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Abstract

We study if and how the capitalization of financial intermediaries affects

asset demand and prices in a framework that allows for intermediary mar-

ket power. We show that weaker capital requirements lead to lower yields

(higher prices) but greater market power. We test these predictions and

calibrate the model with data on the Canadian primary market for govern-

ment bonds, where we can link asset demand to balance sheet information

of individual intermediaries. A counterfactual analysis shows that relax-

ing capital constraints can reduce bond yields but increases markups; each

on the order of 23–49%. This implies lower funding costs at an implicit

cost of higher yield distortion.
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1 Introduction

What moves asset prices is one of the oldest questions in finance. The intermediary

asset pricing literature suggests that the prices of many assets depend not only on the

preferences of households, but also on the equity capitalization of financial intermedi-

aries, called dealers (e.g., Brunnermeier and Pedersen (2009); He and Krishnamurthy

(2012, 2013); Brunnermeier and Sannikov (2014)). One reason is that dealers face

capital constraints. At the same time, dealers enjoy market power in various markets

settings, for instance in Treasury, repo and foreign exchange markets (as documented

by Allen and Wittwer (2020); Huber (2022); Wallen (2022)). This stands in contrast

to the traditional view that financial markets are highly competitive, motivating the

assumption of perfect competition in models of intermediary asset pricing.

We zoom in on the intermediary sector to study how dealer capitalization af-

fects asset demand, and therefore prices, and quantify the effect in a framework

that allows for dealer market power (as in Kyle (1989)). We first introduce a model

in which strategic dealers face regulatory capital constraints to highlight how their

asset-demand, and ultimately prices, are impacted by their degree of capitalization

and market power. Then, we test and calibrate the model with data on Canadian

Treasury auctions by leveraging regulatory changes during the COVID-19 pandemic.

In the model, dealers compete to buy multiple units of an asset that pays out an

uncertain return in the future. They are risk averse and subject to a capital constraint.

The market may clear via different auction formats, which represent primary auctions

or exchanges. In the benchmark auction, each dealer submits a demand curve that

specifies how much it is willing to pay for different units of the asset.1 The market

clears at the price at which aggregate dealer demand meets supply, and each dealer

wins the amount it asked for at that price (uniform price auction).

We show that there is a unique linear equilibrium in which each dealer’s demand

depends on whether and how tightly the capital constraint binds. This is measured by

the shadow cost of the capital constraint, i.e., the Lagrange multiplier. The main pre-

1In a traditional trade-setting, this would be a double auction, and the demand functions
would represent packages of limit orders of small size (e.g., Duffie and Zhu (2017); Wittwer
(2021)).
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diction of the model is that demand (which map prices into quantities) becomes flatter

when capital constraints are relaxed as it becomes cheaper to buy larger amounts of

the asset. Unless supply adjusts, the market price increases.2 At the same time, deal-

ers distort the market price further away from the price that would arise if they were

price-takers. This is a source of inefficiency, for instance, because distorted prices

in the primary market may distort trading behavior and security allocation in the

secondary market.

We use data on Canadian Treasury auctions to test and calibrate the model be-

cause of two attractive features. First, dealers submit entire demand curves. We can

therefore observe whether dealer demand is flat or steep. Alternatively, we would

need to aggregate individual demands from secondary market trades—which involves

observing individual secondary market trades, and pooling data points over time and

across market participants. Second, we can link the dealers’ demand curves to bal-

ance sheet information, which is crucial for establishing a link between dealer demand

and capitalization.

Our data combines bidding information on all regular Canadian Treasury auctions

between January 2015 and February 2022 with balance sheet information of the eight

largest dealers at the company holding level (following He et al. (2017)). We observe

all winning and losing bids. Bids are expressed in yields to maturity which is the

annualized interest rates that equate the prices with the present discount values of

the bonds. This is why we conduct our empirical analysis with yields instead of prices.

In addition, we see the Basel III Leverage Ratio (LR) of each dealer-bank, which is

the Canadian equivalent to the Supplementary Leverage Ratio (SLR) in the U.S. It

is reported quarterly, measures a bank’s Tier 1 capital relative to its total leverage

exposure, and must be above an institutional-specific regulatory threshold, which we

also observe.

With the data, we gather evidence in favor of the model’s predictions. For this,

2The prediction that the asset price increases when the capital cost decreases is in
line with He and Krishnamurthy (2012, 2013) and Brunnermeier and Sannikov (2014)’s
prediction that leverage has a negative price of risk. In their models this is because a negative
shock to the net worth (equity capital) of a dealer decreases its risk-bearing capacity. In
our model, risk aversion is constant.
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we leverage that domestic government bonds were temporarily exempted from the

LR to buffer against negative effects of the COVID-19 pandemic. Through the lenses

of our model, this means that the capital constraint was temporarily lifted. An event

study confirms that the demand of dealers who were more strongly affected by the

policy change became flatter when the exemption period started, and steeper when

it ended relative to the other dealers, as predicted by our model. In theory, leads to

a decrease in market yields and an increase in markups; empirically, these effects are

hard to identify

We leverage our model to quantify by how much the market yield and markups

change when the constraint is relaxed or tightened. To pin down the banks’ degree

of risk aversion and the shadow cost of the capital constraint, we first estimate how

much bidders are willing to pay in each auction using estimation techniques from

the auctions literature (introduced by Guerre et al. (2000); Hortaçsu and McAdams

(2010); Kastl (2011)). Then we exploit that the willingness to pay of a dealer depends

on market observable characteristics (such as market volatility), in addition to the

degree of risk aversion and the shadow cost according to our theory. Therefore, we

can identify these parameters from how the willingness to pay of a dealer changes

around the policy changes.

We find that banks are close to risk-neutral. This is reassuring given that these

are global banks who can diversity away most types of risk. At the same time, banks

face sizable costs due to the capital constraint. The shadow cost parameters imply

that the market yield and markups increase by 0.23%–0.49% if the shadow cost of the

constraint increases by 1%. In comparison, estimates from regressing auction yields

on LR—which we suspect to be upward biased due to endogeneity—imply that a 1%

increase in the LR increases the yield by roughly 0.57%–0.78%. This result provides

some validation to the model, given that the elasticities are not dissimilar and the

bias goes in the expected direction. Yet we do not use the regression information to

estimate the model.

Our findings have valuable implications for government bond markets, which were

under severe distress in March 2020. Globally, banking regulators took measures to

facilitate central bank’s ability to support financial intermediation activities. These
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measures made it cheaper for dealers to absorb the excess supply of government bonds

onto their balance sheets. Our counterfactual analyses reveals welfare benefits and

costs: the relaxation of the LR led to a reduction in bond yields but an increase

in markups. This translates into higher auction revenues and thus savings for the

government at an implicit cost of larger yield distortion.

Beyond implications for government bond markets, our evidence contributes to an

ongoing debate in the asset pricing literature on whether, and if so how, capitalization

of financial intermediaries affects asset prices (e.g., Adrian et al. (2014); He et al.

(2017); Gospodinov and Robotti (2021)). We complement existing studies that rely

on market-level data and proxy variables for intermediary costs by zooming in on one

market in which we can observe the relationship between intermediary capitalization,

demand and the market price. Since our model is not specific to the Canadian

Treasury market, we conjecture that our findings generalize to many other financial

markets in which financial institutions intermediate trade.

Related literature. Our main contribution is to explain and quantify how dealer

capitalization affects asset demand and prices when dealers have market power.

This topic fits into an ample intermediary asset pricing literature that examines

the impact of dealer capitalization (or leverage) on asset price behavior due to con-

straints on debt (e.g., Brunnermeier and Pedersen (2009); Pedersen and Gârleanu

(2011); Adrian and Shin (2014); Moreira and Savov (2017); Elenev et al. (2021)), or

constraints on equity (e.g., He and Krishnamurthy (2013, 2012); Brunnermeier and

Sannikov (2014)).3 Given our focus on banks, we follow He et al. (2017) and rely

on equity constraints. Similar to models with balance sheet costs, issuing capital to

fulfill the regulatory constraint is costly in our model (e.g., Andersen et al. (2019);

Kondor and Vayanos (2019); He et al. (2022)).

The key difference to these models is that we zoom in on the intermediary financial

sector and allow dealers to impact prices as a result of market power in the tradition of

3Earlier contributions include Bernanke and Gertler (1989); Aiyagari and Gertler (1999);
Kyle and Xiong (2001); Xiong (2001); Gromb and Vayanos (2002) and Fostel and Geanako-
plos (2008). See Geanakoplos (2009) for a literature survey on the relation between leverage
and interest rates.
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Kyle (1989). The market clears via a multi-unit auction (as in Vayanos (1999); Vives

(2011); Rostek and Weretka (2012); Malamud and Rostek (2017); Wittwer (2021)).

Our innovation is to introduce a capital constraint and analyze its effect on market

outcomes and market power.

Our empirical analysis adds to a growing literature on the relation between in-

termediary costs or constraints and asset prices (e.g., Adrian and Shin (2010); Ang

et al. (2011); Adrian et al. (2014); He et al. (2017); Du et al. (2018); Check et al.

(2019); Gospodinov and Robotti (2021); Haddad and Muir (2021); Baron and Muir

(2022); Fontaine et al. (2022)). Most existing studies use market-level data, such as

cross-sectional returns of different asset classes, and rely on proxy variables to capture

intermediary costs, such as the VIX or aggregate capital holdings.

We zoom in on one market in which we can link dealer demand with balance

sheet information to establish a direct relationship between dealer capitalization and

asset demand, and identify a mechanism through which capital affects asset prices.

