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Abstract

We obtain optimal dynamic contests for environments where the designer

monitors effort through coarse, binary signals—Poisson successes—and aims

to elicit maximum effort, ideally in the least amount of time possible, given a

fixed prize. The designer has a vast set of contests to choose from, featuring

termination and prize allocation rules together with real-time feedback for the

contestants. Every effort-maximizing contest (which also maximizes total ex-

pected successes) has a history-dependent termination rule, a feedback policy

that keeps agents fully apprised of their own success, and a prize allocation

rule that grants them, in expectation, a time-invariant share of the prize if

they succeed. Any contest that achieves this effort in the shortest possible time

must in addition be what we call second chance: once a pre-specified number

of successes arrive, the contest enters a countdown phase where contestants are

given one last chance to succeed.
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1 Introduction

Contests—situations where multiple agents compete for a prize—are a common way

to organize economic activity. Ever since the seminal work of Lazear and Rosen

(1981), Green and Stokey (1983), and Nalebuff and Stiglitz (1983), researchers in

economics, marketing and operations management have sought to understand how

best to allocate the prize among participants, and more recently, starting with the

work of Yildirim (2005), Ederer (2010), and Halac, Kartik and Liu (2017), how best

to disclose information over time.

It has nevertheless proven challenging to find fully optimal contests for dynamic

environments (such as innovation races, promotion tournaments, and qualification

stages for athletic events) where contestants have an opportunity to work continuously

for some length of time and where information about their efforts may be revealed

in real-time as they do so. In such cases, characterizing an optimal contest involves

finding an ideal triple—a prize allocation rule, a termination rule, and a real-time

feedback policy—among a dauntingly large set.

Here we study dynamic scenarios where finding such optimal contests is possible.

These scenarios involve each contestant exerting all-or-nothing effort and producing

(independent) “Poisson successes” over time. As it turns out, the contest designer

has multiple ways to fully convert their prize money into effort (which guarantees in

expectation maximum effort, or equivalently, maximum number of successes) with

these having in common a history-dependent contest deadline, a feedback policy that

keeps each agent fully apprised of their own success and a prize allocation rule that

grants them, in expectation, a time-invariant share of the prize if they succeed.

One such contest, which we term “cyclical egalitarian,” features a cyclical struc-

ture whereby the contest is terminated at the end of each fixed-length cycle if at

least one agent has succeeded by then, and it is otherwise reset. The prize is shared

equally among all successful agents irrespective of when they succeeded, and the

feedback policy keeps agents fully apprised of their own success, but only periodically

informs them about their rivals’ successes—at the end of each cycle—so as to not

discourage further effort.

Only a much smaller set of contests, however, is capable of converting all prize

money into effort in the shortest expected length of time—a property that would be

valuable to the designer if for instance running the contest entailed a flow cost. These
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tournaments, which we term “2nd chance,” all have in common that the contest con-

tinues until some number K of successes arrive and, once that occurs, the contest

enters a countdown phase where contestants are given a final (potentially random)

deadline to succeed (a “second chance”), with the contest ending before that dead-

line if one more contestant succeeds. These contests minimize length because they

guarantee that the number of agents working at a given time is as similar as possi-

ble across different histories—which in turn prevents inefficient scenarios where the

contest continues with only a small number of agents are still working.

In our model a “contest,” defined here as agents competing for the same prize,

improves upon individual contracting, with reserved prize money for each agent, along

two dimensions. First, it allows the designer to spend her budget exactly while

surrendering zero rents—a feat that, save for knife-edge cases, would be impossible

without having agents compete for the same prize. In addition, by inducing more

agents to work at the same time, a contest shortens, potentially by a large margin,

the expected time needed to extract the desired effort from the contestants.

In our baseline model, contestants are all identical and each can succeed at most

once. We interpret these successes as something not necessarily of intrinsic value

to the designer, but rather as a coarse measure of effort. It is perhaps surprising

that despite this coarseness, the designer can attain the maximum effort possible

given the prize budget. We also consider several extensions that suggest a degree

of robustness to our findings: the possibility of multiple successes, heterogeneity of

success rates across agents, and an increasing hazard rate that captures a notion of

progress or knowledge accumulation over time. In all these cases, a 2nd chance contest

attains maximum effort; and in several cases, it does so in the minimum possible time.

We also relax the designer’s commitment power and show that an egalitarian prize

structure, which is implicitly present in all our other designs, remains optimal.

Applications. Our model, while stylized, is inspired by settings where agents’ efforts

can only be imperfectly monitored through coarse performance measures, and where

these measures are (at least approximately) discrete. A first example is an innovation

contest where agents attempt a specific technological breakthrough, as defined in

advance by the designer, such as inventing a device that performs a particular task.

These contests have become increasingly common across a variety of sectors.1 One

1Examples can be found in private crowdsourcing platforms such as Innocentive or Kaggle, federal
agencies including the DoD and NASA, Challenge.Gov competitions, and in philanthropic organi-
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recent example is the Netflix Prize competition that sought a 10% improvement in

the prediction accuracy of one its algorithms. Similar to our Netflix-style design, this

contest included a final 30-day countdown phase, initiated once the first success was

reached, after which a winner would be declared. In these innovation settings, like in

our model, the designer may care about more than a single success, as every success

(and even effort absent a success) may produce new ideas.2

A second example is an organization, such as a professional partnership or an aca-

demic department, where large successes (such as landing a new client or publishing a

home-run paper) may be rare. One could also interpret a discrete “success” as reach-

ing a sufficiently-well-defined threshold for promotion. Here the splitting of a fixed

prize—a promotion—can be interpreted as a probabilistic allocation of the full prize

(e.g., on the basis of random differences in the magnitudes of different successes).

Finally, elite athletic events (for instance in track & field, cycling, or rowing) are

commonly preceded by qualifying stages where athletes have a period of time to meet

a performance threshold. Akin to our 2nd chance contests, these qualifying stages

frequently begin with a phase where athletes have an opportunity to meet or exceed

a pre-specified goal, followed by a repechage phase where some of the athletes who

initially fell short are given a final chance.

In all these scenarios, agents may in principle succeed more that once and, more-

over, the principal may have the ability to refine their performance measure to more

closely monitor effort. As we shall see, our lessons apply similarly to the case of

multiple successes and because the principal is able to extract the maximum possible

effort even with the coarse measure, the benefit from refining it may be limited.

Related literature. Early work by Lazear and Rosen (1981), Green and Stokey

(1983), and Nalebuff and Stiglitz (1983) provides conditions under which it is optimal

to condition each agent’s pay on the ordinal rank of their output, as opposed to its

absolute value. Moldovanu and Sela (2001) show that, given a fixed prize, it is

optimal to award it entirely to the best performer when the agents’ cost functions are

weakly concave; otherwise, some prize-sharing may be optimal. Drugov and Ryvkin

(2019, 2020) and Olszewski and Siegel (2020), among others, consider extensions to

stochastic output, arbitrary risk-preferences and heterogeneous agents.3

zations like XPrize.
2In fact, to save on engineering effort, Netflix did not implement the prize-winning algorithm and

instead opted for a combination of two lesser-performing ones; see tinyurl.com/37kdtz74.
3Siegel (2009, 2010) and Olszewski and Siegel (2016) provide a comprehensive equilibrium analysis
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Fang, Noe and Strack (2018) show that individual effort in all-pay contests de-

creases in their competitiveness, as measured by the dispersion of prizes, contest

crowding, and the number of contestants. Letina, Liu and Netzer (2020) consider

a generalized version of that framework, and find that for n contestants, a nested

Tullock contest featuring n− 1 equal prizes is optimal. This potential desirability of

“turning down the heat” extends to dynamic settings: Moscarini and Smith (2011)

and Ryvkin (2020) show that incentives are strongest when agents are tied and quickly

collapse once one is ahead. While our work differs in that it features feedback design

and more flexible termination and prize-allocation rules, the optimality of an egalitar-

ian prize in our framework echoes their idea that reducing competitiveness motivates

greater effort.

Taylor (1995) considers a dynamic contest of exogenous length where, upon paying

an entry fee, agents invest in an innovation of stochastic quality. In equilibrium,

players invest in a given period as long as their highest-quality innovation to date

is below a threshold. Benkert and Letina (2020) extend this framework to allow for

interim transfers and an endogenous termination date. There the optimal contest ends

as soon as the highest-quality innovation exceeds a threshold, and agents invest until

that time. Both models, unlike our own, restrict to a winner-takes-all prize structure,

exclude feedback, and allow the principal to extract rents via entry fees. Because we

rule out entry fees (e.g., due to cash constraints), the termination and prize allocation

rules combined with the feedback policy play a crucial role in extracting rents.

Among the first to study endogenous feedback in contests are Lizzeri, Meyer and

Persico (2005) and Yildirim (2005), who use a two-period, two-agent framework. In

that same setting, Aoyagi (2010), Ederer (2010), and Goltsman and Mukherjee (2011)

characterize conditions under which a principal benefits from (publicly) revealing the

outcome of the contestants’ first-period efforts. Mihm and Schlapp (2019) extend this

framework by considering private feedback and by allowing agents to voluntarily dis-

close their own progress. Also related is Khorasani, Körpeoğlu and Krishnan (2021),

who show that in a two-stage winner-takes-all contest, dynamically-adjusted rewards

and probabilistic information disclosure can improve upon a fixed-reward contest.

