Tax Cuts, Firm Growth, and Worker Earnings: Evidence from Small Businesses in Canada

Yige Duan Terry S. Moon

University of British Columbia

October 2022

Motivation

Central Question in Fiscal Policy: How much Reductions in Corporate Taxes Stimulate Growth and Employment?

Motivation

Central Question in Fiscal Policy: How much Reductions in Corporate Taxes Stimulate Growth and Employment?

Large Literature on Corporate Taxes and Investment

► A wide range of estimates, but overall negative

(Summers 1981; Auerbach and Hassett 1992; Cummins, Hasset, and Hubbard 1996; Goolsbee 1998; Desai and Goolsbee 2004; Cooper and Haltiwanger 2006; House and Shapiro 2008; Zwick and Mahon 2017; Ohrn 2018; Liu and Mao 2019; Maffini et al. 2019; Chen et al. 2019; Harju et al. 2022; Curtis et al. 2022)

Motivation

Central Question in Fiscal Policy: How much Reductions in Corporate Taxes Stimulate Growth and Employment?

Large Literature on Corporate Taxes and Investment

A wide range of estimates, but overall negative

(Summers 1981; Auerbach and Hassett 1992; Cummins, Hasset, and Hubbard 1996; Goolsbee 1998; Desai and Goolsbee 2004; Cooper and Haltiwanger 2006; House and Shapiro 2008; Zwick and Mahon 2017; Ohrn 2018; Liu and Mao 2019; Maffini et al. 2019; Chen et al. 2019; Harju et al. 2022; Curtis et al. 2022)

Small Literature on Corporate Taxes and Employment & Wages

- Positive effects of tax reductions on employment (Giroud and Rauh 2019; Garrett et al. 20202; Curtis et al. 2022)
- Negative effects of tax hikes on wages

(Fuest et al. 2018; Arulampalam et al. 2013)

Effects of Corporate Tax Cuts on Firm Growth & Worker Earnings?

Positive effects on firm growth and employee salaries

- Positive effects on firm growth and employee salaries
 - Cost of Capital: Corporate Taxes ↓ ⇒ Marginal Return ↑
 ⇒ Investment ↑ ⇒ Growth and Salaries ↑

- Positive effects on firm growth and employee salaries
 - Cost of Capital: Corporate Taxes ↓ ⇒ Marginal Return ↑
 ⇒ Investment ↑ ⇒ Growth and Salaries ↑
 - ► Cash Windfall: Corporate Taxes $\downarrow \implies$ Extra Cash Flow $\uparrow \implies$ Investment $\uparrow \implies$ Growth and Salaries \uparrow

- Positive effects on firm growth and employee salaries
 - Cost of Capital: Corporate Taxes ↓ ⇒ Marginal Return ↑
 ⇒ Investment ↑ ⇒ Growth and Salaries ↑
 - Cash Windfall: Corporate Taxes ↓ ⇒ Extra Cash Flow ↑ ⇒ Investment ↑ ⇒ Growth and Salaries ↑
- No effects on firm growth or employee salaries

- Positive effects on firm growth and employee salaries
 - Cost of Capital: Corporate Taxes ↓ ⇒ Marginal Return ↑
 ⇒ Investment ↑ ⇒ Growth and Salaries ↑
 - Cash Windfall: Corporate Taxes ↓ ⇒ Extra Cash Flow ↑ ⇒ Investment ↑ ⇒ Growth and Salaries ↑
- No effects on firm growth or employee salaries
 - Increases in after-tax profits directly go to business owners

- Positive effects on firm growth and employee salaries
 - Cost of Capital: Corporate Taxes ↓ ⇒ Marginal Return ↑
 ⇒ Investment ↑ ⇒ Growth and Salaries ↑
 - Cash Windfall: Corporate Taxes ↓ ⇒ Extra Cash Flow ↑ ⇒ Investment ↑ ⇒ Growth and Salaries ↑
- No effects on firm growth or employee salaries
 - Increases in after-tax profits directly go to business owners
 - Lack of growth potentials

Empirical Challenges

- Difficult to find large and exogenous variation in tax rates across firms and workers
 - 1. Real corporate outcomes too cyclical to distinguish tax effects from business cycle effects
 - 2. Tax rates for small businesses depend on firm sizes or profits in most settings \implies hard to find control group

Empirical Challenges

- Difficult to find large and exogenous variation in tax rates across firms and workers
 - 1. Real corporate outcomes too cyclical to distinguish tax effects from business cycle effects
 - 2. Tax rates for small businesses depend on firm sizes or profits in most settings \implies hard to find control group
- Prior studies use the following variation to study corporate tax effects on either firm/estab-level or worker-level outcomes :
 - Across-industry: Zwick & Mahon 2017, Ohrn 2018 & Curtis et al. 2022
 - Across-state or -municipality: Suarez Serrato & Zidar 2016, Fuest et al. 2018
 - Across-industry by county: Garrett et al. 2020
 - Business Type (i.e., C- vs. S-Corp): Giroud & Rauh 2019, Harju et al. 2022

1. Exploit a reform in Quebec, Canada, to identify and quantify the effects of corporate income taxes on firm growth and worker earnings

- 1. Exploit a reform in Quebec, Canada, to identify and quantify the effects of corporate income taxes on firm growth and worker earnings
 - Reform in 2014-2015: reduced corporate tax rates from 8% to 4% for small businesses operating in M&P sector

