Measuring the Welfare Gains from Cardinal-Preference Mechanisms in School Choice

Hülya Eraslan² Jeremy T. Fox² Yinghua He¹ Yakym Pirozhenko¹

¹Rice University

²Rice University & NBER

NBER Market Design November 2022

Welfare Measurements

- Measure welfare improvements of cardinal mechanisms over ordinal mechanisms
- We show theory alone does not predict whether welfare gains always positive
- Empirical issue how big gains from cardinal mechanisms are
- Public school choice setting, Seattle

Overview

- Cardinal-preference mechanisms
- 4 Hylland & Zeckhauser (1979) pseudomarket cardinal-preference mechanism (no real money)
 - Almost never been implemented, even in artificial setting on a computer to our knowledge (except recent CS working paper)
 - Operationalize: modify mechanism for practical reasons & provide computer algorithm
- Envy-free cardinal-preference mechanism related to Nguyen, Peivandi & Vohra (2015)
 - Linear program, less challenging computationally
- Seattle school choice: estimate cardinal preferences of students
- Seattle: measure welfare gains from cardinal-preference mechanisms over ordinally efficient ordinal mechanism

Many Ordinal Mechanisms Coincide In Large Markets

- Ordinal mechanisms: each student submits list of ranked schools
- Algorithm on school district computer then assigns students to schools
- Liu and Pycia (2016) prove

All asymptotically ordinally efficient, symmetric, and asymptotically strategy-proof ordinal mechanisms lead to the same allocation in large markets.

- Limited benefits from new ordinal mechanisms in large markets
- Ordinally efficient: no stochastic dominance (not important for today)
- (earlier work by Che and Kojima 2010)

Room for Welfare Improvements

- Table 8 in Abdulkadiroglu, Agarwal and Pathak (2017)
- Demand estimation of preferences for NYC students
- Assignment that maximizes utilitarian welfare is baseline
 - Not mechanism with truthtelling incentives
- Compare both utilitarian, deferred acceptance to "go to closest school"
 - No school choice program
- Deferred acceptance achieves 80% of (utilitarian minus "go to closest school")
- 20% of welfare for better ordinal, cardinal mechanisms
- We compare cardinal mechanisms to ordinally efficient ordinal mechanism

Cardinal Mechanisms

- School choice: each student goes to one school
- Describe model notation, cardinal preferences, cardinal mechanisms
- Outline our pseudomarket mechanism
 - Later compare to Hylland & Zeckhauser (1979)
- Envy-free mechanism
 - Special case of Nguyen, Peivandi & Vohra (2015)

Model Basics

- $i \in I$ students (I also # of students)
- $j \in J$ schools (J also # of schools)
- q_j capacity of school j
- $\pi_i = (\pi_{i1}, \dots, \pi_{iJ})$ lottery facing student i
- Each $\pi_{ij} \geq 0$, $\sum_{i \in J} \pi_{ij} = 1$
- $\pi = (\pi_{ij})_{i \in I, j \in J}$ assignment matrix from mechanism
- $\sum_{i} \pi_{ij} \leq q_{j} \, \forall j$ feasible assignment
- Decompose feasible assignment π into convex combination of deterministic assignments
- Decomposition code freely available, not discuss further
- Can allow undercapacity & unacceptable schools, not in this paper except estimation

Cardinal Preferences

Vector of school utilities for student i

$$v_i = (v_{i1}, \ldots, v_{iJ})$$

v_i encodes preferences over lotteries

$$\pi_i = (\pi_{i1}, \ldots, \pi_{iJ})$$

Expected utility of lottery

$$\pi_i \cdot \mathsf{v}_i = \sum_{j=1}^J \pi_{ij} \mathsf{v}_{ij}$$

- Positive affine transformation of v_i encodes same preference
- Our mechanism can be made to give same assignment from positive affine transformations
- Can compute ordinal preference (rank order) from v_i

