from belief
rationality on several dimensions. This finding can be interpreted as evidence that
DE outcompete noise shocks as a preferred channel to explain fluctuations. Consistent
with this view, we point to the fact that the estimated noise in the signal, oy, is 0.5400
in the DE model (versus 1.0594 in the RE model). The DE model fits the data with
a more precise signal and therefore a lower degree of information imperfections. It
explains fluctuations with the aid of other shocks, which employ diagnosticity in order
to propagate internally in general equilibrium.

We also note the sharp drop in the importance of exogenous markups in explaining
price and wage inflation variance. Indeed, price markup shocks explain 33% of price
inflation volatility in the DE model (versus 59% in the RE model). Similarly, wage
markup shocks explain 22% of wage inflation volatility in the DE model (versus 67%
in the RE model). The DE model exploits the forward-looking behavior of wage
setters to explain goods prices and wages, relying more on other shocks and internal
propagation mechanisms. For instance, temporary TFP shocks explain 41% of price
inflation volatility in the DE model (versus 29% in the RE model). Also, price markup
shocks explain 41% of wage inflation volatility in the DE model, instead of 24% of
wage inflation volatility in the RE model. Consistent with this finding on the variance
decomposition, the wage Phillips curve is steeper in the DE model, as evidenced by a
much lower Rotemberg costs parameter.

Table 3 presents variance decomposition for the forecast data, distinguishing be-
tween the contribution of structural shocks and of observation errors. We find that
the structural shocks account for a higher share of the empirical volatility of forecast
data in the DE model. For instance, 44% of the one-step-ahead consumption forecast
is explain by structural shocks in the DE model (versus 31% in the RE model), and
56% of the one-step-ahead inflation forecast volatility is explained by structural shocks
in the DE model (versus 33% in the RE model).

To sum up, this analysis points to two primary reasons that explain the empirical
success of the DE model. First, diagnosticity is a powerful and flexible amplification
mechanism, generating errors in expectations along several dimensions. Thus, the

key role of noise shocks is diminished in the DE model. This is important, since these
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Table 3: Variance Decomposition: One-Step-Ahead Forecasts

Variable Structural Shocks Measurement Errors
Consumption

DE 0.44 0.56

RE 0.31 0.69
Investment

DE 0.33 0.67

RE 0.17 0.83

Output

DE 0.44 0.56

RE 0.30 0.70

Price Inflation
DE 0.56 0.44
RE 0.33 0.67

Nominal Rate
DE 0.91 0.09
RE 0.76 0.24

shocks require a fairly dovish monetary authority to propagate. Notice that, compared
to the RE model, the DE model can explain fluctuations in quantities by relying less
on such a dovish monetary authority. To corroborate this claim, we emphasize that
the reaction parameter ¢, to inflation is estimated at 1.54, compared to a very low
value of 1.07 in the RE model. The DE estimate is more in line with other estimates
in the literature, as for example 2.04 by Smets and Wouters (2007), and 2.09 by
Justiniano, Primiceri, and Tambalotti (2010).%¢ Second, the model is able to explain
price and wage dynamics inflation internally, relying less on exogenous markup drivers.
Consistent with this view, we highlight that the standard deviation of price markup
shock o, is estimated at 0.1591 in the DE model (versus 0.1998 in the RE model).*
We interpret the fact that price and wage fluctuations are explained internally, rather
than exogenously, as an encouraging finding. This is because DSGE models could be
criticized on the grounds that markup shocks constitute a rather black-boxy ingredient
without a realistic counterpart (Chari, Kehoe, and McGrattan 2009).

46The RE estimate is actually consistent with BLL, who discuss why the news and noise model requires a fairly
accommodative rule in the case of log preferences.

4TThe estimated standard deviation of wage markup shocks is also lower, 0.44 in the DE model, versus 0.45 in
the RE model.
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5.3 Robustness

5.3.1 Prior on the Diagnosticity Parameter § Centered at Zero

The model can in principle fit the data with a value of 6 that is either close to zero, or
negative. Thus, it is important to check that imposing a prior distribution centered at
a positive value (such as 1) does not importantly affect our results. Using a symmetric
prior distribution around 0 (# ~ N(0.0.3)), we re-estimate the DSGE model under
DE. Table 9 in the appendix presents the results. Our posterior estimate of 8 is not
importantly affected, with a mean posterior of 0.6537. Again, the 90% credible interval
is away from zero, covering values from 0.5193 to 0.7884, away from the RE limit of
zero. The log marginal likelihood is also higher for the DE model than for the RE
model (-1814.82 versus -1847.38).

5.3.2 Diagnostic Expectations in Alternative Off-The-Shelf Models

Another robustness check concerns the importance of details of our implementation
for the conclusion that DE provide a superior fit of business cycle data. There are two
separate angles of potential concern. First, does this conclusion crucially depend on
using the BLL model? Second, does this conclusion crucially depend on including SPF
data among the set of observable variables?

In order to demonstrate that the answer to both these questions is negative, here,
we undertake the estimation of two influential off-the-shelf DSGE models: Smets and
Wouters (2007) and Justiniano, Primiceri, and Tambalotti (2010). In the estimation
of each of this models, we make sure to replicate the authors’ procedure as close as
possible: We use the same sample 1954:111-2004:1V. We use their data set, ensuring
variable construction does not cause any differences. We also set the same prior distri-
bution. Hence, our RE results replicate their findings. The introduction of DE in this
case constitutes a particularly tight test that DE are useful to explain business cycle
data.

Table 11 in the appendix presents the results for the Smets and Wouters (2007)
model. We present estimates for this model under diagnosticity, and for the baseline
the rational model, side-by-side.*® Our posterior estimate of @ is smaller than under
BLL, but still positive with a mean posterior of 0.4435. The 90% credible interval
is away from the RE limit of zero, covering values from 0.1822 to 0.6928. The log
marginal likelihood is also higher for the DE model than for the RE model (-897.91

48For the RE model, we obtain a similar slope of the price and wage Phillips curves despite the use of Rotemberg
adjustment costs instead of Calvo in our specification of nominal rigidities.
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versus -900.69).

Table 13 in the appendix presents the results for the Justiniano, Primiceri, and
Tambalotti (2010) model. We present estimates for this model under diagnosticity,
and for the baseline the rational model, side-by-side. Our posterior estimate of 6 is
smaller than under BLL but still positive with a mean posterior of 0.4336. The 90%
credible interval is away from the RE limit of zero, covering values from 0.1894 to
0.6745.% The log marginal likelihood is also higher for the DE model than for the RE
model (-1190.86 versus -1193.78).

6 Conclusion

In this paper, we argue that diagnostic expectations constitute a behavioral mechanism
that can be fruitfully incorporated into New Keynesian macroeconomics. To this end,
we first considered a set of challenges encountered by researchers working with this
type of models, and revisited them analytically under diagnostic expectations. We
concluded that the use of diagnostic expectations opens up avenues to make significant
progress in the context of these challenges. We then asked if diagnostic expectations
are validated empirically. Using a rich medium-scale DSGE model with news shocks
and imperfect information, we conclude that the answer to this question is yes: The
diagnostic model dominates the rational counterpart in terms of fit.

Our general solution method offers opportunities to explore and revisit a number
of themes in macroeconomics and international macroeconomics in the context of di-
agnostic expectations. For example, a challenge in open economy models has been
to account for the cyclicality of the current account in emerging countries, or to im-
prove our understanding of exchange rate predictability. We leave these explorations

to future work.
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A Muth (1961) Under Diagnostic Expectations: De-

tailed Derivation

A.1 Muth’s Over-Discounting

We show an equivalence of DE with Muth’s model of deviations from rationality (Muth
1961, pp. 321-2). The shock process can be written as linear combination of current
and past normally and independently distributed random variables ¢; with zero mean

and variance o2

U = Zwiet,i (39)
=0

Any desired correlogram in the u’s may be obtained by an appropriate choice of the
weights w;.
As in Muth (eqn 3.7), conjecture that price is a linear function of the independent

disturbances

[e.9]

P=) Wi (40)

=0

The expected price is then

Pte = Effl[Pt] = (14 0)E,_1[P] — 0E,_»[P)] = Z Wier—i + OWie1 = (1 +0)Wieq + Z Wie—i
i=1 =2

(41)
From the equilibrium equation (4), we obtain:

P, + %Efl[m _

1+6 = I &
W()Et + <1 + M) W1€t_1 + (1 + 1) Z W,‘Et_i = —= Z W;€t—i (43)
i=0
Hence, we get

Wo = ——wyq (44)

47



~v(1+0) 1 L 1

1
(1+%)Wi:——w,~ — W, = w; Yi=2,... (46)

1
8 B+
Compare the solution to Muth’s solution in equations (3.19) to see that Muth’s ex-

trapolation coefficient f; =1+ 6.

A.2 Inventory Speculation Model (Muth 1961, Section 4, pp.
322-30)

Qf = =BP;3>0 (Demand)

Qf = I+ w (Supply)

I, =vEPri1;v >0 (Production in Advance)

Sy = « (E [Pi1] — Pt> >0 (Inventory Demand)
Q+ 5 =Qf + Si1 (Market Clearing)

We get the following univariate equilibrium condition:
—(OZ + 5)Pt + OZ]EtPH_1 = (Oé + V)Et—lpt — OZPt—l + Ut (47)

We assume that shock process u; has zero persistence (p = 0). That is, u; = € ~

i.i.d.N(0,0?%). Guess the solution takes the following form:
-Pt = A_Pt_l + B(ft + Cﬁt_l (48)

Using method of undetermined coefficients we find that the solution under RE and DE

are as follows:

1
PtRE — ARtfl - m@g (49)
PPE = AP, + Be; + Cey 4 (50)

where A is the smaller root of the quadratic «4? — (2a + 8+ 7)A +a = 0,

(a+7)(1+0)+a+pL—aA
[(a+A+0)+a+8l(a+8—a(l+0)A) —aA(a+—a(l+0)A) +a(l+60)(a+v))A
(51)

B=—
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- (a+7)0AB
T Tt 10 +atrh—aA (52)

We can see that, for § > 0, B is a function of 6 (whereas the coefficient —1/(a+ 3 —
aA) is not), and that C' # 0. This shows that the DE and RE solutions are different,

even for i.i.d. shocks.?®

B Diagnosticy, RE Representation, and More on

Predetermined Variables

This appendix collects all proofs for the results stated in Section 3. Standard ma-
trix operations to obtain the solution, and associated proofs (needed once the RE

representation has been obtained), are discussed in Appendix C.

B.1 Diagnostic Expectation of Future Variables

Suppose that z; follows an univariate AR(1) process, z; = p,x;_1 + &, with ¢, ~
ii.d. N(0,0?%). Given (realized) states #; and ¥, i, the diagnostic probability distribu-

tion function of x4 is

f(xia|re = 3y) ? ‘
)} C (53)

Ty1|Tp = ppFi_q

f = f(Ta|xe = Ty) -
Fein) = Flavnle = &) [ =

When looking at equation (53), it is important to notice that, generically, &; #
pzEi—1 (due to the realization of the shock €;.) However, since ¢; is fixed at 0 by the
NNA, then

9 .

. Ti+1 — Prlt—1

(o] = pete 1) o< (Jra—m) (54)
&€

Thanks to the NNA, the variance of this pdf is 2, which is the same as the variance
of the true pdf of x;,,1. Thus, the true and the reference distributions have the same
variance. This ensures tractability.

We now prove that the diagnostic expectation of a univariate variable can be ex-

pressed in terms of rational expectations.