- 1. Exploit a reform in Quebec, Canada, to identify and quantify the effects of corporate income taxes on firm growth and worker earnings
 - Reform in 2014-2015: reduced corporate tax rates from 8% to 4% for small businesses operating in M&P sector
 - ► Compare treated firms w/ small firms in non-M&P sectors & Quebec

- 1. Exploit a reform in Quebec, Canada, to identify and quantify the effects of corporate income taxes on firm growth and worker earnings
 - Reform in 2014-2015: reduced corporate tax rates from 8% to 4% for small businesses operating in M&P sector
 - ► Compare treated firms w/ small firms in non-M&P sectors & Quebec
 - Make the same comparision for small firms in B.C. and Ontario

- 1. Exploit a reform in Quebec, Canada, to identify and quantify the effects of corporate income taxes on firm growth and worker earnings
 - Reform in 2014-2015: reduced corporate tax rates from 8% to 4% for small businesses operating in M&P sector
 - ► Compare treated firms w/ small firms in non-M&P sectors & Quebec
 - Make the same comparision for small firms in B.C. and Ontario
 - Triple-difference design: absorbs any sector-specific or province-specific trends or shocks that might have coincided with the reform

- 1. Exploit a reform in Quebec, Canada, to identify and quantify the effects of corporate income taxes on firm growth and worker earnings
 - Reform in 2014-2015: reduced corporate tax rates from 8% to 4% for small businesses operating in M&P sector
 - ► Compare treated firms w/ small firms in non-M&P sectors & Quebec
 - Make the same comparision for small firms in B.C. and Ontario
 - Triple-difference design: absorbs any sector-specific or province-specific trends or shocks that might have coincided with the reform
 - Administrative Tax Returns Data on the universe of firms and workers

- 1. Exploit a reform in Quebec, Canada, to identify and quantify the effects of corporate income taxes on firm growth and worker earnings
 - Reform in 2014-2015: reduced corporate tax rates from 8% to 4% for small businesses operating in M&P sector
 - ► Compare treated firms w/ small firms in non-M&P sectors & Quebec
 - Make the same comparision for small firms in B.C. and Ontario
 - Triple-difference design: absorbs any sector-specific or province-specific trends or shocks that might have coincided with the reform
 - Administrative Tax Returns Data on the universe of firms and workers
- 2. Main Results: large effects on firm growth and employee earnings

- 1. Exploit a reform in Quebec, Canada, to identify and quantify the effects of corporate income taxes on firm growth and worker earnings
 - Reform in 2014-2015: reduced corporate tax rates from 8% to 4% for small businesses operating in M&P sector
 - ► Compare treated firms w/ small firms in non-M&P sectors & Quebec
 - Make the same comparision for small firms in B.C. and Ontario
 - Triple-difference design: absorbs any sector-specific or province-specific trends or shocks that might have coincided with the reform
 - Administrative Tax Returns Data on the universe of firms and workers
- 2. Main Results: large effects on firm growth and employee earnings
- 3. Empirically test mechanisms for employment & earnings responses
 - Larger effects among high-tech, fast-growing industries
 - ► No differential responses by firm sizes or labor market HHI

Key Contributions

1. Clean evidence on how corporate taxes affect worker earnings/wages

- lack of empirical evidence using employer-employee matched data
- allows to flexibly control for worker FEs / compositions

Key Contributions

- 1. Clean evidence on how corporate taxes affect worker earnings/wages
 - lack of empirical evidence using employer-employee matched data
 - allows to flexibly control for worker FEs / compositions
- 2. Link firm-level responses with worker-level responses to a tax cut
 - better understand potential mechanisms behind wage responses
 - comprehensive analysis of tax incidence on both capital and labor

Key Contributions

- 1. Clean evidence on how corporate taxes affect worker earnings/wages
 - lack of empirical evidence using employer-employee matched data
 - allows to flexibly control for worker FEs / compositions
- 2. Link firm-level responses with worker-level responses to a tax cut
 - better understand potential mechanisms behind wage responses
 - comprehensive analysis of tax incidence on both capital and labor
- 3. Study tax policy targeted for small businesses
 - most existing studies examine corporate tax policy across all firm sizes
 - ▶ use large firms as a placebo group to test for GE/competition effects

Corporate Income Tax System in Canada:

- 1. Taxed both at the federal and provincial level
- 2. Baseline federal tax rate (after general tax reductions): 15%

Corporate Income Tax System in Canada:

- 1. Taxed both at the federal and provincial level
- 2. Baseline federal tax rate (after general tax reductions): 15%
- Small Business Deductions (SBD) in Canada:
 - 1. Small Business Tax Rate: 11% up to first 500k of Taxable Income

- Corporate Income Tax System in Canada:
 - 1. Taxed both at the federal and provincial level
 - 2. Baseline federal tax rate (after general tax reductions): 15%
- Small Business Deductions (SBD) in Canada:
 - 1. Small Business Tax Rate: 11% up to first 500k of Taxable Income
 - Eligibility: (1) Canadian-Controlled Private Companies

 (2) Taxable Capital Below 10 million CAD
 Taxable Capital = capital stock, retained earnings, other surpluses etc, net of investment allowance

- Corporate Income Tax System in Canada:
 - 1. Taxed both at the federal and provincial level
 - 2. Baseline federal tax rate (after general tax reductions): 15%
- Small Business Deductions (SBD) in Canada:
 - 1. Small Business Tax Rate: 11% up to first 500k of Taxable Income
 - Eligibility: (1) Canadian-Controlled Private Companies