Cardinal Mechanisms

• Website solicits numeric scores for schools for each student i

$$v_i = (v_{i1}, \ldots, v_{iJ})$$

- Numeric scores used in algorithm run on school district computer
- Algorithm uses numeric scores to compute expected utility preferences over lotteries
- Could use more sophisticated website to solicit potentially more accurate preferences over lotteries
- Would need to experimentally evaluate website designs in lab, field
- Clarification: no pre-Budish business school course-bidding mechanisms (Sönmez & Unver 2010), or Budish (2011) itself

Pseudomarket Mechanism as a Mathematical Program

- Matrix of student utilities $v = (v_{ij})_{i \in I, j \in J}$ is input
- Vector of school capacities $q = (q_j)_{j \in J}$ is input
- Output is stochastic assignment matrix $\pi = (\pi_{ij})_{i \in I, j \in J}$
- Pseudomarket mechanism as mathematical program

$$\max_{\pi,p} W(\pi,v) \text{ subject to}$$
$$(\pi,p) \in \text{Equilibria}(v,q)$$

• Maximize social welfare $W(\pi, v)$ subject to school prices $p = (p)_{i \in J}$ and π being a pseudomarket equilibrium

Example Social Welfare Functions

- Choice of school district to select equilibria with desired properties
- Nash product in expected utilities

$$W(\pi, \mathbf{v}) = \prod_{i=1}^{I} (\pi_i \cdot \mathbf{v}_i - \tilde{\mathbf{q}} \cdot \mathbf{v}_i)$$

- $ilde{q} = \left(q_j / \sum_{k \in J} q_k\right)_{j \in J}$ vector of percentage capacities
- Sum of expected utilities

$$W(\pi, v) = \sum_{i=1}^{I} \frac{\pi_i \cdot v_i - \tilde{q} \cdot v_i}{\max_j v_{ij} - \min_j v_{ij}}$$

- Same assignment π for positive affine transformations of school utilities
- (Or use common location, scale normalizations for all students after submission)

Pseudomarket Equilibria

- Equilibria (v, q) set of competitive equilibria (π, p) to pseudomarket
- Competitive equilibrium is pair (π, p) where
- **①** Assignment matrix π is **feasible**: $\sum_{i} \pi_{ij} \leq q_{j} \ \forall j \in J$
- ② For price vector p, assignment vector π_i for each student i maximizes expected utility subject to unit budget

$$\pi_i \in \arg\max_{\tilde{\pi}_i} \left(\tilde{\pi}_i \cdot v_i \right)$$

subject to $\tilde{\pi}_i \cdot p \leq 1$

 Equilibria (v, q) set same for positive affine transformations of school utilities

Pseudomarket Incentive Properties

- Students' incentives to misreport vanish in series of replica economies
 - He, Miralles, Pycia & Yan (2018)
- Strategy proof in large
 - Azevedo & Budish (2019)

Pseudomarket Pareto Efficiency

- ullet Computationally find that our mechanism produces Pareto efficient assignments π
 - If social welfare strictly increasing in all expected utilities
- Hylland & Zeckhauser (1979) impose additional restrictions to prove that equilibria are Pareto efficient
- Exact capacity
 - HZ1: At least one school has zero price
 - HZ2: Student picks a **least cost** lottery π_i when multiple lotteries maximize expected utility
- Excess capacity, HZ2 and
 - HZ3: All underdemanded schools have prices of zero

Equilibrium Selection Example in Paper

- Paper has a non-computational example of four equilibria to same pseudomarket
- Social welfare is Nash product
- Social welfare is sum of expected utilities
- Sum of expected utilities plus least cost property and underdemanded schools have zero price
- Minimize sum of expected utilities
 - 1,2,3 are Pareto efficient
 - 1,2 have higher social welfare than 3
 - Only 3 satisfies HZ2, HZ3, fits into Hylland & Zeckhauser (1979)
 - We consider more equilibria than Hylland & Zeckhauser

Pseudomarket Numerical Implementation

Mechanism as mathematical program

$$\max_{\pi,p} W(\pi,v) \text{ subject to}$$
$$(\pi,p) \in \text{Equilibria}(v,q)$$

