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Motivation
Some Facts about Public Transit in the US

The current state of public transit:

Customers only pay about 24% of the trip cost directly through fares.

Source: newgeography.com

The average bus utilization rate is very low.
Source: DOT

Only 5% of commuting trips use public transit.
Source: Census.gov

A private car emits about twice the amount of CO, per passenger mile as public transit.

Source: DOT

— Is current urban transit running efficiently?
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Challenges in urban transportation policy
For a city government that operates and regulates urban transportation

People travel using different transportation modes

.o . 4 Taxi
— Heterogeneous: car, bus, subway, taxi, ride-hailing v
[ ]
Challenges: ; o Car
— Externalities: congestion, environmental, network i'dfle
ai

— Limited budget

Social cost

— Distributive role of transportation

Policy levers:

Subway

M

[ ]
e < Bus

— Prices and capacities of public transit

— Congestion pricing for private transit

>

Trip time / inconvenience
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Urban Transportation
Main focus of this project
City planner’s problem:

— Maximize:
Consumer Surplus — Costs — Externalities

— Setting prices and capacities (frequencies) across modes — decentralized equilibrium

— Subject to budget constraint:
Revenue — Costs < City Budget

Accounting for:
— Heterogeneity across consumers and locations

— Response of private providers: taxi/ride-hailing drivers, (later: optimal response of ride-hailing
platforms)

Scope: conditional on current infrastructure (short-run!)
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This Project

Research Questions:
1. What are the optimal prices and capacities/frequencies of an urban transit system?

2. What are the welfare gains and distributional effects relative to the current state?
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This Project

Research Questions:
1. What are the optimal prices and capacities/frequencies of an urban transit system?

2. What are the welfare gains and distributional effects relative to the current state?

Strategy:
— Model of a city planner

— Discrete choice mode demand (McFadden 1974, Berry et al. 1995)
— Transportation technology: cost, trip times, and congestion/network externalities

— Estimation: construct novel dataset for all relevant modes for Chicago

— Counterfactuals to determine optimal policy and measure welfare effects
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Preview of Results

Preliminary!

The city should:
1. Lower price of public transit by ~90%, decrease capacity by 20%-30%

2. Charge congestion/carbon tax on private cars ~ $0.25/km

Tax achieves a larger welfare gain (~ $6M/week vs ~ $2M/week)
— Leads more people to switch

— But with huge, regressive decrease in CS (~ $35M/week)

Ride hailing prices only slightly higher than socially optimal

— Market power markup plays the role of a Pigouvian tax, no need for additional tax
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Literature Review

1. Transportation: McFadden (1974), Small (1982), Small (2005), Parry and Small (2009)
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— Theory: Arnott (1996), Lagos (2003)

— Empirics: Frechétte et al. (2019), Buchholz (2021), Brancaccio et al. (2020), Arora et al. (2020),
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— Budget constrained city with heterogeneous agents, optimal prices and capacities
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Data Sources
Chicago, June 2019-February 2020.

Raw data sets:

Individual cell phone location records: 40% of all devices.

Universe of public transit trips through MIT-CTA partnership.

Universe of taxi and ride hailing (pooled + single rides) trips from the city of Chicago.
Block level census data.

2019 Chicago transit survey for validation and calibration.

vk W

Goal: Hourly flows, prices, and travel times by mode across community areas + micro moments.

Car trips are identified as:

Car Trips = Cell Phone Trips — Public Transit Trips — Ride-hailing Trips — Taxi Trips

Cell phone data CTA data
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Combined vs. Survey Data: Flows Across Community Areas

Heatmap, survey data Heatmap, combined data
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Mode Market Shares

Market share by mode (survey)

Bus Car Ride hail Taxi Train
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Heterogeneity across locations

Mode choice by income

Car market share

Ride hailing market share
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Heterogeneity across locations
Mode choice correlates with accessibility

Bus market share
.
Train market share
.
.
.
.

T T T
6 0 2 4 6 8 1

2 4 K K
Bus walking distance (Miles) Train walking distance (Miles)
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Utilization of Buses during Weekdays
The city runs 129 bus routes with 1,864 buses.

