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Abstract

Under Liquid Democracy (LD), decisions are taken by referendum, but voters are

allowed to delegate their votes to other voters. Theory shows that in common interest

problems where experts are correctly identified, the outcome can be superior to simple

majority voting. However, delegation reduces the variety of independent information

sources and can be advantageous only if used sparely. We report the results of two

experiments, each studying two treatments: in one treatment, participants have the

option of delegating to better informed individuals; in the second, participants can

choose to abstain. The first experiment follows a tightly controlled design planned for

the lab; the second is a perceptual task run online where information about signals’ pre-

cision is ambiguous. Although the experiments are very different, they reach the same

result: in both, LD underperforms relative to both universal voting and abstention. In

the lab experiment, we observe systematic overdelegation relative to the best theoret-

ical equilibrium; in the perceptual task, we lack a precise theoretical benchmark, but

delegation rates remain significantly higher than abstention rates. Faced with better

informed experts, voters neglect the value of their own independent information.
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1 Introduction

I believe that some sort of computerized participation by large numbers of the

public in opinion formation and direct policy-making is in the cards in the next

ten to twenty years. It may be that we will be able to turn this new technology

to the improvement and defense of democratic institutions. I hope so. However,

it is by no means evident that this will be the result. (Martin Shubik, 1970,

commenting on Miller, 1969)

In Western societies, the sense of living a crisis of traditional political institutions is bringing

calls for different, more participatory forms of democracy. Among these, Liquid Democracy

has caught the imagination of the young and the tech-savvy. It advocates a voting system

where all decisions are submitted to referendum, but voters can delegate their votes freely.

Beyond its intellectual roots in the writings of Charles Dogson (in particular, Dogson, 1884),

Liquid Democracy was proposed more recently by James Miller in 1969. It has been adopted

occasionally for internal decisions by European protest parties–the Swedish and the German

Pirate parties being the most famous examples–and now finds vocal support in the tech

community, where it aligns both with the emphasis on a non-hierarchical order and with the

use of cryptographic tools to maintain confidentiality and reliability.1 Although the details

vary, the common point of different implementations is the ease and specificity of delegation.

Supporters herald it as the golden medium between representative and direct democracy:

better than the former because representatives can be chosen according to their specific

competence on each decision, better than the latter because uninformed or uninterested

voters can delegate their votes.

There is a clear, immediate problem: are experts correctly identified? But there is

also a second, more subtle, but also more fundamental question: even if the experts are

correctly identified, delegation deprives the electorate of the richness of noisy but abundant

information distributed among all voters. Unless the extent of delegation is modulated

correctly, Condorcet has taught us that a smaller number of independent voters, even if

more accurate, may well lead to worse decision-making. This very basic trade-off is the

necessary point of departure of Liquid Democracy and is the focus of this paper.

We study a canonical common interest model where voters receive independent signals,

conditional on an unknown state ex ante equally likely to take one of two values. The

1See for example LiquidFeedback (https://liquidfeedback.com/en/), the Association for In-
teractive Democracy (https://interaktive-demokratie.org/association.en.html), or Democracy.Earth
(https://democracy.earth/). Google ran a 3-year experiment on its internal network, implementing Liquid
Democracy for decisions like food menu choices, tee-shirt designs, or logos for charitable events (Hardt and
Lopes, 2015). Liquid Democracy is becoming the governance choice for cryptoworld DAO’s (Decentralized
Autonomous Organizations)–see for example Element Finance (https://medium.com/element-finance).
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common objective is to identify the state correctly, aggregating information via majority

voting. Signals vary across individuals in the probability of being correct—a variable we

denote as precision. Experts are publicly identified and the precision of their signals is known;

for all other voters, signals’ precisions are private information but known to be weakly lower

than the experts’. If a voter chooses to delegate, the vote is randomly assigned to one of the

experts. We begin by showing theoretically that for any size of the group and any number of

experts, there is an equilibrium with positive delegation such that the outcome is superior to

majority voting without delegation. However, in such an equilibrium delegation must not be

too frequent, given its informational cost. The finding is not surprising, but the equilibrium

frequency is counter-intuitively low. For example, consider one of the parametrizations we

study: a group of 15 voters of which 3 are experts; the experts’ information is correct with

probability 70%, while the precision of non-experts’ signals can take any value between 50

and 70%, with equal probability. Then a non-expert with information that she knows is

only 55% likely to be correct should not delegate to experts whom she knows to be correct

with probability 70%. And mistakes are costly: small errors towards over-delegation lead

to expected losses that soon become severe. In actual implementations, other factors, for

example overconfidence and overweighing of own information, could introduce countervailing

forces. It is with these concerns in mind that we test Liquid Democracy with two very

different experimental designs.

Before describing the experiments in detail, note that the informational benefit from

overweighing voters with more precise signals can be achieved via abstention as well, as

long as abstention correlates with more inaccurate signals, as it will in the equilibria of a

pure common interest model without idiosyncratic voting costs. Abstention differs from

delegation because the increase in voting weight concerns all individuals who choose to vote,

not only those targeted as delegates. Yet, we know from McMurray (2013) that, under

common interest and in the absence of voting costs, it too can lead to improvements over

simple majority voting, and for reasons very similar to those favoring delegation. Abstention

is a familiar option and does not require any transfer of votes, reducing the appearance of

suspicious deals. Its performance relative to delegation is thus an interesting question per

se, and our experiments compare the two alternatives.

The first experiment was designed for the lab and follows the theory very closely. We

study groups of either 5 voters (of which 1 is an expert) or 15 voters (of which 3 are experts).

We observe the frequency of delegation and the fraction of group decisions that yield the

correct outcome. We then compare these results to a second treatment, where the option of

abstention takes the place of delegation, and we evaluate both relative to simple majority vot-

ing with voting by all. We find systematic over-delegation: delegation rates that are between
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two and three times the rate in the unique strict equilibrium, given the realized experimental

precisions. As a result, Liquid Democracy (LD) underperforms, relative to simple majority

without delegation. Under Majority Voting with Abstention (MVA), abstention rates are

instead very close to the theory, and the fraction of correct decisions is comparable to what

majority voting without abstention (or delegation) would deliver. Interestingly, MVA suffers

from its own sub-optimal behavior: the environment is symmetric, and voting in line with

one’s own signal is optimal, but experimental subjects occasionally deviate, and deviate more

when abstention is allowed. In the data, voting according to signal correlates positively with

the signal’s precision, and since more subjects vote under abstention, at lower precisions, we

also observe more votes against signal. Although the frequency of such deviations remains

low, the result is a decline in correct group decisions that prevents MVA from reaping the

gains over universal voting that theory predicts. The conclusion of our first experiment,

then, is that even when experts are correctly identified and both LD and MVA have the

potential to dominate universal majority voting, both systems in fact fail to do so. LD in

particular shows a more clearly detectable negative effect.

The experimental design we implemented is canonical: it follows standard procedures for

voting experiments with common values and has been widely and succesfully used in the

literature (add refs: Battaglini et al. Morton and Tyran; others?) But could the design

itself be biasing results against LD and MVA? There are three reasons to consider the

question. First, as mentioned, the theoretical thresholds for equilibrium delegation seem

counter-intuitive. But what makes them counter-intuitive, in our view, is not their low

value per se but the detailed mathematical manner in which information is conveyed in the

experiment, and thus thresholds are chosen. Each participant is told a number for her own

precision and is naturally induced to compare such number to the known precision of the

experts–in the earlier example, the fact that 55% is transparently lower than 70% makes

the difference very salient. In reality, voting decisions take place in an ambiguous world,

where individuals do not have explicit numerical knowledge of the reliability of their and

others’ information. Evaluations are fuzzier. The large over-delegation we find in our first

experiment under LD could be less pronounced in a less precise world. A similar argument

may also affect voting against signal under MVA. The detailed mathematical design gives

us clean theoretical predictions, but could in fact be confusing participants, no matter how

much we clarify the instructions. At 55% precision, thinking that one should vote against

signal about half the time is a reasonable enough thought. In an actual voting situation,

however, lacking an explicit mathematical value for the probability that one’s information

is correct, it is unlikely that individuals would vote against their best estimate of the right

decision.
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Finally, there is a third reason for considering a less controlled environment. Could our

detailed mathematical design be favoring universal majority voting? In a still current analysis

of the Condorcet Jury theorem, suggestively titled “A Note on Incompetence”, Margolis

(1976) commented on what he saw as the contradiction between the Condorcet theorem and

political reality: in common interest problems, “Why is not decision-making trivially easy?”.

The existence of private interests, correlated signals, asymmetric scenarios, all may lead

direct democracy to function less well, but Margolis proposed a different explanation. What

if, over some questions and for some voters, information is actually correct with probability

lower than 1/2? For any individual voter this will not be true when averaging over many

decisions, but may well be true over some. And it will affect the probability that the majority

decision is correct. By opening some space for improvement over universal majority voting,

note also that the possibility of worse than random information allows testing LD in larger

electorates, where it is meant to be applied, while maintaining pure common interest and

independent signals. With binary choices, conveying information with less than random

accuracy requires adding a second level of noise–noise in information about the accuracy of

one’s noisy signal. It could be introduced in the experiment in precise mathematical form.2

However, together with the arguments above, we see the desirability of additional for noise

as another reason to accept the realistic ambiguity of collective decision-making.

Our second experiment then is meant to capture a voting environment such that voters

have “some sense” of how well-informed they are and how likely to be correct, and similarly

of how likely experts are to be correct, but such sense is vague and instinctive. There is of

course a cost: we lose the precise control granted by Experiment 1. However, even though

our aims are different, we can exploit a very rich literature that studies problems with exactly

these features: the large literature in psychology and neuroscience that studies perceptual

tasks. Our focus is not on measuring accuracy of perception, but on designing the task as a

group decision problem.3

The Random Dot Kinematogram (RDK) is a classic perceptual task amply used in vision

and cognitive research.4 A number of moving dots are displayed for a very short interval;

some move in a coherent direction, either Left or Right in our binary implementation, others

2In the absence of noise, if it is known that a signal is more likely to be wrong than right, it is also known
that its negative is more likely to be right than wrong..

3After having completed this study, we discovered an intriguing paralellism with Margolis’ own thinking
after the 1976 article. Margolis went on to advocate understanding judgement, including judgement in voting
and political reasoning, through the lenses of patterns recognition, starting with perception biases (Margolis,
1987).

4It was originally developed to study the perception of motion under noisy conditions in humans and non-
humans primates (e.g. van de Grind et al., 1983). In neuroscience, it has been used to study the neuronal
correlates of motion perception (Newsome et al., 1989, Britten et al., 1992 and Roitman and Shadlen, 2002)
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move at random; subjects report in which direction they think coherent dots are moving.

We can label experts ex post as the individuals with performance in the highest quintile,

and generate a collective decision by aggregating individual responses, with the additional

option of delegation to the experts (in the Liquid Democracy treatments) or abstention (In

the MVA treatments). We ran the experiment on Amazon Mechanical Turk with three

electorate sizes: N = 5, and N = 15, as in Experiment 1, and a larger electorate of N = 125.

We reach three results. First, given our experimental parameters, it is not rare for

individuals’ accuracy to be worse than random. And this even over a large number of

decisions: aggregating at the subject level over all 120 tasks, between 9 and 12% of subjects

have ex post accuracy strictly below randomness; between 11 and 17% do no better than

randomness. If we want to study voting and information aggregation when information may

be faulty, perceptual tasks can provide a very useful tool.

Second, we do not know individuals’ beliefs about their accuracy and the accuracy of

others, and cannot compare the extent of delegation or abstention we see in the data to precise

theoretical benchmarks. Yet, remarkably, we find the same patterns we saw in Experiment

1. The distributions of voters’ accuracy we observe in the two samples–Liquid Democracy

and MVA–are effectively identical, but delegation is twice as frequent than abstention when

N = 5, and more than 50% more frequent when N = 155, if anything accentuating the

disparity observed in the first experiment. Between one fourth and one third of subjects

choose to abstain, but about half, in all treatments, choose to delegate.

Third, the high frequency of delegation exacts its expected informational costs. Even

with a relatively high fraction of random, or below random subjects, universal majority

voting remains the best information aggregator, delivering the highest frequency of correct

group decisions in all treatments; MVA is only slightly less efficient, while Liquid Democracy

is dominated by both in all treatments.

The robustness of the conclusions across two very different experimental designs is the

main contribution of this study. The second design sacrifices experimental control in ex-

change for a less mathematical formulation; it conveys less information and leaves more

space for idiosyncratic responses; it is run on MTurkers rather than students, it is much

shorter, and it includes one treatment with a much larger group. And yet, and contrary

to our expectations, treatment effects in the second design closely replicate the effects we

observe in the first. In a pure common interest setting where experts are correctly identified,

individuals over-delegate. The resulting increase in the voting weight of the experts does

not lead to an increase in efficiency because the extent of delegation is too high, and thus

the net informational effect is negative. Experimental subjects are less prone to abstaining,

5It is 75% more frequency when N = 125.
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and thus the simpler routine option of allowing abstention leads to better outcomes than

allowing delegation.

