Optimal Feedback in Contests

George Georgiadis (Northwestern Kellogg)

with

Jeff Ely • Sina Khorasani • Luis Rayo
Motivation

- Contests can be an effective way to organize economic activity
 - Labor market (promotion) tournaments
 - Innovation contests
 - All-pay auctions
 - Legal & political battles
 - Athletic tournaments

- Contests are inherently dynamic, and designer may have informational advantage over participants about how they are doing mid-contest

This paper:
Characterizes optimal dynamic contests when the designer chooses \textit{when} the contest ends, \textit{how} a prize is allocated, and a real-time feedback policy
Applications

1. Promotion contests
 - A firm has an open VP slot and wants to promote one of its associates
 - It monitors efforts imperfectly, and is better informed than the associates themselves about their performance
 - How to design a contest to maximize the associates’ efforts?

2. Innovation races
 - 2006 Netflix Prize: $1M prize for an algorithm that predicts user film ratings with at least 10% better accuracy than Netflix’ own algorithm
 - How to design the rules of contest?
Applications

1. Promotion contests
 - A firm has an open VP slot and wants to promote one of its associates.
 - It monitors efforts imperfectly, and is better informed than the associates themselves about their performance.
 - How to design a contest to maximize the associates’ efforts?

2. Innovation races
 - 2006 Netflix Prize: $1M prize for an algorithm that predicts user film ratings with at least 10% better accuracy than Netflix’ own algorithm.
 - How to design the rules of contest?
Related Literature

- **Static tournaments / contests:**
 - Lazear & Rosen ('81), Green & Stokey ('83), Nalebuff & Stiglitz ('83)
 - *Optimal prize allocation*: Moldovanu & Sela ('01), Drugov & Ryvkin ('18, '19), Olszewski & Siegel ('20)
 - "*Turning down the heat*": Fang, Noe & Strack ('18), Letina, Liu & Netzer ('20)

- **Dynamic contests:**
 - Taylor ('95), Benkert & Letina ('20)

- **Feedback in contests:**
 - "*Reveal intermediate progress?*": Yildirim ('05), Lizzeri, Meyer & Persico ('05), Aoyagi ('10), Ederer ('10), Goltsman & Mukherjee ('19)
 - *Contests for experimentation*: Halac, Kartik & Liu ('17)
Model (1/4): Players & Timing

- **Players:** A principal and $n \geq 2$ agents

- At $t = 0$, the principal designs a mechanism (contest) comprising
 - i. a rule specifying *when* the mechanism will end,
 - ii. a rule for allocating a 1 prize, and
 - iii. a real-time feedback policy

- At every $t > 0$, each agent
 - receives a message per the feedback policy, and
 - chooses to *work* or *shirk*; i.e., $a_{i,t} \in \{0, 1\}$

- When mechanism ends, prize is awarded according to allocation rule
Model (1/4): Players & Timing

- **Players**: A principal and \(n \geq 2 \) agents

- At \(t = 0 \), the principal designs a mechanism (contest) comprising
 1. a rule specifying *when* the mechanism will end,
 2. a rule for allocating a $1 prize, and
 3. a real-time feedback policy

- At every \(t > 0 \), each agent
 1. receives a message per the feedback policy, and
 2. chooses to *work* or *shirk*; *i.e.*, \(a_{i,t} \in \{0, 1\} \)

- When mechanism ends, prize is awarded according to allocation rule
Model (1/4): Players & Timing

- **Players:** A principal and \(n \geq 2 \) agents

- At \(t = 0 \), the principal designs a mechanism (contest) comprising

 i. a rule specifying *when* the mechanism will end,
 ii. a rule for allocating a $1 prize, and
 iii. a real-time feedback policy

- At every \(t > 0 \), each agent

 - receives a message per the feedback policy, and
 - chooses to *work* or *shirk*; *i.e.*, \(a_{i,t} \in \{0,1\} \)

- When mechanism ends, prize is awarded according to allocation rule
Each agent’s effort generates a binary signal: a Poisson “success”

- Conditional on not having succeeded by \(t \), an agent succeeds during \((t, t+dt)\) with probability \(a_{i,t} dt \); i.e., constant hazard rate of success
- Each agent can succeed at most once (*extend to multiple successes later)

Who observes what:

- Principal observes successes but not efforts
- Agents do not observe their rivals’ successes
- Ea. agent may or may not observe own success or do so probabilistically

- Each agent’s effort generates a binary signal: a Poisson “success”
 - Conditional on not having succeeded by t, an agent succeeds during $(t, t + dt)$ with probability $a_{i,t}dt$; i.e., constant hazard rate of success
 - Each agent can succeed at most once (*extend to multiple successes later)