 (2) Taxable Capital Below 10 million CAD
 Taxable Capital = capital stock, retained earnings, other surpluses etc, net of investment allowance
 - 3. Taxable Income eligible for SBD is reduced by 10 cents per every dollar increase in taxable capital over 10 million CAD

- Corporate Income Tax System in Canada:
 - 1. Taxed both at the federal and provincial level
 - 2. Baseline federal tax rate (after general tax reductions): 15%
- Small Business Deductions (SBD) in Canada:
 - 1. Small Business Tax Rate: 11% up to first 500k of Taxable Income
 - Eligibility: (1) Canadian-Controlled Private Companies

 (2) Taxable Capital Below 10 million CAD
 Taxable Capital = capital stock, retained earnings, other surpluses etc, net of investment allowance
 - 3. Taxable Income eligible for SBD is reduced by 10 cents per every dollar increase in taxable capital over 10 million CAD
 - 4. Taxable Income eligible for SBD completely phases out above 15 million CAD in taxable capital

Phase-out Schedule for Small Business Tax Deductions

PDF and CDF of SBD Claimants across Total Assets

- Provincial Corporate Tax Rates in Quebec
 - 1. Baseline: 11.9%
 - 2. Small Business Tax Rate: 8% (before 2014) for firms across all sectors

- Provincial Corporate Tax Rates in Quebec
 - 1. Baseline: 11.9%
 - 2. Small Business Tax Rate: 8% (before 2014) for firms across all sectors
- ▶ Reform (Tax Cuts) in 2014-15
 - 1. Target: Small firms in Manufacturing & Processing

- Provincial Corporate Tax Rates in Quebec
 - 1. Baseline: 11.9%
 - 2. Small Business Tax Rate: 8% (before 2014) for firms across all sectors
- ▶ Reform (Tax Cuts) in 2014-15
 - 1. Target: Small firms in Manufacturing & Processing
 - 2. In 2014: tax rate decreased to 6%
 - 3. From 2015: tax rate decreased to 4%

- Provincial Corporate Tax Rates in Quebec
 - 1. Baseline: 11.9%
 - 2. Small Business Tax Rate: 8% (before 2014) for firms across all sectors
- ▶ Reform (Tax Cuts) in 2014-15
 - 1. Target: Small firms in Manufacturing & Processing
 - 2. In 2014: tax rate decreased to 6%
 - 3. From 2015: tax rate decreased to 4%
 - 4. Intention: promote growth for SMEs in M&P sector

- Provincial Corporate Tax Rates in Quebec
 - 1. Baseline: 11.9%
 - 2. Small Business Tax Rate: 8% (before 2014) for firms across all sectors
- ▶ Reform (Tax Cuts) in 2014-15
 - 1. Target: Small firms in Manufacturing & Processing
 - 2. In 2014: tax rate decreased to 6%
 - 3. From 2015: tax rate decreased to 4%
 - 4. Intention: promote growth for SMEs in M&P sector
 - 5. Other sectors in Quebec were unaffected
Policy Reform in Quebec (2014-15)

- Provincial Corporate Tax Rates in Quebec
 - 1. Baseline: 11.9%
 - 2. Small Business Tax Rate: 8% (before 2014) for firms across all sectors
- Reform (Tax Cuts) in 2014-15
 - 1. Target: Small firms in Manufacturing & Processing
 - 2. In 2014: tax rate decreased to 6%
 - 3. From 2015: tax rate decreased to 4%
 - 4. Intention: promote growth for SMEs in M&P sector
 - 5. Other sectors in Quebec were unaffected
 - 6. No similar reforms in B.C. or Ontario

Policy Reform in Quebec (2014-15)

- Provincial Corporate Tax Rates in Quebec
 - 1. Baseline: 11.9%
 - 2. Small Business Tax Rate: 8% (before 2014) for firms across all sectors
- ▶ Reform (Tax Cuts) in 2014-15
 - 1. Target: Small firms in Manufacturing & Processing
 - 2. In 2014: tax rate decreased to 6%
 - 3. From 2015: tax rate decreased to 4%
 - 4. Intention: promote growth for SMEs in M&P sector
 - 5. Other sectors in Quebec were unaffected
 - 6. No similar reforms in B.C. or Ontario
 - 7. Quebec, B.C., and Ontario make up for almost 75% of the economy

Reform in Quebec 2014-15

Empirical Model: Estimate Tax Effects on Firm Outcomes

Triple-difference: compare outcomes of firms operating in M&P and in Quebec with those of firms in non-M&P sectors and in Quebec. Make the same comparison for firms in British Columbia & Ontario.