Finally, our paper also relates to a growing literature on contests involving experi-

mentation, where the feasibility of success is initially unknown. Halac, Kartik and Liu

(2017) consider an experimentation framework such as the one in Bonatti and Horner

of general all-pay contests with heterogeneous players. See also Georgiadis (2022) for a review.
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(2011), but with a principal who designs a contest to maximize the probability of a

single success. Among rank-monotonic prize schemes (awarding a weakly large prize

to agents who succeed earlier) and deterministic and symmetric disclosure policies,

the optimal design provides no interim feedback and ends as soon as a critical number

of agents have succeeded or a deadline is reached, with each successful agent winning

an equal share of the prize. This result is driven by the need to balance intertemporal

incentives in light of agents learning about the feasibility of the project over time,

which favors a commitment to silence. What distinguishes our setting is that the

principal maximizes total effort or total number of successes (which means a second

chance is desirable), there is no learning (i.e., successes arrive with a constant or

increasing hazard rate), and the principal is unconstrained in her choice of contest—

indeed, the optimal contest in our model need not be rank-monotonic.4 In Bimpikis,

Ehsani and Mostagir (2019), an agent must succeed twice to win, with the feasibility

of the first success unknown. Under certain conditions, a contest comprising a “silent

period” followed by a period where successes are immediately disclosed dominates all

contests with a constant, probabilistic disclosure, including those with full disclosure

or no disclosure at all.

2 Model

A principal (she) designs a contest to motivate n ≥ 2 agents (he) to spend effort. The

contest consists of a termination rule specifying when the contest will end, a rule for

allocating a prize, whose value we normalize to $1, and a feedback policy stipulating

the information transmitted to each agent at every moment in time. We formalize

these objects below.

At each instant t of continuous time, every agent observes any message sent ac-

cording to the feedback policy and decides whether to spend effort. Effort is costly

and can only be monitored by the principal via a binary noisy signal, which we call

“success.” In a promotion application, it may represent landing a client or exceeding

an exogenous bar for promotion; in an innovation contest or athletic application, it

may represent achieving a pre-specified target. If agent i spends effort ai,t ∈ {0, 1},
4In Halac, Kartik and Liu (2017) the principal extends the contest beyond the first success

because otherwise agents would become too pessimistic over time if the contest has not yet ended;
in our model she does so, in contrast, to extract additional effort/successes.
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he incurs cost at rate cai,t, where c represents the (constant) marginal cost of effort,

and conditional on not having succeeded before, achieves a success stochastically with

constant instantaneous rate λai,t where λ ∈ (c, nc); thus, agents cannot succeed while

they shirk and if K agents are working, the expected time until the next success is

1/(λK).5 In our baseline model agents are identical and each can succeed at most

once.

The principal observes successes but not efforts. Each agent observes his own

effort, but not others’ efforts or successes. Whether agents observe their own success

or not, or do so probabilistically, is immaterial for our results. For concreteness and

to give the principal maximal flexibility, we assume that they do not observe them.

The principal’s feedback policy specifies a message that she transmits to each

agent at every moment as a function of her past observations and past messages. An

example of a feedback policy that will be important for our results, and which we

denote Mpronto, is the one where the principal privately informs each agent imme-

diately if he succeeds. Alternative policies might publicly or privately inform agents

about their or their rivals’ successes, perhaps probabilistically, or inform them about

the feedback conveyed to rivals, and so forth.

The principal’s termination rule, τ , ends the contest possibly randomly and pos-

sibly as a function of the principal’s past observations and messages. The prize is

then awarded according to the allocation rule, which specifies a share of the prize (or,

equivalently, a probability of winning the prize) qi for each agent i, with
∑

i qi ≤ 1, as

a function of the history of successes. For example, a winner-takes-all contest awards

the entire prize (qi = 1) to the first agent i to have succeeded, whereas an egalitarian

contest divides the prize equally among all agents who have succeeded.

If the contest ends at time s, agent i’s ex-post payoff is

ui = qi − c
∫ s

0

ai,tdt.

There is no discounting and agents maximize their expected payoff.

The principal designs the termination rule, prize allocation rule, and feedback

policy with the goal that the expected total effort in a Bayesian Nash equilibrium

5The assumption that λ < nc implies that there are enough competitors for a contest to be
desirable in the first place. When this condition fails, the principal could do as well by reserving
1/n-th of the prize for each agent and contracting with each one individually. If λ < c, it is impossible
to incentivize even a single agent to spend effort.
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(hereafter equilibrium) of the resulting contest is maximal among Bayesian Nash

equilibria of a given set of contests. In this formulation of the objective, the principal

cares only about effort, not successes, and cares about agents’ efforts even after they

have succeeded. Our results would be unchanged, though, if the principal instead

sought to maximize the total number of successes.6 We shall restrict, without loss,

to contests where in equilibrium each agent works continuously over some (history-

and agent-dependent) time interval: agents do not pause and restart.

3 A sufficiency result

Finding an optimal contest, inclusive of feedback policy, is in principle a daunting

task. All of the choice variables are high-dimensional objects, as they can condition

on the history of past successes and prior feedback. Thus, it is not even clear how to

formulate the appropriate optimization problem.

Our first lemma offers an opportunity to overcome this challenge by means of a

simple sufficient condition for optimality.

Lemma 1. A contest is guaranteed to be optimal if, in equilibrium:

(i) the prize is awarded with probability one, and

(ii) each agent earns zero rents.

Intuitively, a contest that awards the prize with the maximum possible probability

also maximizes all players’ combined surplus; if the agents keep none of this surplus,

it must all go to the principal. Indeed, any such contest is payoff-equivalent to the

first-best outcome in which the principal chooses the agents’ efforts directly subject

only to the constraint that they earn non-negative payoffs.

To formally establish this result, note that for any contest and equilibrium effort

profile, we can write the principal’s payoff as

E
n∑
i=1

∫ τ

0

ai,tdt =

∑n
i=1 E[qi]−

∑n
i=1 E[ui]

c
.

The first term in the numerator represents the total prize awarded; the second term

represents the agents’ rents. The total prize awarded is bounded from above by

6Our contests would also be optimal if the principal cared about the first success alone, although
simpler designs, such as winner-takes-all, would be optimal in that case too.
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one, whereas the agents’ rents are bounded from below by zero; therefore, if a contest

attains these bounds (and so the principal’s payoff is 1/c), it must be optimal. Q.E.D.

While the condition in Lemma 1 is a stringent one, we shall see that there indeed

exist various contests that satisfy it.

4 Effort-maximizing contests

Here we present three examples of contests meeting our sufficiency condition. Because

these contests transform (in expectation) all prize money into effort, they implement

total (expected) effort 1/c. We also establish necessary conditions that every effort-

maximizing contest must satisfy.

Since agents are risk neutral, we can (and henceforth will) restrict attention with-

out loss of generality to contests where an agent wins a positive share of the prize

only if he succeeds. Fixing an equilibrium of a given contest, define for each agent i

the reward function

Ri,t = E [qi | agent i succeeds at t] , (1)

which represents agent i’s expected share of the prize conditional on succeeding at t.

These functions will allow us to analyze the incentives faced by each agent separately.

When describing the feedback policy of a given contest, we follow the convention

that unless otherwise noted, the principal remains silent.

4.1 Cyclical-egalitarian contest

Our first example of an effort-maximizing contest, which we call cyclical egalitarian,

has the following features. First, its prize allocation is egalitarian: it divides the prize

equally among all agents who have succeeded regardless of when they happened to

do so. Second, agents are kept fully apprised of their own success via the Mpronto

feedback policy. Lastly, it has a cyclical termination rule as follows: the principal

sets a provisional deadline T ∗; if at least one agent has succeeded by that time, the

contest ends; otherwise, the principal restarts the contest, again with a provisional

deadline T ∗ (thus informing all agents that no one has yet succeeded). The contest

continues in this manner until at least one agent has succeeded by the time the next

provisional deadline is reached.7

7While a cycle is ongoing, agents should not receive any feedback about their rivals’ successes.

9



In order to extract all rents from the agents, the provisional deadline is set just

long enough that agents are indifferent between working and not during the entire

length of the cycle (unless they have already succeeded). Formally, the termination

rule is described by the stopping time

τ ∗ = inf{t : t = kT ∗, k ∈ N, and at least one agent has succeeded},

where T ∗ is the unique solution to
(
1− e−nλT ∗

)
/
(
n(1− e−λT ∗)

)
= c/λ.

Proposition 1. The cyclical-egalitarian contest is effort-maximizing.

This contest achieves maximum expected effort 1/c because it meets both require-

ments of Lemma 1: since the provisional deadline keeps extending if no agent has

succeeded, the contest awards the prize with probability 1; moreover, the Mpronto

feedback policy, egalitarian allocation rule, and provisional deadline T ∗ act together

to ensure that an agent’s expected reward Ri,t is always equal to c/λ.

To formally establish this proposition, we show that the cyclical-egalitarian contest

has an equilibrium where all agents work until either they succeed or the contest ends

and where all their continuation payoffs are zero.8 Let pi,t denote agent i’s belief at

time t that he has succeeded, and observe that his flow payoff is (1− pi,t)λRi,t − c if

he works, and zero otherwise.

Now suppose that all of agent i’s rivals work until they succeed. Because the

allocation rule is egalitarian and the contest ends at the next provisional deadline if

any agent has succeeded, agent i’s expected reward conditional on success is

Ri,t = E
[

1

1 +M

]
=

1− e−nλT ∗

n(1− e−λT ∗)
=
c

λ
, (2)

where M ∼ Binom(n− 1, 1− e−λT ∗) is the number of rivals who succeed by the next

provisional deadline, the second equality follows from writing the binomial sum and

rearranging terms, and the third equality follows from the definition of T ∗.9

8Because agents are indifferent between working and shirking before they succeed, the contest ad-
mits another equilibrium in which one of the agents never works. This equilibrium can be eliminated
by infinitesimally shrinking the cycle length. This modified contest admits only the equilibrium in
which all agents work until they succeed, while giving up only arbitrarily small rents.

9It can be shown that T ∗ and the expected duration of this contest, T ∗/(1 − e−nλT∗
), decrease

in n and in c, and increase in λ.