- **Who observes what:**
 - Principal observes successes but not efforts
 - Agents do not observe their rivals’ successes
 - Each agent may or may not observe *own* success or do so probabilistically
Model (3/4): Principal’s Choice Variables

i. A **termination rule** is a stopping time w.r.t each agent’s success time
 - *e.g.*, mechanism may end at deadline, upon first success, randomly, etc

ii. A **prize allocation rule** specifies each agent’s share of the prize q_i as a function of when each agent succeeds
 - *e.g.*, prize may be awarded to first / second agent to succeed, split, etc

iii. A **feedback policy** specifies the message sent to each agent at every instant as a function of the agents’ success times and past messages
 - *e.g.*, Random feedback, private or public feedback, feedback about one’s own or others’ successes, feedback about feedback, etc
 - M_{pronto}: Keeps agents apprised of own success (but no other feedback)
Model (3/4): Principal’s Choice Variables

i. A **termination rule** is a stopping time w.r.t each agent’s success time
 - e.g., mechanism may end at deadline, upon first success, randomly, etc

ii. A **prize allocation rule** specifies each agent’s share of the prize q_i as a function of when each agent succeeds
 - e.g., prize may be awarded to first / second agent to succeed, split, etc

iii. A **feedback policy** specifies the message sent to each agent at every instant as a function of the agents’ success times and past messages
 - e.g., Random feedback, private or public feedback, feedback about one’s own or others’ successes, feedback about feedback, etc
 - M_{pronto}: Keeps agents apprised of own success (but no other feedback)
Model (3/4): Principal’s Choice Variables

i. A **termination rule** is a stopping time w.r.t each agent’s success time
 - e.g., mechanism may end at deadline, upon first success, randomly, etc

ii. A **prize allocation rule** specifies each agent’s share of the prize q_i as a function of when each agent succeeds
 - e.g., prize may be awarded to first / second agent to succeed, split, etc

iii. A **feedback policy** specifies the message sent to each agent at every instant as a function of the agents’ success times and past messages
 - e.g., Random feedback, private or public feedback, feedback about one’s own or others’ successes, feedback about feedback, etc
 - M^{pronto}: Keeps agents apprised of own success (but no other feedback)
Model (3/4): Principal’s Choice Variables

i. A termination rule is a stopping time w.r.t each agent’s success time
 - e.g., mechanism may end at deadline, upon first success, randomly, etc

ii. A prize allocation rule specifies each agent’s share of the prize q_i as a function of when each agent succeeds
 - e.g., prize may be awarded to first / second agent to succeed, split, etc

iii. A feedback policy specifies the message sent to each agent at every instant as a function of the agents’ success times and past messages
 - e.g., Random feedback, private or public feedback, feedback about one’s own or others’ successes, feedback about feedback, etc
 - M^{pronto}: Keeps agents apprised of own success (but no other feedback)
Model (4/4): Payoffs

- Given a contest, each agent’s expected payoff is

\[u_{i,t} = \max_{a_{i,t} \in \{0,1\}} \mathbb{E} \left[q_i - c \int_0^\tau a_{i,t} dt \right], \]

where \(c \in (1/n, 1) \).

- Principal designs a mechanism to maximize total effort

\[
\max \mathbb{E} \left[\sum_{i=1}^n \int_0^\tau a_{i,t} dt \right] \\
\text{s.t. } \{a_{i,t}\} \text{ forms an equilibrium} \\
\sum_{i=1}^n q_i \leq 1. \\
\text{(Budget Constraint)}
\]

* Will argue that effort-maximizing contest also maximizes \(\mathbb{E}[\# \text{successes}] \)
Model (4/4): Payoffs

- Given a contest, each agent’s expected payoff is

\[u_{i,t} = \max_{a_{i,t} \in \{0,1\}} \mathbb{E} \left[q_i - c \int_0^\tau a_{i,t} \, dt \right], \]

where \(c \in (1/n, 1) \).

- Principal designs a mechanism to maximize total effort

\[\max \mathbb{E} \left[\sum_{i=1}^n \int_0^\tau a_{i,t} \, dt \right] \]

s.t. \(\{a_{i,t}\} \) forms an equilibrium

\[\sum_{i=1}^n q_i \leq 1. \] (Budget Constraint)

* Will argue that effort-maximizing contest also maximizes \(\mathbb{E}[\# \text{successes}] \)
Roadmap

I. Sufficiency result for a mechanism to maximize total effort

II. Examples of effort-maximizing contests

III. Necessary conditions for optimality

IV. Effort-maximizing contest with shortest expected duration

V. Extensions: Multiple successes & Limited commitment
A Sufficiency Result

Finding an optimal contest is hard because the choice variables are high-dimensional objects and can condition on the entire history.

Lemma 1. A contest is guaranteed to be optimal if in equilibrium:

i. The prize is awarded with probability 1

ii. Each agent earns zero rents

The principal’s objective can be written as

\[
\mathbb{E} \left[\sum_{i=1}^{n} \int_{0}^{\tau} a_{i,t} dt \right] = \frac{1}{c} \left(\mathbb{E} \sum_{i} [q_i] - \sum_{i} u_{i,0} \right) \leq \frac{1}{c}
\]

Total Surplus \leq 1 \quad Rents \geq 0

If a contest attains those bounds, it must be optimal!
A Sufficiency Result

- Finding an optimal contest is hard because the choice variables are high-dimensional objects and can condition on the entire history.

