Intermediary asset pricing:
Capital constraints and market power

Jason Allen and Milena Wittwer

Bank of Canada and Boston College

November 3, 2022

The presented views are those of the authors and not necessarily those of the Bank of Canada.
What moves asset prices?

- Intermediary asset pricing: equity capitalization of intermediaries (dealers)
 E.g., He and Krishnamurthy (2012, 2013); Brunnermeier and Sannikov (2014)

- Dealers are large banks, e.g., Bank of America, Deutsche Bank
 ① Face capital constraints
 ② Have market power
What moves asset prices?

- Intermediary asset pricing: equity capitalization of intermediaries (dealers)
 E.g., He and Krishnamurthy (2012, 2013); Brunnermeier and Sannikov (2014)

- Dealers are large banks, e.g., Bank of America, Deutsche Bank
 1. Face **capital constraints**
 2. Have market power
Basel III leverage ratio (SLR)

- Imposed to reduce systematic risk
- Requires banks to hold sufficient equity capital, even when holding safe assets
- "Major constraint on bank activity" (Jerome Powell)

Leverage Ratio Runs Counter to Policy Objectives (Wall Street Journal, 2016)

US banks push Fed for extension of Covid capital relief (Financial Times, 2021)

Geithner stresses need for SLR reform (Risk.net, 2022)
Motivation

What moves asset prices?

• Intermediary asset pricing: equity capitalization of intermediaries (dealers)
 E.g., He and Krishnamurthy (2012, 2013); Brunnermeier and Sannikov (2014)

• In practice, dealers (Bank of America, TD, Deutsche Bank,...)
 1 Face capital constraints
 2 Have market power, e.g., Hortaçsu et al. (2018); Allen and Wittwer (2020);
 Brancaccio and Kang (2022); Huber (2022); Pinter and Üslü (2022); Wallen (2022)
Do capital constraints affect asset demand/prices when dealers have market power?

1) **Model**
 - Capital-constrained dealers have market power à la Kyle (1989)

2) **Test and calibrate the model with data on Treasury auctions**
 - Why? Dealers submit demand curves and balance sheet information
 - How? Policy change of Basel III leverage ratio
Findings: Model predictions

Relax capital constraints

→ Price increases

→ Markups increase
Findings: Model predictions

Trade-off for primary market

→ Benefit: Lower funding costs for the issuer
→ Cost: Higher price distortion, which may reduce market efficiency
Findings: Model predictions

Trade-off for primary market
→ Benefit: Lower funding costs for the issuer
→ Cost: Higher price distortion, which may reduce market efficiency

Quantification
- Dealers face high (shadow) costs due to binding capital constraints
- If the shadow costs decrease by 1%
→ Market price and markups increase by $\approx 0.5\%$
Literature: Bird’s eye view

Theories on intermediary asset pricing (macro)
- Following He and Krishnamurthy (2012, 2013); Brunnermeier and Sannikov (2014)
 ⇒ This paper allows for market power

Theories on market power in financial markets (micro)
 ⇒ This paper introduces capital constraints
Road ahead

1 Model

2 Descriptive evidence in favor of the model

3 Structural estimation
Model

Goods
- Asset of supply Q, pays per unit return $R \sim N(\mu, \sigma)$
- Cash (numeraire)

Players
- $N > 2$ dealers
- Initially, dealer i holds z_i of the asset, capital E_i, and rest on its balance sheet
Model

Goods
- Asset of supply Q, pays per unit return $R \sim N(\mu, \sigma)$
- Cash (numeraire)

Players
- $N > 2$ dealers
- Initially, dealer i holds z_i of the asset, capital E_i, and rest on its balance sheet
Model

Goods
- Asset of supply Q, pays per unit return $R \sim N(\mu, \sigma)$
- Cash (numeraire)

Players
- $N > 2$ dealers
- Initially, dealer i holds z_i of the asset, capital E_i, and rest on its balance sheet
Model

Goods
- Asset of supply Q, pays per unit return $R \sim N(\mu, \sigma)$
- Cash (numeraire)

Players
- $N > 2$ dealers
- Initially, dealer i holds z_i of the asset, capital E_i, and rest on its balance sheet
Model

Goods
• Asset of supply Q, pays per unit return $R \sim N(\mu, \sigma)$
• Cash (numeraire)

Players
• $N > 2$ dealers
• Initially, dealer i holds z_i of the asset, capital E_i, and rest on its balance sheet
Model: Simplest case

Aggregate uncertainty about Q, no private information/signals

Goods
- Asset of supply $Q \sim \mathcal{F}$, pays per unit return $R \sim N(\mu, \sigma)$ with $\mu \in \mathbb{R}^+, \sigma \in \mathbb{R}^+$
- Numeraire