$$Y_{j\,t} = \sum_{\tau=2011}^{2017} \theta_{\tau} \mathbbm{1}(t=\tau) \times MP_{j} \times QC_{j} + \sum_{\tau=2011}^{2017} \beta_{\tau} \mathbbm{1}(t=\tau) \times MP_{j} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbbm{1}(t=\tau) \times QC_{j} + \alpha_{j} + u_{j\,t} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbbm{1}(t=\tau) \times QC_{j} + \alpha_{j} + u_{j\,t} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbbm{1}(t=\tau) \times QC_{j} + \alpha_{j} + u_{j\,t} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbbm{1}(t=\tau) \times QC_{j} + \alpha_{j} + u_{j\,t} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbbm{1}(t=\tau) \times QC_{j} + \alpha_{j} + u_{j\,t} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbbm{1}(t=\tau) \times QC_{j} + \alpha_{j} + u_{j\,t} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbbm{1}(t=\tau) \times QC_{j} + \alpha_{j} + u_{j\,t} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbbm{1}(t=\tau) \times QC_{j} + \alpha_{j} + u_{j\,t} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbbm{1}(t=\tau) \times QC_{j} + \alpha_{j} + u_{j\,t} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbbm{1}(t=\tau) \times QC_{j} + \alpha_{j} + u_{j\,t} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbbm{1}(t=\tau) \times QC_{j} + \alpha_{j} + u_{j\,t} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbbm{1}(t=\tau) \times QC_{j} + \alpha_{j} + u_{j\,t} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbbm{1}(t=\tau) \times QC_{j} + \alpha_{j} + u_{j\,t} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbbm{1}(t=\tau) \times QC_{j} + \sum_{\tau=2011}^{2017} \gamma_{\tau} + \sum$$

Firm fixed effects with no additional control variables

Empirical Model: Estimate Tax Effects on Firm Outcomes

Triple-difference: compare outcomes of firms operating in M&P and in Quebec with those of firms in non-M&P sectors and in Quebec. Make the same comparison for firms in British Columbia & Ontario.

$$Y_{j\,t} = \sum_{\tau=2011}^{2017} \theta_{\tau} \mathbbm{1}(t=\tau) \times MP_{j} \times QC_{j} + \sum_{\tau=2011}^{2017} \beta_{\tau} \mathbbm{1}(t=\tau) \times MP_{j} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbbm{1}(t=\tau) \times QC_{j} + \alpha_{j} + u_{j\,t} +$$

Firm fixed effects with no additional control variables

Identifying assumption: outcomes for treated firms and control firms would have trended similarly in the absence of the reform

Empirical Model: Estimate Tax Effects on Firm Outcomes

Triple-difference: compare outcomes of firms operating in M&P and in Quebec with those of firms in non-M&P sectors and in Quebec. Make the same comparison for firms in British Columbia & Ontario.

$$Y_{jt} = \sum_{\tau=2011}^{2017} \theta_{\tau} \mathbbm{1}(t=\tau) \times MP_{j} \times QC_{j} + \sum_{\tau=2011}^{2017} \beta_{\tau} \mathbbm{1}(t=\tau) \times MP_{j} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbbm{1}(t=\tau) \times QC_{j} + \alpha_{j} + u_{jt} +$$

Firm fixed effects with no additional control variables

- Identifying assumption: outcomes for treated firms and control firms would have trended similarly in the absence of the reform
- Key threat: shocks that coincide with the reform
 - 1. Triple-difference: absorbs any sector- or province-specific trends or shocks that coincide with the reform
 - 2. Parallel pre-trends on key outcomes
 - 3. Robust to various specifications
 - 4. Placebo test using ineligible firms

Triple-difference: compare outcomes of workers in M&P and in Quebec with those of workers in non-M&P sectors and in Quebec. Make the same comparison for workers in B.C. & Ontario.

$$Y_{ijt} = \sum_{\tau=2011}^{2017} \theta_{\tau} \mathbb{1}(t=\tau) \times MP_{ij} \times QC_{ij} + \sum_{\tau=2011}^{2017} \beta_{\tau} \mathbb{1}(t=\tau) \times MP_{ij} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbb{1}(t=\tau) \times QC_{ij} + \alpha_i + \alpha_$$

Worker fixed effects with no additional control variables

Triple-difference: compare outcomes of workers in M&P and in Quebec with those of workers in non-M&P sectors and in Quebec. Make the same comparison for workers in B.C. & Ontario.

$$Y_{ijt} = \sum_{\tau=2011}^{2017} \theta_{\tau} \mathbb{1}(t=\tau) \times MP_{ij} \times QC_{ij} + \sum_{\tau=2011}^{2017} \beta_{\tau} \mathbb{1}(t=\tau) \times MP_{ij} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbb{1}(t=\tau) \times QC_{ij} + \alpha_i + \alpha_$$

Worker fixed effects with no additional control variables

Identifying assumption: outcomes for treated workers and control workers would have trended similarly in the absence of the event

Triple-difference: compare outcomes of workers in M&P and in Quebec with those of workers in non-M&P sectors and in Quebec. Make the same comparison for workers in B.C. & Ontario.

$$Y_{ijt} = \sum_{\tau=2011}^{2017} \theta_{\tau} \mathbb{1}(t=\tau) \times MP_{ij} \times QC_{ij} + \sum_{\tau=2011}^{2017} \beta_{\tau} \mathbb{1}(t=\tau) \times MP_{ij} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbb{1}(t=\tau) \times QC_{ij} + \alpha_i + \alpha_$$

Worker fixed effects with no additional control variables

- Identifying assumption: outcomes for treated workers and control workers would have trended similarly in the absence of the event
- Extract workers from our treated and control firms.