10



The feedback policy Mpronto ensures that pi,t = 0 until this agent succeeds (at

which moment his belief jumps to one). This implies that his flow payoff, and hence

his continuation payoff, are always held at zero regardless of his effort, and so working

until he succeeds is incentive compatible. Because agents are symmetric, an equilib-

rium with the desired properties exists. Q.E.D.

A practical advantage of this cyclical-egalitarian design is that it relies on a single

parameter: the cycle length. It is also a member of a larger family of cyclical-

egalitarian contests that differ only in that parameter. Provided the cycle length

does not exceed T ∗, these contests induce all agents to work and transform 100% of

the prize into a combination of effort and agent rents, and hence are on the Pareto

frontier. Indeed, by varying the cycle-length, one can trace the entire Pareto frontier

for contests that treat agents symmetrically and give prize money only to agents who

succeed. The commonly used winner-takes-all contest—which ends as soon as the

first agent succeeds and awards the entire prize to that agent—is a special case of

this family with cycle length 0.10

4.2 Beeps contest

Our second example, which we call the beeps contest, is inspired by the single-agent

feedback policy in Ely (2017). The contest continues until at least T ∗ (the length of

one cycle previously), and at each t ≥ T ∗, provided at least one agent has succeeded

by then, the contest ends randomly: at time T ∗ with probability

c/λ− e−λ(n−1)T ∗

(1− e−λ(n−1)T ∗)(c/λ)
,

and during each interval dt after that with probability (n − 1)λdt/(1 − c/λ). If one

or more agents succeed before T ∗, the prize is shared equally among those agents,

regardless of when the contest happens to end. Otherwise, the entire prize is awarded

to the first agent to succeed, also regardless of when the contest happens to end. The

feedback policy is Mpronto.

Proposition 2. The beeps contest is effort-maximizing.

10Because agents learn about their peers’ successes at the end of each cycle, a zero cycle length
means that agents are always fully informed, and barring zero-measure events, they are guaranteed
to win the entire prize as soon as they succeed.
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This more complex design also meets the sufficiency conditions in Lemma 1. It

awards the entire prize by construction and extracts all rents by ensuring that each

successful agent obtains expected reward c/λ regardless of when he succeeds. Indeed,

at every t > T ∗ each agent assigns probability c/λ to the event that none of his rivals

have yet succeeded; in such event, his reward for succeeding is the entire prize, which

together with the Mpronto feedback policy implies that the agent is just willing to

work. Moreover, because agents’ continuation payoffs at T ∗ are zero, and any agents

who succeed by that time split the prize equally (irrespective of when the contest

ends), the first phase of the contest is economically identical to a single cycle of the

cyclical-egalitarian design.

4.3 Netflix-style contest

Our third example, which we call the Netflix-style contest, has two phases: the first

one runs from time 0 until the first success; the second one—a countdown phase—

runs for an additional T c units of time. Letting m denote the number of agents who

succeed in phase 2, the prize is split among successful agents such that the first agent

to succeed receives α/(α + m) and all others receive 1/(α + m) each. The feedback

policy is Mpronto.11

Proposition 3. There exist α and T c such that the Netflix-style contest is effort-

maximizing.

This contest is a modified version of the winner-takes-all design where rival agents

are allowed a grace period to catch up—an addition that ensures the first agent is not

over-rewarded and any extra prize money is instead spent on prolonging the effort

of rivals. A feature of this design is that α < 1, which means that when any rival

succeeds during the grace period, the first agent who succeeded is awarded the smaller

share of the prize. Such feature is needed so agents are willing to work during the

grace period despite at least one of their rivals having succeeded by then.

The Netflix-style contest is also an example of a broader family of contests with

countdown phases that begin as soon as a pre-specified number of agents have suc-

ceeded. As we shall see in Section 5, this type of design will be of particular interest

11It does not matter whether agents are told what phase they are in, but to maintain their effort
incentives during phase 2, they should not receive any feedback about their rivals’ successes.
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to us as it will allow the principal, by means of an appropriate choice of parameters,

to implement the maximal effort 1/c in the shortest possible time.

4.4 Necessary conditions

All contests we have presented so far useMpronto, provide constant expected rewards

c/λ, and rely on a history-dependent termination rule. The following proposition

shows that these features are necessary for a contest to implement effort 1/c.

Proposition 4. Every effort-maximizing contest features:

i. A history-dependent termination rule such that the contest does not end until

at least one agent succeeds.

ii. A prize allocation rule such that the prize is awarded with probability 1 and all

active agents are promised a time-invariant reward Ri,t = c/λ.

iii. Mpronto feedback.

To achieve effort 1/c, a contest must convert all prize money into effort. Imme-

diately informing agents of their own success—despite the principal preferring that

they keep working—is needed to keep them from earning rents. Indeed, an agent who

is not fully informed will gradually come to believe that he has already succeeded,

and hence will only continue working if his expected reward goes up; but this would

allow him to secure rents by initially withdrawing effort and working only once the

expected reward has grown. Given the Mpronto policy, an agent who has not yet

succeeded is willing to work so long as the expected reward is at least c/λ, and any

reward greater than that would relinquish rents.12 Finally, the contest must allow at

least one agent to succeed so that the prize is always awarded.

One may interpret a “contest” as any design where an agent’s expected reward

sometimes falls (and never grows) when a rival succeeds. This is in contrast to

individual contracting, where agents do not impose such negative externalities on

each other. The present advantage of a contest—despite no aggregate productivity

shocks or agent risk-aversion—is two-fold. First, it allows the principal to pool the

agents’ incentive constraints; that is, prize money not awarded to one agent can be

awarded to another. This allows the principal to spend 100% of the prize money

12Because expected rewards are time-invariant, even if they could, agents would have no incentive
to initially hide a success and report it at a later date.
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without granting any rents. With individual contracting, in contrast, the principal

would need to reserve c/λ prize money for each agent (more than that would grant

rents), and hence she would only be able to reward bλ/cc agents and spend bλ/cc c/λ
of the prize, which generically is less than 1.13 Second, as we shall discuss shortly, a

contest allows the principal to save time.

We conclude with some remarks on robustness:

i. Owing to its use ofMpronto, any effort-maximizing contest would remain optimal

if agents were able to observe their own successes directly or even probabilis-

tically. For some contests, however, agents should not observe the successes of

their rivals; thus, the principal has to make sure that when informing a success-

ful agent, this communication occurs only informally (e.g., verbally) or using

encryption so it cannot be credibly re-transmitted to other agents in a bid to

discourage them.

ii. Every contest that maximizes effort also maximizes expected successes, as it

never motivates already successful agents to keep working. The expected num-

ber of successes equals the success-per-cost ratio λ/c. As this ratio grows, each

success becomes easier and so the designer needs to pay less for it.

iii. The principal would be unable to achieve higher effort with a more precise

monitoring technology as, despite her imperfect (binary) signal, she is able to

convert the entire prize into effort. However, to extract all rents, the monitoring

technology must have the property that an agent cannot win any share of the

prize without exerting effort.

iv. If the principal could raise her prize budget and every unit of effort was worth

a dollar, she would do so until the budget reaches nc/λ (since each dollar of

budget is transformed into 1/c > 1 units of effort), at which point individual

contracting becomes optimal and effort cannot be raised any further. By the

same token, the principal would not want to lower the prize money below her

initial (limited) budget—and provided that budget is strictly below nc/λ, a

contest is optimal.

13Another way to reap the benefits of pooling would be for the principal to meet her prize budget
constraint only in ex-ante terms (i.e., spend $1 only in expectation). If she were able to do so,
individual contracting would suffice: she could for instance promise each agent c/λ for a success and
ask them all to work for a sufficiently short period of time so that she spends $1 on average.
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5 Maximum effort in the shortest possible time

While there is a variety of contests that implement effort 1/c, those contests may

differ in their expected duration. This occurs, in a nutshell, because they may differ

in how many agents are working at any given moment, and the fewer agents are

working on average, the longer the contest is expected to last.

Here we find contests that achieve the maximum effort in the shortest possible

time. One justification for this lexicographic objective is that the principal bears

a constant flow cost while the contest is in progress. Provided this cost is not too

large, the principal will wish to minimize duration without sacrificing any effort in

the process.

Obtaining such contests is in principle a challenging task because even computing

the duration of specific contests can be hard. We are able to overcome this difficulty

by finding a specific family of contests, which we call 2nd chance, that (uniquely)

attains the theoretically shortest-possible duration given the target effort 1/c.

Definition 1. We say a contest is 2nd chance if for some K ∈ {1, ..., n}:

i. The contest continues until at least K agents succeed.

ii. Once K agents succeed, the contest enters a countdown phase where the remain-

ing agents are given a (potentially random) deadline to succeed.

iii. The contest ends as soon as one more agent succeeds or the deadline elapses,

whichever occurs first.

The following proposition shows that all minimum-duration contests must be 2nd

chance contests with a specific value of K and a deadline that meets a stringent condi-

tion. Such contests must of course also meet the necessary conditions of Proposition 4;

that is Mpronto feedback and expected rewards equal to c/λ.

Proposition 5. A contest achieves expected effort 1/c in the shortest expected time

possible if and only if it is 2nd chance. Any such contest must have K = K∗ := bλ/cc
and a (potentially random) deadline such that the ex-ante probability of K+1 successes

is λ/c−K∗.

Intuitively, the way to minimize expected duration is to find a termination rule

that maximizes the expected number of agents that work per unit of time. A 2nd

chance contest achieves this goal by ensuring that the number of successes at the
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moment of termination is as similar as possible across different histories so as to

avoid histories where only a small number of agents work for some length of time.

Moreover, by setting a specific K and an appropriate deadline, the contest ensures

that agents keep zero rents.