Lemma 1. A contest is guaranteed to be optimal if in equilibrium:

1. The prize is awarded with probability 1
2. Each agent earns zero rents

The principal’s objective can be written as

$$\mathbb{E} \left[\sum_{i=1}^{n} \int_{0}^{T} a_{i,t} dt \right] = \frac{1}{c} \left(\mathbb{E} \sum_{i} [q_i] - \sum_{i} u_{i,0} \right) \leq \frac{1}{c}$$

- Total Surplus ≤ 1
- Rents ≥ 0

If a contest attains those bounds, it must be optimal!
A Sufficiency Result

Finding an optimal contest is hard because the choice variables are high-dimensional objects and can condition on the entire history.

Lemma 1. A contest is guaranteed to be optimal if in equilibrium:

i. The prize is awarded with probability 1

ii. Each agent earns zero rents

The principal’s objective can be written as

\[
\mathbb{E} \left[\sum_{i=1}^{n} \int_{0}^{\tau} a_{i,t} \, dt \right] = \frac{1}{c} \left(\mathbb{E} \sum_{i} [q_{i}] - \sum_{i} u_{i,0} \right) \leq \frac{1}{c}
\]

\begin{align*}
\text{Total Surplus} & \leq 1 \\
\text{Rents} & \geq 0
\end{align*}

If a contest attains those bounds, it must be optimal!
Example 1. Cyclical-Egalitarian Contest

- **Termination** τ^\ast. Runs in cycles of length T^\ast and is terminated at the end of the first cycle in which at least one agent has succeeded.

- **Egalitarian prize allocation**. Prize is shared equally among agents who have succeeded *irrespective of when they did so*.

Proposition 1.

- The contest with τ^\ast, EGA, and feedback policy M^{pronto} is optimal.

- In equilibrium, each agent works until they succeed and earns no rents.

- Contest is optimal because it meets sufficiency conditions of Lemma:
 - T^\ast chosen such that marg. benefit of effort is equal to marg. cost
 - Cyclical structure ensures that at least one agent succeeds
Example 1. Cyclical-Egalitarian Contest

- **Termination** τ^*. Runs in cycles of length T^* and is terminated at the end of the first cycle in which at least one agent has succeeded.

- **Egalitarian prize allocation.** Prize is shared equally among agents who have succeeded *irrespective of when they did so*.

Proposition 1.
- The contest with τ^*, EGA, and feedback policy M^{pronto} is optimal.
- In equilibrium, each agent works until they succeed and earns no rents.
- Contest is optimal because it meets sufficiency conditions of Lemma:
 - T^* chosen such that marg. benefit of effort is equal to marg. cost
 - Cyclical structure ensures that at least one agent succeeds
Cyclical-Egalitarian Contest. Proof Sketch

- **Lemma 1**: Zero rents & prize awarded w.p 1 \Rightarrow Contest is optimal
 - Because contest ends only after an agent succeeds, 2^{nd} criterion is met

- Each agent’s flow payoff can be expressed as

 $$(1 - p_t) \times a_t \times \frac{R_t}{\mathbb{E}[\text{prize}|\text{success at } t]} - c \times a_t$$

 - $\Pr\{\text{no success by } t\}$
 - Success rate
 - $\mathbb{E}[\text{prize}|\text{success at } t]$
 - Cost of effort

- M^{pronto} implies that $p_t = 0$, and it jumps to 1 as soon as he succeeds

- Each agent’s expected reward from success at t is:

 $$R_t = \mathbb{E}\left[\frac{1}{1 + (\#\text{rivals who succeed by } T^*)}\right]$$

 Can choose T^* such that $R_t = c$ so that working is *just* IC for each agent until he succeeds, and he earns zero rents.
Cyclical-Egalitarian Contest. Proof Sketch

- **Lemma 1:** Zero rents & prize awarded w.p 1 ⇒ Contest is optimal
 - Because contest ends only after an agent succeeds, 2nd criterion is met

- Each agent’s flow payoff can be expressed as

 \[
 \left(1 - p_t\right) \times a_t \times \frac{R_t}{\text{success rate}} - \frac{c \times a_t}{\text{cost of effort}}
 \]

 where

 - Pr\{no success by \(t\}\}
 - success rate
 - \(\mathbb{E}[\text{prize}|\text{success at } t]\)
 - cost of effort

- \(M^{pronto}\) implies that \(p_t = 0\), and it jumps to 1 as soon as he succeeds

- Each agent’s expected reward from success at \(t\) is:

 \[
 R_t = \mathbb{E}\left[\frac{1}{1 + \left(\#\text{rivals who succeed by } T^*\right)}\right]
 \]

 Can choose \(T^*\) such that \(R_t = c\) so that working is just IC for each agent until he succeeds, and he earns zero rents.
Cyclical-Egalitarian Contest. Proof Sketch

- **Lemma 1:** Zero rents & prize awarded w.p 1 ⇒ Contest is optimal
 - Because contest ends only after an agent succeeds, 2nd criterion is met

- Each agent’s flow payoff can be expressed as
 \[
 \left(1 - p_t\right) \times a_t \times \mathbb{E}[\text{prize}|\text{success at } t] - c \times a_t
 \]
 \(\text{Pr\{no success by } t\}}\times \text{success rate} \times \mathbb{E}[\text{prize}|\text{success at } t] \text{ cost of effort}\)

- \(M^{pronto}\) implies that \(p_t = 0\), and it jumps to 1 as soon as he succeeds

- Each agent’s expected reward from success at \(t\) is:
 \[
 R_t = \mathbb{E}\left[\frac{1}{1 + (\#\text{rivals who succeed by } T^*)}\right]
 \]

 Can choose \(T^*\) such that \(R_t = c\) so that working is just IC for each agent until he succeeds, and he earns zero rents.
Example 2: Beeps Contest

- **Termination rule.** Conditional on at least one success, at T^* the contest ends w.p q, and from then onwards with rate r.
- **Prize allocation.** Prize shared equally among agents who succeeded prior to T^*. Otherwise, the first agent to succeed wins entire prize.