Players
- $N > 2$ dealers
- Initially, dealer i holds $z_i = 0$ of the asset, capital $E_i \in \mathbb{R}^+$ and rest $\in \mathbb{R}^+$
Model

Uniform price auction with a capital constraint

Period 1:

- Each dealer submits demand schedule $q_i(\cdot) : \mathbb{R} \to \mathbb{R}$ s.t. capital constraint
- Market clears at p^* such that $\sum_i q_i(p^*) = Q$

Period 2: Asset pays out return and all transactions take place
Dealers maximize expected CARA utility from wealth s.t. capital constraint:

$$
E \left[1 - \exp^{-\rho \omega_i(q_i, p)} \right] \quad \text{with} \quad \omega_i(q_i, p) = q_i(R - p), \quad \rho > 0
$$

subject to: $\kappa \leq \frac{\text{equity capital}}{\text{total exposure}}$
Dealers maximize expected CARA utility from wealth s.t. capital constraint:

\[E \left[1 - \exp^{-\rho \omega_i(q_i, p)} \right] \text{ with } \omega_i(q_i, p) = q_i(R - p), \rho > 0 \]

subject to: \(\kappa \leq \frac{E_i}{pq_i + \text{rest}} \) \(\Rightarrow \) Lagrange multiplier: \(\lambda_i \)
Model: Equilibrium

There exists a unique linear equilibrium in which dealer i chooses $q_i(p)$ at p is s.t.:

\[\text{marginal utility} = \text{marginal disutility} \]

No capital constraint & perfect competition:

\[\mu - \sigma \rho q_i(p) = p \]
Model: Equilibrium

There exists a unique linear equilibrium in which dealer i chooses $q_i(p)$ at p is s.t.:

$$\text{marginal utility} = \text{marginal disutility}$$

With capital constraint & perfect competition

$$\mu - \rho \sigma q_i(p) = (1 + \lambda_i \kappa) p$$
There exists a unique linear equilibrium in which dealer i chooses $q_i(p)$ at p is s.t.:

$$\text{marginal utility} = \text{marginal disutility}$$

With capital constraint & market power

$$\mu - \rho \sigma q_i(p) = (1 + \lambda_i \kappa)[p + \Lambda_i(\bar{\lambda})q_i(p)]$$
Model: Proposition

When the capital constraint is relaxed, e.g., $\kappa \downarrow$

(1) demand $q_i(\cdot)$ becomes flatter, and market price p^* increases

Figure: $q_i(p)$
When the capital constraint is relaxed, e.g., $\kappa \downarrow$

(1) demand $q_i(\cdot)$ becomes flatter, and market price p^* increases.

Figure: $q_i(p)$
When the capital constraint is relaxed, e.g., $\kappa \downarrow$

1. demand $q_i(\cdot)$ becomes flatter, and market price p^* increases
2. price impact $\Lambda_i(\vec{\lambda})$ increases for all dealers i.

Figure: Residual Supply$_i(p)$
When the capital constraint is relaxed, e.g., $\kappa \downarrow$

1. demand $q_i(\cdot)$ becomes flatter, and market price p^* increases

2. price impact $\Lambda_i(\bar{\lambda})$ increases for all dealers i.

Figure: Residual Supply $i(p)$
Model: IPV environment

IPV environment
- Dealers are ex-ante identical
- Have iid private information about their inventory positions or the asset’s return

There exists a symmetric equilibrium with analogous properties
- In uniform price auction
- In discriminatory price auction under additional assumptions
Empirical application
Environment: Canada’s Primary Market for Government Bonds

Attractive market features

- Dealers submit entire demand curves
- Dealer demand can be linked to balance sheet infos

Challenges

- Auction format is discriminatory price
- Demand is a step-function as in Kastl (2011)
- There are different types of bidders, not only dealers
- Bids may be updated until auction closure as in Hortaçsu and Kastl (2012)
Data

Bidding data of all regular Treasury auctions (01/01/2015–02/01/2021)

- Who bids (ID), winning and losing bids
Data

Bidding data of all regular Treasury auctions (01/01/2015–02/01/2021)
- Who bids (ID), winning and losing bids

Balance sheet information of 8 dealers at bank level
- Quarterly Basel III Leverage Ratio (LR) = \(\frac{\text{Tier 1 capital}}{\text{Total leverage exposure}} \geq 3\% \)
- Quarterly institution-specific capital threshold

Volatility and price data
- Market Volatility Index
- Trade prices of the secondary market
Testing model predictions: Demand effect