Furthermore, we calibrate our model to quantify elasticities and conduct counterfac-

tuals. For this, we rely on estimation techniques of a literature on multi-unit auctions,

developed by Guerre et al. (2000), Hortaçsu and McAdams (2010) and Kastl (2011)

and extended by Hortaçsu and Kastl (2012), and Allen et al. (2020, 2021).4

Outline and conventions. In Section 2 we introduce our model. Here we use

prices to express bond values, because it is more intuitive to think through the eco-

nomics when demand schedules are downward sloping and dealers pay prices to buy

for bonds. Starting in Section 3 we take our model to the data. Then we express bond

values in yields to maturity as is the case in the data. This makes the value of bonds

that have different maturities and coupon payments more comparable. Since yields

increase when prices decrease, demand schedules with yields are upward sloping.

Throughout the paper, we refer to markups as the the difference between the

price at which the market would clear if it was perfectly competitive and the price

4Our findings support a contemporaneous paper by Albuquerque et al. (2022). They
measure the price elasticity of aggregate demand in Portuguese Treasury auctions and show
that it predicts the post-auction return of the same bonds in the secondary market. They
suggest that the elasticity may proxy for dealers’ risk-bearing capacity.
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at which it clears under imperfect competition; or equivalently, as the difference

between the yield at which the market clears under imperfect competition versus

perfect competition. In a uniform price auction, markups increase in price impact–a

common object of interest in the finance literature following Kyle (1989).

2 Model

Our innovation is to introduce capital constraints in standard multi-unit auctions (as

in Wilson (1979)). The goals is study how the market price and markups change

when capital constraints are relaxed under different market clearing mechanisms.

In our benchmark, we model market-clearing via a uniform price auction, which

may be one-sided, meaning that bidders buy but not sell, or double-sided, so that

bidders buy and sell. In practice, many primary markets, for instance in the U.S.,

clear via uniform price auctions, while trading on an exchange can be approximated

via a double-sided uniform price auction (e.g., Kyle (1989)).

There are N > 2 dealers who compete in a uniform price auction to buy units

of an asset of total supply A > 0; payment is in cash (numeraire). Dealer i holds

zi ∈ R of inventory of the asset, equity capital Ei > 0 as well as other assets on

the balance sheet, which we normalize to 0 w.l.o.g. One unit of the asset pays a

return of R ∼ N(µ, σ) in the future. In our empirical application, where the asset is

a government bond, R represents the return from selling the bond in the secondary

market, which is unknown at the time of the auction.

Dealers may be uncertain about the supply, expected return of the asset, the

inventory positions of other dealers or capital positions. In the simplest version of

the model, dealers are uncertain about the supply, thus face aggregate uncertainty,

but have no private information or signals about the asset’s expected return, their

inventory, or capital positions.

Here, we present the simplest version of the model, as it best illustrates the main

mechanism at play. Thus, A is drawn from some commonly known continuous distri-

bution on positive support, and all other parameters, including µ > 0, zi ∈ R, Ei > 0,

are known among dealers. In our empirical application, supply is random because
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dealers don’t know how much will be issued when they compete. In other settings,

the supply might be random due to noise traders. In Appendix A.1 we generalize our

results to the case of private information.

Each dealer submits a continuous and strictly decreasing demand schedule: ai(·) :
R → R, which specifies how many units of the asset, ai(p), the dealer seeks to buy at

price, p.

For a given price, the dealer chooses demand to maximize the utility it expects to

earn from the wealth, ωi(ai, p), that would be generated if the dealer won amount ai

at price p, subject to a capital constraint:

max
ai

ER

[
1− exp

(
− ρiωi(ai, p)

)]
subject to κi ≤

Ei

p(ai + zi)
. (1)

Paranerer ρi > 0, measures the dealer’s degree of risk-aversion. The future wealth,

ωi(ai, p), is equal to the asset payoff, R, net of the prices paid, p:

ωi(ai, p) = (ai + zi)R− pai. (2)

The capital constraint is motivated by the Basel III requirement according to which

a bank must hold sufficient equity capital, Ei, relative to its total balance sheet

exposure. In our case, the total exposure is the nominal amount of the asset the bank

holds after the auction, p(ai + zi).

Once all dealers have submitted their demand curves, the auction clears at the

price, p∗, at which aggregate demand meets total supply,
∑

i ai(p
∗) = A, and each

bank pays the market clearing price for the amount won, a∗i = ai(p
∗). After auction

clearance, all transactions take place and the asset pays out its return.

We focus on Bayesian Nash equilibrium with linear demand curves (hereafter, equi-

librium), which is common in the related literature (e.g., Kyle (1985, 1989), Vayanos

(1999); Vives (2011); Malamud and Rostek (2017); Wittwer (2021)). Crucially, this

does not imply that dealers can only submit linear demand curves. Instead, it is

optimal for dealers to submit linear demand curves when all others do so.
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Proposition 1.

(i) In the unique equilibrium dealer i submits demand curve

ai(p) = ((1 + λiκi)Λi + σρi)
−1(µ− (σρi + Λiλiκi)zi − (1 + λiκi)p), (3)

with Λi = βiαiσ with βi =
2

αib−2+
√

(αib)2+4
and αi =

ρi
1+λik

, where b ∈ R+ is the unique

positive solution to 1/2 =
∑

i(αib+ 2+
√

(αib)2 + 4)−1, and λi’s are pinned down by

the system of N equations: Ei − κip
∗[ai(p

∗) + zi] = 0∀i where p∗ : A =
∑

i ai(p
∗).

This equilibrium exists for parameter constellations for which λi ≥ 0.

(ii) When dealers are identical (ρi = ρ, zi = z, Ei = E, κi = κ), λi = λ ≥ 0 ∀i for
sufficiently high κ and

ai(p) =

(
N − 2

N − 1

)
1

ρσ

(
µ− ρσz − (1 + λκ)p

)
. (4)

To derive an intuition for this equilibrium, consider a dealer who chooses how much

to demand at price p. The dealer takes the behavior of the other dealers as given and

maximizes its expected utility from winning the asset subject to market clearing and

the capital constraint. The optimal demand equalizes the expected marginal utility

(LHS) with the marginal payment (RHS):

µ− ρiσ(zi + ai) = (1 + λiκi)(p+ Λiai) + λiκiΛizi. (5)

The marginal utility is decreasing in the amount of the asset. For the first unit of the

asset, the dealer earns the per-unit return, µ. For the next units, the utility becomes

smaller, depending on the variance of the asset’s return and the dealer’s degree of

risk aversion.

The marginal payment has several components and depends on the regulatory

shadow cost of the capital constraint (the Lagrange multiplier λi ≥ 0), and the dealer’s

price impact, Λi ≥ 0. The latter is known as Kyles’ lambda and is 0 when the market

is perfectly competitive so that dealers are price-takers.5 When the constraint is not

binding (λi = 0) and dealers are price-takers (Λi = 0), the marginal payment is just

5See Kyle (1985, 1989); Malamud and Rostek (2017) for more details.
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the price, p, that the dealer has to pay for amount ai. When the constraint binds

(λi > 0) and dealers are price-takers (Λi = 0), the marginal payment is the price they

have to pay plus a shadow cost that comes from the capital constraint, which similar

to an ad-valorem tax: (1 + λiκi)p. When dealers face a binding capital constraint

(λi > 0) and have market power (Λi ̸= 0), Λiai0 measures by how much a dealer’s

choice impacts the effective price (1 + λiκi)p. Not only does this depend on their

risk-aversion and the number of players in the market, but it depends on the shadow

cost of capital. For instance, with identical dealers Λi =
1

N−2
ρσ

1+λκ
for all i. Finally,

when zi ̸= 0, there is an extra term, λikΛizi, which reflects the regulatory cost that

comes from the fact that the dealer’s existing inventory zi is evaluated at the market

price p in the capital constraint.

The key prediction of the model is about what happens when the capital con-

straint is relaxed, for instance because the minimal capital thresholds decrease.

Corollary 1. When capital constraints are relaxed so that λi’s decrease

(i) demand ai(·) becomes flatter, and market price p∗ increases

(ii) price impact Λi and markups increase for all dealers i.

Figure 1 illustrates two effects from relaxing the capital constraints. The first effect

is an own-demand effect. Since the effective price, (1 + λiκi)p, decreases, it becomes

cheaper for the dealer to buy larger amounts. The dealer’s demand ai(·) flattens. The
market price increases mechanically, unless supply adjusts.

The second effect comes from the change in demand of other dealers. This is

because the relaxed capital constrained not only affect dealer i, but all other dealers

as well. All other dealers submit flatter demand curves, which implies that the residual

supply curve that dealer i faces when choosing its own demand schedule is flatter. A

flatter residual supply curve, in turn, means that the dealer moves the market clearing

price more strongly when changing her demand. The dealer’s price impact increases.

Take away. Our model helps explain how capital constraints affect asset prices and

markups. The main prediction is that both the market price and markups increase

when capital constraints are relaxed, which highlights a trade-off for debt-managers

in primary markets.
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Figure 1: Own and cross demand effect when capital constraints are relaxed

(a) Dealer’s demand ai(p)a

p

A

p∗p∗

(b) Residual Supplyi(p)

a1
a2

p1 p2 p2p1

Figure 1 illustrates the change in the dealer’s own demand and her residual supply curve when the

capital constraints are relaxed in (a) and (b), respectively, for the case in which no dealer carries

inventory (zi = 0 for all i). In gray we see the initial demand curve and residual supply curve.

Both become flatter, as shown by the black line, when the constraints are relaxed. In (a) we see

how this increases the market clearing price, p∗, when supply is fixed. In (b) we see the increase

in the price impact, which measures by how much the clearing price changes, p2 − p1, when the

dealer marginally changes her demand from a1 to a2.