The second contribution of this study is methodological. While the controlled design

of our first experiment in the end delivers robust conclusions, we think that it is impor-

tant to add to our experimental tool-kit designs that recognize the ambiguity present in

group decision-making. Experiments on ambiguity at the individual level are common; to

our knowledge they are much less so for collective decision-making.6 In voting problems,

in particular, the complexity of many questions and the asymmetry between the cost of ac-

quiring information and the small marginal impact of a single vote make the lack of precise

information very likely. Perceptual tasks, with the large and sophisticated literature that

accompanies them, can be a particularly usable tool. In this study, it is the combination of

a strictly controlled design in the lab with the freer design of the perceptual task that we

think teaches us the most. And it is this combination that we recommend.

Our work is related to three separate literatures. First, to the study of voting as infor-

mation aggregation. The informational costs and benefits of delegating to better informed

individuals in pure common interest voting problems were the subject of early studies on

the Condorcet Jury theorem (Margolis, 1976, Grofman et al., 1983 and 1983, Shapley and

Grofman, 1984), highlighting, as we do, the trade-off between the loss in aggregate infor-

mation and the more precise information of the individuals actually casting votes. These

studies asked important statistical questions but did not focus on rational equilibrium be-

havior. More recent work (Austen-Smith and Banks, 1996; Feddersen and Pesendorfer 1997;

McLennan, 1998; Wit, 1998) put the analysis of the Condorcet Jury theorem on solid equilib-

rium grounds, but abstracted from the focus on delegation. We did not find in the literature

our starting theoretical result, on the existence of an equilibrium with delegation that dom-

inates universal majority voting, but the result builds on the work of McLennan. As we

discussed, the trade-off identified in the case of delegation exists also in the case of absten-

tion. Here the best-known work includes partisan voters (Feddersen and Pesendorfer, 1996),

but the analysis can also be profitable and rich in a pure common interest setting, as shown

by Morton and Tyran (2011) in the case of three voters, and more generally by McMurray

(2013). Battaglini et al (2010) and Morton and Tyran (2011) test the theoretical predictions

in the lab. The latter model is closer to ours, and, contrary to Battaglini et al., allows for

a range of information types and does not rely on the existence of perfectly informed vot-

ers. Interestingly, it finds that experimental subjects appear predisposed towards abstaining,

6There is an increasing focus on strategic uncertainty. But the question is different from the lack of
basic information about the distributions of relevant parameters in the population, and even about own
parameters (accuracies, for us).
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doing so also even when abstention is dominated. In Morton and Tyran’s words, subjects

“follow a norm of “letting the experts decide””. According to our results, this tendency is

strengthened further when the choice is explicitly phrased as delegation. We are not aware

of existing experimental studies in this literature that expressly study delegation in voting.

[To be checked further].

The second strand of related works are studies of Liquid Democracy. Most of these

works belong either in normative political theory or in computer science. Green-Armytage

(2015) and Blum and Zuber (2016) discuss what they see as normative advantages of Liq-

uid Democracy, on both epistemic and equalitarian reasons: decisions are taken by better

informed voters, and at the same time LD avoids the creation of a detached class of semi-

permanent professional representatives. Because the focus is normative, these studies do not

analyze strategic incentives. The computer science literature is instead largely concerned

with understanding how Liquid Democracy would work in practice. It models behavior

via a priori algorithms and studies rich interactions where delegation takes place on net-

works (Christoff and Grossi, 2017; Kahng, Mackenzie and Procaccia, 2018; Bloembergen,

Grossi and Lackner, 2019; Caragiannis and Michas, 2019). These authors connect Liquid

Democracy to the social choice tradition, but here too strategic considerations are absent.

An exception is Armstrong and Larson (2021) which discusses the informational trade-off

involved in delegation and identifies a Nash equilibrium that always strictly improves over

universal majority voting. The paper retains the algorithmic flavor of this literature by

modelling the delegation choice as sequential; the common interest nature of the problem,

together with the added assumptions of complete information and costly voting, then deliv-

ers the equilibrium superiority of delegation. Finally, strategic concerns are at the heart of

two recent paper in economics, Ravindran (2021) and Dhillon et al. (2021). In Ravindran’s

model, voters’ types are binary and known, with either higher or low information accuracy,

and the goal is the characterization of the efficient equilibrium. With a single expert, optimal

delegation is defined precisely; with multiple experts, complications can arise although, as

in Armstrong and Larson, they can be solved if delegation decisions are sequential. Dhillon

et al. study delegation in a model à la Feddersen and Pesendorfer (1996), with partisan

voters and perfectly informed experts. As in the papers just discussed, they show that under

complete information delegation has desirable properties: the game is dominance-solvable

and delegation allows voters to coordinate on the best equilibrium. With incomplete infor-

mation, multiple equilibria are more difficult to avoid and results are weaker. None of these

works is experimental.

Finally, a literature in social psychology studies a question that is closely related to

our second experiment: if a group of individuals face, individually, a perceptual task but
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can then aggregate their reactions into a group decision, which decision rule for the group

will reach the correct answer most frequently? How does simple majority rule compare

to supermajority thresholds? In Sorkin et al.(1998), a small group of subjects are faced

with a signal detection task and asked whether the display reflects noise only or signal plus

noise. Although the group falls short of normative predictions, simple majority rule leads

to the highest accuracy. Individual behavior is modeled as reflecting two main parameters,

detection sensitivity and confidence, and the emphasis on confidence shapes the direction this

research has since taken. In small groups, decision typically follows discussion, and during

discussion individual confidence translates into influence. Communication thus threatens

group accuracy, unless confidence correlates positively with individual sensitivity (Sorkin et

al., 2001, Bahrami et al. 2012, Silver et al. 2021).7 Although it seems a natural next step,

we are not aware of similar studies that include the possibility of delegation.

In what follows, we begin by describing the theoretical model (Section 2) and its equi-

librium properties (Section 3). We then discuss our first experiment: its parametrization

and treatments (Section 4); its implementation (Section 5), and its results (Section 6). Sec-

tion 7 describes the motivation and the design of our second experiment; Section 8 reports

its results. Section 9 concludes. The Appendix collects longer proofs and some additional

experimental findings.

2 The Model

We study the canonical problem of information aggregation through voting in a pure common

interest problem. N odd voters face an uncertain state of the world ω and must take a

decision d. There are two possible states of the world, ω ∈ {ω1, ω2}, and two alternative

decisions d ∈ {d1, d2}. Every voter’s payoff equals 1 if the decision matches the state of

the world (d = dswhen ω = ωs, s = 1, 2), and 0 otherwise. Voters share a common prior

π = Pr(ω1) and receive conditionally independent signals σi ∈ {σ1, σ2}. We call qi the

precision of individual i’s signal, or the probability that i’s signal is correct. Precision varies

across individuals but is symmetric over the two possible states of the world: qi = Pr(σi =

σ1|ω1) = Pr(σi = σ2|ω2).

The group of N voters is composed of K (odd) experts and M (even) non-experts. All

experts receive signals of known precision qe = p. The precision of a non-expert signal is

instead private information: qi (i 6= e) is an independent draw from a commonly known

distribution F (q) with support [q, q] , with q = 1/2 and q = p. The signals themselves are

7The earlier experiments in this tradition studied a very large number of tasks, in the hundreds for each
subject, but a very small group of subject, as small as 8 or 12.
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also private information, for both experts and non-experts, but the type of each voter, as

either non-expert or expert, is commonly known. We denote by EU every voter’s ex ante

expected payoff, before the realizations of precisions and signals. EU equals the ex ante

probability that the groups reaches the correct decision.

Each individual holds a single, non-divisible vote. Under Liquid Democracy (LD), after

having learnt her precision qi but before having received the signal, the voter decides whether

to keep her vote or to delegate it. If the voter chooses delegation, she specifies whether it is

to an expert or to a non expert; the vote is then assigned randomly, with equal probability, to

any individual in the indicated category.8 We denote the probability of delegation by δe, for

delegation to an expert, and δne for delegation to a non-expert. Once delegation is decided,

signals are realized and individuals who have not delegated their vote indicate their preferred

decision. At the voting stage, the strategic decision is the probability of voting according to

one’s signal, or against it, a decision we denote by {vσ, v−σ}. When counting votes, each voter

who has chosen not to delegate receives a weight equals to the number of votes delegated

to her, plus 1. The decision receiving more votes is chosen. Note two implications. First,

because delegation is decided before the signal is received, the delegation decision itself

cannot convey information about the signal. Second, because voters holding multiple votes

communicate only their preferred decision, they are constrained to cast all votes in the same

direction. Both implications simplify the equilibrium characterization.

The game is thus a two-stage game, with strategies {δe(qi), δne(qi)} in the first stage,

and, conditional on no delegation, {vσ(qi), v−σ(qi)} in the second stage. With an eye to the

experimental implementation, we will select equilibria that require little coordination, and

in particular such that experts never delegate, and non-experts only delegate to experts.

Hence, multi-step delegation (i delegates to j who delegates to z ) will not be observed in

equilibrium, and thus neither will circular delegation flows (i delegates to j who delegates to z

who delegates to i). To characterize the equilibrium, the model nevertheless needs to specify

what would happen in such cases. We allow for multi-step delegation: if delegation targets a

voter who has herself chosen delegation, the full packet of votes is delegated according to her

instructions. However, if a set of delegation decisions results in a circular delegation flow,

we specify that all delegations involved are void.9

8The random assignment of delegated votes is the natural assumption in the absence of distinguishing
characteristics across experts. It also leads to some desirable spreading of delegated votes, as advocated for
example by Gőlz et al. (2018).

9We include all such delegation decisions: if i and j delegate to z, and z delegates to i, the original votes
are returned to all three voters (all three are left with a single vote).
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3 Equilibrium

We study an environment that matches the experimental set-up, and where, specifically, π =

Pr(ω1) = 1/2. In this symmetric environment, voting according to signal (vσ = 1 for all qi)

is an undominated strategy, a result that holds whether delegation is allowed, as in our

model, or is not, as in traditional majority voting. We focus on semi-symmetric Perfect

Bayesian equilibria in undominated strategies where, when voting, voters follow their signal,

and delegation strategies are symmetric for all voters of given type (expert or non-expert).

In what follows, “equilibrium” refers to such a notion. We are interested in the welfare

properties of delegation, and say that an equilibrium “strictly improves over majority voting”

if in equilibrium the ex ante probability of reaching the decision that matches the state of

the world is strictly higher than under (sincere) majority voting (MV), or EULD > EUMV .

Our most general theoretical result is summarized in the following theorem:10

Theorem. Suppose π = Pr(ω1) = 1/2. Then for any F , and for any N and K odd and

finite there exists an equilibrium with delegation that strictly improves over MV.

The result is of interest because the environment we are studying is particularly favorable

to MV. Given the symmetric prior and information structure, the Condorcet Jury theorem

applies to rational voting, and thus we know that MV converges to the correct decision

with probability 1 asymptotically, as the size of the electorate becomes unbounded. In

addition, we are restricting our attention to semi-symmetric equilibria under LD, and thus

excluding asymmetric profiles of strategies that we know efficient but that require demanding

coordination.11 And yet, the theorem states that there always exists an equilibrium where

the possibility of delegation strictly improves over MV.

We prove the theorem in the appendix, but the intuition is both straightforward and

interesting. The essence of the proof is that, when delegation is possible and some vot-

ers’ information may be barely better than random, there cannot be an equilibrium where

delegation is excluded with probability 1: every voter casting their vote with probability

1 (and thus replicating MV) is not an equilibrium. But in this common interest problem,

we know from McLennan (1998) that the set of strategies that maximize expected utility

must be an equilibrium. Together, the two observations imply that an equilibrium exists,

10We grant the result the name of “theorem” because it refers to the default canonical model of information
aggregation under common interest, and yet we have not found it in the literature. However, many results
with similar flavor do exist. See for example Grofman, Owen and Feld (1982) and (1983).

11Building on Nitzan and Parousch (1982), and Shapley and Grofman (1984), Ravindran (2021) char-
acterizes the highest welfare equilibrium in the case of a single expert. It is an asymmetric equilibrium
where the total number of votes delegated to the expert mirrors the expert’s precision (more precisely, is
proportional to ln(p/(1− p)).
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that it must include a positive probability of delegation, and that it must dominate MV. In

addition, again from McLennan (Theorem 2), because the environment is fully symmetric

for all voters of given type, the conclusion continues to apply when we restrict attention to

semi-symmetric strategies.