- Bilevel optimization (like subgame perfection)
- Single level reduction: maximize welfare subject to KKT conditions for all student problems
- Student linear programs: KKT conditions have complementarity constraints
- MPCC: mathematical program with complementarity constraints
- $I \cdot (J+1)$ complementarity constraints (not toy examples)
- After much investigation & online benchmarks, KNITRO's approach to MPCCs fastest for our mechanism
- Benchmarks in paper

Envy-Free Mechanism

Envy-free mechanism

$$\max_{\pi} W(\pi, \nu) \text{ subject to}$$

$$\pi \in \text{Envy Freeness}(\nu)$$

• *i* not envying *j* means

$$\pi_i \cdot \mathbf{v}_i \geq \pi_j \cdot \mathbf{v}_i$$

- Special case of bundle-choice mechanism in Nguyen, Peivandi & Vohra (2015)
- Linear program if $W(\pi, \nu)$ sum of expected utilities
- Easy to compute
- Except number of envy-free constraints is $I \cdot (I-1)$
- All pseudomarket equilibria (with equal budgets) are envy free
- So social welfare weakly higher under envy-free mechanisms

Seattle Public Schools

- Study ninth grade
- School choice optional, all students have default school
- 11 schools, 964 students
- Non-strategy proof, ordinal mechanism
- Students face non-trivial lotteries from submitting ranked lists of schools
- Not interested in Seattle mechanism
- Lack IT department's code for mechanism
- Use to identify cardinal preferences
- Agarwal and Somaini (2018), Kapor, Neilson and Zimmerman (2020)

Estimating Assignment Probabilities

- Data
 - m_i ranked list of schools submitted by student i
 - x_i priorities (sibling, residence) of student i
 - $y_{ij} = 1$ if school j enrolled in fall
- Estimate statistical model with random forest, some cross-validated tuning parameters

$$\Pr\left(y_{ij}=1\mid x_i,m_i\right)\approx h_j\left(x_i,m_i\right)$$

Lottery facing student i for list m_i

$$h(x_i, m_i) = (h_j(x_i, m_i))_{i \in J}$$

Partial Identification of School Utilities

Assume student submits list m_i that maximizes expected utility

$$v_i \cdot h(x_i, m) = \sum_{j \in J} v_{ij} h_j(x_i, m)$$

- \tilde{M}_i set of counterfactual lists m chosen to balance run time and identifying power
- Non-sharp identified set of school utilities for student i

$$\tilde{V}_{i} = \left\{ v_{i} \mid v_{i} \cdot h(x_{i}, m_{i}) \geq v_{i} \cdot h(x_{i}, m) \ \forall \ m \in \tilde{M}_{i} \right\}$$

- Following Bajari & Benkard (2005), impose uniform distribution on \tilde{V}_i and sample from it
- Uniform distribution is assumption
- Robustness: alter uniform distribution in mechanism comparison
- Rejection sampler
- Each replication of mechanisms has one draw from \tilde{V}_i for each student i

Advantages of Partial Identification

- Conditions for nonparametric point identification of distribution of school utilities likely not satisfied
- Lotteries may not vary across students continuously
 - Priorities discrete in Seattle data
- Lotteries may not be independently distributed from school utilities
 - Sibling enrollment related to parent preferences
 - Parents may choose where to live based on school preferences
 - Students growing up in neighborhood may hear about nearby schools
 - Just spatial patterns of preferences
- Impose normalizations that $\sum_{j \in J} v_{ij} = 1$, & $\min_{j \in J} v_{ij} = 0 \ \forall j \in J$ for student i

Another Behavioral Assumption

- Partial identification can be expanded to other behavioral assumptions
- Use following as robustness check

All listed schools preferable to default school, all schools not listed unacceptable compared to default school

- Uniform draws over cardinal preferences consistent with above
- Requires full list length (five) to not be used
- No cardinal information as no lotteries

Seattle Schools & Estimates

High School	# Submitted	# Estimated	Capacity
	First Choice	Top Utility	(Under Exact)
Ballard	51	66	79
Cleveland	243	194	233
Franklin	55	82	72
Garfield	85	73	58
Roosevelt	120	161	84
Chief Sealth	17	24	31
West Seattle	50	49	44
Ingraham	198	173	165
Ranier Beach	8	10	47
Nathan Hale	54	58	84
Center	83	74	66