Triple-difference: compare outcomes of workers in M&P and in Quebec with those of workers in non-M&P sectors and in Quebec. Make the same comparison for workers in B.C. & Ontario.

$$Y_{ijt} = \sum_{\tau=2011}^{2017} \theta_{\tau} \mathbb{1}(t=\tau) \times MP_{ij} \times QC_{ij} + \sum_{\tau=2011}^{2017} \beta_{\tau} \mathbb{1}(t=\tau) \times MP_{ij} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbb{1}(t=\tau) \times QC_{ij} + \alpha_i + \alpha_$$

Worker fixed effects with no additional control variables

- Identifying assumption: outcomes for treated workers and control workers would have trended similarly in the absence of the event
- Extract workers from our treated and control firms.

Impose the following restrictions:

1. Tenure before the event (Wachter et al. 2009; Lachowska et al. 2019)

Triple-difference: compare outcomes of workers in M&P and in Quebec with those of workers in non-M&P sectors and in Quebec. Make the same comparison for workers in B.C. & Ontario.

$$Y_{ijt} = \sum_{\tau=2011}^{2017} \theta_{\tau} \mathbb{1}(t=\tau) \times MP_{ij} \times QC_{ij} + \sum_{\tau=2011}^{2017} \beta_{\tau} \mathbb{1}(t=\tau) \times MP_{ij} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbb{1}(t=\tau) \times QC_{ij} + \alpha_i + \alpha_$$

Worker fixed effects with no additional control variables

- Identifying assumption: outcomes for treated workers and control workers would have trended similarly in the absence of the event
- Extract workers from our treated and control firms.

- 1. Tenure before the event (Wachter et al. 2009; Lachowska et al. 2019)
- Keep workers with at least \$4000 in annual earnings (Card et al. 2013; Sorkin 2018)

Triple-difference: compare outcomes of workers in M&P and in Quebec with those of workers in non-M&P sectors and in Quebec. Make the same comparison for workers in B.C. & Ontario.

$$Y_{ijt} = \sum_{\tau=2011}^{2017} \theta_{\tau} \mathbb{1}(t=\tau) \times MP_{ij} \times QC_{ij} + \sum_{\tau=2011}^{2017} \beta_{\tau} \mathbb{1}(t=\tau) \times MP_{ij} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbb{1}(t=\tau) \times QC_{ij} + \alpha_i + \alpha_$$

Worker fixed effects with no additional control variables

- Identifying assumption: outcomes for treated workers and control workers would have trended similarly in the absence of the event
- Extract workers from our treated and control firms.

- 1. Tenure before the event (Wachter et al. 2009; Lachowska et al. 2019)
- Keep workers with at least \$4000 in annual earnings (Card et al. 2013; Sorkin 2018)
- 3. Drop part-time workers or multiple-job holders

Triple-difference: compare outcomes of workers in M&P and in Quebec with those of workers in non-M&P sectors and in Quebec. Make the same comparison for workers in B.C. & Ontario.

$$Y_{ijt} = \sum_{\tau=2011}^{2017} \theta_{\tau} \mathbb{1}(t=\tau) \times MP_{ij} \times QC_{ij} + \sum_{\tau=2011}^{2017} \beta_{\tau} \mathbb{1}(t=\tau) \times MP_{ij} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbb{1}(t=\tau) \times QC_{ij} + \alpha_i + \alpha_$$

Worker fixed effects with no additional control variables

- Identifying assumption: outcomes for treated workers and control workers would have trended similarly in the absence of the event
- Extract workers from our treated and control firms.

- 1. Tenure before the event (Wachter et al. 2009; Lachowska et al. 2019)
- Keep workers with at least \$4000 in annual earnings (Card et al. 2013; Sorkin 2018)
- 3. Drop part-time workers or multiple-job holders
- 4. Results robust to keeping these workers

Triple-difference: compare outcomes of workers in M&P and in Quebec with those of workers in non-M&P sectors and in Quebec. Make the same comparison for workers in B.C. & Ontario.

$$Y_{ijt} = \sum_{\tau=2011}^{2017} \theta_{\tau} \mathbb{1}(t=\tau) \times MP_{ij} \times QC_{ij} + \sum_{\tau=2011}^{2017} \beta_{\tau} \mathbb{1}(t=\tau) \times MP_{ij} + \sum_{\tau=2011}^{2017} \gamma_{\tau} \mathbb{1}(t=\tau) \times QC_{ij} + \alpha_i + \alpha_$$

Worker fixed effects with no additional control variables

- Identifying assumption: outcomes for treated workers and control workers would have trended similarly in the absence of the event
- Extract workers from our treated and control firms.

- 1. Tenure before the event (Wachter et al. 2009; Lachowska et al. 2019)
- Keep workers with at least \$4000 in annual earnings (Card et al. 2013; Sorkin 2018)
- 3. Drop part-time workers or multiple-job holders
- 4. Results robust to keeping these workers
- 5. Placebo test using workers at ineligible firms

Data Sources

- 1. Canadian Employee Employee Dynamics Database (Stats Canada)
 - ▶ firm-level balance sheets (T2 & National Longitudinal Micro-data file)
 - ▶ job-level information (T4 and Record of Employment)
 - worker characteristics (T1 individual tax returns)

Data Sources

- 1. Canadian Employee Employee Dynamics Database (Stats Canada)
 - firm-level balance sheets (T2 & National Longitudinal Micro-data file)
 - ▶ job-level information (T4 and Record of Employment)
 - worker characteristics (T1 individual tax returns)
- 2. Sample Selection: 2011 2017 (unbalanced panel)
 - ▶ Quebec, B.C., and Ontario account for 2/3 of all firms in Canada
 - Drop firms in the following criteria:
 - 2.1 moved out of province (0.8%) or switched industries (4.4%)
 - 2.2 multi-estab across other provinces (1.6%)
 - 2.3 agriculture (1.6%), finance & real estate (7.1%), professional services (14.7 %), and health care (7.8%)