To see intuitively why there cannot be an equilibrium where every voter casts her vote

with probability 1, consider, for ease of exposition only, the simple case of a single expert:

K = 1 and N = M + 1 Suppose everyone else votes (sincerely) and consider the choices of

a voter with precision qi near the lower bound of the precision distribution F (q). The voter

must decide whether to cast her vote and not delegate (an action yielding expected utility

EUND(qi)), or delegate the vote to others, and in this case the best choice is to delegate

to the expert. Delegation to the expert yields expected utility EUD(qi), and because upon

delegation i will not be voting and non-expert precisions are independent draws from F (q),

EUD(qi) = EUD. It is not difficult to verify that:

limqi→q(EUND(qi)− EUD) =

q(1− p)
[(
M − 1

M/2

)
µM/2(1− µ)M/2−1

]
− p(1− q)

[(
M − 1

M/2− 1

)
µM/2−1(1− µ)M/2

]
(1)

where µ =
∫ q
q
qdF (q) and, because signals are independent,

(
M−1
x

)
µx(1 − µ)M−1−x is the

probability that x of the other M − 1 non-expert votes are correct.

Voter i’s decision matters only if i disagrees with the expert and her vote is pivotal. Not

delegating is advantageous if i′s signal is correct while the expert’s signal is not (an event with

probability qi(1−p)), and the total number of correct votes cast by the other non-experts falls

short of majority by a single vote (with probability
(
M−1
M/2

)
µM/2(1 − µ)M/2−1)–the first term

on the right-hand side of equation (1). Delegating is advantageous if the expert’s signal is

correct, while i’s signal is not (with probability p(1−qi)) and the number of correct votes cast

by non-experts falls short of majority by 2 votes (with probability
(
M−1
M/2−1

)
µM/2−1(1−µ)M/2)–

the second term on the right-hand side of equation (1). Since
(
M−1
M/2

)
=
(
M−1
M/2−1

)
,it follows

that:

Sign[limqi→q(EUND(qi)− EUD)] = Sign
[
q(1− p)µ− p(1− q)(1− µ)

]
or:

limqi→q(EUND(qi)− EUD) < 0⇐⇒ [q(1− p)µ− p(1− q)(1− µ)] < 0.

With q = 1/2, the condition simplifies to µ < p, which is always satisfied. Hence there exists
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no equilibrium such that all non-experts prefer voting to delegation for any precision of their

signal.

Two observations conclude the argument. First, note that assuming q = 1/2, while useful

for the proof, is a natural assumption: q cannot be inferior to 1/2, and thus 1/2 is the natural

lower boundary of the support of the precision distribution.12 The probability of realizations

near such lower bound needs to be positive, but can be arbitrarily small. Second, as we show

in the appendix, generalizing the model to K experts does not modify the argument, and

indeed the same simple condition identified here remains the critical condition when there

are multiple experts.

The theorem does not characterize the equilibria with delegation. In Section 4 we will do

so when we specialize the model to the parameter values we use in the experiment. Here, to

make sure the mechanisms that drive the model are intuitively clear, we describe in detail

the unique semi-symmetric equilibrium in undominated strategies that exists in the case of

a single expert.

3.1 A Single Expert (K = 1)

Proposition 1. Suppose π = Pr(ω1) = 1/2 and K = 1. Then for any N odd and finite

and for any F atomless and continuous, there exists an equilibrium such that: (i) the expert

never delegates her vote and always votes according to signal; (ii) there exists q̃(N) ∈(q, q)

such that non-expert i delegates her vote to the expert if qi < q̃ and votes according to signal

otherwise. (iii) Such an equilibrium strictly improves over MV and is ex ante maximal among

sincere semi-symmetric equilibria where the expert never delegates and non-experts delegate

to the expert only.

The proposition is proved in the appendix. The structure of the equilibrium, however,

is intuitive. Note that in all equilibria (in fact, for any number of experts), non-experts

must adopt monotone threshold strategies–there must exist a precision threshold q̃ such

that voters with lower precision delegate, and voters with higher precision do not. The

reason is immediate: if the voter delegates, expected utility does not depend on the voter’s

precision. But if the voter does not delegate, there is a non-zero probability that the voter

is pivotal, in which case expected utility increases with the voter’s precision. The conclusion

then follows. Given monotone threshold strategies, the appendix shows that the delegation

directions in the proposition–the expert never delegating and non-experts delegating to the

expert only–are indeed best responses when all others adopt them too. And since we know,

12As noted earlier, with binary states, a signal correct with probability inferior to 1/2 is equivalent to the
opposite signal being correct with probability higher than 1/2.
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from the earlier theorem, that an equilibrium with partial delegation must exist, it follows

that an equilibrium with the strategies characterized in the proposition must exist. Finally,

we also find that the condition identifying the equilibrium threshold corresponds to the first

order condition from the maximization of ex ante expected utility, over all profiles of semi-

symmetric monotone threshold strategies with sincere voting and the specified directions of

delegation. Hence, again invoking the theorem, the equilibrium is maximal over such profiles

and improves strictly over majority voting.

It is important to note that the equilibrium threshold q̃ that supports the improvement

over MV is strictly interior to the range (q, q). Because q = p, that means that in equilibrium

there are voters who know that their precision is strictly lower than the expert’s precision,

and yet cast their vote, rather than delegating. Since delegation decreases the aggregate

information in the system, and yet the equilibrium with delegation is superior to MV, we

expect the threshold q̃ to be low–only voters with very imprecise information delegate in

equilibrium. Indeed, this is what the numerical examples will show. Studying in detail a

particularly simple example makes clear why.

Suppose N = 3 and K = 1, and consider non-expert i’s choice of whether or not to

delegate to the expert. Note that i conditions on the other non-expert not delegating,

because only in such a case does i’s decision matter. If i delegates, the expert has 2 votes

and chooses unilaterally. Hence EUDi = p. If i does not delegate, the correct decision is

reached if i’s signal is correct and at least one of the other two signals is correct as well, or

if i’s signal is incorrect but both of the others are correct. Or:

EUNDi = qi[1− (1− µv(q̃))(1− p)] + (1− qi)pµv(q̃)

where µv(q̃) = E(q|q > q̃).

Equilibrium q̃ solves EUDqi=q̃ = EUNDqi=q̃:

p = q̃[1− (1− µv(q̃))(1− p)] + (1− q̃)pµv(q̃)

Or

p(1− q̃)(1− µv(q̃)) = (1− p)q̃µv(q̃)

Note that the equilibrium condition thus equalizes the probability that the expert is

correct and both the non-experts are not, with the probability that the expert is incorrect

and both the non-experts are correct. Intuitively, the delegation decision only matters: (i) in

case of disagreement with the expert (since the choice is otherwise moot), and (ii) if the vote

is pivotal, and the other non-expert not only does not delegate (has precision above q̃),but

13



disagrees with the expert (and hence agrees with the non-expert voter with precision q̃). The

non-expert signal with precision q̃ receives implicit validation from a second independent and

more accurate signal. It is this implicit validation that pushes equilibrium behavior away

from delegation, and the equilibrium q̃ towards low values. For example, with N = 3 and

K = 1, if p = 0.7 and F (q) is Uniform over [0.5,0.7], q̃ = 0.572, below the mean non-expert

precision of 0.6. A non-expert voter’s precision is always lower than the expert’s, but the ex

ante individual probability of delegation is only 36 percent.

The good properties of the equilibrium with q̃ ∈ (0, 1) depend strongly on the optimal,

spare use of delegation. But internalizing such reasoning is difficult. Our first experiment

tests participants’ behavior in an environment that mirrors the model closely.

4 Experiment 1: Treatments and Parametrizations

In the lab, we make two simplifications relative to the model. First, we constrain the

direction of delegation: experts cannot delegate, and non-experts can only delegate to the

experts. Second, we combine the delegation and voting decisions: after being told her own

precision and receiving her signal, every participant faces a single ballot with three possible

alternatives: delegate, or vote for one or the other of the two options. In the theoretical

model, the delegation decision is modeled as preceding the signal to ensure that delegation

itself does not convey information about the signal. In the lab, with random group formation

and partial feed-back, the coordination required to use delegation informatively with respect

to the signal is in practice impossible to achieve. Without such a concern, unifying the

decisions in a single ballot streamlines the experiment. Note, and this is important, that

it also allows us to observe the signals of the delegators and evaluate the counterfactual

outcomes with universal majority voting (MV).

We are interested in three main questions: (1) We consider first the simplest setting,

when decisions are taken by a small group and a single expert. How well does LD perform,

relative to MV? (2) According to the theorem, LD’s potential to improve over MV persists

with larger group sizes and multiple experts. In the lab, do results change qualitatively when

the size of the group and the number of experts increase? (3) LD makes it possible to shift

voting weight away from less informed voters and towards more informed ones. But reducing

the weight of less informed voters can also be achieved, more simply, by allowing abstention.

How does LD compare to MV with abstention? We denote such a rule by MVA, and as in

the case of LD, study it both in a small group with a single expert, and in a larger group

with multiple experts.

In all experiments, we set p = 0.7, and F (q) Uniform over [0.5, 0.7]. We study four
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Table 1: p = 0.7, F (q) Uniform over [0.5, 0.7]

LD1 : N = 5; K = 1 LD3 : N = 15; K = 3

q̃ F (q̃) EULD EUMV q̃3 F (q̃3) EU3
LD EU3

MV

0.7 1 0.7
0.717

0.532 0.162 0.843 0.832
0.543 0.215 0.731

treatments. Two treatments concern LD. In LD1, groups consist of 5 voters with a single

expert: N = 5, K = 1. In LD3, each group has 15 voters in all, of which 3 are experts: N =

15, K = 3. Hence in both treatments one fifth of the group are experts: K/N = 1/5. The

two treatments with abstention, MVA1 and MVA3, substitute abstention for the possibility

of delegation, again either with N = 5, K = 1 (MVA1), or with N = 15, K = 3 (MVA3).

4.1 Liquid Democracy

Table 1 reports the theoretical predictions when delegation is possible.13

In treatment LD1, we find two semi-symmetric equilibria. For any realization of non-

expert precisions, there always exists an equilibrium where every voter delegates to the

expert with probability 1: no individual non-expert is ever pivotal, and delegating one’s

vote is a (weak) best response. The expert then alone controls the outcome. With semi-

symmetric strategies, such an equilibrium corresponds to q̃ = q and yields ex ante utility

EULD(q̃ = q) = p = 0.7. In addition, there is a unique equilibrium where q̃ is strictly interior.

As argued earlier, the q̃ threshold is low, and the ex ante probability of delegation is only

just above 20 percent. The ex ante probability of reaching the correct decision, equivalent to

the expected utility measures, is lowest when the expert decides alone (q̃ = q), intermediate

under MV , and highest in the equilibrium with delegation and interior q̃. However, the

proportional increase in the probability that the group selects the correct option is small,

about 2 percent at each step.14

In LD3, full delegation is not an equilibrium any longer. Intuitively, when there are

multiple experts and all other non-experts delegate, voter i can be pivotal only if the experts

disagree among themselves. The disagreement reduces the attraction of delegation and

for sufficiently high q (still smaller than q) casting a vote is preferable. As we know, the

13The details of the derivations are in the Appendix.
14With a single expert, the uniqueness of the semi-symmetric equilibrium with interior q̃ can be proven

analytically and holds for arbitrary N . Absent either communication or repetition, asymmetric equilibria
are implausible in the lab if they require coordination. But when the expert is dictator and no other voter
is pivotal, the choice to delegate or not becomes irrelevant and trivial asymmetric equilibria becomes more
realistic. For example, for any realization of non-expert precisions, there are equilibria with 3 non-experts
delegating and 1 voting.
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equilibrium with interior q̃ continues to exist. Equilibrium delegation, however, is rare:

the expected frequency of individual delegation falls to 16 percent. As theory teaches, the

interior equilibrium yields a higher probability of a correct decision than MV. However,

with the increase in the size of the group, the Condorcet Jury Theorem effect becomes very

pronounced: majority voting works very well and the scope for improvement is small. The

percentage gain is only 1.3 percent.

The table conveys two main messages. First, we see concretely what the interior equilib-

rium entails for the experimental parametrizations. In particular, as expected, equilibrium

delegation is not frequent and concerns only voters with precisions not far from randomness.

Second, the improvement in the probability of taking the correct decision is small, almost

certainly too small to be detectable in the lab. Setting a higher p, and/or setting q < p

would increase the scope and expected gain from delegation. Increasing q or N would have

the opposite effect. We have chosen a parametrization that delivers similar efficiencies for

the two rules to leave the data free to favor either. The realistic challenge for the experi-

ment will be to see whether indeed in this environment LD and MV’s welfare properties are

comparable.

4.2 Abstention

Like delegation, abstention can lower the voting weights of less informed voters, with the

major advantage of being a simpler and familiar option. However, the two mechanisms

are not equivalent: under abstention, voting weight is redistributed towards all voters who

choose to vote; under LD, delegated votes target the experts only.

We implement the MVA treatments in the identical environment we study under LD.

After non-expert voters learn, privately, the precision and the content of their personal signal,

they decide, simultaneously and independently, whether to vote or to abstain. Experts are

not given the option of abstaining. Everything else remains unchanged. The model of

abstention is closely related to McMurray (2013), and its main results– the existence of an

equilibrium in monotone cutpoint strategies, and its superiority to MV–carry over to our

setting. We report the relevant equations in the Appendix.15 As in the case of delegation,

and for very similar reasons, abstention too is limited to voters with weak information.