- One replication of one school utility draw for each student
- Capacities: proportional to fall enrollment of choice students

Cardinal vs Ordinal Mechanisms

- Compare two cardinal mechanisms to probabilistic serial
 - Bogomolnaia & Moulin (2001)
- All three mechanisms
 - Lotteries π_i for student i
 - Strategy proof in the large
- Our pseudomarket Pareto efficient in simulations
- Envy free not always Pareto efficient
- Probabilistic serial ordinally efficient

Gain Measure

- Explain gain measure for pseudomarket, also applies to envy-free
- π_i^{PM} pseudomarket assignment for student i
- π_i^{PS} probabilistic serial assignment for student i
- Gain for student i

$$\frac{\textit{v}_i \cdot \left(\pi_i^{\text{PM}} - \pi_i^{\text{PS}}\right)}{\mathsf{max}_j \; \textit{v}_{ij} - \mathsf{min}_j \; \textit{v}_{ij}}$$

- Invariant to positive affine transformations of v_i
- Papers with different normalizations can report same gain measure
- Can drop denominator if happy with normalizations, worried about denominator

Gain Measure in Top School Probabilities

- For student i, find lottery over top school, worst school giving same utility as pseudomarket assignment
- $\bar{\pi}_i^{(1,\text{PM})}$ probability i assigned to top school in equivalent lottery
- $1 \bar{\pi}_i^{(1,\text{PM})}$ probability *i* assigned to worst school
- Algebra shows $\bar{\pi}_i^{(1,\mathrm{PM})}$ satisfies

$$\frac{v_i \cdot \pi_i^{\text{PM}}}{\max_j v_{ij} - \min_j v_{ij}} = \bar{\pi}_i^{(1,\text{PM})}$$

- Same for probabilistic serial $\bar{\pi}_i^{(1,\mathrm{PS})}$
- To relate equivalent lotteries to gain measure

$$\begin{split} \frac{v_i \cdot \pi_i^{\text{PM}}}{\max_j v_{ij} - \min_j v_{ij}} - \frac{v_i \cdot \pi_i^{\text{PS}}}{\max_j v_{ij} - \min_j v_{ij}} = \\ \frac{v_i \cdot \left(\pi_i^{\text{PM}} - \pi_i^{\text{PS}}\right)}{\max_j v_{ij} - \min_j v_{ij}} = \bar{\pi}_i^{(1, \text{PM})} - \bar{\pi}_i^{(1, \text{PS})} \end{split}$$

Gain Measure in Top School Probabilities

Gain measure satisfies

$$\frac{v_i \cdot (\pi_i^{\text{PM}} - \pi_i^{\text{PS}})}{\max_j v_{ij} - \min_j v_{ij}} = \bar{\pi}_i^{(1,\text{PM})} - \bar{\pi}_i^{(1,\text{PS})}$$

- Say gain measure is 0.05 for student i
- Use gain in a sentence:
- "A gain or normalized differences in expected utilities between the mechanisms for student *i* of 0.05 is equal to an increase in top school probabilities of 0.05, when the needed 0.05 reduction occurs for the worst choice school."

Computational Bounds on Gain Measure

- How big, small can gains of pseudomarket over probabilistic serial be?
- Consider market with four students, four schools
- Each school has capacity of one
- Search over four school utility vectors v₁, v₂, v₃, v₄
 - $16 = 4 \cdot 4$ scalar school utilities
- Upper bound on gain is 0.29
- Lower bound on gain is negative and likely smaller than 0.29 in absolute value
 - (Found bug in lower bound code recently)
- Asymmetry in absolute value of bounds
- Large difference between upper, lower bounds

Empirical issue: sign and magnitude of gain

Benchmark Without Truthtelling Incentives

- Compare gains from our two cardinal mechanisms to benchmark
 - Pseudomarket, envy-free
- Benchmark maximizes welfare without truthtelling incentives

$$\max_{\pi} W(\pi, v)$$

- Calculate gain (versus probabilistic serial) for benchmark
- Divide gains (versus probabilistic serial) of two cardinal mechanisms by gains from benchmark
- Get percentage of possible gain from any cardinal mechanism that each cardinal mechanism with truthtelling incentives achieves