Utilization
2
L

T3 5 7 9 11 13 15 17 19 21 23
Hour of Day

50th percentile

10th percentile
90th percentile
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Roadmap

2. Model and Estimation
2.1 City Planer
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Model

Outline

There are 3 parts:

1. Commuters make mode choices: (prices and times) +— (# of people choosing each mode)
2. Transportation technology: (# of people choosing each mode) ~ (times and social cost)

3. City government: chooses prices and capacity of each mode, trades off welfare and budget (Ramsey)

Next few slides: model with one O-D pair, one time period, government-run modes

— Main empirical model: CA by CA by hour of the week, privately owned modes
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Model

Outline

Demand for mode j: D;(p, t)
— pj: price

- t;: Total time (wait + travel time)
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— pj: price
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2. C(q,«): Cost (fuel, depreciation, labor)

3. E(q, k): Environmental externalities

14/30



Model
Outline
Demand for mode j: D;(p, t)
— pj: price
- t;: Total time (wait + travel time)
Transportation technology j is described by three functions of quantity and capacity (q, x):
1. 7j(qj, kj): Wait + travel times (congestion, bus/train routing, taxi/ride-hail matching)
2. C(q,«): Cost (fuel, depreciation, labor)
3. E(q, k): Environmental externalities
k;: Capacity of mode j, determines waiting times
— Taxis, ride-hailing, shared: Number of drivers working. More idle drivers — lower times.

— Buses, trains: Route frequency. More buses — lower times.
14/30



Model

City Government and Equilibrium

City government chooses prices and capacities (p, k). Equilibrium (q, t) such that:

q=D(t,p) and t=7(q,k)
—_——— —_——
demand technology

- Forany (q, k), there is a unique p(q, «) that satisfies the equilibrium conditions.

Government’s problem (Ramsey):

Consumer Surplus Gov. revenue \ Profits Budget constraint

mas U(t,p) -p(q.«)-q+p(q.x) - q- C(q.k) -E(q,x)  st.  p(qk)-q-C(q,x) 2B

Welfare
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Optimal Pricing
Lagrangian for government’s problem:

ggummy41q@—ﬂq0+m{2mmmy%—aqm—s}
' J

First-order conditions

1. Quantity:
oC 1 oU ot 1 O0E A Opk
pi=5 - A Jo= Y g 2Pk
g 1+a 0t dq; 1+4 dq; 1+4 7 dq;
2. Capacity:
oC_ 1\ U 9y 1 9E 2 ok
g 1+d ot o 1+4 o 1+a 4T
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Optimal Pricing
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externality of time ~ effects Market power Spence
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Optimal Pricing

- - - A . -
_ . 7T . - L0y — ol — o™y, T,
pi- G = E - Yo Ty + i —E - g Q- (O — 1 ) - Ty
— — k —~— —— + ked k
Mg. cost  Mg. environ. Utility Network
externality of time effects Market power Spence
distortion distortion
Notation:
F _ 090G L ack i i i ip X
- CJ = == + &= L. Mg. cost of a trip, keeping capacity per trip -~ constant
aq; Ok; qj qj
= 50 T a0 o M8 externality of a trip, keeping capacity per trip - constant
J) J M)

== “Standard” Pigouvian tax/subsidy

qj

}
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Optimal Pricing

~ ~ ~ A
=T
pi- G = - Yo T4 + { -3 ax Q- Z(Uk_uk)'Tkj}
— — k =~ —— 1+4 ked
Mg. cost  Mg. environ. Utility Network
externality of time effects Market power Spence
distortion distortion

Notation:

- DJ-T = acs : How does CS change if the time of mode j increases?

Tkj 5qk + ZKTJ gk How does mode-j time change if mode-j trips and capacity increase? Two effects:

1. Congestion: negative externality
2. Returns to scale: positive externality (Arnott, 1996)

== Tax modes that cause congestion, subsidize modes with increasing returns to scale
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Optimal Pricing

~ - ~ A ~ ~
ul T _-T
pi- G = E - Yo T4 + '{_EJ_qu'QkJ_Z(Uk_uk)'Tkj}
— —_ k —~ = 1+4 keJ k
Mg. cost  Mg. environ. Utility Network
externality of time ~ effects Market power Spence
distortion distortion

Notation:
— Q: Inverse Jacobian of demand (~ inverse price elasticities)

- E/J-T: If t; increases by 1%, how much does utility of marginal commuters change?

17/30



Optimal Pricing

- - ~ A - ~

_T ~T T
pi- G = E - Yo T4 + '{_EJ_qu'QkJ_Z(“k_“k)'Tkj
— — k =~ —— I+a keJ k
Mg. cost  Mg. environ. Utility Network
externality of time ~ effects Market power Spence
distortion distortion
Notation:

— Q: Inverse Jacobian of demand (~ inverse price elasticities)

- DJ-T: If t; increases by 1%, how much does utility of marginal commuters change on avg.?