In Appendix A.2, we show that this prediction generalizes to discriminatory price

auctions, in which winning bidders pay the prices that they offered, not the market

clearing price. This auction format is used to sell government debt in many countries,

including Canada.

3 Institutional setting and data

To test the predictions of Corollary 1 and to quantify by how much demand, the price

(or equivalently the yield) and markups change when capital constraints are relaxed,

we use data on Canadian Treasury auctions. It has the attractive feature that dealers

submit entire demand functions, which we can link to balance sheet information of

each dealer at the company holding level.

Market players. There are eight deposit-taking primary dealers in Canada who are

federally regulated.6 They dominate the Canadian Treasury market and intermediate

6In total there are eleven primary dealers. One of these dealers is provincially regulated
and two are private securities dealers. They face different capital regulation than the eight
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the vast majority of the daily trade volume with government bonds. More broadly

speaking, these banks dominate the Canadian banking sector and hold over 90% of

the sector’s assets.

Primary dealers have a responsibility, as market-makers, to buy bonds from the

government and trade them with investors, brokers, or one another to provide liq-

uidity. They hold a substantial amount of bonds on their own balance sheets (see

Appendix Figure A1).

market-making is a small part of the bank’s total business, which includes accept-

ing deposits, making loans, and wealth management. Therefore, the dealer has no

control over most determinants on the bank’s balance sheet. A dealer’s assets are on

average 9% of the bank’s total assets (Allen and Usher (2020)). The bank’s balance

sheet, in turn, is what matters for the regulator since capital requirements must be

met at the company holding level.

Treasury auctions. Governments issue bonds in the primary market via regularly

held uniform price or discriminatory price auctions. In Canada, auctions are discrim-

inatory price. They take place several days a week. Anyone may participate, but

most of the supply is purchased by dealers. The largest eight dealers purchase on

average 81% of the supply in order to sell (or lend) on the secondary market.7 The

auction process is described below.

Capital constraints. According to a recent survey among market participants, the

Basel III LR represents the most relevant capital constraint when trading government

bonds (see CGFS (2016)). This regulatory requirement came into effect in September

2014 to reduce systematic risk—a benefit which we do not consider in this paper. We

focus on the cost-side of the constraint, which was empthathized by Duffie (2018) and

dealers we study. We therefore do not observe any balance sheet information for these
players. Technically, two of the eight banks have multiple dealers. For example, the Bank
of Montreal, has two dealers (Bank of Montreal and BMO Nesbitt Burns) who attend
different Treasury auctions, and therefore do not compete or share information within an
auction. We treat them as one dealer.

7This percentage represents how much of the amount that is issued to bidders other than
the Bank of Canada, who bids non-competitively, is allocated to the eight largest dealers.
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others.

Formally, the LR measures a bank’s Tier 1 capital relative to its total leverage

exposure, and must be at least 3%:

LRiq =
regulatory capital of bank i in quarter q

total leverage exposure of i in q
.

Tier 1 capital consists primarily of common stock and disclosed reserves (or retained

earnings), but may also include non-redeemable non-cumulative preferred stock; while

the leverage exposure includes the total notional of all cash and repo transactions of

all securities, including government bonds, regardless of which securities are used as

collateral.8

In reality, banks refrain from getting close to the minimal Basel III threshold

(see Figure 3b, explained below). One reason for this is that each institution faces

an additional supervisory LR threshold. These institutional specific thresholds are

communicated to individual institutions on a bilateral basis.9 They are considered

supervisory information and are not permitted to be disclosed to the public. Another

reason is that banks tend to hold sufficient conservation buffer for Tier 1 capital so

as to avoid punishment in form of restricted distributions (including dividends and

share buybacks, discretionary payments and bonus payments to staff).10

Data. The unique feature of our data is that we can link how a dealer bids in the

Treasury auction to balance sheet information about the dealer’s bank.

We obtain bidding data of all regular Treasury auctions between January 1, 2015

8Tier 1 capital consists mostly of common shares and stock surplus, retained earn-
ings, other comprehensive income, qualifying minority interest and regulatory adjust-
ments. The total leverage exposure measures a bank’s total assets and several of off-
balance sheet items, such as derivatives and repurchase agreements. For more de-
tails see: www.osfi-bsif.gc.ca/Eng/fi-if/rg-ro/gdn-ort/gl-ld/Pages/LR19.aspx#

expomea, accessed on 05/31/2022.
9For more details see Section IV. Minimum and authorized leverage require-

ments at: www.osfi-bsif.gc.ca/Eng/fi-if/rg-ro/gdn-ort/gl-ld/Pages/LR22.aspx,
accessed on 05/31/2022.

10In line with this idea, Barth et al. (2005), Berger et al. (2008) and Brewer et al. (2008)
document that bank capital is substantially above the regulatory minimum in countries
other than Canada.
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and February 1, 2022 from the Bank of Canada. We see who bids (identified by a

legal entity identifier) and all winning and losing bids. For consistency, we restrict

attention to bids of the eight dealers who are deposit taking for the most part of the

paper.

We collect balance sheet information for these eight dealers at the bank level.

Specifically, we obtain the LRs and supervisory LR thresholds of each bank. Both

are reported quarterly, at the end of January (first quarter), April (second quarter),

July (third quarter) and October (fourth quarter of the reporting year) from January

2015 until January 2022 from a data source, called LR.11 In addition, we obtain

the daily aggregated long and short positions in government bonds of the six largest

dealer-banks from the Collateral and Pledging Report (H4).12 Finally, we collect

information on who holds government bonds—banks versus other investor types—

from the National Accounts Canada (Statistics Canada).

In addition, we obtain yields of all trades with Canadian government bonds in

the secondary market from November 2015 until December 2020 to better isolate

the yield effect of dealer capitalization. These data are collected by the Industry

Regulatory Organization of Canada in the Debt Securities Transaction Reporting

System (MTRS2.0) since November 2015 and are made available for research with a

time lag.

Finally, we collect the Implied Volatility Index for Canadian Treasuries from the

Bank of Canada. The index measures the expected volatility of Treasury prices over

the next 30 days, similar to the Merrill Lynch Option Volatility Estimate (MOVE)

for U.S. Treasuries or CBOE Volatility Index (VIX) for stocks. It is based on option

prices on interest rate futures (Chang and Feunou (2014)).

Conventions and summary statistics. Quantities are in million C$, unless stated

otherwise. Ratios and yields—which we use from now on instead of prices—are in

percent or bps (i.e., 1
100

%). An overview of the main variables is in Table 1.

11One of the banks, HSBC, has a different reporting schedule than the others. Its fiscal
year ends in December, instead of October. In our empirical analysis this difference is
absorbed when we include dealer fixed effects.

12Institutional specific positions must only be reported monthly.
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Table 1: Summary statistics

Mean Median Std Min Max

Total amount issued (in bn C$) 3.97 3.20 2.33 1 20.6

Average yield (in %) 0.92 0.65 0.63 0.04 2.50

Days to maturity 1,094 352 2,292 99 12,399

Number of dealers per auction 8.00 8.00 0.04 7 8

Number of steps in demand curve 4.74 5 1.67 1 7

Maximal amount demanded (in mil C$) 741 600 569 0.48 8,240

Amount dealer won (in mil C$) 277 150 395 0 5,739

Quarterly LR (in %) 4.41 4.36 0.28 - -

Implied Volatility Index (in %) 0.46 0.25 0.77 0.04 7.57

Table 1 shows the average, median, standard deviation, minimum and maximum of key variables

in our sample. Our auction data goes from January 1, 2015 until February 1, 2022 and counts 917

auctions. In total there are 21 different securities. The min and max LR are empty because we

cannot disclose this information.

4 Evidence in favor of our model

We now provide supporting evidence of our model. Afterwards, we calibrate our

model to quantify by how much yields and markups change, when capital constraints

are relaxed.

4.1 Demand effect

To provide evinces that demand becomes flatter when the capital constraint is relaxed,

we leverage two features. First, when dealers failed to absorb the extraordinary

supply of government bonds in March 2020, government bonds, central bank reserves,

and sovereign-issued securities that qualify as High Quality Liquid Assets (HQLA)

were temporarily exempted from the LR constraint starting on April 9, 2020. As a

result, the LR spiked upward, moving away from the constraint (see Figure 3b).13

13The announcement to start the exemption period is available at: www.osfi-bsif.gc.
ca/Eng/fi-if/in-ai/Pages/20200409-dti-let.aspx, accessed on 05/31/2022. The an-
nouncement to end it is here: www.osfi-bsif.gc.ca/Eng/fi-if/in-ai/Pages/lrfbunwd.
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The exemption of government bonds and HQLA ended on December 31, 2021, while

reserves continued to be excluded.14 Second, in absence of the exemption some banks

faced higher, i.e., stricter, capital thresholds than other banks. According to our

model, the demand of these banks should have become flatter during the exemption

period than the demand of other banks.

To show this, we construct a measure of the slope of the demand and analyze how

slopes of banks with higher institution-specific capital thresholds changed relative to

those of the other banks.

Slope measures. Creating a slope measure is challenging because it must be dealer

and auction-specific so as to account for differences in capitalization, capital require-

ments and market conditions. For instance, we cannot simply regress demand on

prices or yields and use the regression coefficient as our slope measure. Not only are

prices endogenous, but this approach would eliminate the variation across time and

dealers that we need.

To construct a slope measure, assume for a moment that in the auction dealers can

submit linear demand curves that map from prices to quantities, like in the model.

Dealer i’s demand on day t for security s would be: aits(p) = interceptits − slopeitsp.

If this was so, we could read the intercept and slope off the data. The intercept would

be the amount that the dealer demands at a zero price, and the slope would be the

ratio between this amount and the intercept of the demand curve with the price-axis.