15McMurray’s model and ours differ in two main aspects. First, for comparison to LD, we assume the
existence of a known group of experts with higher, known, but not perfect precision. McMurray does not
distinguish experts, but widens the support of the distribution of precisions F (q) to cover the full interval
[1/2, 1]. Second, because of our experimental aim, we assume that the size of the electorate is known and need
not be large, deviating from McMurray’s large Poisson game set-up. The logic of the two models is otherwise
identical. The central intuition comes from the fact that best response strategies are monotone in individual
precision and thus abstaining in equilibrium shifts voting weight towards better informed individuals.
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Table 2: p = 0.7, F (q) Uniform over [0.5, 0.7]

MVA1 : N = 5;K = 1 MVA3 : N = 15;K = 3

α̃ F (α̃) EUMVA EUMV α̃3 F (α̃3) EU3
MVA EU3

MV

0.7 1 0.7
0.717

0.7 1 0.784
0.8320.580 0.40 0.724 0.580 0.40 0.849

0.5 0 0.717 0.5 0 0.832

Table 2 shows the equilibria with abstention, for the experimental parametrizations. We

denote by α̃ the precision threshold below which in equilibrium a non-expert abstains, and

above which a non-expert votes.

For both group sizes, there are three semi-symmetric equilibria. Two are boundary equi-

libria, with either zero (α̃ = 0.5) or full (α̃ = 0.7) abstention; one is an interior equilibrium

where, for both group sizes, a non-expert abstains if precision is below 0.58, i.e. with ex ante

probability of 40 percent. The boundary equilibrium with zero abstention corresponds to

MV; the one with full abstention, where the decision is delegated to the experts, is inferior

to MV. As in McMurray’s analysis, the interior equilibrium does deliver expected gains over

MV, but these remain quantitatively small.16 The interior equilibrium threshold for ab-

stention is higher than the threshold for delegation, and remains constant in the two group

sizes. It implies a larger expected number of abstentions than delegations: for example, and

rounding up to integers, when N = 15, in equilibrium we expect 2 non-experts to delegate

under LD, but 5 non-experts to abstain under MVA.

Under both LD and MVA, the expected improvements over MV are minor. It is natural

to ask how sensitive such potential improvements are to strategic mistakes.

4.3 Robustness

We consider here a particularly simple parametrization of strategic mistakes: we suppose

that behavior remains symmetric, but the precision threshold for delegation or abstention is

chosen incorrectly. In Figure 1, the horizontal axis is the common threshold, and the vertical

axis reports expected utilities, or the probability of making the correct choice under each of

the three voting rules, LD (in Blue), MVA (in Green) and MV (in Grey). The highest points

on the Blue and Green curves coincide with the respective equilibrium thresholds. The first

panel corresponds to N = 5, K = 1; the second to N = 15, K = 3.

At q̃ or α̃ = 1/2, no-one delegates their vote or abstains, and all curves equal MV

16The existence of the boundary equilibria depends on N and Kodd. Note that because MV without
abstention is an equilibrium when abstention is allowed, the simple proof used to establish the earlier theorem
cannot be extended from delegation to abstention.
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Figure 1: Robustness to strategic errors. The horizontal axis is q̃ (α̃), the vertical axis is
EU . Blue is LD, Green is MVA, and Grey is MV.

and coincide. At q̃ or α̃ = 0.7, all non-experts delegate or abstain, and only the expert/s

decide(s).17 In the first panel, with a small group, the maximum potential improvement over

MV from delegation (from LD) is higher than from abstention (MVA). However, this is not

true in the second panel, with the larger group. Both results were already shown in Tables

1 and 2. More interesting is the range of thresholds for which each voting rule dominates

MV. Here the message is consistent across the two group sizes: in both cases, the range of

thresholds that deliver improvements over MV is limited, and particularly limited for LD.

When the group is larger, LD’s potential for losses is evident in the figure, as is its increased

fragility, relative to MVA: the range of thresholds that improve over MV is half as large

under LD3 than under MVA3. With both voting schemes, but with LD in particular, while

potential gains are small, there is the real danger of reaching worse decisions: under LD3,

maximal potential losses are more than six times maximal potential gains.

5 Experiment 1: Implementation

We ran the experiment online over the Summer of 2021, using the Zoom videoconferencing

software. Participants were recruited from the Columbia Experimental Laboratory for the

Social Sciences (CELSS)’ ORSEE website.18 They received instructions and communicated

with the experimenters via Zoom, and accessed the experiment interface on their personal

computer’s web browser. The experiment was programmed in oTree and, with the excep-

tion of a more visual style for the instructions, developed very similarly to an in-person

experiment. Each session lasted about 90 minutes with average earnings of $26, including a

17When K = 3, the Blue and Green curves do not coincide at q̃ = 0.7 because under MVA3 each expert
has the same weight; while under LD3 the number of votes each of them commands is stochastic.

18Greiner (2015). CELSS’ ORSEE subjects are primarily undergraduate students at Columbia University
or Barnard College.
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Table 3: Experiment 1: Experimental Design

Sessions Treatments Rounds Subjects Groups

1a LD1, LD3 20,20 15 3, 1
1b LD3, LD1 20,20 15 1, 3
2a MVA1, MVA3 20,20 15 3, 1
2b MVA3, MVA1 20,20 15 1, 3

3a, 3a’ LD3, MVA3 20,20 15 1, 1
3b, 3b’ MVA3, LD3 20,20 15 1, 1

4a LD1, MVA1 20,20 15 3, 3
4b MVA1, LD1 20,20 15 3, 3

show-up fee of $5.

Participants were asked to vote on the correct selection of a box containing a prize, out

of two possible choices, a Green box and a Blue box. The computer selected the winning

box putting equal probability on either; conditionally on the computer’s random choice,

participants then received a message suggesting a color, and were told the probability that

the message was accurate.19 The same screen also informed them of whether or not they

were an expert (for that round). Participants were then asked to vote for one of the two

boxes, if experts, or, if non-experts, to either choose one of the boxes or delegate their vote

to an expert (in the LD treatments), or abstain (in the MVA treatments). Across rounds,

expert/non-expert identities were re-assigned randomly, under the constraint that groups of

5 voters had a single expert, and a group of 15 had three; if the session involved more groups,

they were re-formed randomly. A copy of the instructions is reproduced in the Appendix.

We ran 10 sessions, each involving 15 subjects (150 subjects total). Participants played

20 rounds each of two treatments (40 rounds in total), according to the experimental design

reproduced in the following table. Hence in total we have data for 240 rounds for LD1 and

for MVA1, and 120 rounds for LD3 and for MVA3.

6 Experiment 1: Results

6.1 Frequency of delegation and abstention

Figure 2 reports the aggregate frequencies of delegation and abstention in the data (the dark

columns), and according to the predictions of the interior equilibrium, given realized signal

19We used examples to instruct participants on what the probability of the message being accurate meant.
To limit decimal digits, the precision of the signal was drawn uniformly from a discrete distribution with bins
of size 0.01. When comparing the experimental results to the theory, below, we compute equilibria using the
corresponding discrete distribution of precisions. The differences are minute.
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Figure 2: Aggregate frequency of delegation and abstention. Confidence intervals are calcu-
lated from standard errors clusered at the indivi

precisions in the experiment (the light columns). Columns on the left refer to LD treatments;

columns on the right to MV. The light blue lines are 95% confidence intervals, calculated

with standard errors clustered at the individual level.

The result is unambiguous: delegation rates in the experiment are between two and three

times what theory predicts for the equilibrium that improves over MV. Abstention rates on

the other hand are comparable to the predictions. With such high propensity to delegate,

the conclusion is robust to all plausible ways of cutting the data: disaggregating by session,

considering only the 10 final rounds, clustering standard errors at the session level. Under

LD1, there is a second symmetric equilibrium with universal delegation. We do not see it in

the data, but, as noted earlier, asymmetric equilibria with very high delegation also exist.20

The specific claim here then is not that subjects were necessarily playing non-equilibrium

strategies, but rather that they were not playing the symmetric interior equilibrium that

dominates MV.

Regressions on individual behavior that control for signal quality and for round and

treatment order effects lead to the same conclusion. Table 2 report linear probability and

probit regressions, with Panel A referring to LD1 and MVA1 (N = 5); Panel B to LD3

and MVA3 (N = 15). In both panels, the excluded case is MVA played as first treatment

in MVA-only sessions. Standard errors are clustered at the individual level. The results

are very similar for both group sizes. As expected, the propensity to abstain or delegate is

20Out of the 240 LD1 rounds, there are 87 rounds (36.25%) where at least 3 non-experts delegated. In
such rounds, the expert is dictator and no individual delegation decision is pivotal. Thus the strategies are
an equilibrium.
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affected negatively by higher precision of the signal, with no significant difference in impact

over the two treatments. Order of treatments and number of rounds have no sustained

effects, although there is some weak evidence for increasing abstention/delegation in later

rounds in the larger groups (when N = 15), or when the treatment is played second in the

smaller groups. The strongly significant and surprising result is the higher propensity to

delegate, relative to abstaining. If we focus on interior equilibria, recall that the theoretical

prediction is in fact in the opposite direction: abstention is predicted to be more frequent

than delegation.

Participants’ choices appear coherent, if not optimal. Delegation and abstention decisions

are not only negatively correlated to signals precision, as the regressions show; we find that

they are also monotonic in signal precisions (if non-expert i votes at precision q(i), then

i votes at all q′(i) > q(i)). We report histograms of monotonicity violations for all four

treatments in the Appendix. There is weak evidence of fewer violations under MVA, but

the two treatments are effectively comparable. Just below 60 percent of subjects have no

violations at all under LD; just above 60 percent under MVA, and the results are invariant

to the size of the group.21 In all cases, it is possible to generate perfect monotonicity for at

least 80 percent of participants by changing at most 2 of their non-expert choices.22

We use monotonicity to estimate individual precision thresholds for delegation and abstention–

the thresholds below which each participant delegates or abstains. Figure 3 reports, for each

participant, the mean of the range of thresholds that, for each individual, are consistent

with minimal monotonicity violations; the size of the dots is proportional to the number

of participants at that threshold. The darker diamonds correspond to the average empiri-

cal thresholds, and the lighter ones to the theory. The figure confirms the over-delegation

that characterizes LD, while again average values for abstention are close to the theoretical

predictions. The dispersion in estimated thresholds is typical of similar experiments (for

example, Levine and Palfrey, 2007; Morton and Tyran, 2011), but is in clear tension with

the focus on symmetric equilibria.

The observation that thresholds tend to be lower for delegation rather than abstention is

confirmed in Figure 4, where we plot the cumulative distribution functions of the estimated

thresholds.

For both group sizes, the LD distribution first order stochastically dominates the MVA

distribution: at any precision, including at the lower boundary of the support, the fraction of

subjects estimated to delegate is above the corresponding fraction of abstainers (the fraction

21The fraction becomes 80 percent if we limit attention to the last 10 rounds of each treatment.
22With type randomly assigned, the expected number of rounds played as non-experts is 16. The maxi-

mum possible number of monotonicity violations over 16 rounds is 8.
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(1) (2)
Linear Probability Probit

LD 0.328*** 0.938***
(0.0971) (0.333)

[0.00107] [0.00491]

Round 0.0309 0.0851
(0.0442) (0.158)
[0.486] [0.590]

Signal Quality -0.777*** -2.624***
(0.0759) (0.283)
[0.000] [0.000]

Second 0.154* 0.534*
(0.0868) (0.307)
[0.0801] [0.0815]

Second * Mixed -0.129 -0.451
(0.0967) (0.337)
[0.186] [0.182]

LD * Second -0.0896 -0.332
(0.118) (0.413)
[0.449] [0.421]

LD * Second * Mixed -0.0253 -0.0327
(0.144) (0.492)
[0.861] [0.947]

LD * Round -0.112* -0.345
(0.0665) (0.233)
[0.0956] [0.138]

LD * Signal -0.0776 0.0653
(0.0893) (0.348)
[0.387] [0.851]

Constant 0.675*** 0.582***
(0.0759) (0.216)
[0.000] [0.00705]

Observations 1,920 1,920
R-squared 0.309
*** p<0.01, ** p<0.05, * p<0.1

Frequency of Delegation or Abstention

Notes: Standard errors in parentheses, clustered at the individual subject 
level. P-values in brackets. Delegation/abstention is measured as a binary 0-
1 subject decision. Experts are dropped because they cannot delegate or 
abstain. Only LD1 and MVA1 rounds are included. "Second" indicates 
that the treatment appeared second in the session. "Mixed" indicates that 
both an LD treatment and an MVA treatment appeared in the session.