50Tf one were to drop the P,_; term in the equilibrium equation, it is straightforward to verify that the DE and
RE solutions would coincide when p = 0.
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Lemma 1 (Univariate RE Representation) Suppose that x; follows an AR(1) pro-
cess and that the NNA holds. Then,

E[2111] = Ee[ri] + O(Ee[2111] — Eooa[we41]) (55)
Proof (Lemma 1.) The diagnostic expectation of x4y, is given by
Bllera] = [ ofi(a)do (56)

The diagnostic pdf is given by

146
{%w(%)]
_ e (57)
)

where C' is a normalizing constant given by

{ 1 (9(1 +0)p2E; + 00+ 1)pta? | —2(1+ e)epii:t:fzt_1> }
C =exps — =

2
2 (o=

(58)
in which case

Bl = [ afl(oo
_ /_°° xigp(x — (paits + 0(pas — pift—l)))dx (59)

O¢ O¢

o0

Thus, the diagnostic distribution f?(z;,1) is normal with variance o> and mean

Ef[z1] = Bolwia] + 0(Eyfzi] — Bya[zep)) (60)

[ |
In formula (55), the lagged expectation E;_;[x;.1] is the expectation conditional on
information available at ¢t — 1, that is, conditional on Z;_;. Thus, E;[x;11] = p.d; and

E; 1[T41] = p2&;_1. For a given realized &;, this proof implies that:
EY[#141] = Elzia] + 0puée > Eylg] (61)

if and only if &, > 0, that is diagnostic expectations indeed extrapolate the past shock

into future beliefs.
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Extension to Multivariate Case. Assume that the vector z; follows a multivariate
AR(1) process, z; = A,z;_1+w;, where w, ~ N (0, %), and A, is a persistence matrix.
(Notice that we do not require orthogonality.)

We make the following multivariate no-news assumption (henceforth NNA) for any

Gaussian AR(1) vector z; ;.

Assumption 3 (Multivariate No-News Assumption)

f(Zt+1| - Gt) = f(Zt+1’Zt = Azztfl) (62)

The extension to the multivariate case is based on the fact that each element of the

vector is univariate normal.

Lemma 2 (Multivariate DE Formula) Assume that the vector z; follows a multi-
variate AR (1) process. Then,

Ef[z141) = E[ze41] + 0(Be[2e41] — Eii[2441]) (63)

Proof (Lemma 2). The proof proceeds element-by-element of the vector z;,;. With-
out loss of generality, consider the first element z;;y;. The marginal distribution of

Z1 441 is also normal, and thus, under the NNA,
B [2i111) = Ba2ig11] + O(Bi[2411] — Eia[2i141]) (64)

The proof for the other elements of z, is identical. W

Equation (11) follows from this lemma.

B.2 Existence and Uniqueness of the Rational Expectations

Representation for the General Linear Model

The proof will use the fact that endogenous variables of the DSGE model are normally
distributed, allowing to use the multivariate BGS formula (11), together with the

linearity of the RE operator. First, we need to prove the following lemma.

Lemma 3 (Distribution of the Linear Combination Fy,.; + Gyy, + Mx; 1 + N1x;)
Consider the multivariate process (7) and model (12). The vector Fy,11 + Giy: +

Mx;.1 + Ni1x; follows a multivariate normal distribution.
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Proof (Lemma 3). First,
Mx,.1 ~ N(MA%,, M, M) (65)

Also,
Fyi1 ~ N(FPy, + FQA%, F(Q+ R)%,(Q+ R)'F') (66)
Finally,

Fyii1+ Gay: + Mxi + Naxy ~ N((FP + G1)ys + (FQ + M)A + Ny )%y,
(F(Q+R) + M)L(F(Q+R)+M)) (67)

Proof (Proposition 1). Lemma 3 shows Fy;,1 + G1y; + Mx;,1 + N;yx; is multi-
variate Gaussian. As a consequence of this fact, we can can evaluate the DE on the

multivariate model using Lemma 2. Re-writing equation (14):

E[Fyi1 + Giye + Mxe1 + Nix] = Ei[Fyi1 + Gry: + Mxy1 + Nixy]
+0(Ey[Fyi1 + Gry: + Mxy 1 + Nix]
—Ei1[Fyi1 + Gay: + Mxq + Nixy])  (68)

Using the linearity of the RE operator:

E![Fy i1 + Giy: + Mx1 + Nix] = FE[yi11] + G1iE ]y + ME[x,11] + N1 Ey[x,]
+0(FE¢[yi1] + G1Ee[y:] + ME;[x¢11] + N1 E;[x;]

_FEt—l[Yt-‘rl] + GlEt—l[Yt] + MEt—l[XtH] + NlEt—l[Xt])

(69)

Since E;[y;] = y¢ and E;[x;] = x;, and using the definitions of G and N in the statement
of the proposition, we find that equation (12) implies equation (15).

Uniqueness follows from the fact that the DE can only be evaluated in a unique
way once NNA on the multivariate model (Assumption 3) has been assumed.

Hence, model (12) is equivalent to model (15).

[
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B.3 Formalization of the Limit Argument for Predetermined

Variables Presented in Section 3.3

Following the notation of Section 3.3, the predetermined variable is z;. At time-t,
x; has been realized and therefore it is degenerate. Based on the fact that, in the
DSGE model, predetermined variables are in combination of future variables, the limit
argument in Section 3.3 proceeded by introducing an arbitrarily amount of uncertainty
around x;. We considered the linear combination x; + d; 11, where d;,; is white noise.
We are interested in the DE of z; + 6;,1:

05—)0+
We formalize this idea using the Dirac delta function, defined as follows. Suppose
that z; is the realization of z;. Since x; is degenerate, it can be represented by a

cumulative distribution function (cdf) with vanishing uncertainty:

1 o

Pr(z, < &z, = &) = lim —® (x xt) (71)
oe—0t O O¢

This is the probability that z; is below any given value Z, where ®(z) is the cumulative

distribution function (cdf) of a standard normal random variable:

B (3) = / o) da (72)
This implies that Pr(z; = @;) = 1 and Pr(x; # &;) = 0, also denoted using the Dirac
delta function §(z):

d(z) = lim 190 (f) (73)

a—0t a a
with the requirement that §(z) is a pdf. Using this notation, d(z; — @) is the pdf of
x¢, and thus )
Pr(z, < &z, = &) = / d(z — Zy)dx (74)

—o0
is equal to 1 for £ > Z; and equal to 0 otherwise.

Lemma 4 will now formalize the limit argument presented in the body. It computes
the time-t diagnostic expectation of x; under the NNA. In this case, the reference
distribution of z; is degenerate, with expectation p,Z; 1, where &;_; is the past real-

ization. We represent this reference distribution by a cdf with vanishing uncertainty,
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as follows . 3 3
Pr(z, < &lzy = ppdy—q) = lim —® (m) (75)

oe—0t O O¢

Lemma 4 (DE of a Degenerate Random Variable) Suppose that x; is an AR(1)

process. Assume that

1 S
Pr(z, < &z, = &) = lim —® (I xt) (76)
oe—0t O o
and that the NNA holds. Then,
]Ef[l‘t] = .ft + e(i’t - pmjt—l) (77)

Proof (Lemma 4). The diagnostic expectation of z; is given by

Bl = [ off@ds (79

In order to get the diagnostic pdf of x;, we start by looking at the diagnostic cdf, which
by virtue of the NNA is

&, 140
Pri(z; <) = lim ' ["%Qp <"_> ] 5 Cda (79)
RS

First, note that

O¢

{is@(x;—ftﬂ i exp{_%[(1+0)(x;—f)2—9<wﬂ}
Lo( v

1 1 — ((L+60)x; — Opste_ 2 1
_ opd L= (03 =0z )] 1 o)
V2mo, 2 o? C
where the value of C' must be
C = oxp d L [P0+ 0T+ 00+ 0)patiy = 20(1 +0)padis (81)
2 o2
so that 1 ] i V
Préz, <) = lim —a (‘7” — (0 + 03 — ﬂxaftl))) )
o—0t O 0.
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and
F(ae) = 6(xp — (B + 0(2y — podi1))) (83)

Hence, in order to look for the DE of x;, we write

Ef[z,] = lim lim x

= lim lim r—
ce—0t u—oo | O¢ O¢

© 1 (- ((1+0)F — 9p$it_1)>dx

[e.9]

= lim lim { /U T ((1 +0)a — Qp“fjt—l) <,0<$ — ((1 +0)&; — szi"t—l))dx
0e—01T u—00 oo o o.
“1 —((1+0)iy — Oppdy_

We will evaluate the integral by change of variables. To this end, define z =
2= (408 =bpaZio1) yych that

O¢

u—((140)&1—0pxty_1) u—((140)&1—0Opxy_1)

Ef[z] = lim lim {crg/ - zo(z)dz+ (14 0)z, — 0pxzi‘t_1)/ - o(z)dz

oe—0F u—00

—00

(85)

u—((l—&-@)aﬁt —sz Lftfl)

O¢

Since lim,,_ o+

= 400 when u > (1 + )&, — 0p,%;_1, we have

u—((1+0)&t—0pzxTs_1) u—((1+0)&¢—0paxiy_1)
lim - 2p(z)dz=0 and lim / - o(z)dz=1 (86)
oe—0t J_ oe—0t J_
Therefore,
]Ef[l‘t] = .ft + e(i’t - pmjt—l) (87)

|

We already mentioned above that agents in the model do not compute the DE
of predetermined variables in isolation. This is important to keep in mind when in-
terpreting expression (77). In the model, predetermined variables are exclusively in
linear combination of future variables, which is why diagnosticity is activated for these
variables. This is the correct way of thinking why there is a transformation of the
expectation of the predetermined variables as well.

The expression (77) allows to obtain additivity in the following sense, extending
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BGS’s result to settings with predetermined variables.”® (The case of backward looking

expectations is trivial by the absence of diagnosticity.)

Proposition 8 (Strong Additivity of the DE) Suppose that x; and y, are orthog-
onal AR(1) processes and that the NNA holds. Then, for any integers r,s:

EY (%4 + Yers) = BY [Terr] + B [yers] (88)

Proof (Proposition 8). Suppose first that both r,s > 0. The case s,r > 1 follows
from the fact that both x;,, and y;; s are normal. The case of s = 0 or r = 0 follows
from Lemma 4.

Suppose now that one of r, s < 0, and assume, without loss of generality, that this is
r. Then, x4, is a constant, and there is no diagnosticity associated with this variable
(i.e., by the NNA, the value under the reference event is the same as the realized value,
Gy = —Gy). Then, clearly, E?[x,,,] = 2;,, and

Ef [-’Et+r + yt+s} = (1+0)(z4gr + Eq [yt+s]) — (x4 + Et—l[yt+s])
= T + (1 + OB [yoys] — OE1[ye4 4] (89)

since x;,, is known at ¢ — 1. Hence,

By [@ir + Yrvs) = B [Tesr] + Ef [Yr4s] (90)

The proof when both r, s < 0 is similar. H
This additivity result clarifies that we now have a consistent definition of the DE

at all leads and lags.

Case of No Residual Uncertainty, 0. = 0. For completeness of this discussion, let
us now suppose that there is no residual uncertainty in the observation of x;. In other
words, there is no diagnosticity associated with computing DE for z; at time ¢ (the
NNA is dropped). Since z; is degenerate, its true distribution is Pr(z; = &|z; = &) = 1
if £ = &; and 0 otherwise. The absence of diagnosticity implies G; = —G,, and so the

diagnostic distribution is equal to the true distribution. As a consequence,

E! [2,|o. = 0] = &, (91)

51See BGS, proof of Corollary 1, Online Appendix, for the case r,s > 1.
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C Detailed Solution Procedure, Stability, and Bound-
edness of the Solution: Supplementary Materials

and Proofs

Detailed Solution Procedure. We solve for the recursive equilibrium law of motion
of a linear diagnostic-expectations DSGE model using the method of undetermined
coefficients.