In reality, there are two differences. The first is that dealers cannot submit linear

demand curves but have to submit step functions with maximally 7 steps. A dealer

i submits Kits ≤ 7 quantity-price tuples: {aitsk, pitsk}Kits
k=1 . This implies that the

measure we introduce,

slopeits =
maxk{aitsk}
maxk{pitsk}

for Kits > 1, (6)

is an approximation (see Figure 2). The second difference is that the value of the bond

aspx, accessed on 05/31/2022.
14In Canada, quantitative easing is conducted by the central bank buying government

bonds from banks with settlement balances, i.e., reserves.
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is expressed in yields rather than prices, which means that the submitted demand

curves are upward sloping. To incorporate this, we convert the maximal price in

equation (6) into the corresponding yield.

One concern with slope measure (6) is that it relies on two extreme points on the

demand curve. Ex ante, the dealer does not know where the market will clear, and

submits bids at prices that may win with positive probability. However, ex post with

finite data, it may be that we don’t observe dealers ever winning at extreme points

on their demand curves.

To ensure that our estimation results are not biased by extreme points, we conduct

robustness checks with three alternative measures. For one, we replace maxk{aitsk}
in (6) by the amount each dealer asked for at the highest step, k∗

i , it ever won: aitsk∗i .

Second, we cap maxk{aitsk} by the largest amount a dealer ever won (in % of supply).

Third, we compute the local slope around the point at which the market clears. For

this, we first find the market clearing yield of an auction, yieldCts. Then, we leverage

the fact that, according to the auction rules, bid yields cannot have more than three

decimal places. We determine the yield that lies just above, yieldUB
ts = yieldCts+0.001,

and the yield that lies just below the clearing yield: yieldLBts = yieldCts − 0.001. With

this, we compute the local slope as the difference in the demand of a dealer at these

two cutoff yields over the difference in the cutoff yields.15

Among all slope measures, measure (6) is our preferred one. It is intuitive and

can be computed for essentially all demand curves for each dealer and auction. The

measure can account for differences in capitalization, capital requirements and market

conditions over time and across all dealers. In contrast, our alternative slope measures

rely on a more restricted sample of bids.16

15One other way to construct a slope measure in other settings, would be to fit straight
line through each submitted demand curve. In our setting, in which the median (maximal)
number of steps in a demand curve is four (seven), this would mean running OLS regressions
through only a few data points.

16This is especially true when measuring the slope of demand locally, around the market
clearing price. This local measure only considers 69% of all demand curves—those of bidders
who win at auction. This is problematic, for instance, if dealer capitalization affects how
aggressive the dealer bids, which is what our model predicts.
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Figure 2: Example of a demand function with 6 steps

q

(0,0) p

maxk{aitsk}

interceptits =

maxk{pitsk}

Figure 2 illustrates how we measure the slope of demand of dealer i on day t for security s. In

black, we show an example of a step-function, {aitsk, pitsk}6k=1, that a bidder could submit at

auction (with prices instead of yields). In gray, we show a continuous, linear demand function, q(·),
as in Proposition 1, which connects the maximal amount that the bidder asks for, maxk{aitsk},
with the maximal price that it is willing to pay, maxk{pitsk}. We use the the slope of this auxiliary

function to approximate the “slope” of the step function, and convert prices into yields.

Event study. Given that capital requirements must hold on a quarterly basis, we

collapse the data on that level. We regress the average slope in the demand function

of dealer i in quarter q for security s on an indicator variable equal to 1 k quarters

before/after the first event quarter (2020q2), Dk, multiplied by the bank’s thresholdik

supervisory LR threshold in that quarter. We include quarter-security fixed effects,

ζqs, to absorb common unobservables that affect dealer demand, such as the start of

QE or COVID-related demand and supply factors:

slopeiqs = α +
K∑

k=−K

γk ∗Dk ∗ thesholdik + ζqs + ϵiqs. (7)

The slope is measured in million C$ per 1 bps. For, instance, a slope of 1 means that

a dealer demands C$ 1 million less when the yield increases by 1 bps. The threshold

is also expressed in bps.

The parameter of interest, γ0, tells us by how much the slope of a bank that faces

a tighter constraint (higher supervisory LR threshold) changes relative to the slope of

18



Figure 3: The effect of the exemption on Treasury positions and the LR

(a) Aggregated positions in Treasuries (b) Time series of LR for an average bank

Figure 3a shows the aggregated amount of Canadian government bonds that the biggest six Cana-

dian banks hold in long (in green) and short (in red) positions in millions of C$ from January 2019

until February 2022. The vertical line is April 9, 2020, when government bonds were exempt from

LR. Figure 3b shows the time series of the LR (in %) of an average bank. In blue, we show the

actual LR. In red the counterfactual LR that the average bank would have had if central bank

reserves and sovereign-issued securities that qualify as high quality liquid assets and exposures re-

lated to the US Government Payment Protection Program (PPP) were not exempt. In 2022q1, the

LR does not get back to its original level, partially because central bank reserves are still exempted.

a bank that faces a less stringent constraint (lower supervisory LR threshold), when

government bonds are exempted, and similarly for γ7.

We find that the estimated coefficients are not statistically different from 0 before

the policy change, which means that banks with different capital thresholds submitted

demand curves with similar slopes (see Figure 4). During the exemption period, the

slope of banks with higher capital thresholds were significantly lower than those of

banks with lower thresholds. It jumps back when the exemption ended. Both is in

line with our model.

The size of the effect is large (C$1 million per bps). It suggests that, during

the exemption period, a bank whose capital threshold is 1 bps above the threshold of

another bank reduces its demand by C$ 1 million less than the other bank in response

to a 1 bps yield increase. This change is sizable compared to the average amount a

dealer wins at auction (C$ 277 million).

19



Figure 4: Change in the slope

Figure 4 shows the γk estimates and 95% confidence intervals of the regression (7): slopeiqs =

α +
∑K

k=−K γk ∗ Dk ∗ thresholdik + ζqs + ϵiqs. All magnitudes are relative to the benchmark in

2020q1. The slopes are in million C$/bps, thresholds are in bps.

Interpretation. The estimated relationship would be causal under two conditions.

First, bank-specific capital thresholds were not changed in response to, or set in

expectation of the temporary exemption. This is plausible given that COVID was

not predictable when most of the capital thresholds were last adjusted. Second, the

exemption was an exogenous event. This means that the Canadian regulator did not

choose to change the LR requirement in response to how dealers bid in the primary

auctions, which seems is unlikely given that Canada was part of a global response

(see Bank of International Settlement (2020)). This also means that there were no

systematic changes over time that affected the slope of different dealers differently,

other than the change in LR.

Two confounding factors come to mind. First, the Bank of Canada increased the

maximal bidding limits from April 2020 until June 2021. This was to allow dealers

to buy larger amounts of government bonds, even though pre-COVID maximal bid-

ding limits were typically not binding (see Appendix Figure A5). Second, the Bank

of Canada started buying government bonds in the secondary market via quantita-

tive easing from April 2020 until October 2021. Both of these policy interventions
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were meant to help ensure that dealers continued to buy sufficiently in the primary

market.17 Thus, if anything, these interventions likely increased the amount a dealer

asked for at auction. By definition, such increases would have increased the slope

measure (6). We find the opposite and therefore don’t think that the change in bid-

ding limits or quantitative easing drives the drop in 2020q2. Moreover, neither of the

two confounding factors were present in 2022q1, when the slop jumps back up.

Robustness analysis. We conduct a series of robustness checks. First, we esti-

mate regression (7) with leverage ratios LRiq instead of capital thresholds to exploit

variation in these ratios (see Appendix Figure A2). The estimates are qualitatively

similar, but the change in the slope is less sharp when the exemption period ends.

One reason for this is that dealers who were most positively impacted by the LR

exemptions demanded larger amounts in 2020q2 than in subsequent quarters (see

Appendix Figure A4). This mechanically increases the slope measure after the first

exemption quarter.

Second, in Appendix Figures A3, we add dealer fixed effects to take out time-

invariant unobservable dealer characteristics, but warn that this regression could be

over-specified when using the capital thresholds given that they don’t change often.

Third, we use the alternative slope measures, described above to show that the

change in the slope is not driven by the way we construct our slope measure (recall

Appendix Figures A7). By definition, the size of the slope effect depends on how we

compute the slope measure. Importantly, the qualitative finding is robust across all

specifications.

Fourth, we exclude dealers who hit the pre-COVID bidding limits more frequently

than 0.25% of the time to show that the main results are not driven by dealers who

go over these limits (recall Appendix Figure A6).

17This raises the concern that dealers were at the minimal bidding limits. The minimal
limits are only soft constraints since dealers are given six months to improve its performance
if it falls below the minimum. They are bank-specific and the exact numbers are unknown
to us. We know that for most banks the minimal limit is around 10% and do not see that
banks are more likely to be at that limit during 2020–2021 (see Appendix Figure A5).
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4.2 Yield effect

When demand becomes flatter the market clearing yield must decrease, all else equal.

This is a mechanical effect in theory, which is hard to show in the data. The reason

is that we only observe one market clearing yield per auction. We don’t see the

counterfactual scenario in which demand curves would have been flatter and the

market would have cleared at a different yield. We can no longer rely on variation

in capital or leverage ratios or thresholds across dealers. However, we can compare

market yields across time, and control for unobservable factors that moved yields but

were unrelated to dealer capitalization.

To test whether the yield decreases as the leverage ratio increases—either because

the bank already holds sufficient capital which lowers the shadow cost of the capital

constraint, or because capital requirements are relaxed—we regress the average auc-

tion clearing yield on day t on the quarterly leverage ratio of a dealer, LRqi, and two

control variables, as well as dealer-fixed effects (ζi) and year fixed effects (ζy):

yieldt = α + βLRqi + controlst + ζy + ζi + ϵti.