Proposition 2.
There exist $\{q, r\}$ such that this contest, coupled with M^{pronto} is optimal

- Before T^*, resembles a single cycle of the cyclical-egalitarian contest
- After T^*, termination rule keeps ea. unsuccessful agent’s belief that nobody has succeeded constant at c. Flow payoff from working:

$$\Pr\{\text{no success yet}\} \times (HR \text{ success}) \times \mathbb{E}[\text{prize}] - c = 0$$

so ea. unsuccessful agent is just willing to work and earns no rents
Example 2: Beeps Contest

- **Termination rule.** Conditional on at least one success, at T^* the contest ends w.p q, and from then onwards with rate r.
- **Prize allocation.** Prize shared equally among agents who succeeded prior to T^*. Otherwise, the first agent to succeed wins entire prize.

Proposition 2.
There exist $\{q, r\}$ such that this contest, coupled with M^{pronto} is optimal

- Before T^*, resembles a single cycle of the cyclical-egalitarian contest
- After T^*, termination rule keeps ea. unsuccessful agent’s belief that nobody has succeeded constant at c. Flow payoff from working:

$$\Pr\{\text{no success yet}\} \times (\text{HR success}) \times \mathbb{E}[\text{prize}] - c = 0$$

so ea. unsuccessful agent is just willing to work and earns no rents
Example 2: Beeps Contest

- **Termination rule.** Conditional on at least one success, at T^* the contest ends w.p q, and from then onwards with rate r.
- **Prize allocation.** Prize shared equally among agents who succeeded prior to T^*. Otherwise, the first agent to succeed wins entire prize.

Proposition 2.

There exist $\{q, r\}$ such that this contest, coupled with M^{pronto} is optimal.

- Before T^*, resembles a single cycle of the cyclical-egalitarian contest.
- After T^*, termination rule keeps ea. unsuccessful agent’s belief that nobody has succeeded constant at c. Flow payoff from working:

$$\Pr\{\text{no success yet}\} \times (\text{HR success}) \times E[\text{prize}] - c = 0$$

so ea. unsuccessful agent is just willing to work and earns no rents.
Example 3: Netflix-Style Contest

- **Termination.** The first agent to succeed triggers countdown T^c
- **Prize allocation.** First agent to succeed earns prize $\frac{\alpha}{\alpha + N}$, and each agent who succeeds during countdown earns $\frac{1}{\alpha + N}$

Proposition 3.
There exist $\{T^c, \alpha < 1\}$ s.t this contest, coupled with M^pronto is optimal.

- If the first agent to succeed won the entire prize, he would earn rents
 - Can extract rents by extending contest & giving rivals another chance
- **Aim:** Expected reward from success $R_{i,t} = c$ for all i, t
 - During countdown agents know one agent has already succeeded, so must earn a bigger share of the prize than the first agent; hence $\alpha < 1$
- Resembles Netflix prize: first success triggered a 30-day countdown
Example 3: Netflix-Style Contest

- **Termination.** The first agent to succeed triggers countdown T^c
- **Prize allocation.** First agent to succeed earns prize $\alpha/(\alpha + N)$, and each agent who succeeds during countdown earns $1/(\alpha + N)$

Proposition 3.
There exist $\{T^c, \alpha < 1\}$ s.t this contest, coupled with M^{pronto} is optimal

- If the first agent to succeed won the entire prize, he would earn rents
 - Can extract rents by extending contest & giving rivals another chance
- **Aim:** Expected reward from success $R_{i,t} = c$ for all i, t
 - During countdown agents know one agent has already succeeded, so must earn a bigger share of the prize than the first agent; hence $\alpha < 1$
- Resembles Netflix prize: first success triggered a 30-day countdown
Example 3: Netflix-Style Contest

- **Termination.** The first agent to succeed triggers countdown T^c
- **Prize allocation.** First agent to succeed earns prize $\alpha / (\alpha + N)$, and each agent who succeeds during countdown earns $1 / (\alpha + N)$

Proposition 3.
There exist $\{ T^c, \alpha < 1 \}$ s.t. this contest, coupled with M^{pronto} is optimal.