Table 4: Determinants of delegation and abstention; N=5
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(1) (2)
Linear Probability Probit

LD 0.208*** 0.677**
(0.0746) (0.283)

[0.00609] [0.0167]

Round 0.0783* 0.274**
(0.0401) (0.136)
[0.0532] [0.0444]

Signal Quality -0.861*** -2.691***
(0.0553) (0.220)
[0.000] [0.000]

Second -0.0963 -0.341
(0.0797) (0.275)
[0.229] [0.214]

Second * Mixed 0.0784 0.295
(0.0865) (0.298)
[0.367] [0.322]

LD * Second 0.0367 0.125
(0.113) (0.384)
[0.745] [0.745]

LD * Second * Mixed -0.166 -0.577
(0.118) (0.402)
[0.160] [0.151]

LD * Round -0.0506 -0.174
(0.0600) (0.205)
[0.401] [0.395]

LD * Signal 0.0107 0.102
(0.0690) (0.287)
[0.877] [0.721]

Constant 0.832*** 0.992***
(0.0614) (0.199)
[0.000] [0.000]

Observations 2,880 2,880
R-squared 0.309
*** p<0.01, ** p<0.05, * p<0.1

Frequency of Delegation or Abstention

Notes: Standard errors in parentheses, clustered at the individual subject 
level. P-values in brackets. Delegation/abstention is measured as a binary 0-
1 subject decision. Experts are dropped because they cannot delegate or 
abstain. Only LD3 and MVA3 rounds are included. "Second" indicates 
that the treatment appeared second in the session. "Mixed" indicates that 
both an LD treatment and an MVA treatment appeared in the session.

Table 5: Determinants of delegation and abstention; N=15
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Figure 4: Individual delegation/ abstention thresholds. CDF’s.
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of subjects whose estimated threshold is below the threshold, and thus are voting, is lower).

The data do not show substantive differences between the two group sizes.

6.2 Frequency of correct choices

Beyond regularities of delegation and abstention, the real variable of interest is the frequency

with which the voting system leads to the correct choice. Figure 5 reports the experimental

data and compares them to the theoretical interior equilibrium and to MV.23 Because we

are studying variations of majority voting, a majority of outcomes under both LD and MVA

correspond to MV.24 The figure describes the data; later, we will test the performance of LD

and MVA, relative to MV, by conditioning on reaching different outcomes.

We report results grouped by N . The vertical axis is the frequency of correct outcomes

over the full data set for the corresponding treatment. The figure holds three main lessons.

First, for both group sizes, LD and MVA yield very similar frequencies of correct decisions:

given N , the dark blue columns have very similar heights. Second, for both group sizes, both

systems fall short of their possible best performance: the light Grey columns are consistently

higher than the Blue and dark Grey columns. Third, MVA outcomes are closely comparable

to MV for both group sizes; LD outcomes fall short of MV, especially for small groups.

Two main deviations could be responsible for the systems’ underperformance relative to

the theory.25 The first is the erroneous choice of delegation/abstention thresholds. Figures

2 and 3 support this interpretation for LD, with its consistent over-delegation, but not for

MVA. The second is random voting in the form of voting against signal. As we show in the

Appendix, the frequency of voting against signal correlates negatively and significantly with

signal precision, and experts vote against signal more rarely than non-experts. Both because

experts cast multiple votes under LD and because subjects choose to vote at lower precision

under MVA, the share of votes cast against signal is lower in the LD treatments (at about

6%) than in the MVA ones (at about 10%), with little difference across group sizes.26 MVA

23All results are calculated given the experimental realizations of the state and of signals. The 95%
confidence intervals are calculated from standard errors clustered at the group level. The results under
MV were constructed by imputing votes for those subjects who delegated or abstained in the experiment.
Because some of the votes we do observe were cast contrary to signal, we allowed for such a possibility. We
calculate the outcome under MV by supposing that unobserved votes follow signals with probability equal
to the average frequency observed in the treatment. The randomization is repeated 10,000 times; each time
yields a share of correct decisions under MV for the relevant data set, and the figure reports the mean over
the 10,000 randomizations. We have verified that calculating the probability of voting sincerely by using the
subject’s own frequency over the observed votes does not affect the results.

24More than 70% of all outcomes under LD, and more than 80% for MVA
25A priori, a third possibility would be non-monotonicity in delegation and abstention decisions. But as

we described earlier, violations of monotonicity are rare.
26The numbers are comparable to those reported, for example, by Guarnaschelli et al. (2000) and Goeree
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Figure 5: Frequency of correct outcomes
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suffers from more random voting. Both systems thus fail to realize their potential gains over

MV, but for different reasons.

The comparison to MV shows that the penalty is higher for LD. The better performance

of MV in the LD samples reflects the random superiority of the signal draws in those samples:

although signal realizations were drawn from the same probability distribution, the frequency

of correct signals was higher in the LD treatments. Thus, although LD and MVA have similar

shares of correct decision in our data, LD treatments could have performed better, given the

superiority of the realized signals.27

6.3 Comparing LD and MVA to MV

Evaluating the significance of the disparities observed between LD or MVA on one side, and

MV on the other is not immediate. To begin with, calculating correct indices of statistical

significance is complicated by several factors: we are interested in group results, with com-

plex correlations across data points: the same individuals are observed over multiple rounds;

the frequency with which they are assigned the role of experts is random and variable; the

voting group is assembled randomly every round when N = 5, but is fixed when N = 15;

finally, the imputation of missing votes under MV creates randomness in the MV outcomes.

But the fundamental difficulty is simpler: as mentioned above, outcomes coincide in a large

majority of cases. Restricting the data sample to those elections in which outcomes under

delegation, or abstention, differ from outcomes under MV leaves us with little information.

To overcome this difficulty, we use bootstrapping methods to simulate a large number of elec-

tions in a populations for which our data are representative. By simulating many elections,

conditioning on different outcomes becomes feasible.

The procedure we implement allows for correlation across an individual’s multiple deci-

sions, and uses randomization to generate the correct balance of experts and non-experts.

For each voting system and group size, we generate outcomes by drawing subjects, with re-

placement, each with their full set of 20-round decisions, and matching them randomly into

groups. We then study the outcomes corresponding to 100,000 replications of the experiment

for each treatment, using the population of subjects for that voting system and group size.

We describe the procedure in more detail in the Appendix. Figure 6 shows the distributions

of the differential frequency of correct decisions between the voting systems we are studying

and MV, for each group size, conditioning on the decisions being different. Consider for

and Yariv (2011) for juries voting under simple majority and pure common interest, in the absence of
communication (6-9%).

27If votes were not cast against signals, all three voting systems would be more efficient, but we have
verified that, as expected, the difference between LD and MV, and the lack of a difference between MVA
and MV, would not be affected.
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Figure 6: Differential frequency of correct decisions, relative to MV, conditional on different
outcomes. Distributions over 100,000 bootstrap replications.

example LD1. For each of the 100,000 simulations, we focus on the subset of elections DLD1

such that LD1 and MV reach a different outcome. Call γLD1(DLD1) (γMV (DLD1)) the fre-

quency with which LD1 (MV) is correct over subsetDLD1, a variable that ranges from 0 to 1.

We are interested in γLD1(DLD1)−γMV (DLD1). Because the outcomes differ, by construction

γMV (DLD1) = −γLD1(DLD1). Hence γLD1(DLD1) − γMV (DLD1) = 2γLD1(DLD1) − 1. Our

measure then ranges from 1–when, conditional on disagreement, LD1 always reaches the cor-

rect outcome, and MV the incorrect outcome–to -1–when the opposite holds; a value of zero

indicates that the two rules are correct with equal frequency, conditioning on disagreement.

The first panel of Figure 6 plots, in blue, the distribution of such variable over the 100,000

replications. The equivalent distribution for MVA is plotted in the same panel in red. The

second panel reports the results for groups of size 15.28

For both group sizes, the blue distribution is shifted to the left, relative to the zero point

indicated by the vertical black line: when LD and MV differ, the correct decision is more

likely to be the one reached by MV. The asymmetry is more pronounced for N = 5, where

the Blue mass to the left of zero–the probability that MV is superior to LD1, conditional on

disagreement–is 85%, versus 67% for LD3. MVA on the other hand, when disagreeing with

MV, is more likely to be right than wrong: only barely when N = 5, and the probability

that MV is superior to MVA1 is just below 50% (48%), but more substantially when N = 15

and the probability that MV is correct, conditional on disagreement with MVA3, falls to

26%. The distributions as a whole are informative of the quantitative gap in the probability

of being correct, relative to MV. In the panel oon the left, for example, the mode of the Blue

28Averaging over all replications, the share of elections in which the outcome differs from MV is 23.4%
for LD1, 15.3% for MVA1, 20.1% for LD3, and 15% for MVA3.
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distribution at -16% tells us that over the 100,000 replications, conditional on disagreement,

the highest probability mass is around a frequency of correct decisions of about 42% for LD1,

versus 58% for MV. 29

In our first experiment then, LD falls short of the hopes if its supporters, even in a

streamlined environment where experts are correctly identified. Like delegation, abstention

allows voters with weak information not to influence the final choice, but is simpler and

performs better. In our data, its efficiency is either comparable or somewhat superior to

universal majority voting, contrary to what we see for delegation.

But do these results reflect some core feature of the systems we are studying, or are they

artifacts of the lab? We analyze this question in our second experiment.

7 Experiment 2: The Random Dot Kinematogram

[Should we repeat here the motivations for exp. 2?] As we discussed in the Introduc-

tion, the goal of our second experiment is to evaluate whether the deviations from optimal

behavior we see in the lab may stem from the over-mathematization of the environment.

Although it is not clear why a detailed mathematical frame should affect the relative per-

formance of delegation and abstantion, it is quite possible that the frame’s high precision

may distort behavior. With this in mind, we chose for the second experiment a perceptual

task–the Random Dot Kinematogram (RDK)–where individual signals correspond to the ac-

curacy of individual perceptions, and neither own or others’ accuracy is described or known

in precise probabilistic terms. Because the task may be unfamiliar, we describe it in some

detail. More information as well as the instructions are reproduced in the Appendix.

We ran the experiment on Amazon Mechanical Turk (with prescreening of subjects by

CloudResearch) with three electorate sizes: N = 5, and N = 15, as in Experiment 1, but

also N = 125, i.e. with a larger size than we could run in the lab or conveniently on Zoom.

In our implementation, 300 moving dots appear in each subject’s screen for 1 second; a

small fraction of them (dependent on treatment) moves in a coherent direction, either Left

or Right, with equal ex ante probability. After 1 second, the image disappears and each

participant reports whether the perceived coherent direction was Left or Right. We divide

the experiment into two parts; each preceded by a few practice tasks, but with the first part

effectively playing the role of extended training. Both parts are divided into six blocs, with

each bloc consisting of 20 tasks of equal coherence. We report in the Appendix the precise

29We have verified that conclusions remain qualitatively similar if we construct the bootstrap ignoring
the possibility of correlation in individual behavior across rounds, and thus draw each individual choice from
the full data set for that treatment.
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parameters we used for the task (the size and color of the dots, the movements per frame,

the random process for the dots moving randomly, etc.), but it should be clear that our

experiment does not aim at measuring perception per se–for example, we cannot control the

ambient light, screen size, or contrast of the monitors our subjects use. Rather, our focus

remains on collective decision-making.30

In Part 1, subjects are rewarded on the basis of their individual accuracy. Coherence–the

fraction of dots that move in the same direction–ranges from 20% in bloc 1 (one fifth of

the 300 dots move synchronously) to 10% in bloc 2, 8% in bloc 3, 6% in bloc 4, and finally

the same coherence used in Part 2, and dependent on N , for the final two blocs. At the

end of Part 1, each subject is informed of her fraction of correct answers in each bloc. In

part 2, each task has both an individual component (“Choose the coherent direction”), and

a subsequent group decision with the possibility of delegation (under LD), or abstention

(under MVA). (“You said Left. Do you want to Vote or to Delegate/Abstain?”). When

delegation is chosen, the vote is assigned randomly to an “expert”, that is, one participants

whose accuracy is in the top 20% of the group over the last 2 blocs (40 tasks); experts are not

allowed to delegate (under LD) or to abstain (under MVA). Thus in line with Experiment

1, groups of 5 have 1 expert, and groups of 15 have 3; the group of 125 has 25 experts, and,

following our standard notation, we denote the two treatments on the larger group by LD25

and MVA25. The group decision corresponds to the majority of votes cast, and individuals

are rewarded both for their individual accuracy and for the accuracy of the group. As in

Part 1, feedback about average individual accuracy in each bloc is provided at the end of

Part 2.31 In Part 2, coherence is kept constant across all blocs. We chose its value according

to two main criteria: the task should not be so difficult that subjects are discouraged and

act randomly, and should not be so easy that MV accuracy, especially in the large group,

leaves effectively no room for possible improvement. Based on the results of two preliminary

pilots, we fixed coherence in Part 2 at 5% for electorates of sizes 5 and 15, and at 3% for the

electorate of size 125. The task is objectively hard, as the reader can verify at the following

link: https://blogs.cuit.columbia.edu/ac186/files/2022/05/rdk-video.gif

The experiment used the RDK plugin in jsPsych (Rajananda et al., 2018) and was hosted

on cognition.run. For each of LD and MVA, we recruited 60 subjects divided into 12 groups

for the N = 5 treatment and 90 subjects divided into 6 groups for N = 15, (thus replicating

the corresponding number of subjects and groups in Experiment 1), and an additional 125

subjects for the largest group. There were then 275 subjects for each voting system, or

30Heer and Bostock (2010) and Woods et al. (2015) report on the replication successes and challenges of
conducting research on perceptual stimuli online.