First, to take out unobservable factors that move yields, such as interest rate uncer-

tainty and inflation risk, we control for the yield at which the closest substitute to

the issued bond is traded on that day in the secondary market, benchmark yieldt.
18

We define the closest substitute as the bond with the closest maturity date to the

one issued, on average the maturity differs by few days. Second, to remove any effect

that extra supply might have on the yield, we control for the supply of the auction,

supplyt.

In line with the model’s prediction, we find a negative relationship between the

auction yield and the leverage ratio (see Table 2). To get a sense of the size of the

effect, recall that the leverage ratio increased from an average of 4.3% to 4.5% (recall

Figure 3b). These coefficients say that this decreased the auction yield by 5–7 bps,

which is a significant drop given the low yields in the sample.

18One concern is that the closest substitutes are less liquid than the bonds issued due to
an on-the-run effect. This effect is less common in Canada because most bonds are re-issued
multiple times to avoid low liquidity of a particular security.
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Table 2: Correlation between yield and LR

(OLS) (FE1) (FE2)

LR −0.360∗∗∗ −0.370∗∗∗ −0.245∗∗∗

(0.0362) (0.0411) (0.0521)

controls − − ✓
fixed effects − ✓ ✓
Observations 2912 2912 2904

Adjusted R2 0.032 0.679 0.789

Column of Table 2 shows results of yieldd = α + βLRqi + ϵti. In (FE1) we add the dealer and

year fixed effect. In (FE2) the control variables. Yield and LR are in %. Standard errors are

in parentheses, clustered at the dealer level in (FE1) and (FE2). * p < 0.05, ** p < 0.01, ***

p < 0.001

The OLS estimate would be downward biased (and hence larger in absolute value

than it should be) if LR is positively correlated with the error term. This would

be the case if there were unobservable factors that lead banks to decrease the LR

and decrease the yield. Before April 9, 2020, one way for this to happen is if banks

actively increased their LR in response to some negative capital shock by buying less

government bonds in a way that decreases the total asset exposure but keeps capital

constant. Then, since dealer demand is downward (upward) sloping in price (yield),

the market yield would decrease.

Take away. Our empirical evidence provides support for our model hypothesis—

dealer demand becomes flatter when their institutions weaker capital constraints.

This decreases the market yield. To quantify these effects and avoid endogeneity

issues, we take our model to the data.

5 Quantification

Our goal is to quantify by how much the yield and markups change when capital

constraints are relaxed. Both effects depend on the shadow cost of the capital con-

straint, λκ, and the dealer’s risk aversion, ρ, in addition to observables, such as market

volatility.
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5.1 How to identify risk aversion and shadow costs?

To estimate the parameters of interest, we face three main challenges that stem

from the fact that Treasury auctions are more complicated in reality than what we

can capture with a tractable theory. First, the auction is discriminatory price, not

uniform price. Second, demand functions are step-functions as in Kastl (2011). Both

complicate the analysis. Third, dealers are not the only bidders in the auction.

Customers participate via dealers, which means that dealers might obtain information

from observing their customer bids.

Main idea. To overcome these challenges, we use insights and techniques from

the empirical literature on auctions (Guerre et al. (2000): Hortaçsu and McAdams

(2010); Kastl (2011); Hortaçsu and Kastl (2012); Allen et al. (2022)). For this, we

adopt Hortaçsu and Kastl (2012)’s empirical auction model that incorporates the key

institutional features of Canadian Treasury auctions.

The main idea is that we can back out how much bidders are truly willing to

pay from the bids they submit under the assumption that bidders are rational and

play an equilibrium of the auction game. With the bidders’ estimated willingness to

pay—which depends on the shadow cost of the capital constraint and the dealer’s

risk aversion—we can separately identify these parameters by leveraging the fact

that Treasuries were temporarily exempt from the constraint. To do this, we do not

have to solve for an equilibrium in closed form. It suffices to characterize optimality

conditions of an equilibrium, which implies that we can work with a less stylized

model that closely fits the actual auction.

Identifying assumptions. To remain concise and focus on our contribution, we

only discuss the main identifying assumptions that we impose in our paper. We refer

to Hortaçsu and Kastl (2012) for details.

There are ND potential dealers and NC potential customers who participate in

auction t. Each dealer and customer draws private information ξti about her true

willingness to pay for amount q, vti(q). ξti is drawn independently from all other

bidders according to atomless distributional functions FD
t (ξti) and FC

t (ξti) for dealers
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and customers, respectively.

Ex-ante, before drawing private information, all dealers are identical, and so are

customers, but across these two bidder groups, bidders may be asymmetric. This

implies that all dealers share the same degree of risk aversion, ρt and the same shadow

cost of capital λtκt within the same auction.

To determine how much a bidder is wiling to pay in auction t, we rely on our

theory. In particular, equation (9) characterizes how much a dealer is truly willing to

pay, which is equivalent to the price a bidder would submit if she was a price-taker

(i.e., Λi = 0). Adjusting the notation to highlight that parameters may change across

auctions t and account for the fact that dealers are ex-ante identical, we rearrange

µt − ρtσt(zti + a) = (1 + λtκt)(vti + Λtia) + λtκtΛtizti (8)

with Λti = 0 to obtain the dealer’s true willingness to pay for amount a:

vti(a) = ξti −
(

ρtσt

1 + λtκt

)
a. (9)

According to our theory, ξti = (µt − ρtσtzti)(1 + λtκt)
−1, but for our estimation, we

don’t have to impose any specific functional form on ξti.

Finally, to identify dealer’s risk aversion and the shadow cost of the capital con-

straint, we assume that the dealer’s risk aversion did not change in auctions close to

the policy change, ρt = ρq, and that the cost is constant within a quarter, λtκt = λqκq.

Here, we include all auctions in the quarter before and after the two policy changes,

motivated by the fact that capital requirements are reported quarterly.

Estimation procedure Our estimation procedure has two steps.

First, we estimate the dealers’ true willingness to pay, v̂tik = v̂ti(q), for each sub-

mitted amount q, or, equivalently submitted step k, from the necessary equilibrium

conditions (characterized in Hortaçsu and Kastl (2012), Proposition 1). These con-

ditions depend on the distribution of the market clearing price. To estimate this

distribution for each bidder and auction, we adopt the resampling method of Allen

et al. (2022) who generalize Hortaçsu and Kastl (2012)’s method.
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The core idea is to fix a bidder and draw from the submitted bids of all other

dealers to simulate one possible market outcome. Repeating this many times gives

the distribution of the market clearing price for each bidder. The resampling becomes

more complicated when accounting for the fact that there are two bidder groups and

that dealers can observe their customer’s bid, but the main idea remains the same. We

refer to Allen et al. (2022) or Hortaçsu and Kastl (2012) for details of the resampling

procedure.

Second, we leverage the assumption that a dealer’s willingness to pay is linear and

that its slope is independent of the dealer’s private information (recall equation (9)).

This, together with the fact that most dealers submit a step function with more than

two steps, allows us to estimate a slope coefficient, βt, from regressing the dealer’s

estimated value at step k on the amount she demanded at that step, atik, and a

bidder-time-auction fixed effects, ξti,

v̂tik = ξti − βtatik + ϵtik, (10)

using values from dealers who submit more than two steps in auction t.

We normalize each slope coefficient β̂t by the Implied Volatility Index for Canadian

Treasuries, shown in Figure 5a, which measures σt in the dealer’s willingness to pay

(9). During the exemption period—in which the shadow cost of the capital constraint

are 0—the normalized slope coefficient, βt

σt
, equals the dealer’s risk aversion ρt. Outside

of this period, βt

σt
= ρt

1+λtκt
.

Finally, under the assumption that risk aversion does not change around the policy

change and that the shadow cost of capital is constant within a quarter, we compare

the slope coefficient before and after the policy change to back out our parameters

of interest. Alternatively, we can estimate these parameters in one step running the

following regression

v̂tik = ζti + ρ× exempttσtatik +
ρ

1 + λκ
× (1− exemptt)σtatik + ϵtik (11)

using estimated values, v̂tik, and respective quantities atik of dealers who submit more

than one step in an auction t during 2020q1 and 2020q2 when the exemption period
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Figure 5: Implied Volatility Index and normalized coefficients of regression (10)

(a) Implied Volatility Index: σt (b) Normalized coefficients: β̂t

σt

Figure 5a displays the time series of the daily Implied Volatility Index (in %) of the Canadian

Treasury market from 2019 until March 2022. Figure 5b shows the distribution of the estimated

slopes coefficient of the dealers’ willingness to pay in auction t, β̂t of regression (10) with dealer

values in % and quantities are in million C$, normalized by the Implied Volatility Index (in %), σt,

for three time periods: before the exemption of Treasuries from the LR (2019q1–2020q1), during

the exemption period (2020q1–2021q4) and after the exemption (2022q1).

started. For the end of the exemption period, we use data from 2021q4 and 2022q2.

Indicator variable exemptt is 1 in 2020q1 and 2022q1, respectively, and 0 otherwise;

σt is the daily Implied Volatility Index, and ζti is a dealer-auction-time fixed effect.