A simple heuristic derivation provides further insight. For each j, let Tj denote the

(expected) amount of time during which exactly j agents are working. To obtain a

lower bound on a contest’s (expected) duration, imagine that we can directly select the

values of Tj without worrying about whether such values can actually be implemented

by a contest. That is, solve

min
T1,...,Tn

n∑
j=1

Tj s.t.
n∑
j=1

jTj =
1

c
and 0 ≤ Tj ≤

1

λj
,

where the first constraint ensures that the contest implements effort 1/c (each term

jTj represents the total expected effort obtained during the time j agents are working)

and the second one follows from the fact that when j agents are working, the next

success occurs with Poisson rate λj, and hence the expected time that j agents work

cannot exceed 1/(λj).

Because the greater the j the greater the weight on Tj in the first constraint, the

unique solution features a cutoff (specifically, n −K∗), such that Tj takes its upper

bound for all j greater than the cutoff, its lower bound for all j smaller than the

cutoff, and its value at the cutoff is chosen—zero or interior—such that total effort

is 1/c. It follows that the ideal contest must always continue whenever less than K∗

agents have succeeded and must never do so after K∗ + 1 agents have succeeded.

This is precisely what a 2nd chance contest achieves. The expected duration of the

countdown phase—and hence the probability of success during that phase—is pinned

down by the requirement that agents receive zero rents (and hence total effort is 1/c).

This heuristic also clarifies why other contests fail to minimize duration. Take, for

instance, the cyclical-egalitarian design that resets every T ∗ units of time if no one

has succeeded. Because there are histories where the contest continues even when a

large fraction of agents have already succeeded—and therefore only a small number of

agents are still working—there must also exist histories where the contest ends after

only a small number of agents have succeeded (per the constraint on total effort),

which is an inefficient way to allocate the Tj’s. The Beeps and Netflix-style designs
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have this drawback as well.

A specific type of contest that meets all requirements in Proposition 5, which we

call egalitarian 2nd chance, is a 2nd chance contest with K = K∗,Mpronto feedback,

and the following additional features:

i. The countdown phase has a deterministic deadline

T sc =
log(1 +K∗ − λ/c)
−λ(n−K∗)

.

ii. If an agent succeeds during the countdown, he earns c/λ and the original K∗

successful agents split the remaining prize equally; otherwise, those K∗ agents

split the entire prize equally.

Different egalitarian 2nd chance contests differ only in their feedback about rivals’

successes. Conveniently for the designer, this feedback is of no consequence.

Corollary 1. Every egalitarian 2nd chance contest implements expected effort 1/c,

and among contests that do so, has minimum expected duration.

These contests extract all rents because the length of the countdown together with

the value of K ensure that the first K successful agents receive in expectation c/λ,

and any one who succeeds during the countdown receives the same reward. That they

achieve minimum expected duration follows from the fact that they are 2nd chance.14

We conclude with some remarks. First, there exist other 2nd chance contests with

minimum expected duration. These differ from an egalitarian 2nd chance contest, at

most, in that the deadline for the countdown phase and the prize allocation could

each be random. However, the ex-ante probability of a success during the countdown

phase (together with the expected duration of this phase) and the expected prize for

each successful agent must be the same.

Second, in any optimal 2nd chance contest, if an agent succeeds during the count-

down, that agent will take prize money away from the first K∗ successful agents (a

negative externality) and will by construction earn more than them despite succeed-

ing later. Thus, the prize structure is not “rank monotonic” in the Halac, Kartik and

Liu (2017) sense.

14Because 2nd chance contests limit the total number of successes (and hence the number agents
who can share the prize) they are robust to contestants learning about their rivals’ outcomes.
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Third, because K∗ is the maximum number of agents that can be motivated using

individual contracts by reserving c/λ prize money for each, every optimal contest

outperforms that form of contracting both in expected effort (as it uses the entire

budget) and in expected duration per unit of effort (as more agents work at the same

time).

Fourth, the expected contest duration falls with n because more agents work to

generate the same expected effort, falls with c because total effort falls, and grows

with λ because even though each success occurs quicker, the designer needs to pay

less for each success and hence waits for more of them to occur.15

Finally, we have assumed that the designer has a lexicographic objective whereby

she first maximizes effort and then minimizes contest length. If her objective was

instead to maximize expected effort minus a flow cost γ times length, then as long

as γ ≤ n−K∗, the same 2nd chance contests as before would be optimal; otherwise,

every optimal contest would end as soon as n− bγc agents succeed.16

6 Extensions

Here we consider four extensions that suggest a degree of robustness to our findings.

The first three involve, respectively, multiple successes, agent heterogeneity, and a

hazard rate of success that grows in an agent’s past effort. With multiple successes, a

2nd chance contest is fully optimal. With heterogeneous agents, a generalized version

of such contest maximizes effort but may fail to minimize duration—although with

either two agents or sufficiently similar ones it minimizes duration as well. Similarly,

with a growing hazard rate, a generalized 2nd chance contest maximizes effort—and

minimizes duration provided the hazard rate does not grow too quickly over time.

We then reduce the commitment power of the principal and show that an egalitarian

prize allocation is optimal, albeit one embedded in a simpler contest with a fixed

deadline.

15Per the proof of Proposition 5, every minimum-duration contest with expected effort 1/c lasts
in expectation D = (λ/c−K∗)/(λn− λK∗) +

∑n
k=n+1−K∗(λk)−1. The desired comparative statics

follow from the facts that D decreases with c and n, and increases with λ and K∗, which itself
increases with λ and decreases with c.

16Since the designer’s flow payoff equals the number of agents still working minus γ, she wishes
to end the contest immediately whenever bγc or fewer agents still work. Because agents inevitably
earn rents in this case, the split of the prize need not be exactly egalitarian, although an equal split
is guaranteed to be optimal.
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6.1 Multiple successes

Recall that even when each agent can succeed only once, the designer is able to trans-

form all her prize money into effort. The upshot is that if agents were able to succeed

multiple times, the designer would be unable to raise effort further. Multiple suc-

cesses, however, may help her reduce contest length as agents need not stop working

after their first success.

Proposition 6. Suppose agents can succeed multiple times, with each success arriving

at rate λ provided an agent is working. The following version of a 2nd chance contest

implements effort 1/c in the shortest possible time:

i. The contest continues until K∗ successes occur. At that moment, it ends with

probability 1−λ/c+K∗; otherwise, it continues until one more success arrives.17

ii. If the contest ends after the first K∗ successes, the entire prize is split evenly

across the first K∗ successes; otherwise, the K∗+1st success is awarded c/λ and

the remaining prize is spit evenly across the first K∗ successes.

This design is very similar to a 2nd chance contest for the case of a single success.

The key differences are that all agents work throughout, which ensures minimum

contest length, and the prize is now divided on the basis of individual successes

rather than successful agents. The probability with which the contest continues after

the first K∗ successes is chosen so that each success receives in expectation c/λ.18

Observe that the countdown phase is either indefinite or non-existent. This guar-

antees a fixed number of successes in each phase, and therefore ensures that agents

have no fear of diluting their own prize when continuing to work after succeeding.

This feature was not needed when agents could succeed only once.

Another case of potential practical interest is where each agent can succeed mul-

tiple times, but his cost of effort grows after every success (e.g., because the agent

works on the most enjoyable opportunities first). In this case, to maximize effort, the

designer must focus on each agent’s first success alone as these are the cheapest to

incentivize; hence, provided the primary objective is total effort (or equivalently total

successes) the model is equivalent to the baseline model where by assumption there

is a single success.

17The feedback policy is immaterial.
18This contest with the addition of the Mpronto feedback policy is also optimal for the baseline

model with a single success.
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6.2 Heterogeneous agents

Here we return to the baseline case of a single success per agent but allow agents

to vary in their success hazard rates, which we assume are common knowledge. We

show that a generalized version of a 2nd chance contest that rewards successful agents

in inverse proportion to their hazard rates is effort maximizing. This contest is also

duration minimizing when agents are sufficiently similar (or when there are two agents

only).

Proposition 7. Suppose agent i succeeds with rate λi > c such that
∑n

i=1 c/λi > 1,

and let mi := c/λi denote the minimum prize required for that agent to work. Any

contest withMpronto feedback and the following termination and prize allocation rules

implements maximum effort:

i. If the sum of the mi’s across all successful agents by time t, denoted Mt, weakly

exceeds 1, the contest ends instantly. The last agent to succeed, say j, is awarded

mj, and every other successful agent i is awarded (1−mj)×mi/(Mt −mj).

ii. At any t at which a success occurs and Mt < 1 ≤ Mt + mj for some yet-

unsuccessful agent j, the contest ends with some positive probability (defined in

the proof) and if so, each successful agent i is awarded prize mi/Mt.

iii. Otherwise, the contest continues until at least the next success.

In the special case where all agents are identical, this contest reduces to a 2nd

chance one where the countdown phase has either a zero or infinite deadline. The more

complex design is needed so that successful agents each receive prize mi in expectation

regardless of their individual success rates. Akin to the simpler 2nd chance contest, it

achieves this by sometimes over-rewarding successful agents, which occurs when the

contest ends with the principal “under budget” (i.e., Mt < 1), and sometimes under-

rewarding them, which occurs when the principal is instead “over budget.” Feedback

about rivals is immaterial.19

19As in the baseline model, maximizing total effort is equivalent to maximizing total number of
successes because the rate at which prize money is transformed into effort remains equal across
agents (i.e., 1/c). The case of heterogeneous costs is more challenging (and the two objectives are
no longer equivalent) because the rate now differs across agents; hence Lemma 1 no longer applies.
However, if costs are similar across agents, a 2nd chance contest with agent-specific prizes remains
approximately optimal as even though it grants rents and over-spends on motivating less efficient
agents, these losses are small.
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This contest need not be duration minimizing because the heterogeneity across

mi’s means that the number of successful agents upon termination may vary sig-

nificantly across different histories. However, if there are either two agents only or

agents are sufficiently similar, the contest will have minimum length. The reason is

that in such cases there exists a K such that the principal is under budget after any

K agents succeed and over budget after any K + 1 of them do so, and so the number

of successful agents upon termination is either K or K + 1, regardless of the history,

which is the smallest variation possible.