Mechanism Comparisons: Exact Capacity

	Envy Free			Sum I	Expect Ut	il PM	Nash Product PM		
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Indifferent	0.10	0.08	0.13	0.12	0.09	0.14	0.12	0.10	0.15
Prefer Cardinal	0.67	0.63	0.71	0.71	0.67	0.75	0.71	0.66	0.75
Prefer Ordinal	0.22	0.17	0.27	0.17	0.13	0.21	0.18	0.13	0.22
Mean Gain	0.045	0.036	0.052	0.016	0.012	0.020	0.016	0.011	0.021
Gain No Indiff.	0.049	0.041	0.057	0.018	0.014	0.023	0.018	0.013	0.024
No-Incentives Gain	0.077	0.066	0.085		Same			Same	

- Exact capacity: proportional to fall enrollment
- 400 replications: new draws of school utilities for each student
- Compare envy-free & pseudomarket (PM) to probabilistic serial
- Two different pseudomarket welfare functions

Mechanism Comparisons: Exact Capacity

	Envy Free			Sum I	Expect Ut	il PM	Nash Product PM		
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Indifferent	0.10	0.08	0.13	0.12	0.09	0.14	0.12	0.10	0.15
Prefer Cardinal	0.67	0.63	0.71	0.71	0.67	0.75	0.71	0.66	0.75
Prefer Ordinal	0.22	0.17	0.27	0.17	0.13	0.21	0.18	0.13	0.22
Mean Gain	0.045	0.036	0.052	0.016	0.012	0.020	0.016	0.011	0.021
Gain No Indiff.	0.049	0.041	0.057	0.018	0.014	0.023	0.018	0.013	0.024
No-Incentives Gain	0.077	0.066	0.085		Same			Same	

- Envy-free mechanism captures 58% of the gain that any cardinal mechanism could hope to have over an ordinally efficient ordinal mechanism, at mean gain
 - 58% is 0.045 divided by 0.077
- Pseudomarket mechanism captures 21% of the possible gain
 - 21% is 0.016 divided by 0.077

Mechanism Comparisons: Excess Capacity

	Envy Free			Sum	Expect Ut	il PM	Nash Product PM		
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Indifferent	0.12	0.09	0.27	0.14	0.10	0.31	0.13	0.10	0.31
Prefer Cardinal	0.72	0.56	0.77	0.61	0.33	0.76	0.62	0.18	0.75
Prefer Ordinal	0.16	0.12	0.21	0.25	0.12	0.54	0.25	0.13	0.68
Mean Gain	0.032	0.023	0.038	0.006	-0.012	0.018	0.006	-0.032	0.017
Gain No Indiff.	0.036	0.029	0.042	0.007	-0.013	0.020	0.007	-0.037	0.017
No-Incentives Gain	0.047	0.037	0.056		Same			Same	

- Excess capacity: proportional to fall enrollment plus 10%
- 56–77% of students prefer pseudomarket assignment
- Gain of 0.023-0.038 for envy-free mechanism
 - At mean, 0.032/0.047 = 68% of possible gain from cardinal mechanisms
- Pseudomarket captures 13% of possible gain, at mean

Weaker Preference Restrictions

	Envy Free			Sum I	Expect Ut	il PM	Nash Product PM		
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Indifferent	0.05	0.02	0.10	0.06	0.03	0.11	0.06	0.04	0.11
Prefer Cardinal	0.79	0.72	0.84	0.78	0.67	0.84	0.78	0.67	0.83
Prefer Ordinal	0.17	0.11	0.23	0.16	0.11	0.22	0.16	0.12	0.23
Mean Gain	0.022	0.019	0.027	0.009	0.006	0.012	0.009	0.006	0.012
Gain No Indiff.	0.024	0.020	0.029	0.010	0.006	0.012	0.034	0.006	0.013
No-Incentives Gain	0.033	0.028	0.038		Same			Same	