5.2 Estimated parameters and elasticities

Risk aversion and shadow costs. The distributions of βt

σt
during and outside of

the exemption period, shown in Figure 5b, tell us that ρt is small, with a median of

around 0.001. This is reassuring since we would expect global banks to be able to

diversity away most of their risk by managing their portfolio. In addition, we see that

ρt varies across auctions during the exemption period. One reason for this is that

different auctions offer government bonds of different maturities and risk aversion

varies in the length to maturity. Longer bonds are more risky to buy than short

T-bills (see Appendix C for details). Finally, the median βt

σt
outside of the exemption

period is lower than the median during the exemption period, which suggests that

the shadow cost of capital are strictly positive in 2020q1 and 2022q2.
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In line with these insights, we estimate low risk aversion and high shadow costs

using regression (11): see Table 3.19 The risk aversion is +0.0001 for 2020q1-2020q2

and +0.0003 for 2021q4-2022q1. This means that a dealer’s average willingness to pay

decreases by only C$2.77 when going from winning nothing to winning the average

amount (C$277 million). The dealer appears close to risk neutral, which would be

the case if the willingness to pay was perfectly flat.

Banks became slightly more risk averse in 2021q4-2022q1 relative to 2020q1-

2020q2. One reason for this is that dealers are uncertain about when the exemption

for reserves and settlement balances will be lifted. This would tighten their LR. In

addition, they might be concerned that the Bank of Canada will have to start un-

winding all the bond QE-purchases. As primary dealers, the banks have an obligation

to buy these bonds, which can increase their exposure and lower the LR.

The shadow cost of capital is high with 0.96 in 2020q1-2020q2 when investors

wanted to sell Treasuries and dealers were asked to absorb large amounts onto their

balance sheet, tightening constraint. The cost decreases to 0.30 in 2021q1-2022q4

when the Treasury market had calmed down.

As a sanity check, we also estimate regression (11) with submitted, observed

bids, instead of estimated values. We expect to find parameters which are similar in

magnitudes but not identical, because dealers shade their bids.20 The estimates in

Table 3 confirm this conjecture. Both, risk aversion and shadow costs are similar in

size to those estimated using willingness to pay. Both are slightly biased downward.

The reason is that dealers shade early steps, i.e., small amounts, more strongly than

higher steps, i.e., large amounts (see Figure 6). This implies that the dealer’s true

willingness to pay is steeper than the submitted bidding function.

The high shadow cost of capital suggests that it is not profitable for dealers to buy

19Standard errors in Table 3 do not account for the fact that the independent variable is
estimated. To correct for this, we could bootstrap.

20In line with the literature, shading is a couple of basis points (e.g., Chapman et al.
(2007); Kang and Puller (2008); Kastl (2011); Hortaçsu et al. (2018); Allen et al. (2020,
2022)). These factors are small in absolute terms but sizable compared to the low market
clearing yields on the four auction days: 44.7 bps, 43.6 bps, 47.9 bps and 56.2 bps on April
8 2020, April 14 2020, December 21 2021, and January 05 2022, respectively.
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Figure 6: Distribution of bid shading per step k

Figure 6 shows box plots of how much dealers shade their bids at each of the seven steps. Formally

it is the difference between the submitted yield bid and the estimated value, both in bps. The

distribution for each step is taken over dealers and auctions.

Treasuries in the primary market. To see this, consider a dealer in 2020q1-2020q2

who holds zero inventory going into the auction. To buy a of bonds, a dealer must pay

weakly more than p∗a in a discriminatory price auction plus 0.96p∗a due to the capital

constraint. In return, the dealer earns Ra from selling the bonds in the secondary

market. For this transaction to be profitable it must be that the dealer can sell the

bond at a price that is at least double the auction price in the secondary market.

This never happens in the data.

This raises the question of why any dealer would want to participate in Treasury

auctions—addressed in a companion paper (see Allen et al. (2022)). Broadly speaking

this suggests that it must be valuable for banks to have the primary dealer status,

otherwise we should observe more banks existing the market. Given that primary

dealers are carefully chosen by the government and heavily regulated, the status

signals trustworthiness and stability. This helps to attract bank clients who seek

to invest outside of the government bond market. When the benefit of having the

primary dealer status no longer out-weights the cost, dealers exist the market, as

shown by Allen et al. (2022).
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Table 3: Estimated risk aversion and shadow cost parameters from regression (11)

(b) With values as independent variable

2020q1-2020q2 2021q4-2022q1

ρ +1.52/104*** (0.033/104) +3.96/104*** (0.155/104)

λκ +0.965*** (0.168) +0.302*** (0.115)

N 23,074 12,894

(b) With bids as independent variable

2020q1-2020q2 2021q4-2022q1

ρ +0.686/104*** (0.010/104) +2.050/104*** (0.046/104)

λκ +0.844*** (0.169) +0.169*** (0.076)

N 23,074 12,894

Tables 3(a) shows the estimate of v̂tik = ζti+ρ× exempttσtqtik+
ρ

1+λκ × (1− exemptt)σtqtik+ ϵtik

with values expressed as yields to maturity in %, and quantities are in million C$. In (b) we replace

the estimated values by the observed bids btik. Standard errors are in parentheses. * p < 0.05, **

p < 0.01, *** p < 0.001

Elasticities. With the estimated risk aversion parameter and shadow costs, we can

approximate by how much the market price and market power changes when the

capital constraint is relaxed. For this, we leverage the following statement.

Corollary 2. When the shadow cost of capital increases by 1%, the market price and

market power—defined as the difference between the price that would arise if dealers

were price-takers and the price that actually arises—increase each by

η =
1

1 + λκ
− 1%. (12)

When values and bids are expressed in yields rather than prices, the market yield

decreases but market power increases by η%.

Corollary 2 holds in uniform and discriminatory price auctions with ex-ante identical

dealers who submit linear demand schedules (see Appendix A for details). In practice,

demand schedules are step-functions. However, they are approximately linear, in that

the R2 of regression (10) with bids instead of values is high (see Appendix Table 4).
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Therefore, we can approximate the effect on the market price and market power with

equation (12).

The point estimates of the shadow costs reported in Table 3 imply an η of 0.49%

and 0.23% in 2020q1-2020q2 and 2021q4-2022q1, respectively. This means that the

market yield increases by 0.23%–0.49% if the shadow cost increases by 1%. For

instance, the average yield of 193 bps would increase by 0.23%–0.49% * 193 bps =

0.4-0.9 bps.

In comparison, the reduced-form evidence says that a one percentage point in-

crease of the LR—which moves the bank further away from the minimal capital

threshold and thus decreases shadow costs—increases the yield by roughly 25–36 bps.

This means that a 23% increase of the average LR (prior to the exemption=4.2%)

increases the average yield by 25/193–36/193=12%–18%. Thus, a 1% increase in the

average LR increases the yield by roughly 12/23%–18/23% = 0.57%–0.78%. These

numbers are similar to our calibrated yield effect. This provides a validation for our

model since we haven’t used this information to estimate it. Further, the fact that the

elasticities implied by the regression analysis are larger than the calibrated elasticities

is in line with our conjecture, described above, that the regression coefficients might

be biased upward in absolute value because of endogeneity.

Counterfactual. With the model we can quantify by how much the auction yield

and market power would have changed had the regulator not changed the LR re-

quirement. For illustration, consider 1Y-bond auctions around both policy changes.

The first auction after the LR was relaxed (on April 14, 2020) cleared at a yield of

51 bps. The average amount by which a dealer shaded her bid at market clearing,

which approximates the markup due to market power, was 2.12 bps. Had the LR

not been relaxed—which implies a 100% increase in the shadow cost of the capital

constraint—the auction would have cleared at a yield of 75 bps with a markup of 1.14

bps. The first auction after the LR was tightened (on January 5, 2022) cleared at 89

bps, with average shading of 1.79 bps at market clearing. Had LR not been relaxed,

the auction would have cleared at 47 bps with markup of 2.63 bps.

This highlights a new trade-off that regulators should take into account (in addi-
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tion to the way the LR affects trading in the secondary market and concerns about

systematic risk) when deciding whether to relax or tighten capital constraints. Re-

laxing capital constraints decreases yields but increases market power. Whether the

effect is sizable in absolute terms depends on the interest rate level. If interest rates

are low—as is the case in our sample—the absolute effect is small. However, with

raising interests rates and growing balance sheets of banks, the trade-off may become

first order in the future.

6 Conclusion

This paper studies if and how the capitalization of dealers affects asset demand and,

with that, prices, when dealers have market power. We introduce a model to to

show that weaker capital requirements lead dealers to demand more of the asset at

higher and more manipulated prices. We test the model’s prediction and calibrate

the model with data on Canadian Treasury auctions, where we can link asset demand

to balance sheet information of individual intermediaries. Our findings highlight that

weaker capital requirements reduce the funding cost of debt but increase market

power.
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Appendix

A Model extension: Private information

Here we extend our model to incorporate private information. In line with the empir-

ical section of the paper, we let dealers be ex-ante identical and private information

be independent across dealers. All proofs are in Appendix B.

A.1 Uniform price auction

In our benchmark model, potentially asymmetric dealers face aggregate uncertainty.

In the empirical model, dealers are ex-ante identical and have private information.

Here we show that the model’s prediction generalize to such a setting. In reality,

dealers could be uncertain about the asset’s mean return, their inventory, or equity

positions. We focus on private information about inventory positions. The other

cases are analogous.

There are two main differences compared to the benchmark model. First, dealers

are ex-ante identical (Ei = E, κi = κ, ρi = ρ ∀i); each draws an inventory position

zi independently from all other dealers from some distribution. She observes the

position privately prior to the auction. In addition, all dealers observe the aggregate

inventory positions,
∑

i zi. Second, we let dealers balance out their total exposure

after the auction with one another or in an outside market. This assumption reflects

the fact that banks try to achieve a balanced exposure by the end of the quarter.

Further, it makes the model tractable because it ensures that dealers can predict the

Lagrange multipliers, λi, of their competitors.