31Feedback over group accuracy cannot be provided because it depends on choices made by others and is
calculated ex post. Recall that participants are online and will come to the experiment at different times.
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Figure 7: Accuracies per bloc per subject. Distributions. The panel on the left corresponds
to coherence of 0.05; the panel on the right to coherence of 0.03.

550 in total. The group size and the relevant number of experts were always made public.

The experiment lasted about 20 minutes. Subjects earned $1 for participation and a bonus

proportional to the number of correct responses, for a total average compensation of $4.92,

or just below $15 an hour.

8 Experiment 2: Results

8.1 Accuracy

One motivation for considering a perceptual experiment is the possibility of generating sig-

nals, here accuracies, of less than random precision. Figure 8 reports the distributions of

correct responses in Part 2, aggregating by level of coherence (0.05 on the left; 0.03 on the

right). Accuracy is the fraction of correct responses calculated over each of the 6 blocs for

each subject, that is, over 20 tasks.

For given coherence, the distributions are very similar across treatments. In all cases, the

spread in the distribution of accuracies is large, ranging from about 25% all the way to 95%.

The frequency of blocs with accuracy below 50% is non-negligible and, surprisingly, persists

when we aggregate over a larger number of tasks. Aggregating at the subject level, over all

120 tasks, 9% of subjects have accuracy below randomness with coherence 0.05, and 12%

with coherence 0.03; 11% and 17% respectively do no better than randomness.32 If we want

to study voting and information aggregation when information may be faulty, perceptual

32Note however that individual subjects’ accuracies show high variability across blocs, evidence of random
noise in perceiving and recording the stimulus in the brain, as formalized in psychophysics research.
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Figure 8: Frequency of delegation and abstention (non-experts)

tasks can provide a very useful tool.

8.2 Frequency of delegation and abstention

Absent information about the distributions of subjects’ beliefs, we do not have a theoretical

reference point for the extent of delegation and abstention we see in the data. We can however

compare the two, under the plausible assumption, supported by Figure 7, that accuracies

and beliefs about accuracies are comparable across the LD and MVA samples. [But we do

have average beliefs.] Figure 8 plots the frequencies of delegation and abstention for each

group size, calculated over non-experts only for possible comparison to Experiment 1.33 The

95% confidence intervals are calculated from s.e’s clustered at the individual level.

In Experiment 2, delegation remains much more common than abstention, for all group

sizes. In groups of 5, where the disparity is largest, delegation is more than twice as frequent;

in groups of 15, where we see the least disparity, delegation is still 60% more common.

The decline in coherence, from N = 5 or 15 to N = 125, has smalll effects on the data.

Unexpectedly, considering the rather radical change in experimental design, Figure 8 looks

quite similar to Figure 2, for the group sizes for which we have data from both experiments.

The higher frequency of delegation is confirmed in the regressions reported in Table 6.

The unit of analysis is the bloc at the individual subject level (hence 6 blocs per subject),

with data grouped by coherence level.34 The regressions reported below confirm the results

of the figure: in all treatments, delegation is significantly more frequent than abstention. In

33The figure is almost identical if frequencies are calculated over the full sample.
34The results are unchanged if the data are separated by group size
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Experiment 2, accuracy is at best a very weak predictor of participation in voting, never

significant at conventional levels and with the wrong sign in the probit estimation, confirming

the high uncertainty in subjects’ evaluation of their own accuracy. The probit regressions

detect a decline in abstention as blocs proceed, which would be consistent with increased

familiarity with the task.

8.3 Frequency of correct outcomes

How well did the three voting systems do in Experiment 2? Figure 9 reports the frequency

of correct group decisions, aggregated over all groups and tasks for given treatment. As in

the case of Figure 5, a large fraction of outcomes are identical.

Figure 9: Frequency of correct outcomes

As expected, for all three systems, the fraction of correct decisions increases with the size

of the group, ranging from about 65% at N = 5 to 90-95% at N = 125. In the pure common

interest environment, the aggregation of independent signals remains very powerful, even in

the presence of weak accuracies. In line with this logic, and with Condorcet, universal voting

consistently achieves the best results. Here too, for the group sizes that are common to both

experiments, the numbers are surprisingly similar to the numbers in Figure 5. Relative to

MV, MVA performs better than LD, but the result in principle could be due to the lower

propensity to abstain rather than delegating. Because abstention is less common, the fraction

of decisions in which MVA and MV disagree is about the half fraction under LD (between 8

and 12% across the different treatments under MVA, v/s 12 to 24% under LD). And if MVA

and MV agree more, their performance overall is more similar. To achieve better estimates

of the differences across the three voting systems, we once again bootstrap the data and
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Table 6: Frequency of delegation/abstention.
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replicate the group decisions a large number of times, generating a large sample of decisions

over which the voting results would differ, as we did with the data from Experiment 1.

Figure 10 reports the results of 100,000 simulations, with three panels corresponding, in

order, to N = 5,N = 15, and the single large group at N = 125. As in Figure 6, we plot the

distributions of the differential frequency of correct decisions under LD (in Blue) or MVA (in

Orange), relative to MV. Recall that, if the distribution is skewed to the left of the vertical

line at zero, then conditional on disagreement, the correct decision is more likely to be the

one reached by MV; and viceversa if the distribution is skewed to the right.

Figure 10: Differential frequency of correct decisions, relative to MV, conditional on different
outcomes. Distributions over 100,000 bootstrap replications.

In all three panels, the blue mass is shifted to the left. Conditional on disagreement,

the share of simulated experiments in which MV is more likely than LD to yield the correct

outcome is 87% for LD1, 97% for LD3, and 95% for LD25. MVA (the orange mass in the

figure) fares better: the corresponding numbers are 58% for MVA1, 69% for MVA3, and

48% for MVA25, when MVA is just barely more likely to be correct than MV, conditional

35



on disagreement. As in Figure 6, the shapes of the distributions tell us the frequencies with

which the two systems are correct, relative to MV. The proximity to zero indicates that

even if the voting rule performs less well than MV, the difference need not be large. When

N = 5 for example, the mode of the Blue distribution at -0.08 says that over the 100,000

simulations the most likely result is a frequency of correct decision of 46% for LD1 versus

54% for MV.

9 Conclusions

LD:

In two very different experiments, delegation is much more frequent than

abstention.

LD is dominated by MV, MVA is comparable to MV.

On informational grounds, the value of LD seems at best uncertain.

Other objectives?

A methodological suggestion:

Collective decision-making in an ambiguous world.

Perceptual tasks are a good tool.

If possible, combined with a more controlled lab experiment.
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A Appendix

A.1 Theoretical results

Theorem. Suppose π = Pr(ω1) = 1/2. Then for any F and for any N and K odd and

finite, there exists an equilibrium with delegation that strictly improves over MV.

Proof. The proof proceeds in four steps. The first three are well-known. First, as we noted

in the text, with π = 1/2, and Pr(σi = σ1|ω1) = Pr(σi = σ2|ω2) > 1/2 for all i, voting

according to signal is an undominated strategy, and we can focus on sincere equilibria.35

Second, because this is a voting game of pure common interest, we can apply McLennan

(1998)’s first result: a set of strategies that maximizes each voter’s expected utility is an

equilibrium. Hence an equilibrium exists. Third, the environment is fully symmetric for

voters of each given type (experts and non-experts). All voters have identical preferences

and are endowed with a single vote. All experts have equal precision and equal probability

of receiving any delegated vote, and thus, for any delegation strategy by non-experts, each

expert’s vote has equal expected weight on the final decision. Non-experts will generally

have heterogeneous realized precisions, and the equilibrium action will depend on individual

precision, but each precision q(i) is an independent draw from the same distribution F .

Hence any permutation of realized precisions to different non-expert voters is assigned equal

probability, and each voter holds equal beliefs about the others’ precisions. For each type

of voters, then, these symmetry conditions satisfy the requirements of McLennan’s Theorem

2: if a semi-symmetric strategy profile maximizes each voter’s expected utility in the set of

semi-symmetric profiles, then it is an equilibrium. We can search for an equilibrium while

restricting attention to semi-symmetric profiles.

The only new step is the fourth and last: can there be an equilibrium where no-one

delegates? If the answer is negative, then the equilibrium that is maximal for expected

utility in the profile of semi-symmetric strategies, and that we know exists, must involve a

strictly positive probability of delegation for some realized precisions. But note that if no-

one delegates, LD is equivalent to sincere MV. Thus if the profile of strategies where no-one

delegates is not an equilibrium, then there must exist an equilibrium of the LD voting game

that both involves a strictly positive probability of delegation and strictly dominates MV.

Consider the perspective of non-expert voter i, with qi in the neighborhood of q. Suppose

no-one else delegates. We show in what follows that i’s best response is to delegate his vote.

Note first that if no-one delegates, all non-i voters cast a single vote and have equal weight

on the group decision. Hence if i delegates, he delegates the vote to an expert, with precision

35With F (q) defined over [1/2, p] the event qi = 1/2 is of measure zero.
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p ≥ qj for all j.

We need to calculate i’s interim expected utility from non-delegating (EUND(qi)) or

delegating (EUD). Recall that the expected utility from delegating does not depend on qi.

The expressions are somewhat cumbersome but conceptually straightforward. We find:

EUND(qi) =
M−1∑
cn=0

(
M − 1

cn

)
µcn(1− µ)M−1−cn×

×

[
K∑
ce=0

(
K

ce

)
pce(1− p)K−ce

(
qiIcn+ce+1>

(M+K)
2

+ (1− qi)Icn+ce> (M+K)
2

)]

EUD =
M−1∑
cn=0

(
M − 1

cn

)
µcn(1− µ)M−1−cn×

×

[
K∑
ce=0

(
K

ce

)
pce(1− p)K−ce

(( ce
K

)
I
cn+ce+1>

(M+K)
2

+

(
K − ce
K

)
I
cn+ce>

(M+K)
2

)]

where cn(ce) indexes the number of non-experts (experts) whose signals are correct, and IC

is an indicator function that takes value 1 if condition C is satisfied and 0 otherwise. As

described in the text, µ is the expected precision of non-experts who choose to vote, and

thus in this conjectured scenario, µ =
∫ q
q
qdF (q). For each realized cn and ce, i’s expected

utility always equals 1 if (cn + ce) > (M +K)/2, i.e. if the other voters with correct signals

constitute a majority of the electorate. The choice to delegate or not matters when (cn + ce)

falls short of the majority by one vote. In such a case, EUND(qi) equals 1 if i’s own signal

is correct (with probability qi) and zero otherwise; EUD equals 1 if i’s vote is delegated to

an expert with a correct signal (with probability ce/K) and zero otherwise.

Voter i, with qi in the neighborhood of q, strictly prefers delegation if it yields higher

expected utility, or:

limqi→q (EUND(qi)− EUD) < 0

Denote by r the number of additional correct votes required to reach a majority, given the

votes of the non-experts, excluding i, or r≡ (M +K + 1)/2− cn. After some simplifications,
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we can write:

limqi→q (EUND(qi)− EUD) =

=
K+1∑
r=1

(
M − 1

M+K+1
2
− r

)
µ

M+K+1
2

−r(1− µ)
M−(K+3)

2
+r

(
K

r − 1

)
pr−1(1− p)K−(r−1)

(
q − r − 1

K

)
(2)

Signing this expression is not immediate because the sign depends on the last term. However,

the problem is simplified by noticing that:(
M − 1

M+K+1
2
− r

)
=

(
M − 1

M+K+1
2
− (K + 2− r)

)
.

Equation (2) can then be written as:

limqi→q (EUND(qi)− EUD) =

(K+1)/2∑
x=1

(
M − 1

M+K+1
2
− x

)
(µ(1− µ))

M+K+1
2

−(K+2−x)
(
K

x

)
px(1−p)x×

×
{

(µ(1− p))K+2−2x
[
q − x− 1

K

]
+ ((1− µ)p)K+2−2x

[
x− 1

K
− (1− q)

]}
or, with q = 1− q = 1/2 :

limqi→q (EUND(qi)− EUD) =

(K+1)/2∑
x=1

(
M − 1

M+K+1
2
− x

)
(µ(1− µ))

M+K+1
2

−(K+2−x)
(
K

x

)
px(1−p)x×

×
[
q − x− 1

K

]{
(µ(1− p))K+2−2x − ((1− µ)p)K+2−2x

}
With q = 1/2,

[
q − (x− 1)/K

]
> 0 for all x < (K + 2)/2, and thus for all relevant x values.