6.3 Increasing hazard rate

In some settings, an agent’s probability of success may grow over time as he accumu-

lates knowledge or otherwise progresses towards a solution. For example, contestants

might be sampling among a finite set of possible solutions or may need to accumulate

a number of intermediate Poisson successes before they solve the overall problem (as

for example in Doraszelski, 2003). In this case, a generalized 2nd chance design sim-

ilar to that of Proposition 7 (for heterogeneous agents) maximizes effort. As before,

the designer must adjust prizes on the basis of the agents’ hazard rates, but rather

than this adjustment varying across agents, it must vary over time as the hazard rate

grows.20

Formally, we assume that the success rate for an agent who has worked for t units

of time, denoted λt, is weakly increasing. Let mi := c/λτ(i) where τ(i) denotes the

success time of agent i, and let Mt denote the sum of the mi’s across all successful

agents by time t.

Proposition 8. Assume λt ∈ (c, nc) is weakly increasing. Any contest with Mpronto

feedback and the following termination and prize allocation rules implements maxi-

mum effort:

i. If Mt ≥ 1, the contest ends instantly. The last agent to succeed, say j, is awarded

mj, and every other successful agent i is awarded (1−mj)×mi/(Mt −mj).

ii. At any t at which a success occurs and Mt ∈ (1 − c/λt, 1), the contest ends

instantly with some probability (defined in the proof), and each successful agent

i is awarded mi/Mt.
20When the hazard rate is decreasing, finding an optimal contest is challenging because agents

inevitably earn rents.

21



iii. Otherwise, the contest continues until at least the next success.

Akin to the case of heterogeneous agents, this design minimizes length so long as

the hazard rate does not grow too quickly over time. This ensures that there is a

K such that the principal is under budget when K agents have succeeded and over

budget when K+1 of them have done so, regardless of when these successes occurred.

6.4 Limited commitment

Here we assume that the principal is unable to credibly communicate with agents

mid-contest—e.g., due to her interest in having agents work for as long as possible—

and can commit (e.g., via a court-enforced contract) only to ending the contest at a

pre-specified date and allocating the prize at that time. While it is no longer possible

to meet the sufficiency conditions of Lemma 1 in this case, an optimal (no-feedback,

fixed-deadline) contest can be obtained nonetheless.21

We begin with a necessary condition for a contest to be incentive compatible.

Lemma 2. Consider a no-feedback contest that promises agent i a reward function

Ri,t. Working continuously throughout [0, Ti] is incentive compatible for this agent

only if

λe−λtRi,t −
∫ Ti

t

λ2e−λsRi,sds ≥ c for all t ∈ [0, Ti]. (IC)

This constraint states that the marginal benefit of effort at time t, which is cap-

tured by the left-hand side, should be no smaller than the marginal cost. The first

term on the left is the instantaneous marginal benefit of effort at time t. The second

term captures a forward-looking incentive effect: success today precludes success in

the future. Specifically, λ2e−λs is the amount by which the success probability at some

future date s is reduced when the agent spends effort at date t; thus, the second term

aggregates all future reductions in instantaneous benefits that result from spending

effort now.

To find a contest that maximizes effort, we can solve

max
T,{Ti},{qi}

n∑
i=1

Ti subject to (IC) and Ti ≤ T for all i, (3)

21In practice the principal may also find it easier to commit to a contest that always pays out the
full prize to someone who succeeded than to individual contracts; though a contest dominates even
when individual contracts are possible.
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and then verify that the contest indeed has an equilibrium in which each agent i works

continuously until Ti. To this end, define TEGA to uniquely solve (1− e−λnT )/(n(1−
e−λT )) = ceλT/λ.

Proposition 9. The contest with deadline TEGA and an egalitarian prize allocation

maximizes effort among no-feedback, fixed-deadline contests. Because all agents work

continuously until either they succeed or the fixed deadline is reached, it achieves this

effort in the shortest possible time.

This contest splits the prize equally among all successful agents irrespective of

when they happened to succeed. A simple intuition is that non-egalitarian contests,

unlike the egalitarian one, create unequal effort incentives over time, leading to po-

tential gaming by the agents in how they time their effort. The only way to prevent

this gaming is to spend additional money on the prize, which the principal does not

have.

For further detail, consider a simple heuristic. Set λ = 1 and restrict attention to

symmetric contests with symmetric equilibria. The constant reward function Ri,t =

eT
EGA

c, which corresponds to the egalitarian contest, satisfies (IC) with equality at all

t ≤ TEGA. Figure 1 plots the corresponding instantaneous marginal benefit eT
EGA−tc,

together with the agent’s marginal cost. Notice that at every t′ ≤ TEGA, the marginal

benefit exceeds c by exactly area 1 , which corresponds to the integral on the left-

hand side of (IC).

Consider now a non-egalitarian contest (i.e., one with a non-constant reward

schedule) that attempts to implement the same total effort as the egalitarian one.

As illustrated in the figure, (IC) implies that if there is a time interval [t′, t′′] ≤ TEGA

where this alternative schedule exceeds the egalitarian one, it must also exceed the

egalitarian schedule at all times prior to t′, since the integral in (IC) grows from area

1 to area 1 + 2 . In other words, a higher reward at any future date forces a

higher reward today, as otherwise the agent would prefer to pause his effort today and

gain access to this higher future gain. Thus, in order to implement the same effort

as the egalitarian contest, the reward schedule would need to be uniformly higher,

which is only possible with a prize greater than $1.
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Figure 1: Meeting the incentive constraint.

7 Conclusion

We have obtained optimal contests for dynamic environments where the contest de-

signer monitors effort through coarse, binary signals and has a fixed prize to award.

The designer’s primary goal—to maximize total effort or, equivalently, the number

of successes—is achieved by any contest that spends all of the prize while granting

the agents no rents. As it turns out, there is a variety of contests that do so. Her

secondary goal—to obtain such effort in the shortest time possible—is achieved, in

contrast, by only one family of contests, which we term 2nd chance. These contests

wait for some pre-specified number of successes to arrive, after which contestants

are given one last chance to succeed. All optimal contests rely on Mpronto feedback,

which keeps agents fully apprised of their own success; 2nd chance contests achieve

their goal regardless of what agents learn about their peers.

To find these contests amongst the vast set of possible contests, we first established

an upper bound for total effort and a lower bound for expected duration given that

effort, and then showed how the designer can achieve them. A challenge left for future

work is finding fully-optimal contests for dynamic environments where attaining those

bounds is impossible, such as when agents’ successes are correlated or when they have

heterogeneous effort costs. An alternative direction is letting the designer adjust the

value of her prize. In those cases, as in the present setting, an adjustable deadline

and a judicious choice of real-time feedback may help mitigate agency frictions.
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A Omitted Proofs

A.1 Proof of Proposition 2

Because the contest does not end until at least one agent succeeds, the first condition

in Lemma 1 is satisfied. Therefore, given that the feedback policy isMpronto, it suffices

to show that each agent’s expected reward conditional on succeeding is time-invariant

and equal to c/λ. This will imply that each unsuccessful agent is just willing to work

and earns no rents.

Fix a time t > T ∗ such that the contest is in progress, pick an agent who has

yet to succeed, and suppose that he assigns probability 1− c/λ to the event that at

least one of his rivals has succeeded. Let qratedt := (n − 1)λdt/(1 − c/λ) denote the

probability that the contest ends during the interval (t, t+ dt) conditional on at least

one success having occurred. By Bayes’ rule, this agent’s updated belief at t+dt that

at least one of his rivals has succeeded is equal to

(1− c/λ)(1− qratedt) + (c/λ)(n− 1)λdt

(1− c/λ)(1− qratedt) + c/λ
= 1− c/λ

as desired, where we substituted the value of qrate.
22 Therefore, if unsuccessful agents

assign probability 1− c/λ to the event that at least one of their rivals has succeeded

by any t > T ∗, they will also do so at every t′ > t. In that case, their expected reward

conditional on succeeding is (c/λ)× 1 + (1− c/λ)× 0 = c/λ as desired. (Recall that

an agent who succeeds after T ∗ wins the entire prize if he is the first to succeed, and

none of it otherwise.)

Next, we show that at T ∗, each unsuccessful agent indeed assigns probability

c/λ to the event that none of their rivals have succeeded. First, we claim that the

probability that no other agent has succeeded by T ∗, e−λ(n−1)T ∗ < c/λ.23 Given that

22The first term in the numerator captures the probability that at least one agent has succeeded
by t times the conditional probability that the contest did not end during (t, t+dt). The second term
captures the probability that the first success arrived during (t, t + dt). The denominator captures
the probability that the contest is not terminated by t+ dt.

23To see why, observe that the expected reward of success during the first phase is∑n−1
k=0 Pr{k others succeed by T ∗}/(1 + k) = c/λ by the choice of T ∗. If the probability that an

agent assigns to the event that nobody succeeds by T ∗ is weakly greater than c/λ, then the first
term in the above sum is by itself weakly larger than c/λ, which is a contradiction.
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the contest is terminated at T ∗ with probability

qT ∗ :=
c/λ− e−λ(n−1)T ∗

(1− e−λ(n−1)T ∗)(c/λ)

if at least one agent has succeeded, by Bayes’ rule each unsuccessful agent’s posterior

belief that none of their rivals have succeeded is

e−λ(n−1)T ∗

e−λ(n−1)T ∗ + (1− qT ∗)[1− e−λ(n−1)T ∗ ]
=
c

λ

as desired, where we have substituted the expression for qT ∗ . We have therefore shown

that from T ∗ onward, each unsuccessful agent assigns probability c/λ to the event

that nobody has succeeded yet, and so his expected reward from success is c/λ.