Suppose that there is a unique stable solution of the model:
y: =Py 1+ Qx; + Rvy (92)
We write the model in the rational expectations representation as

0 =FP%, , + FPQx; + FPQv, + (1 + §)FPRv, + FQAx, + 0FQAv, + G;Py, | + ...
+ GlQXt + eGlQVt + (1 + 9)G1RVt + GzPytfl + G2QXt + GgRVt + MAXt + ...
+ HMAVt + N1Xt + evat + Hthl + N2Xt (93)

It is now straightforward to proceed by the method of undetermined coefficients to
find a solution of the form (92), and the matrices P, Q, R can be found solving the
following matrix equations.

FP’+GP+H =0 (94)
FPQ +FQA + GQ+MA + N =0 (95)
OFPQ + (1 + 0)FPR + 0FQA + 0G1Q + GR + 0GR + 0MA +6N; =0 (96)

where G = Gl +G2 and N = N1 —|—N2.
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We can use the techniques discussed in Uhlig (1995) to solve the quadratic matrix
equation (94) in P. The solution of the other two equations is straightforward as they

are linear in Q and R: After vectorization, equation (95) becomes

(L, @ FP)vec(Q) + (AT @ F)vee(Q) + (I, @ G)vec(Q) + vec(MA) + vec(N) = 0
(97)

such that
vee(Q) = — ((Im ®FP) + (AT ©F) + (L, ® G)) . (vec(MA) + vee(N))  (98)
R can be found from (96):
R=—((1+0)FP + G +0G)" (0FPQ + 6FQA + 0G,Q + IMA + IN;)  (99)

Observe that solution for matrices P and Q does not depend on diagnosticity

parameter.

The Solution under Rational Expectations. Consider the model under rational

expectations:
FE[y:11] + Gyt + Hy;1 + ME[x;41] + Nx, = 0 (100)

where G = G + Gg and N = N; + Ny and, as above, y; and x; denote vectors of
endogenous variables (including controls and states) (m x 1) and of exogenous states
(n x 1). E; denotes the rational expectation operator, and the exogenous process is
given by (7).

Suppose that there is a unique stable solution of the model:
yt =Py + Qx; (101)
then, we can rewrite the stochastic difference equation (100) as follows:

F]Et [INDYt + th+1:| + Gﬁyt—l + G'th + Hyt—l + MAXt + NXt = 0 (102)
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We can simplify the above equation to

FﬁQYt_l + Ff’éxt + FQAXt + Gf)Yt—l -+ G’QXt + HYt—l -+ MAXt + NXt =0
(103)

and can solve similarly for the recursive equilibrium law of motion via the method of
undetermined coefficients. Specifically, the matrices P and Q can be found solving the

following matrix equations.

FP?+GP+H =0 (104)
FPQ+FQA +GQ+MA +N =0 (105)

Comparison of these equations with their counterpart under DE immediately shows
thatP:f’andQ:Q.

Stability Conditions. Given the quadratic matrix equation (94)
FP’+GP+H=0 (106)

for the m x m matrix P and m x m matrices G and H, define the 2m x 2m matrices

= and A:
-G —-H
== [ ] (107)
L, 0,
and
-F 0,
A = (108)
0,, L.

where I,,, is the identity matrix of size m and 0,, is the m x m matrix with only zero
entries.

Uhlig (1995) shows that if (a) s is a generalized eigenvector and A is the corre-
sponding generalized eigenvalue of E with respect to A, then s can be written as
s = [/\:c",x'] for some x € R™, and (b) there are m generalized eigenvalues i, ..., A,
together with generalized eigenvectors si,...,s,, of 2 with respect to A, written as

s; = [Ny, ;] for some x; € R™, and if (x4, ..., 7,,) is linearly dependent, then
P =QAQ (109)

is a solution to the matrix quadratic equation, where Q = [zq,...,2,,] and A =

diag(/\l, ey )\m>
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The stability conditions are given as follows.??

Theorem 1 The solution P is stable if |\;| <1 for alli=1,....,m

Thus, we can easily show that the stability conditions for both models are the same.

Proof (Proposition 2). The solutions P and P are the same since they involve
identical matrices F, G, and H. Thus, the stability conditions stated in Theorem 1

are the same for both solutions. W

Proof (Proposition 3). Let’s consider the RE model presented in equation (100)
where the exogenous variables are stacked in a (n x 1) vector x; that is assumed to

follow the AR(1) stochastic process
X; = Axy_1 + vy (110)
where v, is a (k x 1) vector of Gaussian and orthogonal exogenous shocks:
vy ~ N(0,%y) (111)

and A is a diagonal matrix of persistence parameters.

Suppose that there is a unique stable solution of the model:
yt =Py + Qx; (112)

Assume, without loss of generality, that any unanticipated shocks or news only hit
the economy at date 1. The economy is in steady state at date 0 or before. Then, the
solution of the DE model from date 2 onwards coincides with the RE model solution.
We prove this statement by considering the RE representation of the DE model derived

in equation (15), reproduced here:

FE[yi11] + Gy: + Hy: 1 + ME;[x; 1] + Nx,
+FO (B [yia] — Et—l[yt+1])

+M§6 (Et [x¢01] — Epo1[x441 )

+Gy Q(Yt E_1]y:])

0

FNO(x, — Eua[xi]) = (113)

52See Section 6.3 of Uhlig (1995) for a detailed discussion.
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Since no news or shocks are assumed to happen for t > 2, we get that

Et[}’t+1] - Et—l[}’t+1] = Et[xt—&—l] - Et—l[xt—i—l] =¥y:— Et—lb’t] =Xy — Et—l[xt] =0; Vit>2
(114)

The system from date ¢ > 2 then simplifies to the RE model, the solution of which
is given by equation (112) for ¢ > 2. Date 1 solution for the DE model can then be

found from (note the assumption that the economy is in steady state before date 1):

FE,[y:] + Gy + ME, [x;] + Nx;
+9(FE1 [}’2] + MEl[XQ] + G1y1 + N1X1) =0 (115)

Notice that Eq[ys] and E;[x2] are known at date 1 from the RE solution.
Eilys] = Py: + QAxy;  Eqfxo] = Axy (116)
After substituting these values and rearranging, we get:
(1+60)FP + G +60G1)y: + (1 +6)(FQ+ M)A + N + N, )x; =0 (117)

Then, it follows that a bounded solution for the DE model exists if (14+60)FP+G+0G;
is full-rank. W

General Condition for Extra Volatility We establish a general result about when
DE generate extra volatility over RE. Specific examples are provided in Section 4. As

a reminder, in the case of DE, the solution of a general linear model takes the form:
y: =Py 1+ Qx; + Rvy (118)
Instead, in the case of RE, the solution of model takes the form:

ye = Pyi_1 + Qx, (119)

Comparing these two immediately leads to conjecture that, under DE, there should
be extra volatility due to the presence of the extra term Rv,. However, whether this
conjecture is true for a given set of parameters will depend on the covariance of the
matrix () with the other matrices of parameters in the solution. This is what the

following proposition makes precise.

61



Proposition 9 (Extra Volatility) Let yP¥ and yR¥ denote the vectors of endoge-
nous variables under DE and RE, respectively. Let y2F and yB¥ respectively denote

the i-th component of the vector of endogenous variables yP¥ and yE¥ and Var(y2F)

and Var(yR¥) denote the variance of the variable y§¥ and of the variable yi¥. Then,

Var(yZ2¥) is larger than Var(y5F) if and only if:
diag(RE,R’ + 2QS,R'); > 0 (120)

where X, is the variance-covariance matriz of vy.

Proof. We have already shown that P and P are the same and that Q and Q are the
same. Thus, given the exogenous process x;, the solution for the model with diagnostic

expectations and for the model with rational expectations can be formulated as

ytDE = Py,_1 + Qx; + Rv; (121)
yi¥ =Py 1 +Qx, (122)

such that the variance of the vector of endogenous variables under diagnostic expecta-

tions, yP¥ | is given by

Var(ytDE) =Var(Py;_1) + Var(Qx;) + Var(Rv;)
+2 Cov(Py;—1,Qx¢) + 2 Cov(Py;—1, Rvy) + 2 Cov(Qxy, Rvy)  (123)

Similarly, the variance of the vector of endogenous variables under rational expec-

tations, y*¥ is given by
Var(y) = Var(Py,_1) + Var(Qx;) + 2 Cov(Py_1, Qx;) (124)
Since cov(Py;_1,Rv;) =0, (123) is simplified to

Var(y?E) =Var(Py;_1) + Var(Qx;) + Var(Rv;) + 2 Cov(Py,_1, Qx;) + 2 Cov(Qxy, Rvy)

(125)
such that by taking the difference of the two variances, we have
Var(yP?) — Var(yF?) = Var(Rvy) + 2 Cov(Qx;, Rvy)
= Var(Rvy) + 2 Cov(QAx;—1 + Qvi, Rvy)
=RY, R +2QX, R/ (126)
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Thus, for an endogenous variable y;; to have extra volatility with diagnostic expec-
tations, the i-th diagonal component of the matrix R¥, R’ 4+ 2QX, R’ must be greater
than zero. m

We conclude by making a parallel to the work by Matsuyama (2007), who high-
lights, in the context of financial frictions, that equilibrium properties change non-
monotonically with parameter values in such models. Looking at the expression for
the matrix R reveals that it is a non-linear function of #. Hence, even values of 6 close

to zero have the potential to (discontinuously) induce large volatility in linear models.

D Diagnostic New Keynesian Model: Detailed Deriva-

tion and Proofs

There are three sets of agents in the economy: households, firms and government.
Total output produced is equal to consumption expenditure made by the households

and adjustment costs spent in adjusting prices.

D.1 Diagnostic Distribution

We first generalize the concept of diagnostic distribution to non-linear models with
exogenous shocks.

Let D, be a vector of variables, endogenous and exogenous. Assume there is a
non-linear transformation D; = T (D;_1, V), that maps time-t — 1 variables, D, i,
and a given realization of the exogenous shock process v;, where v; is a vector of
i.i.d. exogenous Gaussian shocks N(0,3,). Notice that this can accommodate the
AR(1) of exogenous variables as in Section 3. Let f (Dy1|Dy = T (D;-1,V:)) denote
the true distribution of D,,; at time ¢ + 1, conditional on current state variables.
Let f (Dy11|Dy = T (Dy—1,E;_1[v¢])) denote the true distribution of D, at time t + 1
conditional on a reference set of the state vector T (D;_1, E;_1[v¢]). As in the no-news
assumption, the agent has not observed the current realization of the shocks v; in the
reference set, and hence forms forecast of D,,; assuming a counterfactual path for
state vector given by the expectation of the shocks. Following Maxted (2022), BGS,
Gennaioli and Shleifer (2010), the “representativeness” of future states D;i; is given
by the likelihood ratio:

f (Dt+1|Dt =T (thlv‘v’t))
f (De1|Dy = T (D1, Ei1[vi]))

(127)

63



Diagnostic expectations overweight states that are representative of recent news, the
ones exhibiting the largest increase in likelihood based on recent information. This
diagnostic distribution is formalized by assuming that agents evaluate future levels of

state vector evolve as follows:

(DD =T (D1, %) "1
(De41|Dy = T (Dy-1, Bea[ve])) | 2
(128)

f? (D11 Dy = T (Di-1,¥%1)) = [ (Dps1|Dy = T (Dy1, 1)) - 7

The extent to which representativeness distorts expectations is governed by the pa-

rameter 6.

D.2 Households

Households have the following lifetime utility

1+v

L
log Cy — wl ; ” + Ef {E?:tﬂﬁs_t [log(Cs) —

w

L1+”H (129)

14+v °

subject to budget constraint:

Ptct+Bt—ﬂ = B, +W,Ly+ D, + T}, (130)
(1+1)
P,C} is nominal expenditure on final consumption good, B;.1 denotes purchase of nom-
inal bonds that pay off 1 + i; interest rate in the following period, W;L; denotes labor
income, D; and T; denote dividends from firm-ownership and lump-sum government
transfers respectively. E! is the diagnostic expectations operator with diagnosticity
parameter 6.