We model the balancing process in reduced form by assuming for each zi and mar-

ket price p there is a xi(p) such that ai(p)+zi+xi(p) = η(p), where ai(·) is the dealer’s
demand schedule, and η(·) is a mapping from the price to the total exposure a dealer

carries when the capital constraint must be satisfied. In reality this happens at the

end of each quarter. To achieve tractability within the linear-demand environment,

we assume that η(p) is linear, i.e., η(p) = α − βp for some α ∈ R+, β > 0. Exposure

decreases in price as you might think of it as demand curve.
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Summarizing, the sequence of events is as follows:

1. Each dealer observes her inventory position, zi, drawn iid from some distribu-

tion, in addition to the aggregate inventory,
∑

i zi.

2. Each dealer submits her demand schedule, ai(·).

3. The auction clears at price p∗ :
∑

i ai(p
∗) = A, and dealers balance out their

total exposure, so that this exposure equals η(p∗). The asset pays its return

and all transactions are made.

We show that there is an equilibrium that has a similar shape to the one in the

benchmark model.

Proposition 2. There exists an equilibrium in which dealer i submits

ai(p) = (Λ + σρ)−1
(
µ+ ακΛλ− σρzi − (1 + 2βκΛλ)p

)
with Λ =

−(N−2)+
√

(N−2)2+8βκλ(N−1)ρσ√
4βκλ(N−1)

and λ is such that E − κp∗η(p∗) = 0 where p∗ :∑
i ai(p

∗) = A as long as λ ≥ 0, which is the case when κ is sufficiently low given all

other parameters.

Like in the benchmark model, each dealer chooses how much to demand at each price

p so as to equate marginal utility and marginal payment:

µ− ρσ(zi + ai) = p+ Λiai + Λiλiκ

[
η(p) + p

∂η(p)

∂p

]
(13)

The marginal payment is slightly different from before because the dealer now antic-

ipates that she holds η(p) of total exposure on her balance sheet at the end of the

game. The constraint now binds when E = κpη(p) rather than when E = κp(ai+zi).

The rest is analogous to before. This is because the real value of exposure decreases

in p in both versions of the model.

Corollary 3. When the capital constraint is relaxed so that λ decreases, demand

becomes flatter, the market price increases and price impact increases.
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A.2 Discriminatory price auction

So far, we have assumed that the market clears via a uniform price auction. While

this auction format nicely approximates market clearing in many markets, including

U.S. Treasury auctions and exchange trading, it does not fit all settings. Sometimes,

bidders (or traders) do not pay the market clearing price for each unit won at auction,

but the prices that they offered to pay for these units. This is known as discriminatory

pricing and it is the case in our empirical setting, as well as other primary markets

for government bonds (e.g., Brazil, France, Italy, U.K., Mexico).

To ensure that the model predictions that we derive below hold for uniform price

and discriminatory price auctions, and to derive equilibrium conditions for our cal-

ibration, we derive an equilibrium in a discriminatory price auction. When bidders

have private information and demand multiple units, this is a challenging problem

that the literature has not yet solved. The reason is that the equilibrium depends on

the bidders’ beliefs on where the market clears since bidders pay the prices that they

bid rather than the market clearing price.

To achieve tractability, we make two changes to the setting. First, we rely on the

fact that vi(a) =
σρ

1+λκ
[µ− (zi + a)] is a dealer’s true willingness to pay for amount a

given objective function (1) and shadow cost of capital λ ≥ 0 (explained in Section

5.1) and let the dealer’s willingness to pay equal to that. In addition, zi is the dealer’s

private information. It is drawn iid across i from a distribution with support [z, z].

Second, we impose that the amounts that bidders win in the auction follow a

Generalized Pareto Distribution.21 Formally, winning quantities are drawn from a

distribution with CDF Fi(a) = 1− (νi+ξa
νi

)
− 1

ξ with ξ ∈ (−∞,−1], νi = −ξ(N(1−ξ)−1
N(1−ξ) )(z −

zi) − ξ(AN ). Proving existence and characterizing an equilibrium for discriminatory

price auctions for other distributions of winning quantities is an open question in the

literature, and beyond the scope of this paper.

Proposition 3. There exists an equilibrium in which dealer i submits the demand

21This assumption implies functional form restrictions on the model’s exogenous primi-
tives that cannot be easily summarized, which is why we state the assumption based on the
(endogenous) distribution of winning quantities.
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curve

ai(p) =

(
N(1− ξ)− 1

N − 1

)
1

σρ
(µi − (1 + λκ)p)

with µi = µ+ ρσ
1−ξ

(z − zi) +
ρσA

N(1−ξ)−1
as long as E[µi] ≥ ρσA(N−1)

N(N(1−ξ)−1)
.

The key insight for this paper is that the equilibria of both the uniform price and

discriminatory price auction formats have a similar functional form. The intuition

for this equilibrium is similar to the intuition for the equilibrium in a uniform price

auction. The main difference is that bidders form different expectations over how

much they benefit and how much they must pay when winning an additional unit

than in equation (5). For more details, see Ausubel et al. (2014) who describe the

trade-off in a framework without private information.

B Proofs

B.1 Propositions

Proof of Proposition 1. Given dealer i has CARA utility and R ∼ N(µ, σ), dealer

i maximizes

max
p

{
µ[ai + zi]−

ρσ

2
[ai + zi]

2 − qip− λi[Ei − κp(ai + zi)]
}

for a given ai. Take pointwise FOC w.r.t. ai for each realization of p

µ− ρσ[ai + zi] = (1 + λiκ)(p+ Λiai)

ai(p) = ((1 + λiκ)Λi + σρ)−1(µ− σρzi − (1 + λiκ)p),

where Λi =
∂p
∂ai

. In equilibrium, trader i’s true price impact equals the slope of his

inverse residual supply curves, i.e., for each i,

Λi = −

(∑
j ̸=i

∂aj(·;λj)

∂p

)−1

.
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In equilibrium, all dealers submit best responses to each other. Therefore, given

aj(p) = ((1 + λjκ)Λj + σρ)−1(µ− σρzj − (1 + λjκ)p), Λi is

Λi =

(∑
j ̸=i

((1 + λjκ)Λj + σρ)−1(1 + λjκ))

)−1

=

(∑
j ̸=i

(Λj +
σρ

1 + λjκ
)−1

)−1

By Malamud and Rostek (2017) Proposition 1,

Λi = βiαiσ with βi =
2

αib− 2 +
√
(αib)2 + 4

and αi =
ρ

1 + λiκ
,

where b ∈ R+ is the unique positive solution to 1/2 =
∑

i(αib + 2 +
√

(aib)2 + 4)−1.

Further, Λi decreases monotonically in λi.

The Lagrange multipliers, λi’s, are such that

Ei = κp∗[ai(p
∗) + zi] ∀i, where p∗ =

∑
i((1 + λiκ)Λi + σρ)−1(µ− σρzi)− A∑

i((1 + λiκ)Λi + σρ)−1(1 + λiκ)

Proof of Proposition 2. Take the perspective of dealer i and assume all others

play the equilibirum. Dealer i maximizes

L(p, λi) = µ(ai + zi)−
ρσ

2
(ai + zi)

2 − aip− λi(E − κpη(p))

pointwise w.r.t. ai for each p. Let Λi =
∂p
∂ai

. Then the necessary condition is

0 = µ− ρσ[ai + zi]− (p+ Λiai) + Λiλiκ [(α− βp)− pβ]

ai(p) = (Λi + σρ)−1
(
µ+ ακΛiλiκ− σρzi − (1 + 2βκΛiλi)p

)
(14)

The necessary condition is sufficient as long as

−ai(ρσ + Λi) > 0 ⇔ ρσ + Λi > 0 given ai ≥ 0.

In equilibrium everyone must play best responses to one another, so that

Λi =

(∑
j ̸=i

1 + 2βκΛjλj

σρ+ Λj

)−1
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When Ei = E for all i, we conjecture that there is an equilibrium in which all dealers

are equally constrained: λi = λ. This implies Λi = Λ. Thus, all dealers submit

demand functions (14) with Λi = Λ such that

1

Λ
= (N − 1)(1 + 2βκΛλ)(Λ + σρ)−1

⇔ Λ =
−(N − 2) +

√
(N − 2)2 + 8βκλ(N − 1)ρσ√
4βκλ(N − 1)

(15)

and λi = λ. We call the equilibrium guess aguessi (·).22

To show that this equilibrium exists, assume that all dealers but i play this equi-

librium. We need to show that dealer i’s best response is to play that equilibrium as

well. Dealer i’s best response to all others playing the equilibrium guess is

ai(p) = (Λ + σρ)−1
(
µ+ ακΛλi − σρzi − (1 + 2βκΛλi)p

)
with Λ given above. Given this best response and the fact that all other dealers play

the equilibrium guess, the market would clear at pBR. The capital constraint

E − κpBRη(pBR) = 0 where ai(p
BR) +

∑
j ̸=i

aguessj (pBR) = A

pins down a relation between λi and λ, call this relation λi(λ). The guessed equilib-

rium exists if there is a fixed point λi(λ) = λ. For a given Λ in (15), one can show

that there are two solutions at which λi(λ) = λ, but only one of them is positive:

λ =
−κ(4βE + α2k)ΛN +

√
κ3(4βE + α2k)Λ2(−αN − 2β(−µN + A(Λ + ρσ) + ρσ

∑
i zi))

2

2βκ2(4βE + α2κ)Λ2N

22Note that there are two solutions for Λ but only one can be positive given parameter
restrictions.
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When α = 0, λ is such that

E
(
N2(N +

√
(N − 2)2 + 8βκλ(N − 1)ρσ)

2
)
=

4βκ(N − 1)2
(
−Nµ+ Aρσ +

A(2−N
√

(N − 2)2 + βκλ(N − 1)ρσ)

4βκλ(N − 1)
+ ρσ

∑
i

zi

)2
Take the square root on both sides

√
E
(
N(N +

√
(N − 2)2 + 8βκλ(N − 1)ρσ)

)
=

2
√
βκ(N − 1)

(
−Nµ+ Aρσ +

A(2−N
√

(N − 2)2 + βκλ(N − 1)ρσ)

4βκλ(N − 1)
+ ρσ

∑
i

zi

)
This can be solved for λ. Thus there is a λ. This λ should be positive for sufficiently

low κ.