- 04/2020–12/2021: Treasuries exempted from LR constraint
- Some banks i faced stricter capital $threshold_{ik}$ than others

Figure: Time series of LR for an average bank
Testing model predictions: Demand effect

- 04/2020–12/2021: Treasuries exempted from LR constraint
- Some banks i faced stricter capital threshold_i than others

→ Test if their demand became flatter relative to others:

$$slope_{iqs} = \alpha + \sum_{k=-K}^{K} \gamma_k D_k \text{threshold}_i + \zeta_{qs} + \epsilon_{iqs}$$

- $slope_{iqs}$ is the avg. slope in i’s demand for security s in quarter q
- D_k is an indicator for quarter k, ζ_{qs} is a quarter-security fixed effect
Figure: Change in the slope of demand

Take away: Demands of banks s.t. stricter capital thresholds were flatter
Testing model predictions: Price effect

Quantifying effect on market price is difficult

- Must use variation across time instead of banks
- Endogeneity concern

⇒ Leverage structural model
Model calibration

Parameters

- Shadow cost of capital \(\lambda_t \kappa \)
- Risk aversion \(\rho_t \)

Identifying assumptions per auction \(t \)

- Dealer \(i \) draws private info \(\zeta_{ti} \sim \mathcal{H}_t \) about her true \(\text{value}_{ti}(q) \) for amount \(q \)
- \(\text{value}_{ti}(q) = \zeta_{ti} - \beta_t q \) with \(\beta_t = \frac{\rho_t \sigma_t}{1 + \lambda_t \kappa} \)
- Everyone bids as in equilibrium of Hortaçsu and Kastl (2012)'s auction game
Model calibration

Estimation procedure

1) Back out \hat{value}_{tik} at each submitted step k as in Allen et al. (2022)

2) Fixed-effect regression using bids of dealers who submit more than 1 step:

$$\hat{value}_{tik} = \zeta_{ti} - \beta_{tq_{tik}} + \epsilon_{ti}$$
Model calibration: Warm up

Figure: Distribution of $\frac{\hat{\beta}_t}{\sigma_t}$ with volatility σ_t

$$\frac{\hat{\beta}_t}{\sigma_t} = \rho_t \text{ during exemption; } \frac{\hat{\beta}_t}{\sigma_t} = \frac{\rho_t}{1 + \lambda_t \kappa} \text{ otherwise}$$
Point estimates: Policy change 1

- Assume $\rho_t = \rho$ and $\lambda_t \kappa = \lambda \kappa$ during a quarter
- Compare $\frac{\hat{\beta}_t}{\sigma_t}$ in auctions in 2020q1 and 2020q2 around exemption

<table>
<thead>
<tr>
<th></th>
<th>2020q1-2020q2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>+1.52/10^4</td>
<td>(0.033/10^4)</td>
</tr>
<tr>
<td>$\lambda \kappa$</td>
<td>+0.965</td>
<td>(0.168)</td>
</tr>
<tr>
<td>N</td>
<td>23,074</td>
<td></td>
</tr>
</tbody>
</table>

Estimate of $\hat{value}_{tik} = \zeta_{ti} + \rho \times exempt_t \sigma_t q_{tik} + \frac{\rho}{1 + \lambda \kappa} \times (1 - exempt_t) \sigma_t q_{tik} + \epsilon_{tik}$, values are in yields to maturity in %, quantities in million C$, standard errors in parentheses

- Risk aversion per unit of the asset, ρ, is small ≈ 0
- The shadow cost of capital, $\lambda \kappa$, is large
Point estimates: Policy change 2

- Assume $\rho_t = \rho$ and $\lambda_t \kappa = \lambda \kappa$ during a quarter
- Compare $\frac{\hat{\beta}_t}{\sigma_t}$ in auctions in 2021q4 and 2022q1 around reintroduction

<table>
<thead>
<tr>
<th></th>
<th>2020q1-2020q2</th>
<th>2021q4-2022q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>+1.52/10^4</td>
<td>+3.96/10^4</td>
</tr>
<tr>
<td>$\lambda \kappa$</td>
<td>+0.965</td>
<td>+0.302</td>
</tr>
<tr>
<td>$\sigma_t q_{tik}$</td>
<td>(0.033/10^4)</td>
<td>(0.155/10^4)</td>
</tr>
<tr>
<td>$\rho(1+\lambda \kappa)$</td>
<td>(0.168)</td>
<td>(0.115)</td>
</tr>
<tr>
<td>N</td>
<td>23,074</td>
<td>12,894</td>
</tr>
</tbody>
</table>