Let log C; = u(Cy). The consumption Euler equation is given by:

, u'(C,
= B(1 +14,)E! {M} (131)
Substitute the resource constraint Y; = C}, and loglinearizing:

e =B [Jer1] — (i — (B [Prs1] — Pr)) (132)

where {y, it pi} denote loglinear deviations of output, the nominal interest rate from
their respective steady states, and of the price level from an initial price level, respec-

tively. We can show that (E?[p;,1] — p¢) can be rewritten as EY[7, 1] + 0(7; — Ei_1[7]).
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Using the BGS formula (11) presented in the main text, we can get:
E{ (1] — e = (14 0)Ee[pes1] — OEe 1 [prra] — e (133)
Adding and subtracting (1 + 0)p;, we get:
E{[pri1] — Pr = (1 + 0)Ee[ftr11] — OB 1 [prra] + Oy (134)
Adding and subtracting 0E,_1[p;], we get
E{[Pri1] — e = (1+ 0)Ba[ftr1] — OBy [fy 1] — OB, 1 [pi] + 0 (135)
Adding and subtracting 6p; 1, we get
Ef[pesa] = P = (14 0)Eulftnn] — OB a[fiin] + 0 — Eea[®])  (136)
Recognize that (1 + 0)E[41] — OF;_1[r11] = EY[71,1], we get that
B [pes1] — D = Bf[Fua] + 0(7, — Byy[11]) (137)

D.3 Firms

Monopolistically competitive firms, indexed by j € [0, 1], produce a differentiated good,
Yi(7). We assume a Dixit-Stiglitz aggregator that aggregates intermediate goods into

a final good, Y;. Intermediate goods demand given by:

Yi(j) = (H@)_%Yt (138)

where €, > 1 is the elasticity of substitution across intermediate goods’ varieties, P;(j)

is price of intermediate good 7, and P, is the price of final good Y;. Each intermediate

good is produced using the technology:
Y,(j) = ALi(5) (139)

where log(A;) is an aggregate TFP process that follows an AR(1) process with persis-

tence coefficient p,:

log Ay = palog Ay 1 + €ayt (140)
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where €, ~ iid N(0,02%). Firm pays a quadratic adjustment cost in units of final good

(Rotemberg 1982) to adjust prices:

Uy ( £i(j) )2
-1 RY; 141
2 \P-1(j) o (141)
Firm’s per period profits are given by:

D, = P()Yi(j) - WtLtm—%(

2
——— 1) RY, 142
2 () ny, (142)

P,y
1\J

7)
(

Firm’s profit maximization problem

LYy (R ’ 0
Tg%?f{ﬂ( NYi(j) — WieLe(j5) — o (Pt—l(j) - 1) BY, + E;

Z Bth,t-i-s Dt+s] }

s=1

(143)

where ()45 is the nominal stochastic discount factor of the household. Substitute in

the demand for intermediate goods to get:

(PO T, W (B 7. v [ PO ’ 0
%1%’5{%)( P, ) Yt‘Z( P ) E_T(PHU)_I) e B

Z BSQt,t—l—sDt—l—s] }
s=1

(144)

Notice that P;(j) appears in period ¢ profits and period ¢ + 1 adjustment costs. It
doesn’t appear anywhere else in the problem. So we can “ignore” the remaining terms

as we take the first-order condition. The monopolistically competitive firm solves the

following problem:
(B0 W: [ Pi(j) e ’ U (Pa() )
fg%}){ {Pt(J) (Tt) Y, — At ( P, > Y, - 7}9 (Pt1<j> - 1) PY, — BQt t+1 5 - (W - 1) P 1Y

+ other terms (145)

}

First order condition:

1-a) (Pzgj ) e () " () "
wet it (b =) g | =0 o

Symmetry across all firms implies that reset price equals the aggregate price level.
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Define II; = PP

W (Cra

W 0
(L= Vi + G i = ([~ DILY; 4 4] | 200

(Ht+1 - 1)Ht+1}/t+1:| =0

(147)

Divide by Y;:

Wi (& u'(Cyyn
(1 - Ep) + Epm - wp<H 1>Ht + pﬁEe |: w (C) (Ht+1 1)Ht+1Y;+1 =0 (148)
Log-linearize around the deterministic steady state such that A = 1, w = % =
WOY? = 2= Tl =1,and ¥; = Y. Let w, = %t
epw(y — ay) — VYpity + YRR =0 (149)
Rearrange to get
A A €W , . N
ity = BE] [rps1] + 2= (a0, — @) (150)
Uy
From the intra-temporal labor supply first order condition, we have:
?I]t = ét + V(Z)t - dt) (151)
Use the resource constraint ¢; = ¢;, to rewrite the new Keynesian Phillips Curve
(NKPC):
. . €W .
Ty = 5E? [Tey1] + p_(l + V)G (152)
Up
Note that e;;bpw = E’;;l. Then, the NKPC is given by
= BE [fra] + £(G: — ) (153)

— -1
where r = =~ (1+v).
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D.4 Policy Rule

The government sets nominal interest rate with the following rule:

— = 1" 154
(4 (154)

where Y,* = A, is the natural rate allocation, i,s = % — 1 is the steady state nominal

interest rate, ¢, > 0, ¢, > 0, and steady state inflation II = 1. Log-linearized policy

rule is given by:
it = ufry + Gu (P — Q) (155)
We assume that nominal bonds are in net zero supply. There is no government spend-

ing.

D.5 Market Clearing

Total output produced is used for consumption expenditure.

el (156)

D.6 Equilibrium

The log-linearized equilibrium in the New Keynesian model with diagnostic expecta-
tions is given by following three equations in three unknowns {Qt,frt,%t} for a given

shock process {a;}.

G0 = B [fis1] — (i — B [f11a]) + 0(7t — By [71]) (157)
ftp = BEY [fs] + K(Ge — ) (158)
%t — waﬁt + ¢$(Qt - dt) (159)
where k = 21 (1 + v), and the shock processes are given by:

¥p

ar = Pali—1+ Eat (160)

where e, ~ iid N(0,02).
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D.7 Solution

D.7.1 Rational Expectations

Under RE, the solution of the model with TFP shocks is given by:

@t = ¢x(1 - Bpa) + /‘i(qbw - pa) dt L+ ¢x(1 — 5pa) + /{(¢ﬂ — pa) e,
a(l + ¢z — pa)(1 — Bpa) + K(Pr — pa) (1+ ¢z — pa)(1 = Bpa) + K(Pr — pa) "
(161)
A —pak(l — pa) ~ K(L — pa)
T = a1 — Eant
(1 + &z — pa)(L = Bpa) + K(dx — pa) (1+ ¢z — pa)(1 = Bpa) + K(Prx — pa)
(162)
D.7.2 Diagnostic Expectations
Guess the solution takes the following form:
Uy = Q1G4—1 + Vi€ay; Tt = Qoly—1 + V2€ay (163)

Using method of undetermined coefficients, we can solve for the coefficients. The

coeflicients oy and «y are identical under DE and RE.

¢z(1 B Bpa) + K’(¢7T _ ;Oa)
L+ ¢z — pa)(1 = Bpa) + K(dr — pa)
_pa"i(l - pa)
(1 + (bz - pa)(l - ﬁpa> + H((bﬂ’ - pa)

o = pa( (164)

(165)

Qg =

Coefficients v, and 9 depend on the DE parameter.

(140 + (140 [1 = B(dr — O)] + k(dpr — 0) B
M= 15 6, + (6 —0) ;o 2 =B +0)ax + K —1)

(166)

D.8 Proof of Propositions 4 and 5

Because there are no government shocks, ¢, = 9;. The equilibrium with completely

rigid prices, i.e. 1, — 00, given by:

U = Ef [:gt-i-l] - %t (167)
2t = ¢z(@t - dt) (168)
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where a; = paa;—1 + €at, pa € [0,1), and €, ~ iid N(0,02). Substituting the policy

rule into the Euler equation, we get:

1
L+ oo

b0,
1+ ¢,

~

Yt =

EY [§011] + (169)

By forward iteration, and using the law of iterated expectations under the no-news

assumption,

o [711] at+z Oz .
i = i rerl 53 o (170)

The system is locally determinate if and only if ¢, > 0. Let ¢, > 0. Then,

a't—H Oz .
_ 171
Z 1_’_¢ z+1 1+¢$at ( )
From the definition of the shock process, we know that, V i > 0
E{ [arys]) = po(1+ 0)ar — 0pi a1 = pf, (14 0)ay — Opads 1) (172)

We can then derive the solution for output:

~ ¢xpa<1 + 9) + ¢x(1 + ¢x - pa) ~ ¢x9,02 A
t = t — _ ].73
N P ey B R [ s L S
This solution can be rewritten as:

PP 6,0+ 6 — pa) (L4 6.)(1+ b0 —pa) ™

Volatility of output is then

6s(1+ ) >YV”@*“(fWﬁ+%ﬂ+%%yﬁ

”“”:Qh+%m+@— T+ ) (1 + by —

(175)

The first coefficient is same under rational and diagnostic expectations. Volatility

is higher under diagnostic expectations relative to rational expectations if and only if

(2pal + du(1 + 62))7 > B2(1 + ¢,)? (176)
<~ 0>0 (177)
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In the flexible price limit, kK — oo, output under DE and RE follows (from D.7):
Ut = Pali—1 + Eap = G4 (178)

Hence, DE and RE have the same output variability when x — oo (or ¢, — 0).
This completes the proof for Proposition 4.

The solution for output gap z; = 4, — a, is given by:

N _pa(l - pa)(l + ¢x) ~ ‘9¢$pa - (1 - pa)(l + ¢z)

ST TR LR TR ey B

In response to an unanticipated improvement in productivity, output gap can be pos-

itive on impact if and only

0¢$pa - (1 - pa)(l + ¢x) >0 (180)

When 6 = 0, that is rational expectations, output gap negatively co-moves with pro-
ductivity shock. Under diagnostic expectations, productivity improvements can be

expansionary on impact. This completes the proof for Proposition 5.

D.9 Proof of Proposition 6

Note that after a one-time unanticipated shock, the solution under DE and RE coincide
at subsequent dates since there is no news. (This was shown formally in the context
of the general linear model in the previous appendix, proof of Proposition 3.) At date
t = 1, we can derive the solution under DE as follows. From the RE solution, we know

the expectations of forward looking variables :

Eifs = pg (1 = Bpg)(1 — py) + KY(Pr — py)
(1= Bpg)(1 = pg + ¢2) + K(dr — p)
U
(1= Bpg)(1 = pg + @) + K(Px — py) ot
Eoys = Egmra = Egmry =0 (183)

Eg.t> (181)

Elﬁ'g = pg (182)
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We can thus construct the diagnostic expectation terms that enter the DE model, and

simplify the model to

G1 = (14 0Ky [y + T5 — §o] — 11 + 071 + 1 (184)
1= B(1+ 0)E, [fo] + ki — Kb (185)
i1 = bafty + Gulh (186)

Substituting the latter two equations into the Euler equation, and rearranging we get

(1+ 0)E [g2 + (1 + 80 — Bx)ma] + [1 + (¢ — O)wth — (1 4+ 0)pglegn

_ 187
7 L+ 00+ (6r = O)r D
The corresponding RE solution can be seen with 6 = 0.

We study three scenarios with analytical results:

1. When the shocks are iid (p, = 0), the solution is:
. 1+ (¢ —O0)k

Tt Gt (fr—O)r !