Government cares about budget, so it behaves like a monopolist to some extent:
— Underweights externalities
— Market power markup: higher price for less elastic modes

— Caters to marginal rather than average consumer
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Roadmap

2. Model and Estimation

2.2 Demand
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Demand
Market Definition:

— m=community area a to a’ during hour h

Chicago Community Areas

— Exogenous arrival rate A, of travelers

Choices: '
J = argmax uy,;
jeJu{0}

Utility of agent /:

i = . I. e — i . i
Umj_é:mj_a’T'TU Qp - Pij + €,

Estimation: Instrument prices with inflow of trips

1. Value of time: ~$75/h on avg, higher for high income
2. Taxi/ride hailing elasticities ~ 2
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Roadmap

2. Model and Estimation

2.3 Transportation Technology
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Transportation technology

Three parts:
1. Congestion
2. Public transit (bus/subway)

3. Private transit (taxis/ride hailing)
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Congestion
Given vector q of all trips, what is the travel time from a to 2’ using mode ;?
Approach: Model city as directed graph of community areas

— Edges e are adjacent community areas

— Agents in market m take a route r,,,, a sequence of edges

During hour h, the congestion on edge e is Congestion caused

by mode j
—~
th = Z Z bj qrhj
j rst.oeer
Travel times:

“Fixed Mode j
effect” congestion elast.
/—’H ~~—

aj travel

By edge: Ten = Ag Qo By market: ij = Z Tehj

€€y
20/30



Congestion estimation

Data: travel times and vehicle flows between adjacent CAs at the hourly level

Binscatters with o-d pair fixed effects:

Log Speed
Log Speed

1.95

3 4 5 6 7
Log Cars

We calibrate congestion elasticities based on this data

1.9

0 1 2 3 4 ‘
Log Buses

— Later: capture nonlinearity with more flexible functional form
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Public transit (bus/subway)

Agents in market m = (a, &', h) take a bus/train route R,,

Total time for agent 7/ in market m = (a, ', h), who takes
route R:

_ Twalk,1 wait travel walk,2
Ti=T, +Tpp + Ty +T;
— N—_——

See Congestion
below

Let kg, be the frequency of route R. Then the waiting time is
. 1

Th = —

KRh

Cost and externality:

Crh = CRKRh Ernh = erKkrp

Twalk,2

N
(]
4

A,
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Private transit (taxis and ride hailing)

Total time in private mode j in market m = (a, ', h) is Tae't + Tiavel

See Congestion
below

Waiting time depends on L., the number of available drivers at the origin a:

wait _ /i
ij _AaJLahj

The distribution of available drivers arises from a model of driver movements (Buchholz, 2021; Rosaia, 2020)
— There is a total number of drivers «p;

— Travelers who chose mode j matched to drivers, who later become available at drop off

— Available drivers relocate — tendency to move towards high earnings neighborhoods
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Roadmap

3. Counterfactuals
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Counterfactuals

Benchmark: Status quo

Counterfactuals: City government maximizes welfare by adjusting:
1. Transit: Prices and frequencies of public transit
2. Tax: Congestion tax
3. Transit + tax: Prices and frequencies of public transit + congestion tax
4. Social planner: Prices and frequencies of public transit + congestion charge + price of Uber and taxis

We consider alternatives with and without budget constraint
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Counterfactual Results

subway
prices

Status quo Bus +subwa w/ budget

0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.000
0.000
-13.045
0.000
26.080

0.0%
-104.5%
-107.6%

0.0%

-23.7%
-27.9%
2.065
3.105
-14.616
0.000
25.472

0.0%
-88.4%
-91.0%

0.0%
-25.8%
-30.1%

2.035
1.462
-13.070
0.000
25.452

subway
prices,
congestion congestion Only congestSocial plannevariable

subway
prices,

0.0% 0.0%
-93.4% -83.1%
-96.4% -86.6%

26.0% 26.1%
-23.3% -24.3%
-27.8% -29.1%

7.960 7.948

-35.701 -36.749
-13.852 -12.924
37.361 37.421
20.567 20.547

0.0%
0.0%
0.0%
26.4%
0.0%
0.0%
6.085
-38.652
-12.815
37.842
21.087

-5.2% uber_price_change
-93.4% bus_price_change
-96.4% train_price_change
26.0% car_surcharge
-23.3% bus_capacity_change
-27.8% train_capacity_change
8.289 welfare_change
-34.940 CS_change
-13.852 profit_city
37.248 taxes
20.646 externalities
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Substitution patterns