It follows that:

(µ(1− p))K+2−2x < ((1− µ)p)K+2−2x ⇒ limqi→q (EUND(qi)− EUD) < 0

With all x < (K + 2)/2, the exponent on both sides is positive, and we can compare the

roots:

µ(1− p) < (1− µ)p⇒ limqi→q (EUND(qi)− EUD) < 0,

a condition that reduces to:

µ < p
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and is always satisfied. Hence limqi→q (EUND(qi)− EUD) < 0: delegation is the best

response. A profile of strategies such that all non-voters cast their vote with probability 1

cannot be an equilibrium.

Proposition 1. Suppose π = Pr(ω1) = 1/2 and K = 1. Then for any N odd and finite and

for any F [properties?], there exists an equilibrium such that: (i) the expert never delegates

her vote and always votes according to signal; (ii) there exists a unique q̃(N) ∈(q, q) such

that non-expert i delegates her vote to the expert if qi < q̃ and votes according to signal

otherwise. Such an equilibrium strictly improves over MV and is maximal among sincere

semi-symmetric equilibria where the expert never delegates and non experts delegate to the

expert only.

We prove the proposition in three steps. Following the argument in the text, we focus

on equilibria with sincere voting. We begin by taking as given the directions of delegation:

the expert never delegates, and non-experts only delegate to the expert. The first lemma

shows that, if the assumed pattern of delegation holds, then there must exist a q̃ ∈(q, q) such

that non-expert i delegates her vote to the expert if qi < q̃ and votes according to signal

otherwise. Because q̃ is strictly interior to the interval [q, q], the conjectured equilibrium

must have strictly interior probability of delegation. Lemma 2 shows that given Lemma

1, the assumed directions of delegation are indeed best responses when others follow them.

Hence the profile of strategies described in Proposition 1 is an equilibrium. Finally, Lemma

3 proves that such interior equilibrium maximizes ex ante expected utility among sincere,

semi-symmetric equilibria with the specified directions of delegation.

Lemma 1. Suppose π = Pr(ω1) = 1/2 and K = 1. Suppose in addition that the expert never

delegates her votes, and non-experts only delegate to the expert. Then there exists q̃ ∈(q, q)

such that non-expert i delegates her vote to the expert if qi < q̃ and votes according to signal

otherwise.

Proof. Under the conjectured pattern of delegation, the expert never delegates, and cycles of

delegation are not possible. The only question is the delegation decision by non-experts. As

argued earlier, keeping in mind that all qi’s are independent draws from F (q), non-expert i’s

expected utility conditional on delegation, EUDi, does not depend on qi (because i would

not be voting). Hence EUDi = EUD for all i. On the other hand, i’s expected utility

when not delegating, EUNDi, must be weakly increasing in qi (because the probability

of reaching the correct outcome must be weakly increasing in qi), and strictly increasing

if i’s probability of being pivotal is positive. Suppose first q̃ =q: all non-experts delegate
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to the expert. In such a case, the expert is dictator, and no individual non-expert can

make herself pivotal by deviating: EUNDi = EUND = EUD, and delegating is indeed a

(weak) best response for any qi. Hence q̃ =q can be supported as a system of mutual best

responses by all non-experts. However, we know from the Condorcet Jury Theorem that

in the environment we are studying, MV dominates dictatorship by any voter. When the

expert never delegates, MV corresponds to q̃ =q: all voters cast their vote. And yet we know

from our earlier theorem that MV cannot be an equilibrium when delegation is allowed. By

the logic of the theorem, there must be a profile of mutual best responses with positive but

partial expected delegation.36 But if delegation is not full (or q̃ 6= q), then any voter who

casts a vote has strictly positive probability of being pivotal. Thus for any non-expert i,

(EUNDi(qi) − EUD) is strictly increasing in qi. It then follows that there must exist a

q̃ ∈(q, q) such that EUNDi(qi) = EUD at qi = q̃, EUNDi(qi) > EUD for all qi > q̃, and

EUNDi(qi) < EUD for all qi < q̃: all non-experts i with qi > q̃ prefer to vote, and all

non-experts i with qi < q̃ prefer to delegate to the expert.

Lemma 2. Suppose π = Pr(ω1) = 1/2 and K = 1. Then: (i) If non-experts adopt the

threshold strategies described in Lemma 1 and only delegate to the expert, it is optimal for

the expert never to delegate. (ii) Consider non-expert i. If the expert never delegates and all

other non-expert j 6= i delegates to the expert if and only if qj < q̃, with q̃ ∈ (q, q), and never

to a non-expert, then it is optimal for i to delegate to the expert if and only if qi < q̃, and

never to a non-expert. Hence the strategies are mutual best responses.

Proof. We begin by proving claim (i): delegation from the expert to a non-expert cannot be

optimal. First consider expert e delegating to some non-expert j when j does not delegate

to e (and thus there is no cycle). Expected utility when all M non-experts use threshold q̃

is higher than expected utility when M − 1 non-experts use cutoff q̃ and one non-expert i

delegates to the expert for all qi (because i delegating when qi > q̃ strictly decreases expected

utility). In turn, expected utility in this latter case is higher than expected utility from the

same actions if the expert’s precision were drawn from [q̃, q] according to distribution F ,

rather than being p. But the expected utility from this last scenario is identical to the

expected utility from e delegating to j: M − 1 non-experts delegate using cutoff q̃, but all

their delegated votes are turned over to non-expert j, with precision randomly drawn from

[q̃, q], and e, who always delegates regardless of precision, is the analogue of voter i in the

constructed scenario. Now suppose that when e delegates to j, j also delegates to e. This

creates a cycle, and all delegations are canceled. Note that having one’s delegation canceled

36We proved the theorem for arbitrary directions of delegation. But notice that the theorem continues to
hold if we fix delegation to the pattern conjectured here: the expert never delegates and non-experts only
delegate to the expert.
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conveys no information about signal realizations. Hence the voting game after delegations are

returned is simply majority voting. But we know that majority voting is strictly dominated

by the profile of threshold strategies with positive probability of delegation to the expert.

In particular, canceling all delegations must strictly decrease expected payoff since j only

delegates to e when qj < q̃, and thus optimal delegation in this scenario is strictly positive.

Consider now claim (ii). Given threshold q̃, consider the difference in expected utility for

a non-expert i between delegating to expert e or instead delegating to some non-expert j who

has not herself delegated her vote to e (the choice would otherwise be irrelevant). Expert e

has unconditional expected precision p; non-expert j has unconditional expected precision

µ(q̃) ≡ EF [qj|qj > q̃] < p. Voter i’s expected utility from the two forms of delegation can

differ only if i’s vote is pivotal and e and j’s signals differ (σe 6= σj): for any number of

delegated votes z, the expert agrees with M
2
− (z + 1) non-experts and disagrees with M

2
(j

included, i not included). The delegation choice is not trivial because, although µ(q̃) < p,

when i is pivotal and σe 6= σj, there must be fewer independent signals agreeing with e than

with j. Letpivi(z) be the event corresponding to the set of signal realizations at which i’s

vote is pivotal, conditional on the expert being delegated z votes, and pivji(z) be the same

event additionally conditioning on σe 6= σj. Note that in both events the expert agrees with
M
2
− (z + 1) non-experts and disagrees with M

2
: the events contain the same information

content and Pr(σe = ω|pivi(z)) = Pr(σe = ω|pivji(z)) for all z. Then, noting that the

summation below is to M − 2 to exclude i and j:

EUD(i delegate to e)− EUD(i delegate to j) =

=
M−2∑
z=0

(
M − 2

z

)
F (q̃)z(1−F (q̃))M−2−zPr(pivji(z)|z)[Pr(σe = ω|pivji(z))−Pr(σj = ω|pivji(z))]

Define r(z) ≡ Pr(σe = ω|pivji(z)) = Pr(σe = ω|pivi(z)). Then:37

r(z) =
Pr(pivji(z)|σe = ω)Pr(σe = ω)

Pr(pivji(z))
=

=
p(µ(q̃))

M
2
−(z+1)(1− µ(q̃))

M
2

p(µ(q̃))
M
2
−(z+1)(1− µ(q̃))

M
2 + (1− p)(1− µ(q̃))

M
2
−(z+1)(µ(q̃))

M
2

As Pr(σj = ω|pivji(z)) = 1− Pr(σe = ω|pivji(z)), we can rewrite:

37Note that r(z) is strictly decreasing in z for all z small enough that e is not dictator.
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EUD(i delegate to e)− EUD(i delegate to j) =

=
M−2∑
z=0

(
M − 2

z

)
F (q̃)z(1− F (q̃))M−2−zPr(pivji(z)|z)[2r(z)− 1]

We can sign this expression by exploiting the equilibrium condition for q̃. Consider the

difference in expected utility between i delegating to e and i voting when her precision is

qi = q̃:

EUD(i delegate to e)− EUND(qi = q̃) =

M−2∑
z=0

(
M − 2

z

)
F (q̃)z(1− F (q̃))M−2−zPr(pivi(z)|z)[Pr(σe = ω|pivi(z))− q̃] =

=
M−2∑
z=0

(
M − 2

z

)
F (q̃)z(1− F (q̃))M−2−zPr(pivi(z)|z)[r(z)− q̃]

Note that Pr(pivji(z)|z) =
M
2

M−1Pr(pivi(z)|z) (i.e. j must be part of the M/2 non-experts

who disagree with e, out ofM−1 non-experts, ignoring i). For equilibrium q̃, EUD(i delegate to e)−
EUND(qi = q̃) = 0 which implies:

M − 1
M
2

M−2∑
z=0

(
M − 2

z

)
F (q̃)z(1− F (q̃)M−2−zPr(pivji(z)|z)r(z) =

=
M − 1

M
2

M−2∑
z=0

(
M − 2

z

)
F (q̃)z(1− F (q̃))M−2−zPr(pivji(z)|z)q̃

or:

r(z) = q̃.

Hence:

EUD(i delegate to e)− EUD(i delegate to j) =

=
M−2∑
z=0

(
M − 2

z

)
F (q̃)z(1− F (q̃))M−2−zPr(pivji(z)|z)[2q̃ − 1]

But (2q̃− 1) > 0 for all q̃ ∈ (q, q), and thus EUD(i delegate to e)−EUD(i delegate to j) >
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0.

Lemma 3. Suppose π = Pr(ω1) = 1/2 and K = 1. Then the equilibrium strategies charac-

terized in Lemma 2 maximize ex ante expected utility over sincere, semi-symmetric equilibria

where the expert never delegates and non-experts delegate to the expert only.

Proof. Given threshold q̃,we can write ex ante expected utility as:

EU(q̃) =
M∑
z=0

(
M

z

)
F (q̃)z(1− F (q̃))M−zEU(z, q̃),

where EU(z, q̃) is expected utility conditioned on z delegated votes to the expert. The first

order condition corresponding to the maximization of EU(q̃) with respect to q̃ is given by

dEU(q̃)

dq̃
= 0

where

dEU(q̃)

dq̃
=

M∑
z=0

(
M

z

)
f(q̃)(z)F (q̃)z−1(1− F (q̃))M−zEU(z, q̃)−

−
M∑
z=0

(
M

z

)
f(q̃)(M−z)F (q̃)z(1−F (q̃))M−z−1EU(z, q̃)+

M∑
z=0

(
M

z

)
F (q̃)z(1−F (q̃))M−z

d

dq̃
EU(z, q̃).

(3)

We prove the lemma by showing that if there is an equilibrium in strictly interior threshold

strategies, then first order condition 3 is satisfied at the equilibrium threshold. But since

we know from the Theorem that an interior threshold equilibrium must exist, it follows that

such threshold maximizes expected utility, in the class of equilibrium strategies embodied in

EU(q̃) (sincere, semi-symmetric strategies where the expert never delegates and non-experts

delegate to the expert only).

Suppose that an interior equilibrium threshold q̃ exists. Note that:

EU(z, q̃) =

∫ q

q̃

...

∫ q

q̃

U(z, q1, ..., qM−z)f(q1|qi1 > q)...f(qM−z|qiM−z
> q)dq1...dqM−z

where the function U(z, q1, ..., qM−z) corresponds to the probability of the group choosing

the correct alternative when z votes are delegated to e and i1, ..., iM−z non-experts, with

precisions qi1 , ..., qiM−z
, have not delegated their votes.
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Using Leibnitz’ integral rule, we find:

d

dq̃
EU(z, q̃) = (M − z)

f(q̃)

(1− F (q̃))
(EU(z, q̃)− EU(z, qi = q̃, q̃)) (4)

where:

EUi(z, q̃, qi) =

∫ q

q̃

...

∫ q

q̃

Ui(z, qi, q
1, ..., qM−z)f(q1|qi1 > q)...f(qM−z|qiM−z

> q)dq1...dqM−z

(The function Ui(z, qi, q
1, ..., qM−z) denotes the probability of choosing the correct alternative

from the perspective of voter i with precision qi who has not delegated). Equation 4 tells

us that the marginal effect on expected utility of an infinitesimal change in the threshold q̃

corresponds to the change in utility from one voter switching to delegating, multiplied by

the probability of such a switch (the hazard rate), times the number of susceptible voters

(M − z).