For a bounded solution (and continuity with RE solution), we assume that 6 <
¢r + k1 (1 + ¢,). There are two cases for the fiscal multiplier:

e ¢, < v: The fiscal multiplier under DE is larger than under RE. The mul-
tiplier is increasing in 6, exceeds one for values of 8 > ¢, + Uiﬁ—fb)fe As
0 — ¢r + k711 4 ¢y), the fiscal multiplier — oo.

e ¢, > v: The fiscal multiplier under DE is smaller than under RE.

2. When the government spending shocks are iid and ¢, = 0, the solution for output
under DE is :

N 1+(¢W_0)’{¢
ST

(189)

For the solution to be continuous in the RE limit and bounded, we assume that
0 < ¢ + KL Since ¢ = 1%1/ < 1, the fiscal multiplier is increasing in 6. Under
the RE limit, # = 0, the fiscal multiplier is strictly less than one. For 6 > ¢,
the multiplier is larger than one. Finally, the multiplier explodes to infinity as
0 — ¢+ kL

3. When prices are perfectly rigid, that is k — 0, the solution for output is given
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0 = (1-— pg)<1 + ¢a) — HpgﬁbeQJ (190)

(14 ¢2)(1 = pg + z)

Fiscal multiplier under DE is smaller than under RE. Fiscal multiplier is decreas-

N (1=p) (1+62)
ing in #. For 6 > ng

increase in government spending.

, assuming p, > 0, output falls under DE with

D.10 Proof of Proposition 7

1. When v, = 00, ¢, = 0, and p; = 0, beliefs about the long-run (BLR) under the
DKF are given by

Cﬁt = Cope + 0(Cope — Gyge—1) (191)

where Gy = E[¢;] and G—1 = E4—1[¢;]. Also, BLR under the RKF are given by

Gy¢- From the rational Kalman filter, we have
Gt = Cepe—1 + Gaing(sy — sye—1) (192)

where sy;—1 = E;_1[s;] and Gain, is the Kalman gain. Thus, BLR under the DKF
is simplified to

Czt = Ct|t + 6 x Gaint(st — St|t—1) (193)

and as s; — s;,—1 > 0 with a positive shock to ¢;, BLR are greater under the DKF
than under the RKF.

2. We can also rewrite (193) as
Cﬁt = G-+ (14 0) x Gaing(s; — s¢4-1) (194)

given that ¢;;—1 = (;—1. As BLR under FIRE are simply ¢; = ¢;—1 + €¢;, BLR
under the DKF are greater than under FIRE if (1 +0) x Gaing(s; — sy4—1) > €c s

where €. is a shock to (;. Thus, if

€t
6> y : —1 195
~ Gaing(s; — Syi—1) (195)

beliefs about the long-run under the DKF are greater than under FIRE.
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E Real Business Cycle Model

We list the equilibrium conditions for a standard RBC model. Equilibrium is given by
a sequence of seven unknowns {Cy, Kyi1,Y;, I;, Ny, R¥, W,.} that satisfy the following
seven equations for a given exogenous process A; and an initial value of capital stock

K.

1 R, +1-94
— = BE? t“—] 196
Cy ﬁ ! [ Ct+1 ( )
W, = wC,N” (197)
K= (1—-0)K, +1, (198)
Y = K7 (AN) 0 (199)
Yi=C+1, (200)
Y,
k t
= a— 201
Rt aKt ( O )
. Y,
W, =(1- a)ﬁi (202)

B is the discount rate, d is depreciation rate, v is inverse of the Frisch elasticity of
labor supply, « is the capital share, and w is a normalizing constant in the steady
state. # > 0 is the diagnosticity parameter. The system of log-linearized equations is
as follows (where the lower case letters denote the log-deviations form the respective

steady state values)33:

Wy = ¢ + vny (203)

=K |y — %ﬁ_(srfﬂ (204)
kiyr = 0L, + (1 — &)k, (205)

Y = (1 —a)ay + ok, + (1 — a)ny (206)
Y = secr + (1 — s0)1, (207)

rf =y — ki (208)

Wy =Yy — My (209)

where R* is the steady state rental rate, and s, is the steady state share of consumption
in output. The economy starts in the steady state. There is a one-time unanticipated

iid shock a; at time 1.

3], is also log-deviations of investment I; from its steady state value.
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E.1 Rational Expectations and Full Depreciation, § =1

We derive analytical result assuming full depreciation, that is 6 = 1. The Euler

equation under rational expectations and full depreciation is given by:
¢t — kir1 = Ei[cipn — Yesa] (210)
From the labor supply and labor demand conditions, we obtain
(1+v)ny =y — ¢ (211)

When § = 1, I, = kivq1. Use the above equation into the Euler equation, along with

investment equation to get
I —ye + (1 + ) = (1 + 0)Ey[ngg] (212)

Substitute in the resource constraint,

1 _1 5. [y — sect] —ye + (L +v)ny = (1 + v)Eg[ng] (213)
- al (L) = (1 B (214)
= (1 + - icsc) ny = Ey[neq] (215)
Solution for employment is
n=0, Vit>0 (216)

We can solve for the solution for other variables at dates 1 and 2:

C1 =Y :f1 =ky = (1 — a)ay; (217)
Co = Yo = jg = ]{53 = Oé(]_ - Oé)CLl (218)

and so on.

E.2 Diagnostic Expectations and full depreciation, 6 = 1

The Euler equation is
¢ =B [eor1 — Yra1 + ki (219)
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As before, the economy starts in the steady state. There is a one-time unanticipated
iid shock a; at time 1. From Date 2, the solution is same as rational expectations

model. Since, we have iid shocks, the solution at date 1 is:
1= (1+0)k; (220)
Substitute into the resource constraint to get
y1 = (1 + 0sc)kso (221)
From labor supply and labor demand,
(I4+v)ng =y1 — 1 = —0(1 — s.) k2 (222)

Finally, from the production function

y1=(1—a)a + (1 —a)ny (223)
< (1+0s.)ky = (1 —a)a; + (1 —a)m (224)
= — %(1 +vng=(1—-a)a + (1 —a)ny (225)

(1 —s.)(1 —a)ay

M= T o) (L4 ) + (1= )f(1 — 5.) (226)
Solution is
- (1 —5s.)(1 —a)ay
M T A 05 (1 0) + (1= a)0(1 —s0) (227)
B (1—-a)(1+v)a
M = A a0 £ 0) + (1= )01 —s) (228)
B 1+6)(1—-a)(1+v)a
O T s (1 +0) + (1 —a)f(1 — =) (229)
B (14 0s.)(1—a)(1+v)a
= T s+ ) + (1— )01 — o) (230)
Date 2 solution is :
s =0 (231)
vy — athy — a(l —a)(1+v)a (232)

(1+0s.)(1+v)+ (1 —a)f(l—s.)
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E.3 Analytical Proposition for RBC model

Proposition 10 (Extra Volatility: RBC Model) Consider the model given by (35),
(203)-(209). Assume that the depreciation rate 6 = 1 and that p, = 0. Output is less
volatile under DE than under RE: Var(g,)pe < Var(4:)re-

Volatility of output at date 1 is lower under DE compared to RE if and only if

(14+60s.)(1+v)
(1+0s.)(1+v)+ (1 —a)f(1 —s.)

<1 (233)

which is true. Further, note that volatility of output at date 1 under DE is decreasing
in v. Similarly, we can show that volatility of output under diagnostic expectations
is lower at all future horizons as well. For example, Volatility of output at date 2 is

lower under DE compared to RE if and only if

(1+v)
(1+0s.)(1+v)+ (1 —a)f(1 —s.)

<1 (234)

which is true since 1 +6s, > 1 and (1 — a)f(1 — s.) > 0.

E.4 Numerical Results on Extra Volatility: NK and RBC
Models

To numerically demonstrate the excess volatility in the NK model, we use the calibra-
tion discussed in Table 4, which is our standard calibration. Stationary TFP follows
an AR(1) process with persistence 0.9 and standard deviation 0.02. We set the dis-
count factor S to 0.99. For the RBC model, we set the capital share o to 0.2 and the
capital depreciation rate ¢ to 0.025. For the NK model, we set ¢, = 1.5, ¢, = 0.5, and
rk = 0.05. We also set the diagnosticity parameter 6 to one.

Panel a) in Table 5 shows unconditional volatilities of output growth, and consump-
tion growth under diagnostic and rational expectations. Since there is no government
spending or investment, output growth and consumption growth are equivalent in the
NK model. We find that the output gap under diagnostic expectations exhibits 63 per-
cent higher standard deviation relative to the output gap under rational expectations.

Panel b) in Table 5 shows unconditional volatilities of output growth, consumption
growth, and investment growth, both under diagnostic and rational expectations in
the baseline RBC model. Consumption growth is twice as volatile under diagnostic
expectations than under rational expectations. On the other hand, investment growth

and output growth are dampened under diagnostic expectations due to the general
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Table 4: Calibration: The NK and RBC models

Parameter Value
Common to Both Models
0 Diagnosticity 1
I5} Discount factor 0.99
NK model
v Inv. Frisch elasticity 2
O Taylor rule inflation 1.5
o) Taylor rule output gap 0.5
K Slope of the Phillips curve 0.05
RBC model
« Capital share 0.2
) Capital depreciation rate 0.025
Shock Process
Pa Shock persistence (stationary TFP) 0.9
o Standard dev. (stationary TFP) 0.02

Table 5: Model-Implied Volatilities with Stationary TFP Shocks

(a) New Keynesian Model

Variable Rational Expectations Diagnostic Expectations Percentage Increase
Output 0.0182 0.0296 63%
Consumption 0.0182 0.0296 63%
Investment — - -
(b) Real Business Cycle Model

Variable Rational Expectations Diagnostic Expectations Percentage Increase
Output 0.0204 0.0188 -8%
Consumption 0.0052 0.0103 98%
Investment 0.1147 0.0816 -29%

Notes: The table reports the standard deviations of output growth, consumption growth and investment growth in the New Keynesian
(NK) model and the RBC model in Panels (a) and (b) respectively. Final column titled “Percentage Increase” shows the percentage
increase in standard deviation under the diagnostic expectations model relative to the rational expectations benchmark. There is one
shock process in the two models. See Table 4 for the parameters.

equilibrium adjustment of the interest rate. Diagnosticity, therefore, does not always

generate extra amplification.
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F A Medium-Scale DSGE model

F.1 Model Ingredients

The model follows the exposition in BLL. The economy comprises of following agents:
a continuum of households supplying differentiated labor, a continuum of firms pro-
ducing differentiated goods, a perfectly competitive final goods firm, a perfectly com-
petitive labor agency that provides the composite labor input demanded by firms, and

a government in charge of fiscal and monetary policy.

F.1.1 Monopolistically Competitive Producers

Assume there is a continuum of differentiated intermediate good producers that sell

the intermediate good Yj;. A perfectly competitive firm aggregates intermediate goods

P,
ep,t—1 ep,t—1

into a final composite good Y; = fol Y, dj , where €, > 1 is time-varying

elasticity of demand. The iso-elastic demand for intermediate good j is given by: Y;; =

N\ TE€pt
<%> ' Y;, where P, is the aggregate price index and Pj; is the price of intermediate

goods j. Each intermediate good j is produced by a price-setting monopolistically
competitive firm using labor L;; and physical capital Kj;:

Yo = (AcLy) ™ K, (235)
where the TFP process A; is the sum of two components (in logs):

log Ay = log Z; + log = (236)

The variable Z; denotes a non-stationary TFP series that evolves according to:

Zt Zt—l re 1-p¢ Y) 2
7=\ 7) G ewlecn: eqe~iid N(0,07) (237)
t— t—

where pc is the persistence of the shock process, and e¢; is a random disturbance that
causes deviations of the TFP growth from its balanced growth rate G¢. The stationary

TFP evolves as follows:
log =) = pelog Sy +ec4;  €e4 ~ tid N(0, 02) (238)

where p; is the persistence of the shock process, and ¢ is an i.i.d shock with variance
0?- (We define a; = log A;, ¢ = logZy, § = logZy, Gy = Ai/Ai1, and Gy =
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Zy]Z4.)