- If the first agent to succeed won the entire prize, he would earn rents.
 - Can extract rents by extending contest & giving rivals another chance.
- **Aim:** Expected reward from success $R_{i,t} = c$ for all i, t
 - During countdown agents know one agent has already succeeded, so must earn a bigger share of the prize than the first agent; hence $\alpha < 1$

Resembles Netflix prize: first success triggered a 30-day countdown.
Example 3: Netflix-Style Contest

- **Termination.** The first agent to succeed triggers countdown T^c
- **Prize allocation.** First agent to succeed earns prize $\alpha/\left(\alpha + N\right)$, and each agent who succeeds during countdown earns $\frac{1}{\alpha + N}$

Proposition 3.
There exist $\{T^c, \alpha < 1\}$ s.t this contest, coupled with M^{pronto} is optimal

- If the first agent to succeed won the entire prize, he would earn rents
 - Can extract rents by extending contest & giving rivals another chance
- **Aim:** Expected reward from success $R_{i,t} = c$ for all i, t
 - During countdown agents know one agent has already succeeded, so must earn a bigger share of the prize than the first agent; hence $\alpha < 1$
- Resembles Netflix prize: first success triggered a 30-day countdown
Why a contest instead of individual contracts

- *Definition*: “Contest” if effort creates a negative externality
 - *i.e.*, if an agent’s payoff decreases in others’ efforts or successes

- Suppose principal splits the prize and offers individual contracts
 - Because prize = $1, the marginal benefits of effort $\sum_i R_{i,t} \leq 1$

- Optimal contests have $R_{i,t} = c$ for all i, t, so $\sum_i R_{i,t} = cn > 1$
 - The advantage of a contest is that it allows pooling the agents’ ICs
 - Prize not awarded to one agent can be used to incentivize another
 - This pooling is valuable whenever $c > 1/n$; *i.e.*, when prize is scarce

- *Remark*: If principal can meet 1 budget constraint *in expectation*, then individual contracts suffice
Why a contest instead of individual contracts

- *Definition:* “Contest” if effort creates a negative externality
 - i.e., if an agent’s payoff decreases in others’ efforts or successes

- Suppose principal splits the prize and offers individual contracts
 - Because prize = $1, the marginal benefits of effort \(\sum_i R_{i,t} \leq 1 \)

- Optimal contests have \(R_{i,t} = c \) for all \(i, t \), so \(\sum_i R_{i,t} = cn > 1 \)
 - The advantage of a contest is that it allows pooling the agents’ ICs
 - Prize not awarded to one agent can be used to incentivize another
 - This pooling is valuable whenever \(c > 1/n \); i.e., when prize is scarce

- *Remark:* If principal can meet $1 budget constraint *in expectation*, then individual contracts suffice
Why a contest instead of individual contracts

- **Definition**: “Contest” if effort creates a negative externality
 - *i.e.*, if an agent’s payoff decreases in others’ efforts or successes

- Suppose principal splits the prize and offers individual contracts
 - Because prize = $1, the marginal benefits of effort $\sum_i R_{i,t} \leq 1$

- Optimal contests have $R_{i,t} = c$ for all i, t, so $\sum_i R_{i,t} = cn > 1$
 - The advantage of a contest is that it allows pooling the agents’ ICs
 - Prize not awarded to one agent can be used to incentivize another
 - This pooling is valuable whenever $c > 1/n$; *i.e.*, when prize is scarce

- **Remark**: If principal can meet 1 budget constraint in expectation, then individual contracts suffice
Optimal Contests: Examples

Why a contest instead of individual contracts

- **Definition:** "Contest" if effort creates a negative externality
 - i.e., if an agent's payoff decreases in others' efforts or successes

- Suppose principal splits the prize and offers individual contracts
 - Because prize = $1, the marginal benefits of effort $\sum_i R_{i,t} \leq 1$

- Optimal contests have $R_{i,t} = c$ for all i, t, so $\sum_i R_{i,t} = cn > 1$
 - The advantage of a contest is that it allows pooling the agents' ICs
 - Prize not awarded to one agent can be used to incentivize another
 - This pooling is valuable whenever $c > 1/n$; i.e., when prize is scarce

- **Remark:** If principal can meet 1 budget constraint *in expectation*, then individual contracts suffice
A Necessity Result

- \textit{Obs.} Every optimal contest meets sufficiency conditions of Lemma 1

Proposition 4. Every optimal contest features:

i. Termination rule s.t. contest doesn’t end until 1+ agents succeed

ii. $\mathcal{M}^{\text{pronto}}$ feedback

iii. Egalitarian prize structure; \textit{i.e.,} $R_{i,t} = c$ whenever $a_{i,t} = 1$

- $\mathcal{M}^{\text{pronto}}$ ensures there is never asymmetric info btw principal & agent
 - Suppose on the eq’m path, there is an interval in which $p_{i,t} \in (0,1)$
 - IC requires $(1 - p_{i,t})R_{i,t} \geq c$, so $R_{i,t} > c$ during that interval
 - Agent could shirk until that interval so that $p_{i,t} = 0$ and earn rents

- Given $\mathcal{M}^{\text{pronto}}$, full rent extraction requires $R_{i,t} = c$ whenever an agent is supposed to be working
A Necessity Result