It remains to show that each agent’s expected reward from success equals c/λ at

every t < T ∗ as well. Recall that T ∗ has the property that when the prize is shared

equally among the agents who succeed during [0, T ∗], each agent is kept fully apprised

of his own success, then his expected reward from success is c/λ, as desired.

A.2 Proof of Proposition 3

We establish the proof assuming the countdown is triggered publicly, and then argue

that it does not matter whether agents know what phase they are in.

For given α and T c, the expected rewards from success are

R1(α, T c) = E
[

α

α +m1(T c)

]
and R2(α, T c) = E

[
1

α + 1 +m2(T c)

]
for the first phase and the countdown phase, respectively, where we have omitted the

time subscript due to rewards being time-invariant, m1(T c) ∼ binom(n−1, 1−e−λT c
)

and m2(T c) ∼ binom(n − 2, 1 − e−λT
c
). That is, if an agent succeeds during the

next instant and is the first to do so (which will trigger the countdown), then he

shares the prize (not equally) with m1(T c) of his rivals. On the other hand, any agent

who succeeds during the countdown phase shares the prize with 1 + m2(T c) of his

rivals. Because the feedback policy is Mpronto and the contest does not end until at

least one agent has succeeded, it suffices to show that there exist α and T c such that

R1(α, T c) = R2(α, T c) = c/λ.

Fix any α ∈ (0, 1], and observe that limT c→0R
1(α, T c) = 1, R1(α, T c) continuously
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decreases in T c, and it converges to α/(α + n− 1) as T c →∞ (assuming each agent

works until he succeeds). Since α/(α+ n− 1) ≤ 1/n < c/λ < 1, by the intermediate

value theorem there is a T 1(α) such that R1(α, T 1(α)) = c/λ. By the implicit function

theorem, T 1(α) increases in α.

Similarly, for any α > 0, limT c→0R
2(α, T c) = 1/(α + 1), R2(α, T c) continuously

decreases in T c, and it converges to 1/(α + n− 1) as T c →∞ (again assuming each

agent works until he succeeds). Observe that 1/(α+ n− 1) < c/λ ≤ 1/(α+ 1) for all

α ∈ (α, α] where α = max {0, λ/c− (n− 1)} and α = min {λ/c− 1, 1}. Therefore,

for any such α, by the intermediate value theorem there exists a T 2(α) such that

R2(α, T 2(α)) = c/λ. By the implicit function theorem, T 2(α) decreases in α.

If α < 1 (or equivalently λ/c < 2), because limT c→0R
2(α, T c) = 1/(α+1) = c/λ by

definition, we have limα→α T
2(α) = 0. If instead α = 1, because R2(1, T c) decreases

in T c, R2(1, T c) < R1(1, T c), and R1(1, T ∗) = c/λ by the definition of T ∗ (given in

Section 4.1), it must be the case that T 2(1) < T ∗.

Recall that T 1(α) increases in α and notice that T 1(1) = T ∗. On the other hand

limα→α T
2(α) > T ∗, T 2(α) decreases in α, and T 2(α) < T ∗.24 Therefore there exists

an α∗ such that T 1(α∗) = T 2(α∗). Letting T c∗ = T 1(α∗), we have R1(α∗, T c∗) =

R2(α∗, T c∗) = c/λ as desired.

We have shown that each (unsuccessful) agent’s expected reward from success is

time-invariant and equal to c/λ. This implies that it is immaterial whether agents

are told what phase they are in.

A.3 Proof of Proposition 4

To implement effort 1/c, a contest must maximize total value and leave agents with

zero rents. To satisfy the first criterion, it must award the entire prize with probability

1, and hence must not end before at least one agent has succeeded.

Next we turn to full rent-extraction. Let pi,t denote the probability that agent i

assigns at time t to the event that he has already succeeded. Then, agent i’s expected

payoff can be expressed as E
∫ τ

0
[λ(1− pi,t)Ri,t − c]ai,tdt. Therefore, for a mechanism

to leave agents with no rents, it must be the case that in equilibrium for each agent i,

24If α = 0, because limα→αR
2(α, T c) = E[1/(1 + m2(T c))] > E[1/(1 + m1(T c))], R2(α, T c)

decreases in T c, and E[1/(1+m1(T ∗))] = c/λ by definition, it must be the case that limα→α T
2(α) >

T ∗. If instead α > 0, then by definition 1/(α+n−1) = c/λ, and so limα→α T
2(α) =∞. To see why

T 2(α) < T ∗, observe that either (i) α < 1 and limα→α T
2(α) = 0, or (ii) α = 1 and T 2(1) < T ∗.
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λ(1−pi,t)Ri,t = c for all t such that ai,t = 1. We claim that this condition holds if and

only if in equilibrium pi,t = 0 and Ri,t = c/λ for all i and t such that ai,t = 1. Towards

a contradiction, suppose there is an interval (t′, t′+dt) during which E[pi,t|pi,t < 1] > 0

for some agent i. For the mechanism to incentivize effort meanwhile extracting all

rents, it must be the case that E[Ri,t] > c/λ during that interval. Suppose this

agent deviates from the equilibrium and exerts effort during that interval only (while

shirking at all other times). This agent privately knows that he has not succeeded by

t′, and the fact that E[Ri,t] > c/λ during that interval means that he can earn strictly

positive rents—a contradiction. Therefore, any mechanism that leaves agents with

no rents must have pi,t = 0 (i.e., it must feature the Mpronto feedback policy which

keeps agents fully apprised of their own successes) and Ri,t = c/λ for all i and t such

that ai,t = 1.

A.4 Proof of Proposition 5 and Corollary 1

We begin by establishing a lower bound for the expected duration of a contest that

implements total expected effort 1/c. Fix a contest that implements that effort level,

and for each j ∈ {1, . . . , n}, let Tj denote the expected amount of time that exactly

j agents are working. Note that total effort
∑n

j=1 jTj = 1/c with Tj ≤ 1/(λj) owing

to the fact that when j agents are working, the next success occurs with Poisson rate

λj. Let D :=
∑n

j=1 Tj denote the expected duration of the contest.

To obtain our lower bound, we introduce an auxiliary program that represents the

problem of minimizing the duration of a contest by directly selecting the values of Tj,

without regard for whether these values can be implemented in an actual contest as

follows

min
T1,...,Tn

n∑
j=1

Tj s.t.
n∑
j=1

jTj =
1

c
and 0 ≤ Tj ≤

1

λj
. (4)

We claim that this program has the following unique solution:

T j =


1/(λj) if j > n−K∗

(λ/c−K∗)/[λ(n−K∗)] if j = n−K∗

0 if j < n−K∗,

where K∗ = bλ/cc. To see why, observe that the auxiliary program is linear and in
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the first constraint Tj has a greater weight the larger the j. As a result, there is a

cutoff j∗ such that it is optimal to set Tj to its upper bound for all j > j∗, to its

lower bound for all j < j∗, and to a possibly interior value for j = j∗.25 To solve for

j∗ and Tj∗ , we substitute these values of Tj into the constraint, which yields

n∑
j=1

jT j =
n∑

j=1+j∗

(
j × 1

λj

)
+ j∗T j∗ =

n− j∗

λ
+ j∗T j∗ =

1

c
.

Because j∗Tj∗ ≤ 1/λ (from the last constraint), it follows that j∗ = n − K∗ and

T j∗ = (λ/c − bλ/cc)/(λj∗), as desired. We have therefore shown that every contest

that implements total expected effort 1/c has expected duration D ≥
∑n

j=1 T j.

Next, we show there exits a contest that achieves this lower bound, and hence

this bound corresponds to the minimum contest duration among effort-maximizing

contests. Consider the egalitarian 2nd chance contest described immediately following

the proposition.

Observe that each agent who succeeds during the first phase (i.e., before K∗

agents succeed) receives prize 1/K∗ if there is no success in phase 2, which occurs

with probability e−λ(n−K∗)T sc
, and otherwise receives (1 − c/λ)/K∗. Therefore, his

expected reward from success is equal to

1

K∗
×e−λ(n−K∗)T sc

+
1− c/λ
K∗

×[1−e−λ(n−K∗)T sc

] =
c/λ

K∗
×(1+K∗−λ/c)+

1− c/λ
K∗

=
c

λ
,

where we used the expression for T sc. This implies that he is just willing to work

until he succeeds, and earns no rents. During the second phase, by construction, if

an agent succeeds, his prize is c/λ, so again he is just willing to work while earning

no rents. Since the entire prize is awarded with probability 1, the contest satisfies the

criteria of Lemma 1, and therefore implements maximal total effort 1/c.

Notice that with probability 1, the contest ends no earlier than K∗ and no later

than K∗ + 1 agents have succeeded. Moreover, the expected amount of time that

25Tj∗ takes an interior value whenever λ/c is not an integer; otherwise it is zero.
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n−K∗ agents work,

Tn−K∗ =

∫ T sc

0

λ(n−K∗)te−λ(n−K∗)tdt+ T sce−λ(n−K∗)T sc

=
1− λ(n−K∗)T sce−λ(n−K∗)T sc − e−λ(n−K∗)T sc

λ(n−K∗)
+ T sce−λ(n−K∗)T sc

=
λ/c−K∗

λ(n−K∗)
= T n−K∗ ,

and so the expected duration of the contest meets the lower bound established above.

We are now ready to establish the proposition. We begin with necessity (=⇒).

Consider a contest that implements maximal effort. Because the auxiliary problem

(4) has a unique solution, every contest that achieves the lower bound on duration

must be such that Tj = T j for all j. As a result, the contest must never end before the

K∗ agents have succeeded, it must never continue after K∗+1 agents have succeeded,

and because T ∗j ≤ 1/(λj∗), it must end with positive probability before K∗+1 agents

succeed. To be specific, because each successful agent must earn c/λ in expectation

and the prize is unit-sized, letting q denote the probability that a success occurs

during the countdown phase, it must be the case that

(1− q) 1

K∗
+ q

1− c/λ
K∗

=
c

λ
⇔ q =

λ

c
−K∗.