- "All listed schools preferable to default school, all schools not listed unacceptable compared to default school"
- 78-79% prefer cardinal assignment
- Envy-free achieves 67% of possible gain from cardinal mechanisms
- Pseudomarket achieves 27% of benchmark

Non-Uniform Distributions

	Envy	Free	Sum Expe	ct Util PM	Nash Product PM		
	Max Gap	Max Gap Min Gap		Max Gap Min Gap		Min Gap	
Indifferent	0.14	0.10	0.14	0.10	0.14	0.10	
Prefer Cardinal	0.72	0.72	0.50	0.50	0.72	0.50	
Prefer Ordinal	0.13	0.17	0.14	0.39	0.14	0.39	
Mean Gain	0.044	0.060	0.044	0.004	0.044	0.004	
No-Incentives Gain	0.063	0.069	Sa	me	Same		

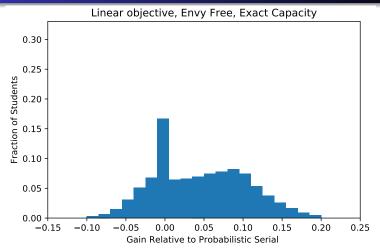
- Consider extremely non-uniform distributions over identified set
- Utility gap between first, second choice schools for i is $v_{i(1)} v_{i(2)}$
- Min gap is for each student, take minimum of $v_{i(1)} v_{i(2)}$ across previous 400 replications
- Max gap takes maximum of $v_{i(1)} v_{i(2)}$ across 400 replications

Serial Dictatorship

	Envy Free			Sum Expect Util PM			Nash Product PM		
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Indifferent	0.10	0.08	0.14	0.12	0.10	0.15	0.12	0.10	0.16
Prefer Cardinal	0.67	0.63	0.71	0.68	0.63	0.72	0.67	0.61	0.73
Prefer Ordinal	0.23	0.18	0.28	0.20	0.16	0.24	0.20	0.16	0.24
Mean Gain	0.042	0.033	0.049	0.013	0.009	0.017	0.013	0.008	0.019
No-Incentives Gain	0.074	0.063	0.082		Same			Same	

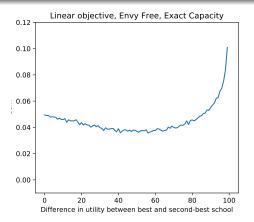
- Similar table as baseline except random serial dictatorship as ordinal mechanism
- Same 400 replications
- RSD used in practice
- Equivalent to student-proposing deferred acceptance with random tie breakers
- RSD outperforms probabilistic serial, slightly

Student Heterogeneity in Mechanism Gains



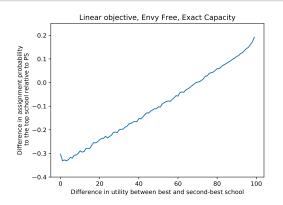
- Some big winners
- Mass near zero of indifferent students
- Fewer losers than winners

Gains by Utility Gap Between Top Two Schools



- Percentiles of **utility gaps** between top two schools, $v_{i(1)} v_{i(2)}$
- Those with high utility gaps gain more from cardinal mechanisms
 - Versus probabilistic serial

Increases in Top School Probabilities by Utility Gap Between Top Two Schools



- Percentiles of **utility gaps** $v_{i(1)} v_{i(2)}$ between top two schools
- Vertical axis is increase in top school probability $\pi_{i(1)}$ from cardinal minus ordinal mechanism
- Indifferent students excluded from figure

Conclusions

- Goal: measure welfare gains from cardinal mechanisms
- Envy-free mechanism
- Pseudomarket mechanism
 - Modified pseudomarket with equilibrium selection through social welfare
 - Consider more equilibria than Hylland & Zeckhauser (1979)
 - Numerical method to compute pseudomarket mechanism

Estimate school utilities using Seattle data

- 63-75% of students prefer cardinal mechanisms to probabilistic serial
- Gain of envy-free over probabilistic serial: 0.036–0.052
- Envy-free mean achieves 58% of possible gain of any cardinal mechanism
- Cardinal mechanisms give higher probabilities to first choice schools, particularly for students with higher gaps between utilities for first, second choice schools