Descriptive Statistics on Firms

	Quebec		BC/	BC/Ontario	
	(1)	(2)	(3)	(4)	
	M&P	Non-M&P	M&P	Non-M&P	
Panel A. Firm Characteristic	s				
Tangible Assets ('000)	783.7	354.7	697	303.6	
Intangible Assets ('000)	16.2	12.9	17.4	15.1	
Total Revenue ('000)	1649.6	1264.3	1582.8	1176.8	
Total Expenses ('000)	1580.2	1211.5	1529	1134.6	
Profit Margins	0.029	0.039	0.015	0.024	
Employment	11.4	8.2	10	7.6	
Total Payroll ('000)	416.5	244.9	417	231.9	
Average Payroll ('000)	35.6	21.6	36.2	21.4	
EBITDA per Worker ('000)	7.4	9.9	6.6	8.6	
Taxable Income ('000)	87.3	57	73.2	47.7	
Total Income Tax Rates	0.157	0.166	0.123	0.13	
Federal Income Tax Rates	0.081	0.087	0.082	0.089	
Firm Age	14.2	12	14.1	11.2	
Panel B. Sectors					
High-tech	0.114		0.127		
Low-tech	0.886		0.873		
Mining		0.002		0.004	
Construction		0.25		0.223	
Wholesale		0.002		0.004	
Retail		0.192		0.181	
Transportation		0.095		0.11	
Information		0.021		0.025	
Other services		0.341		0.356	
Observations	28,740	274,105	56,075	595,425	
Firms	10,195	100,195	20,115	222,705	

Descriptive Statistics on Workers

	Quebec		BC/	Ontario
	(1) M&P	(2) Non-M&P	(3) M&P	(4) Non-M&P
Panel A. Worker Charact	teristics			
Annual Earnings ('000)	38.3	35.1	46.3	39.9
Age	45.7	43.3	46.6	43.7
Male	0.689	0.627	0.704	0.607
Panel B. Sectors				
High-tech	0.109		0.122	
Low-tech	0.891		0.878	
Mining		0.002		0.003
Construction		0.202		0.207
Wholesale		0.002		0.003
Retail		0.252		0.218
Transportation		0.071		0.072
Information		0.016		0.018
Other services		0.351		0.373
Observations	192,755	1,007,210	320,735	1,883,400
Workers	64,250	335,735	106,910	627,800

Total Income and Federal Income Tax Rates

Total Income Taxes Paid and Taxable Income

Total Income and Federal Income Tax Rates

	(1)	(2)	(3)	(4)
	Total Income	Federal Income	Total Income	Taxable
	Tax Rates	Tax Rates	Tax Paid	Income
$Post \times MP \times QC$	-0.0116***	-0.0001	-2.6579***	5.1698***
	(0.0010)	(0.0009)	(0.7217)	(1.3188)
Mean Dep. Var.	0.157	0.081	23.1	87.3
Observations	1,341,780	1,274,770	1,341,780	2,106,660
Firms (Treated)	8,640	7,970	8,640	10,205
Firms (Control)	261,455	264,835	261,455	343,235
Adjusted R^2	0.378	0.322	0.636	0.719

Effects on Employment and Avg Payrolls

Effects on Tangible Assets and Intangible Assets

Effects on Employment, Avg Payrolls, and Capital Stock

	(1)	(2)	(3)	(4)
	log(Employment)	log(Average	log(Tangible	log(Intangible
		Payrolls)	Assets)	Assets)
$Post \times MP \times QC$	0.0175***	0.0235***	0.0440***	0.0541***
	(0.0052)	(0.0063)	(0.0099)	(0.0123)
Mean Dep. Var.	11.4	35.6	783.7	16.2
Observations	2,106,660	2,106,660	2,102,355	2,101,670
Firms (Treated)	10,205	10,205	10,205	10,205
Firms (Control)	343,235	343,235	343,095	343,080
Adjusted R^2	0.917	0.888	0.901	0.911

Effects on Sales and Expenses

Effects on Profitability and Productivity

Profit Margin = $\frac{Sales - Expenses}{Sales}$

(Labor) Productivity = EBITDA per worker

Effects on Sales, Expenses, Profitability, and Productivity

	(1)	(2)	(3)	(4)
	log(Revenue)	log(Expenses)	Profit Margins	EBITDA
				per Worker
$Post \times MP \times QC$	0.0519***	0.0504***	0.0044***	0.8908***
	(0.0063)	(0.0057)	(0.0012)	(0.2708)
Mean Dep. Var.	1649.6	1580.2	0.029	7.4
Observations	2,106,660	2,106,660	2,106,660	2,106,660
Firms (Treated)	10,205	10,205	10,205	10,205
Firms (Control)	343,235	343,235	343,235	343,235
Adjusted R^2	0.915	0.929	0.521	0.579