Change in the number of trips

20%
([ ]
A
@
10%4{ U
e [ ) o
A 2 4 Ty
0% & &
-10% A
e
Bll.lS Trzlain Tallxi Ul:loer Clar Stlay
Mode

label

> O

Bus + subway prices

Bus + subway prices
w/ budget constraint

Bus + subway prices,
congestion tax

Only congestion tax

Social planner
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Distributional effects
Changes in consumer surplus relative to status quo

Consumer surplus change ($M / week)

0.0

i q——

—2.5-

-5.04

-7.54

-10.0-

Income quintile

Consumer surplus change

0%

‘\.\:§t:r—q

-10% 4

-20% 4

-30%

=

o4

Income quintile

Counterfactual

bttt

;

Bus + subway prices

Bus + subway prices
w/ budget constraint

Bus + subway prices,
congestion tax

Only congestion tax

Social planner
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Distributional effects
Changes in consumer surplus relative to status quo

Congestion price Public transit prices + capacity
A car trips A stay A car trips A stay

-0.1
-0.1
=0.1
-0.2
-0.2
-0.2

28/30



Future Steps
Much Work Ahead!

Refine estimation:
— Add demand heterogeneity

— Car ownership as choice set variation
— Include micro variation in access

— Flexible congestion and driver supply models

Exploit fine spatial resolution
— More sophisticated policy levers

— More results on heterogeneity

Additional counterfactuals

— Endogenous response by ride hailing platforms
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Conclusions

— Construct new dataset of all trips across all modes for a major urban area.
— Compute optimal transit prices, capacities, and subsidies with government budget constraints.

— Preliminary results:

— Public transit should be further subsidized and its frequency should be reduced
— Congestion/carbon taxes — large welfare gains, large CS decrease

— Markup of ride hailing platforms serves as a Pigouvian tax
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Thank you!



Supply

Parametrizing Pooling Technology

Total trip time:
T= w() + 057 + T° +P(q)-d(q),
Waiting time ~ Batch Length  Directtime  npoiy  Expected
prob.  detour

where [ is the number of idle drivers, w(/) and d(q) are decreasing, P(q) is increasing.
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Parametrizing Pooling Technology

Total trip time:
T= w() + 057 + T° +P(q)-d(q),
Waiting time ~ Batch Length  Directtime  npoiy  Expected
prob.  detour

where [ is the number of idle drivers, w(/) and d(q) are decreasing, P(q) is increasing.
Suppose that density of trips with detour distance x is proportional to

Batch

Efficiency Requests length Skewness
(et ~ —~ -1
[07 - q T =X ,

then x ~ Weibull (also shortest path btn. vertices on random graph; Bauckhage et al., 2013).
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Supply

Parametrizing Pooling Technology

Total trip time:
T= w() + 057 + T° +P(q)-d(q),
—— ——

—— . . —_— ——
Waiting time ~ Batch Length  Directtime  npoiy  Expected
prob.  detour

where [ is the number of idle drivers, w(/) and d(q) are decreasing, P(q) is increasing.
Suppose that density of trips with detour distance x is proportional to

Batch

Efficiency Requests length Skewness
(et ~ —~ -1
[07 - q T =X ,

then x ~ Weibull (also shortest path btn. vertices on random graph; Bauckhage et al., 2013).

— Only match if detour < X.
— P(q) is the CDF of the shortest detour 1 — exp(—a - q-7-X").

— Expected detour d(x, @, g, 7): mean of detour, truncated at x
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Supply
Utilization
How much driver time does a trip take on average?

TB:(I—F()?;a,q,T))~ 70 +F(>"<;oz,q,‘r)~l-(T0+d(>"<,a,q,‘r))
— . . 2

Busy time
Prob. of no match if unmatched Match prob.

Busy time if matched

The number of idle drivers is:
I=L-q-TB.

Waiting time (distance to the closest driver):
- Avg. waiting time is w(/) = £ Arnott 1996).

Additional assumptions:
— Optimal match radius depends on density: x(q) =6 - g*
— Batch length 7 fixed at one minute.

— Set p so that avg. ride-hailing time is 4 min
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Supply

From model to the data

Given parameters «, 1, 8, §, we can construct
— P(q) of being pooled 1 — exp(-a - q-7-X").
- E(q) Expected detour d(x,, q,7)
== Both functions P(q) and E(g) can be directly constructed from the data!
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Improving current technologies
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