- Obs. Every optimal contest meets sufficiency conditions of Lemma 1

Proposition 4. Every optimal contest features:

i. Termination rule s.t. contest doesn’t end until 1+ agents succeed

ii. M^{pronto} feedback

iii. Egalitarian prize structure; i.e., $R_{i,t} = c$ whenever $a_{i,t} = 1$

- M^{pronto} ensures there is never asymmetric info btw principal & agent
 - Suppose on the eq’m path, there is an interval in which $p_{i,t} \in (0, 1)$
 - IC requires $(1 - p_{i,t}) R_{i,t} \geq c$, so $R_{i,t} > c$ during that interval
 - Agent could shirk until that interval so that $p_{i,t} = 0$ and earn rents

Given M^{pronto}, full rent extraction requires $R_{i,t} = c$ whenever an agent is supposed to be working
A Necessity Result

- Obs. Every optimal contest meets sufficiency conditions of Lemma 1

Proposition 4. Every optimal contest features:

i. Termination rule s.t. contest doesn’t end until 1+ agents succeed

ii. M^{pronto} feedback

iii. Egalitarian prize structure; i.e., $R_{i,t} = c$ whenever $a_{i,t} = 1$

- M^{pronto} ensures there is never asymmetric info btw principal & agent

 - Suppose on the eq’m path, there is an interval in which $p_{i,t} \in (0, 1)$

 - IC requires $(1 - p_{i,t}) R_{i,t} \geq c$, so $R_{i,t} > c$ during that interval

 - Agent could shirk until that interval so that $p_{i,t} = 0$ and earn rents

- Given M^{pronto}, full rent extraction requires $R_{i,t} = c$ whenever an agent is supposed to be working
Optimal Contests: Remarks

In every optimal contest:

i. Owing to M^{pronto}, it is immaterial whether agents observe their successes directly, or do so probabilistically.
 - It may be important however that they don’t observe others’ successes.

ii. Due to M^{pronto}, an optimal contest maximizes total effort conditional on not having succeeded already. So it also maximizes $E[\#\text{successes}]$.

iii. Principal would be no better off with a more precise monitoring tech.
 - To extract all rents, monitoring tech. must generate no type-I errors.

iv. Even if agents could succeed multiple times, because principal attains first-best payoff, wolog she can reward only the first success.
In every optimal contest:

i. Owing to M^{pronto}, it is immaterial whether agents observe their successes directly, or do so probabilistically.
 - It may be important however that they don’t observe others’ successes.

ii. Due to M^{pronto}, an optimal contest maximizes total effort conditional on not having succeeded already. So it also maximizes $\mathbb{E}[\#\text{successes}]$.

iii. Principal would be no better off with a more precise monitoring tech.
 - To extract all rents, monitoring tech. must generate no type-I errors.

iv. Even if agents could succeed multiple times, because principal attains first-best payoff, wolog she can reward only the first success.
Optimal Contests: Remarks

In every optimal contest:

i. Owing to M^{pronto}, it is immaterial whether agents observe their successes directly, or do so probabilistically.
 - It may be important however that they don’t observe others’ successes.

ii. Due to M^{pronto}, an optimal contest maximizes total effort conditional on not having succeeded already. So it also maximizes $\mathbb{E}[\#\text{successes}]$.

iii. Principal would be no better off with a more precise monitoring tech.
 - To extract all rents, monitoring tech. must generate no type-I errors.

iv. Even if agents could succeed multiple times, because principal attains first-best payoff, wolog she can reward only the first success.
In every optimal contest:

i. Owing to \mathcal{M}^{pronto}, it is immaterial whether agents observe their successes directly, or do so probabilistically.
 - It may be important however that they don’t observe others’ successes.

ii. Due to \mathcal{M}^{pronto}, an optimal contest maximizes total effort conditional on not having succeeded already. So it also maximizes $\mathbb{E}[\#\text{successes}]$.

iii. Principal would be no better off with a more precise monitoring tech.
 - To extract all rents, monitoring tech. must generate no type-I errors.

iv. Even if agents could succeed multiple times, because principal attains first-best payoff, wolog she can reward only the first success.
Minimum-duration, Effort-maximizing Contest

- Every effort-maximizing contest implements total effort $1/c$
- Here, we characterize the one with the shortest expected duration
 - e.g., suppose the principal incurs a small cost p.u of time contest is on

- Fix an effort-maximizing contest, and define for each k,
 $$T_k := \mathbb{E}[^{\text{time when } k \text{ agents are working}}].$$

 - $T_k \leq 1/k$ because when k agents work, next success $\sim \exp(1/k)$
 - Total effort $= \sum_k kT_k = 1/c$
 - Expected duration of contest $= \sum_k T_k$

- Roadmap:
 a. Suppose we can choose T_1, \ldots, T_n directly \Rightarrow Lower bound on duration
 b. Find a contest that achieves this lower bound
Minimum-duration, Effort-maximizing Contest

- Every effort-maximizing contest implements total effort $1/c$
- Here, we characterize the one with the shortest expected duration
 - e.g., suppose the principal incurs a small cost p.u of time contest is on
- Fix an effort-maximizing contest, and define for each k,
 $$T_k := \mathbb{E}[\text{time when } k \text{ agents are working}].$$
- $T_k \leq 1/k$ because when k agents work, next success $\sim \exp(1/k)$
- Total effort $= \sum_k kT_k = 1/c$
- Expected duration of contest $= \sum_k T_k$