Effects on Worker-level Earnings

Effects on Worker-level Earnings

	(1)	(2)	(3)
	log(Annual Earnings)	Job Transition	log(Annual Earnings)
			for Stayers
$Post \times MP \times QC$	0.0133***	-0.0011	0.0134***
	(0.0026)	(0.0013)	(0.0026)
Mean Dep. Var.	38.3	0.04	39.8
Observations	6,692,730	6,692,730	5,488,305
Workers (Treated)	64,250	64,250	51,615
Workers (Control)	1,070,455	1,070,455	818,055
Adjusted R^2	0.812	0.080	0.831

Robustness Checks & Internal Validity

Robustness: Main results qualitatively similar across robust

- 1. 4-digit industry \times Year
- 2. Commuting Zone × Year
- 3. Defining small firms with missing or below $10/15\ \text{mil}$ in taxable cap
- 4. Including excluded workers (without tenure restriction, part-time, below 4k in annual earnings, or multiple-job holders)
- Placebo Tests: Non-CCPCs (ineligible for SBD) placebo

Based on these results, the corresponding elasticity with respect to net of corporate income tax rates:

$$\epsilon_{Y,1-\tau} = \frac{\%\Delta Y}{\%\Delta(net\ of\ tax\ rate)} = \frac{\Delta Y}{Y^*} * \frac{(1-\tau_0)}{(\tau^*-\tau_0)}$$

Based on these results, the corresponding elasticity with respect to net of corporate income tax rates:

$$\epsilon_{Y,1-\tau} = \frac{\%\Delta Y}{\%\Delta(net\ of\ tax\ rate)} = \frac{\Delta Y}{Y^*} * \frac{(1-\tau_0)}{(\tau^*-\tau_0)}$$

• Our estimates sensible based on UCC? $\epsilon_{K,1-\tau_c} = \epsilon_{K,C_K} \times \epsilon_{C_K,1-\tau_c}$

Based on these results, the corresponding elasticity with respect to net of corporate income tax rates:

$$\epsilon_{Y,1-\tau} = \frac{\%\Delta Y}{\%\Delta(net\ of\ tax\ rate)} = \frac{\Delta Y}{Y^*} * \frac{(1-\tau_0)}{(\tau^*-\tau_0)}$$

- Our estimates sensible based on UCC? $\epsilon_{K,1-\tau_c} = \epsilon_{K,C_K} \times \epsilon_{C_K,1-\tau_c}$
 - Based on the model parameterized by Desai and Goolsbee (2004), a firm faces a cost of capital:

Based on these results, the corresponding elasticity with respect to net of corporate income tax rates:

$$\epsilon_{Y,1-\tau} = \frac{\%\Delta Y}{\%\Delta(net\ of\ tax\ rate)} = \frac{\Delta Y}{Y^*} * \frac{(1-\tau_0)}{(\tau^*-\tau_0)}$$

- Our estimates sensible based on UCC? $\epsilon_{K,1-\tau_c} = \epsilon_{K,C_K} \times \epsilon_{C_K,1-\tau_c}$
 - Based on the model parameterized by Desai and Goolsbee (2004), a firm faces a cost of capital:

• Based on parameters in our setting, $\epsilon_{C_K,1-\tau_c} = -0.95$

Based on these results, the corresponding elasticity with respect to net of corporate income tax rates:

$$\epsilon_{Y,1-\tau} = \frac{\%\Delta Y}{\%\Delta(net\ of\ tax\ rate)} = \frac{\Delta Y}{Y^*} * \frac{(1-\tau_0)}{(\tau^*-\tau_0)}$$

- Our estimates sensible based on UCC? $\epsilon_{K,1-\tau_c} = \epsilon_{K,C_K} \times \epsilon_{C_K,1-\tau_c}$
 - Based on the model parameterized by Desai and Goolsbee (2004), a firm faces a cost of capital:

- ▶ Based on parameters in our setting, $\epsilon_{C_K,1-\tau_c} = -0.95$
- Based on our estimate of $\epsilon_{K,1-\tau_c} = 0.89$, we find $\epsilon_{K,C_K} = -0.94$

Based on these results, the corresponding elasticity with respect to net of corporate income tax rates:

$$\epsilon_{Y,1-\tau} = \frac{\%\Delta Y}{\%\Delta(net\ of\ tax\ rate)} = \frac{\Delta Y}{Y^*} * \frac{(1-\tau_0)}{(\tau^*-\tau_0)}$$

- Our estimates sensible based on UCC? $\epsilon_{K,1-\tau_c} = \epsilon_{K,C_K} \times \epsilon_{C_K,1-\tau_c}$
 - Based on the model parameterized by Desai and Goolsbee (2004), a firm faces a cost of capital:

- ▶ Based on parameters in our setting, $\epsilon_{C_K,1-\tau_c} = -0.95$
- Based on our estimate of $\epsilon_{K,1-\tau_c} = 0.89$, we find $\epsilon_{K,C_K} = -0.94$
- In line with estimates from Zwick and Mahon (2017), Moon (2022), and Curtis et al. (2022)
Comparing other elasticities to prior studies

► Labor elasticity: 0.35. Smaller but in line with Curtis et al. (2022)

Comparing other elasticities to prior studies

- ▶ Labor elasticity: 0.35. Smaller but in line with Curtis et al. (2022)
- Earnings/wage elasticity: 0.27. Smaller but in line with Fuest et al. (2018)

Comparing other elasticities to prior studies

- ▶ Labor elasticity: 0.35. Smaller but in line with Curtis et al. (2022)
- Earnings/wage elasticity: 0.27. Smaller but in line with Fuest et al. (2018)
- In general, in line with estimates based on the U.S. and German settings, although institutional differences or firm-level heterogeneity or different base rates can explain differences across different studies