Following BLL, we assume that
pc=pe=p (239)
and that the variances satisfy the following restriction®
po? = (1 p)io? (240)

While agents observe the TF'P process as a whole, they do not observe two com-
ponents (; and & separately. Considering the idea that agents have more information
than merely about productivity, agents observe a noisy signal s; about the permanent

component of TFP:
st = (i + €sp; oy~ did N(0,02) (241)

where €, is an i.i.d. normal shock, which affects agents’ beliefs but is independent of
fundamentals. This noisy signal relates to the additional informative signal that agents
receive which is a straightforward interpretation of Equation (241). Ultimately, the
presence of this noisy information helps the econometrician make inferences about the
(unobserved) long-term productivity trend by looking at the behavior of consumption.
Firms choose inputs to minimize total cost each period. Marginal cost, independent
ffi ific variables, is given by me; = —w (B2) " (WLB)T hore B and
of firm-specific variables, is given by mc, = = (=3 T , where Z- an

%t denote aggregate rental rate of capital and real wage. A firm j pays a quadratic

adjustment cost in units of final good (Rotemberg 1982) to adjust its price P;;. The

2
% — 1) BY;, where ¢, > 0 regulates the adjustment costs.
t—1Fjt—

cost is given by % (
Price change is indexed to II;_; = II'~*II;",, where 1, governs indexation between
previous period inflation rate IT,_; and steady state inflation rate II. Firm’s per period

2
profits are given by: Dj;, = P;Y; — Pome Yy — % <1:[t+;jt—l — 1) P,Y;. Each period,

the firm chooses Pj; to maximize present discounted value of real profits:

AtDjt 0 - At+sD it+s

max ¢ ——— + E — e 242
Pj { Pt t szz; Pt+s ( )
where A, is the marginal utility of consumption in period ¢, and EY[ - ] is the diag-

nostic expectation operator regulated by parameter 6. Notice that we write dynamic

54As shown in BLL, these restrictions imply that the univariate process for a; is a random walk with variance

2

P
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maximization problems by explicitly separating time ¢ choice variables from the ex-
pectation of future choice variables. This separation is crucial for solving the model
with diagnostic expectations, and is a consequence of the technical issues discussed in

Section 3.

F.1.2 Households

There is a continuum of monopolistically competitive households, indexed by i € [0, 1],
supplying a differentiated labor input L, ;. A perfectly competitive employment agency

aggregates various labor types into a composite labor input L; supplied to firms, in
Cw,t
éw,t71 6'w,t71

a Dixit-Stiglitz aggregator: L; = fol Lif”’t di , where €,; > 1 is time-varying

elasticity of demand. The iso-elastic demand for labor input ¢ is given by: L;;, =

<V;}';t>i - L, where W;, is household i’s wage rate, and W; is the aggregate wage rate
that the household takes as given.

The household ¢ has following lifetime-utility at time t:

(10g(ci,t —hCpm) = —— LY ~ Z)t> +Ef {Eiozm o <10g(Ci,s —hCyy) —

14+v 1+v

(243)

where h is the degree of habit formation on external habits over aggregate consumption
Cy_1, which the household takes as given, v > 0 is inverse of the Frisch elasticity of
labor supply, w > 0 is a parameter that pins down the steady-state level of hours,

and the discount factor 8 satisfies 0 < 8 < 1. ¢} is the loss in utility in adjusting

wages. We assume a quadratic adjustment cost given by ¢}, = 1%“’ ﬁ — 1]2,
where 1, > 0 is a parameter, and wage contracts are indexed to productivity and
price inflation. We assume 1:[?_1 = G I (exp(e¢see ) 1)"™ with 0 < ¢, < 1.

The household’s budget constraint in period t is given by

PCiy+ Py + fT’**; = Biy+ WiyLiy + D, + T, + R u; K}, — Pau;,) K}, (244)

where [;; is investment, W;,L;, is labor income, and B;; is income from nominal
bonds paying nominal interest rate i;. Households own an equal share of all firms, and
thus receive D; dividends from profits. Finally, each household receives a lump-sum
government transfer 7T;.

The households own capital, K}, and choose the utilization rate, u; ;. The amount

of effective capital, K;,, that the households rent to the firms at nominal rate R} is
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given by K;; = u;K;';. The (nominal) cost of capital utilization is Pyx(u;;) per unit

of physical capital. As in the literature, we assume x(1) = 0 in the steady state and

x” > 0. Following GHLS, we assume investment adjustment costs, S < e I;ﬁiﬂ), in the

production of capital, where G, is the steady state growth rate of A;. Law of motion

for capital is as follows:

I;
Kzut—&—l = |[1=S - Liv + (1- 51<:)th (245)
' Ga[i,tfl

where J; denotes depreciation rate, and p; is an exogenous disturbance to the marginal

efficiency of investment that follows:
log pty = pulog p—1 + e € ~ tid N(O, 05) (246)
As in the literature, we assume that S(1) = S’(1) = 0, and calibrate S”(1) > 0.

F.1.3 Government

The central bank follows a Taylor rule in setting the nominal interest rate i;,. It

responds to deviations in (gross) inflation rate II; from its target rate IT and output.

Ltip  (14i | (1L %Y‘f’y
1+ i, 1+ g, II !

with 0 < pr < 1, ¢ > 0, and ¢, > 0. 44 is the steady state nominal interest rate,

1-pr

exp(Ay™) (247)

and \"? follows the process

log A" = pip log N + empt; Empr ~ N (O o2 ) (248)

)Y mp

We assume government balances budget every period P,T; = P,G,, where G, is
the government spending. G, is determined exogenously as as a fraction of GDP:
G, = <1 - A—lg> Y; where the government spending shock follows the process:

t

log A} = (1= pg)log M + pglog N_y + 45 g4 ~ N(0,07) (249)

M is the steady state share of government spending in final output.
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F.1.4 Market Clearing

We focus on a symmetric equilibrium where all intermediate goods producing firms
and households make the same decisions. Therefore, we can drop subscripts ¢ and j.
The aggregate production function, in the symmetric equilibrium, is then given by:
Y, = (AtLt)l_a Ky, since K; = K;; = K;; and N; = N;; = Nj;. The market clearing

for the final good, in the symmetric equilibrium, requires that

I 2
t—1

This completes the presentation of the DSGE model.

F.2 Stationary Allocation

We normalize the following variables :

251
252

ye = Y /A (251)
o = Cy/ Ay (252)
ke = K, /A, (253)
b= KA (254)
I, = I,/A, (255)
wy =Wy /(AR) (256)
r¥ = RF/P, (257)
A= AA, (258)

Definition 1 (Normalized Equilibrium) 18 endogenous variables { )\, is, ct, yi, I,

meg, Wy, T2 T0Y ) wy, Ly, ki, i L, qu, ug, ki, Gas}, 8 endogenous shock processes
= P mp g

{Get, Bty e, oy XL AL NP ALY, 8 exogenous shocks {e¢ v, €c.ty €5ty Epts Epts Ewits Empits Egit b

given initial values of ki* ;.

Consumption Euler Equation

)\t At—l—l 1

= B(1 +1i,)E? 259
GoiTl, L +i)E, GotGarir LTI (259)
1
Ct — Gat
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Price-setting

IT, 11, pII, 0 [ (Ht—H ) L4 yt+1]
1—€,;)+€,0 meg— = -1 = + E’ |\ — —1 ——1 =0
( p,t) Dt t ¢p (Htl ) Htfl wp )\tyt t | M+l Ht Ht Ht

)
M, = I, (262)

Wage-setting

15 1Ty 0 |:H21£U+1 } I [ LY ewy—1 }
w | = —1| = =Y,PE | = — 1| =—— + Li\€py |[W— — — w 263
v e, e, Vbt Ty T D VI (263)
MY, = G It (exp(ect) exp(ee ) 1) (264)
MY = —* T1,Gy, (265)
Wt—1
Capital Investment
Ht Gat k?
k= 1-5S(—=—= I 1-9 266
t+1 = Ht [ (Htl G, )} ¢+ ( k>Ga,t (266)
G, A
q; = 5 ’tEf [ bl (Tfilutﬂ — X(Ut+1) + qt+1(1 — 5k)):| (267)
At GatGarr1
]It Gat ]It Gat ]It Gat
1-S(——=)-9 : :
e { (Ht—l G ) (Ht—l G, ) L1 G, ]
BGat g A1 Gapr1 (141 ? (L1 Gapma
—E : S| —— =1 268
+ N i1 G qt+1 o I, L G, (268)
Capital Utilization Rate
ku
ke = up—=" 269
t = U Ga,t ( )
=X () (270)
Production Technologies
ye = kL, (271)
kft wy o
ozt = 272
Lt Tf 1l—« ( )
k\a,,,l—a
mey = (ry)*w, (273)

a®(l —a)l—«
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Government

L+i,  (14i\™"
L4idg  \ 14 g,

Market Clearing

kv 1
yt:Ct+Ht+X(ut)Gt +<1——) Yt
a,t

TFP Growth Rate
log Got =log Gt + (log = — log =;_1)
Law of Motion of Shocks
logGer = (1 — p)log Ge + pelog Ge o1 + €c

log = = pelog =1 + ¢y
sy =log Z; + 44

log p1r = pylog(pe—1) + €4
log A" = pmp log N + €mpt

log \{ = pylog A | + ¢4,

Disturbances
TFEFP growth shock ¢4 ~ N (0, Ug)
Stationary TFP shock e¢, ~ N(0, 02 )
Noise shock &,; ~ N(0,02)
MEI shock &, ~ N(0,02)
Monetary policy shock &+ ~ N(0, U,%lp)

Government spending shock g4, ~ N(0,07)

F.3 Steady State

(274)

(275)

(276)

(289)



F.4 Log-linearized Model

Consumption Euler Equation

. . R o T3 . .
A — Gop — =i + [)‘t+1 — Gat — Gapy1 — T — 7Tt+1}

5\t + Ge Cp — h <ét—1 — éa,t) =0

(290)

(291)

(292)
(293)
(294)
(295)
(296)

(297)

(298)

(299)

(300)
(301)

(302)

(303)

(304)

(305)

(306)

(307)

(308)



Price-setting

€ — 1 ~ {p,*
7y = BE? [y — LpTe] + LpTe—1 + pw meg + A (309)
P

where AP"* is the normalized price-markup shock process. Let the un-normalized pro-

cess be denoted with AP. Then AP = 6’1’;15@ . In steady state \? = 2=
p P

Wage-setting

w 0 w A A €ww LTV 1. . -
T = B]Et 7Tt+1 — LT — LwGa,t+1 + L T—1 + LwGa,t -+ T VLt — Wt — >\t] —+ >\t )
w

(310)
where X;"* is the normalized wage-markup shock process. Let the un-normalized wage

markup process be denoted with 5\1”. Then 5\;”* = %ﬁj\? . In steady state \* =

Cw
ew—1

7T;U = ?I)t — wtfl + T+ éa,t (311)
Capital Investment
Tu I £ ~ 1-— 61: N ~
kt+1 = ﬁ (It + /,Lt> + G—a <kt — Ga,t) (312)
A N 2 N A TK 1-— 6k
it — Gar+ N =E | Nj1 — Gay — Gy — ¢k i 313
at tT A ¢ [ t+1 it 4+1 T+ K11 _5krt+1 + 7K 11 _5th+1:| (313)

Gr + e — 57 (1) <ft — i+ éa,t) + BS” (UIE? (ft—i-l — I+ éa7t+l> =0 (314)

Capital Utilization Rate

iﬂt - ’LALt + ]ACZ'L - éa,t (315)

kX1
= 316
M (316)

Production Technologies

g = aky+ (1 — )L, (317)
P =y + Ly — (318)
me; = a4 (1 — a)y (319)
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Government

iy = pR%t—l + (1 = pr) (orme + &yUt) + Empt

Market Clearing

TFP Growth Rate
éa,t = ég,t + ét - étq

dt:ét‘i‘ét

(320)

(321)

(322)

(323)

where a, and ft are defined as log deviations of A; and Z; from their initial values.