Roadmap:
- a. Suppose we can choose T_1, \ldots, T_n directly \Rightarrow Lower bound on duration
- b. Find a contest that achieves this lower bound
Minimum-duration, Effort-maximizing Contest

- Every effort-maximizing contest implements total effort $1/c$
- Here, we characterize the one with the shortest expected duration
 - e.g., suppose the principal incurs a small cost p.u of time contest is on
- Fix an effort-maximizing contest, and define for each k,
 \[T_k := \mathbb{E}[\text{time when } k \text{ agents are working}]. \]
 - $T_k \leq 1/k$ because when k agents work, next success $\sim \exp(1/k)$
 - Total effort $= \sum_k kT_k = 1/c$
 - Expected duration of contest $= \sum_k T_k$

Roadmap:
- Suppose we can choose T_1, \ldots, T_n directly \Rightarrow Lower bound on duration
- Find a contest that achieves this lower bound
A Lower Bound for Contest Duration

Consider the following relaxed problem:

\[
\min_{T_1, \ldots, T_n} \sum_{k=1}^{n} T_k \quad \text{s.t.} \quad \sum_{k=1}^{n} kT_k = \frac{1}{c} \quad \text{and} \quad 0 \leq T_k \leq \frac{1}{k}.
\]

Define \(K^* = \lceil 1/c \rceil \). The following is the unique solution:

\[
T_k = \begin{cases}
1/k & \text{if } k > n - K^* \\
(1/c - K^*)/(n - K^*) & \text{if } k = n - K^* \\
0 & \text{if } k < n - K^*.
\end{cases}
\]

Lemma 2. Every effort-maximizing contest has \(\mathbb{E}[\text{duration}] \geq \sum_k T_k \).

- W.p 1, contest must end after \(K^* \) but before \(K^* + 1 \) agents succeed.
- None of the earlier examples satisfy this criterion!
A Lower Bound for Contest Duration

- Consider the following relaxed problem:

\[
\min_{T_1, \ldots, T_n} \sum_{k=1}^{n} T_k \quad \text{s.t.} \quad \sum_{k=1}^{n} k T_k = \frac{1}{c} \quad \text{and} \quad 0 \leq T_k \leq \frac{1}{k}.
\]

- Define \(K^* = \lfloor 1/c \rfloor \). The following is the unique solution:

\[
T_k = \begin{cases}
1/k & \text{if } k > n - K^* \\
(1/c - K^*)/(n - K^*) & \text{if } k = n - K^* \\
0 & \text{if } k < n - K^*.
\end{cases}
\]

Lemma 2. Every effort-maximizing contest has \(\mathbb{E}[\text{duration}] \geq \sum_k T_k \)

- W.p 1, contest must end after \(K^* \) but before \(K^* + 1 \) agents succeed

- None of the earlier examples satisfy this criterion!
A Lower Bound for Contest Duration

Consider the following relaxed problem:

$$\min_{T_1, \ldots, T_n} \sum_{k=1}^{n} T_k \quad \text{s.t.} \quad \sum_{k=1}^{n} kT_k = \frac{1}{c} \quad \text{and} \quad 0 \leq T_k \leq \frac{1}{k}.$$

Define $K^* = \lfloor 1/c \rfloor$. The following is the unique solution:

$$T_k = \begin{cases}
1/k & \text{if } k > n - K^* \\
(1/c - K^*)/(n - K^*) & \text{if } k = n - K^* \\
0 & \text{if } k < n - K^*.
\end{cases}$$

Lemma 2. Every effort-maximizing contest has $E[\text{duration}] \geq \sum_k T_k$

- W.p 1, contest must end after K^* but before $K^* + 1$ agents succeed.
- None of the earlier examples satisfy this criterion!
Second-Chance Contest

- **Termination rule.** After K^* agents succeed, contest is terminated upon the next success or countdown T^{sc} ends, whichever comes first.

- **Prize allocation rule.**
 - If an agent succeeds during the countdown, he earns c
 - Remaining prize is shared equally among the first K^* successful agents.

Proposition 5.
There exists a T^{sc} such that this contest coupled with M^{pronto} feedback has the smallest duration among effort-maximizing contests.

- Meets sufficiency conditions of Lemma 1 and lower bound of Lemma 2.
- **Remark.** Remains optimal if agents also observe others’ successes.
Second-Chance Contest

- **Termination rule.** After K^* agents succeed, contest is terminated upon the next success or countdown T^{sc} ends, whichever comes first.

- **Prize allocation rule.**
 - If an agent succeeds during the countdown, he earns c.
 - Remaining prize is shared equally among the first K^* successful agents.

Proposition 5.
There exists a T^{sc} such that this contest coupled with M^{pronto} feedback has the smallest duration among effort-maximizing contests.

- Meets sufficiency conditions of Lemma 1 and lower bound of Lemma 2.

- **Remark.** Remains optimal if agents also observe others’ successes.
Second-Chance Contest

- **Termination rule.** After K^* agents succeed, contest is terminated upon the next success or countdown T^{sc} ends, whichever comes first.