Empirical Test: High-tech vs. Low-tech Industries

- Firms in high-tech industries have higher growth potentials, and may have a stronger demand for labor and capital after tax cut
 - 1. High-tech: Pharma & medical, communication equipment
 - 2. Low-tech: motor vehicle parts, plastic parts Heckler (2005)

Empirical Test: High-tech vs. Low-tech Industries

- Firms in high-tech industries have higher growth potentials, and may have a stronger demand for labor and capital after tax cut
 - 1. High-tech: Pharma & medical, communication equipment
 - 2. Low-tech: motor vehicle parts, plastic parts Heckler (2005)
- Prediction: Following corporate tax cut, firms in high-tech industries increase employment and salaries more relative to low-tech firms

Empirical Test: High-tech vs. Low-tech Industries

- Firms in high-tech industries have higher growth potentials, and may have a stronger demand for labor and capital after tax cut
 - 1. High-tech: Pharma & medical, communication equipment
 - 2. Low-tech: motor vehicle parts, plastic parts Heckler (2005)
- Prediction: Following corporate tax cut, firms in high-tech industries increase employment and salaries more relative to low-tech firms
- Within M&P sector: 11% High-tech and 89% Low-tech. Use the same baseline control group

Effects on Employment, Payrolls, EBITDA, and Earnings

Effects on Employment, Payrolls, EBITDA, and Earnings

	(1)	(2)	(3)	(4)
	log(Employment)	log(Average	EBITDA	log(Annual
		Payrolls)	per Worker	Earnings)
$Post \times MP \times QC$ (Low-tech)	0.0123**	0.0159**	0.9449***	0.0122***
	(0.0055)	(0.0067)	(0.2742)	(0.0027)
Post \times MP \times QC (High-tech)	0.0581***	0.0820***	0.6424	0.0246***
	(0.0151)	(0.0182)	(0.9692)	(0.0068)
Difference	0.0458***	0.0661***	-0.3025	0.0124*
	(0.0159)	(0.0192)	(1.0000)	(0.0072)
Mean Dep. Var. (Low-tech)	11.5	34.8	6.9	37.3
Mean Dep. Var. (High-tech)	11.1	42.4	10.8	46.4
Observations	2,106,660	2,106,660	2,106,660	6,692,730
Firms/Workers (low-tech)	9,035	9,035	9,035	57,780
Firms/Workers (High-tech)	1,170	1,170	1,170	7,220
Firms/Workers (Control)	343,235	343,235	343,235	1,070,450
Adjusted R^2	0.917	0.888	0.579	0.812

Potential Heterogeneity / Mechanisms

- 1. Labor market concentration: no differential response
- 2. Firm sizes / credit-constraints: no differential response
- 3. Collective Bargaining / Union: in progress

Aggregate Impacts of the Reform (Partial Equilibrium)

- 1. Aggregate Impacts: 7,425 and 3.5 bil CAD increases in aggregate employment and sales
 - \blacktriangleright In terms of aggregate \$, total employment and sales \approx 428k and \$6.9B among treated firms

$$\blacktriangleright Y_{actual} = Y_{counterfactual} \times e^{\theta}$$

•
$$\Delta Y = Y_{actual} \times (1 - e^{-\theta})$$
 (post-2013)

Aggregate Impacts of the Reform (Partial Equilibrium)

- 1. Aggregate Impacts: 7,425 and 3.5 bil CAD increases in aggregate employment and sales
 - \blacktriangleright In terms of aggregate \$, total employment and sales \approx 428k and \$6.9B among treated firms

$$\blacktriangleright Y_{actual} = Y_{counterfactual} \times e^{\theta}$$

•
$$\Delta Y = Y_{actual} \times (1 - e^{-\theta})$$
 (post-2013)

- 2. 0.13% & 0.3% increases in total employment & sales per year in Quebec
- 3. Not small impact considering the share of treated firms is small

Aggregate Impacts of the Reform (Partial Equilibrium)

- 1. Aggregate Impacts: 7,425 and 3.5 bil CAD increases in aggregate employment and sales
 - \blacktriangleright In terms of aggregate \$, total employment and sales \approx 428k and \$6.9B among treated firms

$$\blacktriangleright Y_{actual} = Y_{counterfactual} \times e^{\theta}$$

•
$$\Delta Y = Y_{actual} \times (1 - e^{-\theta})$$
 (post-2013)

- 2. 0.13% & 0.3% increases in total employment & sales per year in Quebec
- 3. Not small impact considering the share of treated firms is small
- 4. Cost-benefit analysis: can this reform pay for itself in the long-run?
 - ▶ roughly 100 mil CAD loss in revenue in four years after the reform
 - Taxable income increased a lot by 2017 and total income taxes paid almost returned to their pre-reform level by 2017.
 - Although a loss in medium-run, could pay for itself over long-term

Policy Implications & Conclusion

- 1. Main Takeaway: Corporate Taxes impact firm growth & worker earnings
 - More for firms in high-tech industries

Policy Implications & Conclusion

- 1. Main Takeaway: Corporate Taxes impact firm growth & worker earnings
 - More for firms in high-tech industries

- 2. Policymakers may benefit from considering:
 - ▶ Which sector / industry has a higher potential for growth

Thank You