Law of Motion of Shocks
ég,t = pCéC,t—l + ¢t

ét = p&étfl + Ee
by = pufli—1 + Epy
/A\Tp = Pmpj‘?zpl t Emp,t
j\f = Pg;\tg—l tEgt
5‘57* = ij‘ffl + Ept — PpEpi-1

~

A= pwjx,lf_’ﬁ + Eut — PuwEuwi-1
Disturbances
TFP growth shock e¢;, ~ N(0,07)
Stationary TFP shock e¢; ~ N(0,0%)
Noise shock &,; ~ N(0,02)
MEI shock ¢,; ~ N(0, 05)
Monetary policy shock &, ~ N (0, Ufnp)
Government spending shock ¢4, ~ N (0, 03)

Price markup shock ¢,; ~ N(0, Ui)

Wage markup shock &,; ~ N(0,02)
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F.5 Prior Distribution of the Parameters

The following parameters are fixed in the estimation procedure as shown in Table 6.
The depreciation rate 9y, is fixed at 0.025, and the discount factor 3 is set to 0.99. The
Dixit-Stiglitz aggregator for the goods (e,) and for labor services (e,) are fixed at 6.
The parameter affecting the level of disutility from working (w) is set to 1, and the

steady-state share of government spending to final output is fixed at 1.2.

Table 6: Fixed Parameters

Parameter Value
154 Discount factor 0.99
Ok Capital depreciation rate 0.025
1-— )Tlg Government spending share  0.20
w Labor preference 1
€p Elasticity of goods demand 6
€w Elasticity of labor demand 6

Notes: The table reports parameters fixed in the estimation procedure for both DE and RE.
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Table 7: Prior Distribution

Parameter Description Distribution Mean Std. dev
0 diagnosticity Normal 1 0.3
« cap. share Normal 0.3 0.05
h habits Beta 0.5 0.1
;;(’/’((11)) cap. util. costs Gamma 5 1
Uy Rotemberg prices Normal 100 25
W Rotemberg wages Normal 3000 5000
v inv. Frisch elas. Gamma 2 0.75
S”7(1) inv. adj. costs Normal 4 1
PR m.p. rule Beta 0.5 0.2
On m.p. rule Normal 1.5 0.3
o) m.p. rule Normal 0.005 0.005
Technology Shocks
0 persist. Beta 0.6 0.2
Oa tech. shock s.d. Inv. Gamma 0.5 1
O noise shock s.d. Inv. Gamma 1 1
Investment-Specific Shocks
Pu persist. Beta 0.6 0.2
oy s.d. Inv. Gamma 5 1.5
Markup Shocks
Pp persist. Beta 0.6 0.2
p ma. comp. Beta 0.5 0.2
op s.d. Inv. Gamma 0.15 1
Pw persist. Beta 0.6 0.2
Dw ma. comp. Beta 0.5 0.2
Ow s.d. Inv. Gamma 0.15 1
Policy Shocks
Pmp persist. Beta 0.4 0.2
Tmp s.d. Inv. Gamma 0.15 1
Py persist. Beta 0.6 0.2
o4 s.d. Inv. Gamma 0.5 1
Measurement Errors
oy’ s.d. Inv. Gamma 0.5 1
oe s.d. Inv. Gamma 0.5 1
o s.d. Inv. Gamma 0.5 1
ome s.d. Inv. Gamma 0.5 1
ome s.d. Inv. Gamma 0.5 1

Notes: The table reports the prior distribution of structural parameters in the estimation procedure. The diagnosticity parameter 0 is
fixed at 0 under RE.
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Figure 7: Posterior Distribution

(a) Prior centered at 1

of Diagnosticity Parameter

(b) Prior centered at 0

\] w =~ ot
T

5
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i | 5l |
21 J/ i 21 \ .
005 15 0T =05 0 05 1 15

Notes: Panels a) and b) depict the prior and posterior density of # when the prior is centered at 1 and 0, respectively. The red, solid
lines denote the prior distribution of 6, which follows a Normal distribution with standard deviation 0.3. The black, solid lines (the
green, dashed vertical line) denote the posterior distribution (the posterior mean) of 6.

Table 8: Model-Implied Volatilities in the Medium-Scale DSGE Model

Variable Diagnostic Rational Percentage
Expectations  Expectations | Increase
Consumption 0.7939 0.6445 23%
Output 1.0055 0.8928 13%
Price Inflation 0.5308 0.4682 13%
Wage Inflation 0.9411 0.8498 11%
Real Rate 0.7532 0.5516 37%

Notes: The table reports the standard deviations of consumption growth, output growth, price inflation, wage inflation, and the real
rate in the medium-scale DSGE model. The final column entitled “Percentage Increase” shows the percentage increase in standard
deviation under the DE model relative to the RE benchmark (setting 6 = 0 along with parameter estimates in Table 1). There are
eight structural shocks in the model, as in Blanchard et al. (2013): the TFP growth shock, TFP level shock, noise shock, marginal
efficiency of investment (MEI) shock, price markup shock, wage markup shock, monetary policy shock, and government spending

shock.
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G Robustness

G.1 Prior on the Diagnosticity Parameter ¢ Centered at Zero
Table 9: Posterior Distribution: Prior Centered at Zero
Diagnostic Rational
Parameter Description Mean [05, 95] Mean [05, 95]
0 diagnosticity 0.6537 [0.5193, 0.7884]
a cap. share 0.1340 [0.1227, 0.1455] 0.1390 [0.1278, 0.1505]
h habits 0.7110 [0.6810, 0.7415] 0.5803 [0.5424, 0.6178]
i/,/((ll)) cap. util. costs 5.0273 [3.4169, 6.6350] 5.5929 [3.9095, 7.2242]
vy Rotemberg prices  124.51 [97.470, 151.19] 181.84 [126.66, 188.88]
Yoy Rotemberg wages  538.73 [231.71, 833.33] 9710.9 [4510.5, 14712.]
v inv. Frisch elas. 3.6778 [2.4841, 5.0289] 1.2832 [0.5012, 1.9475]
S"(1) inv. adj. costs 6.9600 [5.8331, 8.0849] 7.0701 [6.0111, 8.1332]
PR m.p. rule 0.5920 [0.5541, 0.6304] 0.5563 [0.4380, 0.6806]
o m.p. rule 1.5297 [1.4093, 1.6481] 1.0682 [1.0001, 1.2046]
b m.p. rule 0.0062 [0.0001, 0.0111] 0.0013 [0.0001, 0.0030]
Technology Shocks
p persist. 0.8584 [0.8381, 0.8786] 0.9535 [0.9352, 0.9716]
Ta tech. shock s.d. 1.4050 [1.2824, 1.5249] 1.5258 [1.3896, 1.6601]
Os noise shock s.d. 0.5375 [0.3182, 0.7481] 1.0594 [0.3781, 1.7574]
Investment-Specific Shocks
Pu persist. 0.3066 [0.2493, 0.3630] 0.3310 [0.2631, 0.4003]
ou s.d. 18.947 [15.038, 22.845]  20.2121  [16.369, 23.989]
Markup Shocks
Pp persist. 0.8748 [0.8303, 0.9205] 0.8205 [0.7663, 0.8769]
op ma. comp. 0.5874 [0.4748, 0.7023] 0.5563 [0.4380, 0.6806]
o s.d. 0.1623 [0.1337, 0.1905] 0.1988 [0.1700, 0.2271]
Pw persist. 0.9969 [0.9940, 0.9999] 0.6543 [0.5146, 0.7978]
dw ma. comp. 0.5708 [0.3867, 0.7587] 0.5142 [0.2882, 0.7444]
Ow s.d. 0.4449 [0.3514,0.5354] 0.4490 [0.3836, 0.5142]
Policy Shocks
Pmp persist. 0.0296 [0.0100, 0.0516] 0.0197 [0.0009, 0.0383]
Tmp s.d. 0.3751 [0.3394, 0.4099] 0.3283 [0.3000, 0.3556]
Pg persist. 0.9332 [0.9051, 0.9619] 0.8974 [0.8682, 0.9275]
ag s.d. 0.3699 [0.3376, 0.4011] 0.3706 [0.3384, 0.4022]
Measurement Errors
oMb s.d. 0.4968 [0.4464, 0.5467]  0.5034  [0.4529, 0.5533]
a?JE s.d. 0.4107 [0.3607, 0.4594] 0.4255 [0.3739, 0.4764]
oME s.d. 1.4291 [1.2541, 1.6033]  1.4514  [1.2692, 1.6284]
oME s.d. 0.2681 [0.2406, 0.2949]  0.2285  [0.2018, 0.2551]
oME s.d. 0.1614 [0.1409, 0.1817] 0.1482 [0.1267, 0.1693]
log Marg. Likelihood -1814.82 -1847.38
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G.2 Smets and Wouters (2007)

Table 10: Prior Distribution: Smets and Wouters (2007)

Parameter Description Distribution Mean Std. dev
0 diagnosticity Normal 0.5 0.3
Q@ cap. share Normal 0.3 0.05
h habits Beta 0.7 0.1
i/,/((ll)) cap. util. costs Gamma 0.5 0.15
Yp Rotemberg prices Normal 350 75
P Rotemberg wages Normal 1000 1000
v inv. Frisch elas. Normal 2 0.75
S"(1) inv. adj. costs Normal 4 1.5
PR m.p. rule Beta 0.75 0.1
o m.p. rule Normal 1.5 0.25
by m.p. rule Normal 0.125 0.05
Ddx m.p. rule Normal 0.125 0.05
Lp index. prices Beta 0.5 0.15
L index. wages Beta 0.5 0.15
100G, s.s. growth rate Normal 0.4 0.1
log L s.s. hours Normal 0 2
100(w — 1) s.s. infl. Gamma 0.625 0.1
100(8~ 1 —1) disc. factor Gamma 0.25 0.1
F share of fixed costs Normal 1.25 0.125
Oc cons. curvature Normal 1.5 0.375
Shocks
Pa persist. tech. Beta 0.5 0.2
Oa s.d. tech. Inv. Gamma 0.1 2
Pu persist. inv. Beta 0.5 0.2
oy s.d. inv. Inv. Gamma 0.1 2
Ob persist. pref. Beta 0.5 0.2
op s.d. pref. Inv. Gamma 0.1 2
Pp persist. prices Beta 0.5 0.2
p ma. comp. prices Beta 0.5 0.2
op s.d. prices Inv. Gamma 0.1 2
Pw persist. wages Beta 0.5 0.2
bw ma. comp. wages Beta 0.5 0.2
Ow s.d. wages Inv. Gamma 0.1 2
Pmp persist. mon. Beta 0.5 0.2
Tmp s.d. mon. Inv. Gamma 0.1 2
Py persist. fisc. Beta 0.5 0.2
oy s.d. fisc Inv. Gamma 0.1 2
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Table 11: Posterior Distribution: Smets and Wouters (2007)