Thus, the contest must be 2nd chance with K = bλ/cc and a deadline such that a

success occurs during the countdown phase with probability λ/c− bλ/cc.

Finally, we turn to sufficiency (⇐=). Consider a second chance contest that

implements expected effort 1/c. Because the contest is 2nd chance, there is a cutoff ĵ

such that Tj = 1/(λj) for all j > ĵ, Tj = 0 for all j < ĵ, and because total effort is

1/c,

ĵTĵ =
1

c
−

n∑
j=ĵ+1

j × 1

λj
=

1

c
− n− ĵ

λ
.

Because Tĵ ≤ 1/(λĵ), it must be the case that ĵ = j∗ and hence Tj = T j for all j.

Hence, this contest achieves the lower bound on expected duration.
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A.5 Proof of Proposition 6

It suffices to show that each agent’s expected reward from an additional success is

always equal to c/λ. Towards this goal, suppose the contest continues after the

K∗th success. Then a K∗ + 1st success will be obtained with certainty, and since

this success is rewarded with c/λ, each agent irrespective of how many times he has

already succeeded, is just willing to work during this second phase. During the first

phase, each agent’s expected reward from an additional success is equal to

(1− λ/c+K∗)× 1

K∗
+ (λ/c−K∗)× 1− c/λ

K∗
=
c

λ
,

as desired. That is, with probability 1 − λ/c + K∗ he earns 1/K∗ per success and

otherwise he earns (1− c/λ)/K∗.26

It follows that all agents work throughout the contest, they earn no rents, and

the entire prize is awarded with probability 1. Therefore, this contest implements

expected effort 1/c in the shortest duration possible.

A.6 Proof of Proposition 7

For a given contest and time t, let It denote the set of agents who have already

succeeded (recall that Mt =
∑

i∈It mi), let Jt denote the set of unsuccessful agents

such that mj +
∑

i∈It mi ≥ 1 for any given agent j ∈ Jt, and let Kt denote the

remaining unsuccessful agents.

Per Lemma 1 and because the prize is awarded with probability 1 and the feedback

policy is Mpronto, it suffices to show that agent i’s expected reward from succeeding

is always mi. Assume for now that the sets It, Jt, and Kt are common knowledge,

though we will argue below that this knowledge is immaterial.

Consider the expected reward of agent i if he succeeds at the next instant. If

i ∈ Jt, Mt weakly exceeds 1 upon the arrival of his success, he receives mi, and

the contest ends by Proposition 7(i). Otherwise, letting qt (a function of It, Jt, Kt)

denote the probability that the contest ends if he succeeds and noting that Mt < 1,

26The feedback policy is immaterial because during the first phase agents know that the contest
won’t end until at least K∗ successes occur, so whether they observe their own or others’ successes
does not affect their incentives. During the countdown–provided there is one—agents know that the
K∗+1st success has not occurred yet regardless of the feedback policy. Moreover, the agents’ beliefs
about which phase the contest is in are irrelevant for their incentives because their expected reward
from succeeding is the same in both phases.
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his expected reward is

qt ×
mi

Mt

+ (1− qt)×
∑

k∈Jt λk∑
k∈Jt∪Kt

λk
×
(

1− |Jt|∑
k∈Jt λk/c

)
× mi

Mt

+(1− qt)×
∑

k∈Kt
λk∑

k∈Jt∪Kt
λk
× vi,t (5)

Let us unpack this expression. With probability qt, the contest ends and i’s prize

is that in Proposition 7(ii). Otherwise, the contest continues and with probability∑
k∈Jt λk/

∑
k∈Jt∪Kt

λk, the next success is achieved by an agent j ∈ Jt, in which

case the contest ends and i’s prize is the expected value of the expression given in

Proposition 7(i).27 With the remaining probability the contest continues past the

next success and i’s expected prize, which we denote vi,t, remains to be determined.

Our aim is to pick qt such that vi,t and (5) are equal to mi for all i and t. Specif-

ically, we claim that

qt =

∑
k∈Jt

λk∑
k∈Jt∪Kt

λk
×
(
Mt − 1 + |Jt|∑

k∈Jt
λk/c

)
1−Mt +

∑
k∈Jt

λk∑
k∈Jt∪Kt

λk
×
(
Mt − 1 + |Jt|∑

k∈Jt
λk/c

)
achieves this goal. To see why, observe that because the set Kt is always finite and∑n

i=1 c/λi > 1, there is a subgame that is reached with positive probability where

this set is empty. In that subgame, vi,t is irrelevant (as the contest will end for sure

no later than upon the next success); thus, after substituting the expression for qt,

(5) equals mi. Working backward in time, it follows that if vi,t = mi and qt satisfies

the above expression, then (5) is equal to mi, as desired. Notice that if |Jt| > 0,

because 0 < 1−Mt < c|Jt|/
∑

k∈Jt λk, qt is positive and strictly smaller than one, and

if |Jt| = 0, qt = 0 as stated in Proposition 7(iii).

Finally, because i’s expected reward is mi for any It, Jt, and Kt, and all agents

work until they succeed, it is immaterial whether these sets are observed.

A.7 Proof of Proposition 8

Since the prize is awarded with probability 1 and the feedback policy is Mpronto, it

suffices to show that each agent’s expected reward conditional on succeeding at t

27Agent j is awarded [
∑
k∈Jt λk × (c/λk)]/[

∑
k∈Jt λk] = c|Jt|/

∑
k∈Jt λk in expectation, and the

remaining prize is split among the remaining successful agents in proportion to their values of mi.
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equals c/λt for all t. A key thing to note is that if an agent ever shirked prior to

date t, his hazard rate at t would be strictly smaller than λt, and so he would strictly

prefer to shirk at every subsequent date. Therefore, he cannot extract positive rents

by strategically withdrawing effort.

Let It denote the set of agents who have succeeded by t, kt := n−|It| the number of

agents who have not succeeded by t, Mt :=
∑

i∈It c/λτ(i), and ∆t the unique solution

to c/λt+∆t +Mt = 1 for any given Mt ∈ [1− c/λt, 1).28

If an agent succeeds at t such that Mt + c/λt ≥ 1, per Proposition 8(i) his reward

is c/λt, as desired. Suppose instead he succeeds at a t such that Mt + c/λt < 1. Here

the contest ends instantly with some probability qt and otherwise continues until at

least the next success. If that next success arrives at some s ∈ (t, t + ∆t], which

occurs with probability 1−e−kt
∫ t+∆t
t λrdr, the contest ends at that moment, and agent

i earns in expectation(
1−

∫ t+∆t

t

ktλs
c

λs
e−kt

∫ s
t λrdrds

)
× c/λτi∑

i∈It c/λτi
=

(
1− ckt

∫ t+∆t

t

e−kt
∫ s
t λrdrds

)
×mi

Mt

,

where the term in the parenthesis is the expected value of the prize money that

remains after awarding c/λs to the last agent to succeed. If instead the next success

(after t) arrives at some s > t + ∆t, then Ms < 1 and the contest continues. Denote

by vi,t the agent’s expected reward in that contingency.

We wish to show that the agent’s expected reward from succeeding at t is

qt
mi

Mt

+ (1− qt)(1− e−kt
∫ t+∆t
t λrdr)

(
1− ckt

∫ t+∆t

t

e−kt
∫ s
t λrdrds

)
mi

Mt

+(1− qt)e−kt
∫ t+∆t
t λrdr × vi,t = mi.

To this end, let us guess (and later verify) that vi,t = mi for all t. Under this guess,

28Per Proposition 8(ii), if a success occurs at t, Mt ∈ (1 − c/λt, 1), and the contest does not
end instantly, then it continues at least until the next success. If the next success occurs at say
s ≤ t + ∆t, the contest ends instantly at s. Otherwise, it ends at s with some positive probability
strictly smaller than 1.
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the above equation can be expressed as

qt
Mt

+ (1− qt)
(

1− ckt
∫ t+∆t

t

e−kt
∫ s
t λrdrds

)(
1− e−kt

∫ t+∆t
t λrdr

Mt

)
+ (1− qt)e−kt

∫ t+∆t
t λrdr = 1

⇔ qt =
Mt −

(
1− ckt

∫ t+∆t

t
e−kt

∫ s
t λrdrds

)(
1− e−kt

∫ t+∆t
t λrdr

)
−Mte

−kt
∫ t+∆t
t λrdr

1−
(

1− ckt
∫ t+∆t

t
e−kt

∫ s
t λrdrds

)(
1− e−kt

∫ t+∆t
t λrdr

)
−Mte

−kt
∫ t+∆t
t λrdr

.

(6)

Since 1− ckt
∫ t+∆t

t
e−kt

∫ s
t λrdr < Mt < 1, the numerator in (6) is positive and strictly

smaller than the denominator. Therefore, 0 < qt < 1.

It remains to show that vi,t = c/λτ(i) for all i and t. Recall that we have shown

that if vi,t = c/λτ(i), agent i’s expected reward from success is c/λτ(i), as desired.

Now consider a time t where all but one agent have succeeded (i.e., kt = 1). Because

c/λt > 1/n for all t, the contest ends with certainty upon the next success. In that

case, ∆t = ∞, vi,t is immaterial, and from (6), agent i’s expected reward is c/λτi ;

therefore, working backward in time, it follows that each i’s expected reward is c/λτi ,

as desired.

A.8 Proof of Lemma 2

Faced with a reward function Ri,t defined on [0, T ], agent i chooses his effort by solving

max
ai,t

∫ T

0

(λRi,te
−λ

∫ t
0 ai,sds − cai,t) dt.