Consider now the equilibrium condition for the threshold q̃. A voter who delegates her

vote to the expert e has expected utility EUD:

EUD(q̃) =
M∑
z=1

(
M − 1

z − 1

)
F (q̃)z−1(1− F (q̃))M−zEU(z, q̃)

If instead voter i does not delegate her vote, expected utility EUNDiis given by:

EUNDi(q̃, qi) =
M∑
z=0

(
M − 1

z

)
F (q̃)z(1− F (q̃))M−z−1EUi(z, q̃, qi)

An equilibrium in strictly interior threshold strategies exists if there exists q̃ ∈ (q, q) such

that EUD(q̃) = EUNDqi=q̃(q̃).

Returning now to the first order condition 3, note that the first term can be simplified

to:

Mf(q̃)
M∑
z=1

(
M − 1

z − 1

)
F (q̃)z−1(1 − F (q̃))M−zEU(z, q̃) = Mf(q̃)EUD(q̃). (5)
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Similarly, using 4, we can simplify the third term in 3:

M∑
z=0

(
M

z

)
F (q̃)z(1− F (q̃))M−z

d

dq̄
EU(z, q̃) =

=
M∑
z=0

(
M

z

)
f(q̃)(M − z)F (q̃)z(1− F (q̃))M−z−1EU(z, q̃)−Mf(q̃)EUNDi(q̃, qi) (6)

Substituting 5 and 6 in 3, we thus obtain:

dEU(q̃)

dq̃
= Mf(q̃)EUD(q̃)−

M∑
z=0

(
M

z

)
f(q̃)(M − z)F (q̃)z(1− F (q̃))M−z−1EU(z, q̃)+

+
M∑
z=0

(
M

z

)
f(q̃)(M − z)F (q̃)z(1− F (q̃))M−z−1EU(z, q̃)−Mf(q̃)EUNDi(q̃, qi) =

Mf(q̃) (EUD(q̃)− EUNDi(q̃, qi))

or: if there exists q̃’ such that EUD(q̃′)− EUNDq=q̃′(q̃
′), then dEU(q̃)

dq̃

∣∣∣
q̃=q̃′

= 0.

Together with the Theorem, this result establishes the Lemma. We know from the

Theorem that an equilibrium with q̃ ∈ (q, q) exists and must be such that EU(q̃) > EU(q) >

EU(q),(where the last inequality follows from the Condorcet Jury Theorem). Hence there

exists q̃′ = argmaxEU(q̃), with q̃′ ∈ (q, q) and by the result above, such q̃′ must be an

equilibrium.

A.1.1 LD: K (odd) experts; M (even) non-experts.

We report here, for generic parameter values, the formulas we used to derive the equilibria

for the experimental parametrizations. As always, EUND(qi) is interim expected utility

for a voter with realized precision qi; the equilibrium threshold is denoted q̃ and solves

EUND(qi = q̃) = EUD, and µv(q̃) ≡ EF [qj|qj > q̃]. We find:
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EUND(qi, q̃) =
M−1∑
z=0

(
M − 1

z

)
(1− F (q̃))z F (q̃)M−1−z

z∑
cn=0

(
z

cn

)
(µv(q̃))

cn(1− µv(q̃))z−cn×

×


 K∑
ce=0

(
K

ce

)
pce(1− p)K−ce

M−z−1∑
x1=0

M−z−1−x1∑
x2=0

...

M−z−1−
∑K−2

k=1 xk∑
xK−1=0

(M − z − 1)!∏K
k=1 xk!

×
×
(
qi

(
(1/K)M−z−1Icn+1+ce+

∑ce
k=1 xk>(M+K)/2

)
+

(1− qi)
(

(1/K)M−z−1Icn+ce+
∑ce

k=1 xk>(M+K)/2

))}
,

where xK ≡M − z− 1−
∑K−1

k=1 xk, and IC is an indicator function that equals 1 if condition

C is realized and 0 otherwise. Similarly:

EUD(q̃) =
M−1∑
z=0

(
M − 1

z

)
(1− F (q̃))z F (q̃)M−1−z

z∑
cn=0

(
z

cn

)
(µv(q̃))

cn(1− µv(q̃))z−cn×

×


 K∑
ce=0

(
K

ce

)
pce(1− p)K−ce

M−z∑
y1=0

M−z−y1∑
y2=0

...

M−z−
∑K−2

k=1 yk∑
yK−1=0

(M − z)!∏K
k=1 yk!

×
×
(

(1/K)M−zIcn+ce+
∑ce

k=1 yk>(M+K)/2

)}
where yK ≡M − z −

∑K−1
k=1 yk.

We use as welfare criterion ex ante expected utility, i.e. expected utility before the

realization of qi (but under the correct expectation of q̃). Hence:

EU(q̃) =

∫ q̃

q

EUDf(q)dq +

∫ p

q̃

EUND(qi)f(q)dq

Under MV, ex ante expected utility is given by:

EUMV =
M∑
cn=0

(
M

cn

)
µcn(1− µ)z−cn

K∑
ce=0

(
K

ce

)
pce(1− p)K−ceI

cn+ce>
(M+K)

2

where, as in earlier use, µ ≡ EF (qi).

A single expert With a single expert, equations simplify:
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EUD(q̃) =
M−1∑
z=0

(
M − 1

z

)
(1− F (q̃))z F (q̃)M−1−z

z∑
cn=0

(
z

cn

)
µv(q̃)

cn(1− µv(q̃))z−cn×

×
[
pI
cn+M−z+1>

(M+1)
2

+ (1− p)I
cn>

(M+1)
2

]

EUND(qi, q̃) =
M−1∑
z=0

(
M − 1

z

)
(1− F (q̃))z F (q̃)M−1−z

z∑
cn=0

(
z

cn

)
µv(q̃)

cn(1− µv(q̃))z−cn×

×
[
qi

(
pI
cn+M−z+1>

(M+1)
2

+ (1− p)I
cn+1>

(M+1)
2

)
+ (1− qi)

(
pI
cn+M−z> (M+1)

2

+ (1− p)I
cn+>

(M+1)
2

)]
,

A.1.2 MVA: K (odd) experts; M (even) non-experts.

Under the possibility of abstention as well, all equilibria are in monotone threshold strategies.

We denote by α̃ the equilibrium threshold such that all i with qi < α̃ choose to abstain, and

all i with qi > α̃ choose to vote. With a known and finite electorate size, the equilibria are

sensitive to whether K and M are odd or even. In particular, an equilibrium with α̃ = q (all

voters cast their vote) exists if and only if N is odd. An equilibrium with α̃ = p (all experts

vote, and none of the other voters do) exists if and only if K is odd. This both equilibria

exist in our experimental paramterizations. In addition, there are interior equilibria where

α̃ ∈ (q, p). Denoting by EUV (qi, α̃) interim expected utility from voting, given qi, and by

EUA(α̃) interim expected utility from abstaining (which does not depend on qi), α̃ must

solve EUV (qi, α̃) = EUA(α̃), where:

EUV (qi, α̃) =
M−1∑
v=0

(
M − 1

v

)
(1− F (α̃))v F (α̃)M−1−v

v∑
cn=0

(
v

cn

)
(µv(α̃))cn(1− µv(α̃))v−cn×

×

{(
K∑
ce=0

(
K

ce

)
pce(1− p)K−ce

)
×

×
(
qi
(
Icn+1+ce>(v+1+K)/2 + (1/2)Icn+1+ce=(v+1+K)/2

)
+

(1− qi)
(
Icn+ce>(v+1+K)/2 + (1/2)Icn+ce=(v+1+K)/2

))}
,
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and:

EUA(α̃) =
M−1∑
v=0

(
M − 1

v

)
(1− F (α̃))v F (α̃)M−1−v

v∑
cn=0

(
v

cn

)
(µv(α̃))cn(1− µv(α̃))v−cn×

×

{(
K∑
ce=0

(
K

ce

)
pce(1− p)K−ce

)(
Icn+ce>(v+K)/2 + (1/2)Icn+ce=(v+K)/2

)
.

Ex ante expected utility, before the realization of qi but under the correct expectation of

α̃, is given by:

EUMVA(α̃) =

∫ α̃

q

EUA(α̃)f(q)dq +

∫ p

q̃

EUV (qi, α̃)f(q)dq

A.2 Monotonicity Violations

Figure 11: Monotonicity violations - histograms

A.3 Voting against signal and signal quality

Note that the only significant effect is from signal quality (precision). Neither the voting

system nor the size of the group matter, but a decrease in signal quality is strongly correlated

with an increase in voting against signal. Although voting against signal is an inferior action,

the loss from doing so is indeed increasing in signal quality. There could be a small learning
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(1) (2)
Linear Probability Probit

Signal Quality -0.472*** -2.244***
(0.0560) (0.235)
[0.000] [0.000]

Round 0.00264 0.00454
(0.0158) (0.0832)
[0.868] [0.956]

LD -0.00539 -0.0447
(0.0270) (0.150)
[0.842] [0.765]

N = 15 -0.00637 -0.0728
(0.0362) (0.197)
[0.860] [0.712]

Second -0.0115 -0.0700
(0.0383) (0.200)
[0.764] [0.726]

Second * Mixed -0.0372 -0.208
(0.0332) (0.195)
[0.264] [0.286]

N = 15 * Second 0.0288 0.164
(0.0614) (0.338)
[0.640] [0.626]

N = 15 * Mixed -0.00469 0.00404
(0.0398) (0.242)
[0.906] [0.987]

Constant 0.452*** 0.221
(0.0692) (0.239)
[0.000] [0.356]

Observations 2,552 2,552
R-squared 0.154
*** p<0.01, ** p<0.05, * p<0.1

Frequency of Voting Against Signal

Notes: Standard errors in parentheses, clustered at the 
individual subject level. P-values in brackets. The 
dependent variable is a 0-1 indicator of whether the subject 
voted against their signal. Only non-experts are included, 
and only the instances in which they did not delegate or 
abstain are included. "Second" indicates that a treatment 
appeared second in the session. "Mixed" inidcates that both 
an LD treatment and MVA treatment appeared in the 
session. 

Table 7: Frequency of voting against signal
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effect (voting against signal is less frequent in the treatments run second), but it is very

variable and counterbalanced by an equally small and insignificant increase in voting against

signal as rounds proceed, possibly from fatigue.

A.4 The bootstrapping procedure: allowing for individual corre-

lation across rounds

Replicating what happens in an individual session, we draw with replacement 15 subjects

from the relevant treatment, each with all choices made over the 20 rounds. Among these

15 subjects, we draw, with replacement, 3 subjects, assigning to each of them one choice

they made as expert,38 and 12 subjects, assigning to each one choice made as non-expert.

In N = 15, that constitute the group and yields one group decision; in N = 5 treatments,

we divide the 12 subjects randomly into three groups of 4 and assign to each group one

of the experts drawn earlier, generating three group decisions. We repeat new draws of 3

experts and 12 experts as above 20 times, generating 20 decisions from the same sample of 15

subjects if the treatment has N = 15, and 60 if the treatment has N = 5, thus simulating one

experimental session. We then draw, always with replacement, a new group of 15 subjects,

and repeat the procedure, each time generating 20 (60) decisions from the same group of

15 subjects, depending on the size of the group in the treatment. We repeat the whole

procedure 4 times (N = 5), or 6 times ( N = 15) generating 240 (120) decisions, as in our

data from each of the N = 5 (N = 15) treatments. We then calculate the frequency of

correct decisions, and consider that one data point for that treatment. We repeat the whole

process 100,000 times and generate a distribution of the frequency with which the correct

decision was reached.

A.5 The Random Dot Kinematogram

In a Random Dot Kinematogram (RDK), the perceptual stimulus consists of a number of

dots being displayed on a screen. A proportion of these dots are determined to be signal

dots, while the remaining are noise dots. Signal dots all move in a determined direction,

while noise dots move at random according to an algorithm. The tasks consists in reporting

the direction in which the signal dots are moving. This direction is called the coherent

direction and the proportion of signal dots, the coherence, is the main factor in determining

the difficulty of the task.

The task can be programmed in various ways, using a variety of parameters (e.g., color,

38If the subject was never an expert, the subject is dropped and another one is drawn.
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Table 8: Experiment 2: RDK parameters

duration, algorithm, number of dots). Research has been done to study the various effects

of using different combinations of these parameters (Pilly and Seitz, 2009, Schütz et al.,

2010). We take advantage of the recent development of a customizable version of the RDK

(Rajananda et al., 2018) which can be implemented as a plugin in jsPsych. This version

allows for the configuration of various parameters in order to adjust the task as desired by

the researchers. We report in the table below the parameters that we used in our experiment.

The reader can find details about how they affect the task in Rajananda et al., 2018 and

in the following link: https://www.jspsych.org/6.3/plugins/jspsych-rdk/. It is important to

emphasize again that our objective in using the RDK was not to study perception in itself,

but rather to create a common task that is reasonably well controlled and calibrated and

where, nevertheless, the information about the accuracy of the signals remains ambiguous.
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