Diagnostic Rational

Parameter Description Mean [05, 95 Mean [05, 95]
0 diagnosticity 0.4435 [0.1822, 0.6928]
o cap. share 0.1874 [0.1575, 0.2169] 0.1884 [0.1588, 0.2178]
h habits 0.7100 [0.6385, 0.7839] 0.7027 [0.6334, 0.7725]
o cap. util costs 0.6241  [0.4539, 0.8013]  0.5785  [0.4016, 0.7549)]
Up Rotemberg prices 399.36 [292.11, 506.07] 383.13 [272.30, 490.97]
U Rotemberg wages 2266.5 [1083.3, 3407.9] 2265.1 [1092.8, 3375.0]
v inv. Frisch elas. 1.9577 [1.0626, 2.7971] 2.0293 [1.1717, 2.8701]
S(1) inv. adj. costs 5.6024  [3.9384, 7.3949]  5.7666  [4.0637, 7.4253]
PR m.p. rule 0.7962 [0.7560, 0.8381] 0.8132 [0.7754, 0.8515]
Or m.p. rule 2.0801  [L.7974, 2.3631]  2.0199  [1.7277, 2.3092]
o m.p. rule 0.0836 [0.0450, 0.1220] 0.0839 [0.0478, 0.1199]
Pda m.p. rule 02412 [0.1943,0.2886]  0.2327  [0.1862, 0.2790]
Lp index. prices 0.3075 [0.1491, 0.4647] 0.2268 [0.0905, 0.3584]
b index. wages 0.6287  [0.4343,0.8238]  0.5712  [0.3695, 0.7756]
100G, s.s. growth rate 0.4206 [0.3950, 0.4467] 0.4226 [0.3982, 0.4465]
log L s.s. hours 0.6699 [-1.169, 2.5050] 0.6560 [-1.147, 2.4377]
100(w — 1) s.s. infl. 0.7775 [0.6156, 0.9427] 0.7543 [0.5932, 0.9219]
100(8~1 —1) disc. factor 0.1640 [0.0708, 0.2523] 0.1671 [0.0731, 0.2576]
F share of fixed costs ~ 1.5447 [1.4160, 1.6777]  1.5845  [1.4549, 1.7142]
Oc cons. curvature 1.3804 [1.1204, 1.6347]  1.3740  [1.1540, 1.5844]

Shocks
fa persist. tech. 0.9592  [0.9384, 0.9806]  0.9528  [0.9331, 0.9731]
O s.d. tech. 0.4658  [0.4174,0.5145]  0.4623  [0.4152, 0.5101]
Pu persist. inv. 0.7815  [0.6861, 0.8806]  0.7129  [0.6197, 0.8095]
Ou s.d. inv. 0.3405 [0.2507, 0.4282] 0.4528 [0.3726, 0.5315]
Py persist. pref. 0.3829  [0.1746, 0.6025]  0.2420  [0.0848, 0.3919)]
o s.d. pref. 0.1747  [0.1104, 0.2358]  0.2359  [0.1944, 0.2778]|
Pp persist. prices 0.8709 [0.7877, 0.9529]  0.8706  [0.7914, 0.9506]
op ma. comp. prices 0.6564 [0.4567, 0.8613]  0.6710  [0.4991, 0.8443]
op s.d. prices 0.1044 [0.0671, 0.1409] 0.1407 [0.1116, 0.1695]
P persist. wages 0.9600  [0.9327,0.9882]  0.9672  [0.9455, 0.9900]
bw ma. comp. wages 0.8620 [0.7775, 0.9500] 0.8817 [0.8188, 0.9482]
Ow s.d. wages 0.1899 [0.1430,0.2370] 0.2432 [0.2070, 0.2793]
Pmyp persist. mon. 0.1216 [0.0287, 0.2064] 0.1389 [0.0383, 0.2316]
Omp s.d. mon. 0.2520 [0.2252, 0.2780] 0.2467 [0.2217, 0.2713]
Py persist. fisc. 0.9806 [0.9681, 0.9933] 0.9802 [0.9673, 0.9935]
o s.d. fisc. 0.5224  [0.4720,0.5731]  0.5260  [0.4746, 0.5755]
Pya COIT. 0.5255 [0.3800, 0.6717] 0.5202 [0.3745, 0.6670]
log Marg. Likelihood -897.91 -900.69
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G.3 Justiniano, Primiceri, and Tambalotti (2010)

Table 12: Prior Distribution: Justiniano, Primiceri, and Tambalotti (2010)

Parameter Description Distribution Mean Std. dev
0 diagnosticity Normal 0.5 0.3
Q@ cap. share Normal 0.3 0.05
h habits Beta 0.5 0.1
i/,/((ll)) cap. util. costs Gamma 5 1
Yp Rotemberg prices Normal 100 25
P Rotemberg wages Normal 3000 5000
v inv. Frisch elas. Gamma 2 0.75
S"(1) inv. adj. costs Normal 4 1
PR m.p. rule Beta 0.6 0.2
o m.p. rule Normal 1.7 0.3
by m.p. rule Normal 0.13 0.05
Ddx m.p. rule Normal 0.13 0.05
Lp index. prices Beta 0.5 0.15
L index. wages Beta 0.5 0.15
100G, s.s. growth rate Normal 0.5 0.03
Ap s.s. markup prices Normal 0.15 0.05
Aw s.s. markup wages Normal 0.15 0.05
log L s.s. log hours Normal 0 0.5
100(mr — 1) s.s. infl. Normal 0.5 0.1
100(8~1 —1) disc. factor Gamma 0.25 0.1
Shocks
Pa persist. tech. Beta 0.6 0.2
Oa s.d. tech. Inv. Gamma 0.5 1
Pu persist. inv. Beta 0.6 0.2
oy s.d. inv. Inv. Gamma 0.5 1
Ob persist. pref. Beta 0.6 0.2
op s.d. pref. Inv. Gamma 0.1 1
Pp persist. prices Beta 0.6 0.2
p ma. comp. prices Beta 0.5 0.2
op s.d. prices Inv. Gamma 0.1 1
Pw persist. wages Beta 0.6 0.2
bw ma. comp. wages Beta 0.5 0.2
Ow s.d. wages Inv. Gamma 0.1 1
Pmp persist. mon. Beta 0.4 0.2
Tmp s.d. mon. Inv. Gamma 0.1 1
Py persist. fisc. Beta 0.6 0.2
oy s.d. fisc. Inv. Gamma 0.5 1
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Table 13: Posterior Distribution: Justiniano, Primiceri, and Tambalotti (2010)

Diagnostic Rational

Parameter Description Mean [05, 95] Mean [05, 95]
0 diagnosticity 0.4336 [0.1894, 0.6745]
«a cap. share 0.1702 [0.1603, 0.1800] 0.1700 [0.1602, 0.1800]
h habits 0.8788  [0.8443,0.9142]  0.8270  [0.7655, 0.8902]
i cap. util. costs 53160  [3.6696, 6.9322]  5.2978  [3.6521, 6.9145]
Uy Rotemberg prices ~ 123.01 [91.513, 154.15] 116.43  [84.65, 147.570]
Y Rotemberg wages 2863.31 [594.68, 5275.6]  3204.29  [720.56, 5835.5]
v inv. Frisch elas. 4.3961 [2.9554, 5.7777] 4.2917 [2.8854, 5.6762]
S"(1) inv. adj. costs 2.0680  [2.0722, 3.8461]  2.7528  [1.8821, 3.6124]
oR m.p. rule 0.8064  [0.7681,0.8445  0.8193  [0.7822, 0.8567]
bn m.p. rule 21751  [1.8764,2.4631]  2.0782  [1.7792, 2.3655]
O m.p. rule 0.0559 [0.0269, 0.0847] 0.0600 [0.0306, 0.0887]
Do m.p. rule 0.2425  [0.1983,0.2860]  0.2389  [0.1974, 0.2801]
Lp index. prices 0.2589 [0.1266, 0.3888]  0.1964  [0.0821, 0.3062]
Ly index. wages 0.1477 [0.0862, 0.2085] 0.1127 [0.0595, 0.1655]
100G, s.s. growth rate 0.4675 [0.4237, 0.5108] 0.4695 [0.4256, 0.5139]
Ap s.s. markup prices  0.2340 [0.1791, 0.2890]  0.2419  [0.1847, 0.2982]
Aw s.s. markup wages  0.1347 [0.0525, 0.2127] 0.1360 [0.0543, 0.2130]
log L s.s. log hours 0.1827 [-0.600, 0.9579] 0.2032 [-0.571, 0.9877]
100(x — 1) s.5. infl. 0.7877  [0.6831,0.8934]  0.7677  [0.6557, 0.8782]
100(871 — 1) disc. factor 0.1379  [0.0604, 0.2119]  0.1404  [0.0611, 0.2154]

Shocks
Da persist. tech. 0.2145 [0.1240, 0.3047] 0.2518 [0.1522, 0.3508]
- s.d. tech. 0.8828  [0.8032, 0.9591]  0.8908  [0.8121, 0.9695]
pu persist. inv. 0.7650  [0.6965, 0.8352]  0.7352  [0.6598, 0.8125]
ou s.d. inv. 5.1618 [3.9758, 6.3096] 5.8481 [4.3020, 7.3632]
b persist. pref. 0.3595 [0.2202, 0.4971] 0.5161 [0.3394, 0.6957]
Op s.d. pref. 0.0650 [0.0379, 0.0911] 0.0566 [0.0317, 0.0818]
op persist. prices 0.9363  [0.9003,0.9739]  0.9276  [0.8882, 0.9680]
Op ma. comp. prices 0.6515 [0.4918, 0.8136] 0.6790 [0.5503, 0.8127]
Op s.d. prices 0.0989 [0.0692, 0.1276] 0.1344 [0.1126, 0.1559]
Puw persist. wages 0.9808 [0.9652, 0.9975] 0.9773 [0.9586, 0.9972]
oo ma. comp. wages  0.9164  [0.8734, 0.9603]  0.9202  [0.8809, 0.9606]
Ow s.d. wages 0.1679 [0.1355, 0.2006] 0.2115 [0.1847, 0.2387]
Pmp persist. mon. 0.1630 [0.0623, 0.2610]  0.1627  [0.0576, 0.2636]
Cmp s.d. mon. 0.2336  [0.2109, 0.2560]  0.2262  [0.2050, 0.2472]
Pq persist. fisc. 0.9970  [0.9947, 0.9990]  0.9967  [0.9941, 0.9990]
o s.d. fisc. 0.3477  [0.3187,0.3756]  0.3476  [0.3191, 0.3764]
log Marg. Likelihood -1190.86 -1193.78
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H Data Appendix

Our data set spans the period 1954:111 to 2004:IV. The series for Real GDP, Real Per-
sonal Consumption Expenditures, Real Personal Durable Consumption Expenditures,
Real Gross Private Domestic Investment, Wages and the GDP Implicit Price Defla-
tor are from the Bureau of Economic Analysis. Population and employment series
are from the Bureau of Labor Statistics online database (series IDs LNS10000000Q)
and LNS12000000Q respectively). The Federal Funds Rate series is from the Federal
Reserve Board online database (series ID H15/H15/RIFSPFF N.M).

The GDP series is constructed by dividing Real GDP by population. The con-
sumption series is constructed by subtracting Real Personal Durable Consumption
from Real Personal Consumption and dividing by population. The investment series is
constructed by dividing the sum of Real Gross Investment and Real Personal Durable
Consumption by population. The labor input series is constructed by dividing Employ-
ment by Population. Inflation is constructed by computing the quarterly log difference
of the Price Deflator. The real wage is constructed by dividing Real Wages by the
Price Deflator. The nominal interest rate is the effective Federal Funds Rate.

For SPF forecast data, we use the median forecast (across individual forecasters)
as the consensus forecast. All forecasts we use are one quarter ahead forecasts. For
the output (series ID RGDP), consumption (series ID RCONSUM), and investment
(series ID RNRESIN) growth rate, we subtract these growth rate forecasts by actual
population growth rate to obtain per capita forecasts. Inflation and the nominal inter-

est rate are obtained from the GDP Price Deflator and the Treasury bill rate (series
IDs PGDP and TBILL).
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