- **Prize allocation rule.**
 - If an agent succeeds during the countdown, he earns c.
 - Remaining prize is shared equally among the first K^* successful agents.

Proposition 5.
There exists a T^{sc} such that this contest coupled with M^{pronto} feedback has the smallest duration among effort-maximizing contests.

- Meets sufficiency conditions of Lemma 1 and lower bound of Lemma 2.

- **Remark.** Remains optimal if agents also observe others’ successes.
Extensions

Extension I: Agents can succeed multiple times

- Assume principal wants to implement max. effort in shortest duration
- A second-chance contest with countdown duration $T^{sc} \in \{0, \infty\}$:
 - Ends w.p. $(1 - 1/c + K^*)$ upon K^{th} success; otherwise upon $K^* + 1^{st}$
 - Prize c for $K^* + 1^{st}$ success; remaining prize split among K^* successes
 - Agents are told when K^{th} success occurs (other feedback immaterial)

Proposition 6.
This contest implements total effort $1/c$ and all agents work until the end
- Each agent’s expected reward from a success is equal to its cost c
- Agents must be told when K^{th} success occurs so that they don’t update their beliefs about total prize available during the first phase
Extension 1: Agents can succeed multiple times

- Assume principal wants to implement max. effort in shortest duration
- A second-chance contest with countdown duration $T^{sc} \in \{0, \infty\}$:
 - Ends w.p. $(1 - 1/c + K^*)$ upon K^{th} success; otherwise upon $K^* + 1^{st}$
 - Prize c for $K^* + 1^{st}$ success; remaining prize split among K^* successes
 - Agents are told when K^{th} success occurs (other feedback immaterial)

Proposition 6.
This contest implements total effort $1/c$ and all agents work until the end.

- Each agent’s expected reward from a success is equal to its cost c
- Agents must be told when K^{th} success occurs so that they don’t update their beliefs about total prize available during the first phase
Extension 1: Agents can succeed multiple times

- Assume principal wants to implement max. effort in shortest duration.
- A second-chance contest with countdown duration $T^{sc} \in \{0, \infty\}$:
 - Ends w.p. $(1 - 1/c + K^*)$ upon K^{*th} success; otherwise upon $K^* + 1^{st}$
 - Prize c for $K^* + 1^{st}$ success; remaining prize split among K^* successes
 - Agents are told when K^{*th} success occurs (other feedback immaterial)

Proposition 6.

This contest implements total effort $1/c$ and all agents work until the end.

- Each agent’s expected reward from a success is equal to its cost c.
- Agents must be told when K^{*th} success occurs so that they don’t update their beliefs about total prize available during the first phase.
Extension 1: Agents can succeed multiple times

- Assume principal wants to implement max. effort in shortest duration
- A second-chance contest with countdown duration $T^{sc} \in \{0, \infty\}$:
 - Ends w.p $(1 - 1/c + K^*)$ upon K^{st} success; otherwise upon $K^* + 1^{st}$
 - Prize c for $K^* + 1^{st}$ success; remaining prize split among K^* successes
 - Agents are told when K^{st} success occurs (other feedback immaterial)

Proposition 6.
This contest implements total effort $1/c$ and all agents work until the end

- Each agent’s expected reward from a success is equal to its cost c
- Agents must be told when K^{st} success occurs so that they don’t update their beliefs about total prize available during the first phase
Extension II: Limited Commitment

- Principal must credibly commit to feedback policy & termination rule
 - Ex-post, she has incentives to keep contest / agents “going”
- Suppose principal cannot credibly provide feedback and termination cannot condition on successes

Proposition 7. Assume agents do not observe their own successes.
- Optimal no-feedback contest ends at a deterministic deadline T, and the prize is shared equally among all agents who succeed by deadline.
- In equilibrium, all agents work continuously throughout $[0, T]$
- Over time, each agent believes it is ever more likely they have already succeeded, in which case continuing to exert effort is moot
- Egalitarian prize counteracts this by maximally backloading incentives
Extension II: Limited Commitment

- Principal must credibly commit to feedback policy & termination rule
 - Ex-post, she has incentives to keep contest / agents “going”
- Suppose principal cannot credibly provide feedback and termination cannot condition on successes

Proposition 7. Assume agents *do not* observe their own successes.

- Optimal no-feedback contest ends at a deterministic deadline T, and the prize is shared equally among all agents who succeed by deadline.
- In equilibrium, all agents work continuously throughout $[0, T]$.
- Over time, each agent believes it is ever more likely they have already succeeded, in which case continuing to exert effort is moot.
- Egalitarian prize counteracts this by maximally backloading incentives.
Conclusions

- Contest design with endogenous feedback to maximize total effort

- Many contests are optimal. Every optimal one satisfies two criteria:
 1. Agents are kept fully apprised of their own success
 2. Expected reward from success is constant

- Characterize the minimum-duration, effort-maximizing contest
 - Countdown is triggered once a pre-specified number of agents succeed
 - Contest ends when countdown ends or another agent succeeds
 - Prize is shared (approximately) equally among successful agents

- Broader agenda: Information design in agency models
 - How to use information to provide incentives (under moral hazard)