Proof or Proposition 3. We follow Wittwer (2018) who proves existence of an

equilibrium in an auction with random supply. The proof of Corollary 1 and Theory

2 go through when supply is fixed. To adjust these proofs to our setting, it suffices

to replace Q with A and ti by µ−σρzi. Further, we must invert the bidding function

so that it becomes a demand function: ai(p) =
(

N(1−ξ)−1
N−1

)
1
σρ

(µi − (1 + κs)p) .

B.2 Corollaries

Proof of Corollary 1. Let all λi’s decrease, which happens, for instance, when

κi’s decrease. By Malamud and Rostek (2017) Proposition 1, Λi is monotonically

increasing in αi, which implies that it is decreasing in λi.

To show that ai(·) of all i become flatter, which mechanically increases the market

clearing price, fix one dealer i. Take the derivative w.r.t. p and then w.r.t. λi:

∂ai(p)

∂p
= − 1 + λiκi

(1 + λiκi)Λi + σρi

∂

∂λi

∂ai(p)

∂p
=

−κiρσ + (1 + λiκi)
2 ∂Λi

∂λi

(ρσ + Λi + κiλiΛi)2
≤ 0

given that ∂Λi

∂λi
≥ 0 and κiρσ ≥ 0.Thus when λi decreases, the negative slope increases
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towards 0, which means that demand becomes flatter.

The markup is defined as the absolute value of the difference between the price at

which the market would clear if dealers were price-taker and the price it clears when

they have market power. Let p∗(Λi) denote the price at which the market clears when

dealers have market power and p∗(0) when they are price-takers, then

markup = p∗(0)− p∗(Λi)

with p∗(Λi) =

∑
i((1 + λiκ)Λi + σρ)−1(µ− σρzi)− A∑

i((1 + λiκ)Λi + σρ)−1(1 + λiκ)

as we have shown when proving Proposition 1. When λi decreases, the markup

increases because p∗(0) increases more than p∗(Λi).

Proof of Corollary 2. Let dealers be ex-ante identical. The equilibrium in a

uniform price auction is given by Proposition 1 (ii), and in a discriminatory price

auction by Proposition 3.

Let p∗(Λ) denote the price at which the market clears when dealers have market

power and p∗(0) when they are price-takers, and consider the uniform price auction

first. The market clears at p∗(Λ) = 1
1+λκ

(
1
N

∑
i µi − N−1

N−2
A
N
σρ
)
with µi = µ− σρ. To

derive the markup, we first compute at which the market would clear if all bidders

were price-takers, that is submit demand curves a∗iT = limitN→∞a∗i (p). Then p∗(0) =

1
1+λκ

(
1
N

∑
i µi − A

N
ρσ
)
. With this,

markup = p∗(0)− p∗(Λ) =
1

1 + λκ

(
A

N

)(
1

N − 2

)
ρσ

Analogously, we can derive the expression for the discriminatory price auction, in

which the market clears at p∗ = 1
1+λκ

(
1
N

∑
i µi − σρ

(
N−1

N(1−ξ)−1

)
A
N

)
with µi as speci-

fied in Proposition 3. Here p∗(0) = 1
1+λκ

(µ+ ρσ
ξ−1

(A
N
+ 1

N

∑
i zi − ξz)). With this,

markup = p∗(0)− p∗(Λ) =
1

1 + λκ

(
A

N

)(
ξ

ξ − 1

)
ρσ.

Note that in the uniform price auction, markup(λ) is the average amount of shading

at market clearing, 1
N

∑
i shading(a

∗
i ), where shading(a∗i ) is the difference between
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the price bidder i offer for amount a∗i if she were price-taking and the price she actually

offers. In a discriminatory auction, the markup differs from the average amount of

shading at market clearing.

Given these expressions, it follows that

η =
∂markup

∂λκ

λκ

markup
=

∂p∗

∂λκ

λκ

p∗
=

1

1 + λκ
− 1. (12)

Proof of Corollary 3 (i) The slope in the demand function is

∂ai(p)

∂p
= −

N − 2 +
√
(N − 2)2 + 8βκλ(N − 1)ρσ

2(N − 1)ρσ
<⇔ β >

−4 + 4N −N2

−8κλρσ + 8κλNρσ

The slope decreases in λ if λ > 0 and β > 0, and increases in λ if −4+4N−N2

−8κλρσ+8κλNρσ
<

β < 0 and λ > 0. Thus, when β > 0 and the constraint is relaxed so that λ decreases,

the negative slope increases towards 0, meaning that demand becomes flatter.

When demand functions become flatter, the market price must increase ceteris

paribus.

(ii) It is straightforward to show that Λ decreases in λ when β > 0, λ > 0, and

increases in λ when −4+4N−N2

−8κλρσ+8κλNρσ
< β < 0 and λ > 0.

C Model estimates per maturity class

[in progress]
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Appendix Figure A1: Holders of Canadian government bonds
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Figure A1 shows who holds Canadian government bonds and bills from 2007 until 2021 in percentage

of par value outstanding: Bank of Canada, Non-residents, Canadian pension funds, Canadian banks,

Canadian insurance companies, and other private firms. The banks’ holdings are mostly driven by

the eight banks we focus on. They hold over 80% of the assets.

Appendix Figure A2: Change in the slope using LR

Figure A2 shows the γk estimates and 95% confidence intervals of the regression (7): slopeiqs =

α +
∑K

k=−K γk ∗Dk ∗ LRik + ζqs + ϵiqs. All magnitudes are relative to the benchmark in 2020q1.

The slopes are measured in million C$ per bps, leverage ratios are in bps.
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Appendix Figure A3: Change in the slope with dealer fixed effects

(a) Using LR (b) Using supervisory LR thresholds

Appendix Figure A3a shows the γk estimates and 95% confidence intervals of the regression (7):

slopeiqs = α+
∑K

k=−K γk ∗Dk ∗LRik + ζqs + ζi + ϵiqs. Appendix Figure A3b replaces LRik by the

institution-specific Basel III threshold. All magnitudes are relative to the benchmark in 2020q1.

The slopes are measured in million C$ per bps, thresholds and leverage ratios are in bps. Standard

errors are clustered on the dealer level.

Appendix Figure A4: Event study with maximal demand, i.e., maxk{ai,t,s,k}

(a) Without dealer fixed effect (b) With dealer fixed effect

Appendix Figure A4a shows the γk estimates and 95% confidence intervals of the regression (7):

a maxiqs = α+
∑K

k=−K γk ∗Dk ∗LRik + ζqs + ϵiqs with a maxiqs as average of maxk{aitsk} per a

dealer/quarter/security. In Appendix Figure A4b, we add a dealer fixed effect. Demand is measured

in billion C$. Standard errors are clustered at the dealer level in (b).
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Appendix Table 4: Bid functions are approximately linear

mean median sd

βt 0.20 0.17 0.11

R2
t 0.82 0.83 0.16

Adj. R2
t 0.77 0.77 0.21

Within R2
t 0.53 0.54 0.15

Appendix Table 4 shows the point estimate and R2 from regressing bids on quantities in each
auction: btiτk = ζtiτ + βtqtiτk + ϵtiτk. The subsample are bidding-functions with at least 2 steps.
Bids are in yields (bps) and quantities in percentage of supply.

Appendix Figure A5: Maximal dealer demand as % of total supply

Appendix Figure A5 shows box plots of how much the average dealer demanded in an auction in

2020 or 2021 and all other years as % of auction supply. The dashed line represents the maximal

bidding limit in regular times. It was increased to 40% during 2020/2021. The minimal bidding

limits, which must not be met at each auction, are around 10% for most banks.
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Appendix Figure A6: Event study with unconstrained dealers (w.r.t. bidding limits)

(a) With LR (b) With supervisory LR thresholds

Appendix Figure A6 is analogous to Figure 4 combined with Appendix Figure A2. It shows the γk
estimates and 95% confidence intervals of the regression (7): slopeiqs = α+

∑K
k=−K γk ∗Dk ∗LRik+

ζqs + ϵiqs. Figure 4 replaces LRik by the institution-specific Basel III threshold. All magnitudes

are relative to the benchmark in 2020q1. The slopes are measured in million C$ per bps, leverage

ratios and thresholds are in bps.
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Appendix Figure A7: Event study with alternative slope measures

(a) Using LR (b) Using supervisory LR thresholds

Appendix Figure A7 is analogous to Figure 4 combined with Appendix Figure A2, but uses different

slope measures. It shows the γk estimates and 95% confidence intervals of the regression (7):

slopeotheriqs = α+
∑K

k=−K γk∗Dk∗LRik+ζqs+ϵiqs in (a) and with supervisory LR thresholds instead

of LRs in (b) for different alternative slope measures. In the first row, we replace maxk{aitsk} in

(6) by the demand at the dealer asked for at the highest step it ever won. In the second row, we

cap this amount by the largest amount ever won (in % of supply). In the third row, we use a local

slope measure, defined in Section 4.1. All magnitudes are relative to the benchmark in 2020q1. The

slopes are measured in million C$ per bps, leverage ratios and thresholds are in bps. All graphs

look similar when we include dealer fixed effects.
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