Suppose that for some Ti ≤ T , this agent finds it optimal to choose ai,t = 1 for all

t ∈ [0, Ti]. Consider a deviation in which he pauses effort between times t and t+ ∆t

for ∆t > 0. He gains

c∆t−
∫ t+∆t

t

λRi,se
−λsds+

∫ Ti

t+∆t

λRi,s

[
e−λ(s−∆t) − e−λs

]
ds.
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If working continuously throughout [0, Ti] is incentive compatible, this gain must be

non-positive. Dividing through by ∆t we have

c− 1

∆t

∫ t+∆t

t

λRi,se
−λsds+

∫ Ti

t+∆t

λRi,s
e−λ(s−∆t) − e−λs

∆t
ds ≤ 0.

In the limit as ∆t→ 0 we have

λRi,te
−λt −

∫ Ti

t

λ2Ri,se
−λs ≥ c ,

where the first term is obtained by L’Hôpital’s rule, and the second term is obtained

via bounded convergence.

A.9 Proof of Proposition 9

It will be convenient to write F (t) = 1 − e−λt to denote the probability that an

agent succeeds by date t if he works continuously until that time, and by f(t) the

corresponding probability density function.

We begin by establishing two lemmas. The first shows that the egalitarian contest

admits a simple symmetric pure-strategy equilibrium.

Lemma 3. The egalitarian contest with deadline TEGAhas a symmetric pure-strategy

equilibrium where each agent works throughout the interval [0, TEGA].

Proof of Lemma 3. Consider any symmetric pure-strategy profile in which all agents

work for a duration T . Then agent i’s expected reward conditional on succeeding is

R = E
[

1

1 +M

]
=

1− (1− F (T ))n

nF (T )
,

where M∼ Binom(n−1, F (T )) is the random variable equal to the number of agents

other than i who also succeed, and the second equality is established by writing the

binomial sum and rearranging terms.

Now, taking as given the strategy profile of the other agents, the net expected

payoff of agent i from spending effort for duration T is given by F (T )R − Tc. Note

that because F is concave, this is a concave objective and therefore, the best-response
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for agent i is the duration T ′ given by f(T ′)R = c; in other words

1− (1− F (T ))n

nF (T )
=

c

f(T ′)
.

Finally, in a symmetric equilibrium, all agents choose best-responses. Therefore, they

work for a duration TEGA given by

1−
(
1− F (TEGA)

)n
nF (TEGA)

=
c

f(TEGA)
⇔ 1− e−λnTEGA

n(1− e−λTEGA)
=
ceλT

EGA

λ
,

after substituting the expressions for f(·) and F (·).

The second lemma shows that in any contest, the reward functions must satisfy a

certain “budget constraint,” which stems from the fact that the prize’s value is $1.

Lemma 4. In an equilibrium of a contest in which each agent i spends effort contin-

uously through an interval [0, Ti], the reward functions Ri,t must satisfy the following

“budget constraint”

n∑
i=1

∫ Ti

0

f(t)Ri,tdt ≤ 1−
n∏
i=1

(1− F (Ti)). (BC)

Proof of Lemma 4. Note that ∫ Ti

0

f(t)Ri,tdt

is the expected share of the prize earned by agent i. Thus, the left-hand side of (BC)

is the total expected share of the prize promised to the agents. In a feasible contest

in which an agent can earn a share of the prize only if he succeeds, this total expected

share cannot exceed the total probability that at least one agent succeeds; i.e., the

expression on the right-hand side of (BC).

Using Lemmas 2 and 4, we consider the following relaxation of (3):

max
{Ti},{Ri,t}

n∑
i=1

Ti subject to (IC) and (BC). (7)
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In this problem, the principal chooses for each agent, a time cutoff Ti and a reward

function Ri,t such that the necessary condition for incentive compatibility (IC) and

the budget constraint (BC) is satisfied.

Notice that the egalitarian contest characterized in Lemma 3 has Ti = TEGA

and Ri,t =
[
1−

(
1− F (TEGA)

)n]
/
[
nF (TEGA)

]
= c/f(TEGA) for all i and t, and it

satisfies the constraints in (7) with equality at all times.

Pick an arbitrary set of time cutoff and reward function pairs {Ti, Ri,t} (one for

each agent) that are feasible for (7). We will show that this solution achieves a

smaller objective than the egalitarian contest characterized in Lemma 3, that is,∑
i Ti < nTEGA. Because the egalitarian contest is feasible for the original problem

(3), it will immediately follow that this contest must be optimal.

Define the function Z1
i for each i as follows

Z1
i (t) =

1

f(t)

[
c−

∫ Ti

t

f ′(s)Ri,sds

]
.

Because F is concave and hence f ′(s) ≤ 0, we have

0 ≤ Z1
i (t) ≤ Ri,t

for all t ∈ [0, Ti]. The second inequality follows because Ri,t is incentive compatible.

Continuing in this manner, define for all k ≥ 2, the function Zk
i by

Zk
i (t) =

1

f(t)

[
c−

∫ Ti

t

f ′(s)Zk−1
i (s)ds

]
.

Since F is concave and Z1
i (s) ≤ Ri,s for all s, we have Z2

i (t) ≤ Z1
i (t). By induction

we have that 0 ≤ Zk
i (t) ≤ Zk−1

i (t) for all t ∈ [0, Ti]. We have thus constructed a

pointwise decreasing sequence of non-negative-valued functions on the domain [0, Ti].

Let Zi be the pointwise limit. For each i we have

Zi(t) = lim
k→∞

Zk
i (t) = lim

k→∞

1

f(t)

[
c−

∫ Ti

t

f ′(s)Zk−1
i (s)ds

]
=

1

f(t)

[
c−

∫ Ti

t

f ′(s)Zi(s)ds

]
(8)

by dominated convergence.
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Define a new reward function R̃i,t = Zi(t). Then R̃i,t satisfies the incentive con-

straint with equality at all times:

f(t)R̃i,t +

∫ Ti

t

f ′(s)R̃i,sds− c = 0. (9)

Differentiating both sides of (9) reveals that R̃i,t is the constant function R̃i,t ≡
c/f(Ti). This reward function satisfies the budget constraint (BC) because 0 ≤
Zi(t) ≤ Ri,t for all t and Ri,t is feasible by assumption. In particular, since the

expected share of the prize earned by agent i equals
∫ Ti

0
f(t)R̃i,tdt = cF (Ti)/f(Ti),

we have

c
n∑
i=1

F (Ti)

f(Ti)
−

[
1−

n∏
i=1

(1− F (Ti))

]
≤ 0. (10)

Note for further reference that if any of the Ri,t were non-constant, then the R̃i,t

satisfy the budget constraint with a strict inequality.

We will conclude the proof by showing that the expression on the left-hand side

of (10) is jointly strictly convex in (T1, . . . , Tn). For this will imply that the following

symmetric reward function profile also satisfies the budget constraint:

Ri,t? =
c

f(T̄ )
,

where T̄ is the average effort duration; i.e., T̄ =
∑

i Ti/n. Indeed the budget constraint

will be satisfied with a strict inequality as long as not all the Ti were equal.

To prove that the left-hand side of (10) is strictly convex, substitute the expressions

F (Ti) = 1− e−λTi and f(Ti) = λe−λTi , and after some simplification and eliminating

constants, the left-hand side equals

c
n∑
i=1

eλTi + λe−λ
∑n

i=1 Ti .

Its Hessian, H ∈ Rn×n, has entries

Hii = cλ2eλTi + λ3e−λ
∑n

i=1 Ti for each i, and

Hij = λ3e−λ
∑n

i=1 Ti for all i 6= j.
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For any vector z ∈ Rn
+, we have

zTHz = cλ2

n∑
i=1

eλTiz2
i + λ3e−λ

∑n
i=1 Ti

(
n∑
i=1

zi

)2

≥ 0 ,

and this inequality is strict if z has at least one strictly positive entry, implying that

the Hessian is positive semidefinite, and hence the left-hand side of (10) is strictly

convex.

We have shown that the set of time cutoff and reward function pairs {T̄ , Ri,t?} are

feasible for (7) and achieve a bigger objective than {Ti, Ri,t}; i.e., n T̄ ≥
∑

i Ti, where

the inequality is strict if not all the Ti were equal. Therefore, the relaxed problem

given in (7) can be rewritten as

max
T

{
nT s.t. cn

F (T )

f(T )
≤ 1− [1− F (T )]n

}
, (11)

where we have substituted Ri,t = c/f(T ), which satisfies (IC) with equality for all

t ∈ [0, T ]. We will show that T = TEGA solves (11).

First notice that the constraint in (11) binds when T = TEGA. Using the ex-

pressions F (T ) = 1 − e−λT and f(T ) = λe−λT , this constraint can be rewritten as

cn(eλT − 1)/λ ≤ 1 − e−nλT . We claim that this inequality is satisfied if and only if

T ≤ TEGA. To see why, define ϕ(T ) = 1− e−nλT − cn(eλT − 1)/λ and observe that

ϕ(0) = 0, ϕ′(0) = n(λ− c) > 0, and ϕ is strictly concave.

Therefore, ϕ(T ) single-crosses zero from above at T = TEGA, and so TEGA is the

largest deadline for which the constraint in (11) is satisfied. Since the objective is to

maximize T , T = TEGA solves this problem.

We have therefore shown that T = TEGA and Ri,t = c/f(TEGA) for each i solves

(7), and its objective equals nTEGA. Since this is a relaxation of the original problem,

(3), the objective of the original problem is bounded above by nTEGA. By Lemma 3,

the egalitarian contest with deadline TEGA has an equilibrium in which each agent

spends total effort TEGA, and so the principal’s objective is equal to nTEGA, that

is, it achieves the upper bound obtained from the solution of (7). Therefore, this

egalitarian contest is an optimal no-feedback contest.
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