Estimate of $\hat{\text{value}}_{tik} = \zeta_{ti} + \rho \times \text{exempt}_t \sigma_t q_{tik} + \frac{\rho}{1+\lambda \kappa} \times (1-\text{exempt}_t) \sigma_t q_{tik} + \epsilon_{tik}$, values are in yields to maturity in %, quantities in million C$, standard errors in parentheses

- Risk aversion per unit of the asset, ρ, is small ≈ 0
- The shadow cost of capital, $\lambda \kappa$, is large
When demand functions are linear

- Decreasing the capital cost $\lambda\kappa$ by 1%,
 - Increases the market price
 - Increases markups
 - I.e., difference btw. price that would arise if dealers were price takers and actual price

- Both by $\eta = \left(\frac{1}{1+\lambda\kappa} - 1 \right) \%$
Model calibration: Trade off

In the data, demand functions are not linear, but approximately linear

→ We can approximate the trade off

<table>
<thead>
<tr>
<th></th>
<th>2020q1-2020q2</th>
<th>2021q4-2022q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>0.49%</td>
<td>0.23%</td>
</tr>
</tbody>
</table>

Implication

• Exempting Treasuries from the Basel III leverage ratio \approx capital cost ↓ by 100%

→ Reduces bond yields, but increases markups by $\approx 49\%$
Conclusion

This paper

• Shows that dealer capitalization affects asset prices and market power—trade-off!
• Quantifies the effects with data on Treasury auctions

→ Helps inform ongoing policy debate about Basel III
→ Contributes to intermediary asset pricing literature thanks to micro-level data
 E.g., Adrian et al. (2014); He et al. (2017); Gospodinov and Robotti (2021)

Thank you!

Appendix
Empirical literature

Empirical intermediary asset pricing (macro)

• He et al. (2017); Du et al. (2018); Gospodinov and Robotti (2021); He et al. (2022)...
⇒ This paper uses micro-level to observe the link btw. demand and capitalization

Empirical studies on market power in Treasury auctions (micro)

• Hortaçsu (2002); Cassola et al. (2012); Hortaçsu and Kastl (2012); Hortaçsu et al. (2018)...
⇒ This paper introduces capital constraints
Data: Slope measure

Conventions: Draw demand curves with quantity on y-axis

Day t, security s, dealer i: $slope_{its} = -\frac{\max_k \{q_{itsk}\}}{\max_k \{p_{itsk}\}}$ in quantity-price space
Data: Slope measure

Conventions: Draw demand curves with quantity on y-axis

Day t, security s, dealer i: $\text{slope}_{its} = + \frac{\max_k \{q_{itsk}\}}{\min_k \{y_{itsk}\}}$ in quantity-yield space
(i) There exists a unique equilibrium in which dealer i submits demand curve

$$q_i(p) = ((1 + \lambda_i \kappa)\Lambda_i + \sigma \rho)^{-1}(\mu - (1 + \lambda_i \kappa)p),$$

where

$$\Lambda_i = \beta_i \alpha_i \sigma \text{ with } \beta_i = \frac{2}{\alpha_i b - 2 + \sqrt{(\alpha_i b)^2 + 4}} \text{ and } \alpha_i = \frac{\rho}{1 + \lambda_i \kappa s},$$

with $b \in \mathbb{R}^+$ as unique positive solution to $1/2 = \sum_i (\alpha_i b + 2 + \sqrt{(\alpha_i b)^2 + 4})^{-1}$.

(ii) When dealers are identical ($z_i = z, E_i = E$), the demand curve simplifies to

$$q_i(p) = \left(\frac{N - 2}{N - 1}\right) \frac{1}{\rho \sigma} \left(\mu - \rho \sigma z - (1 + \lambda \kappa)p\right).$$

The price impact is $\Lambda = \frac{1}{N-2} \frac{\rho \sigma}{1 + \lambda \kappa}$ with $\lambda \geq 0$ for sufficiently high κ.
IPV uniform price auction

Period 1:

- Each dealer observes $z_i \sim \mathcal{H}$ and $\sum_i z_i$
- Each dealer submits demand schedule $q_i(\cdot) : \mathbb{R} \to \mathbb{R}$ s.t. capital constraint
- Market clears at p^* such that $\sum_i q_i(p^*) = Q$

Period 2:

- Dealer’s balance out total exposure so that each carries $\alpha - \beta p^*$, $\alpha \in \mathbb{R}, \beta > 0$
- Asset pays out return and all transactions take place
In equilibrium dealer i submits

$$q_i(p) = (\Lambda + \sigma \rho)^{-1} \left(\mu + \alpha \kappa \Lambda \lambda - \sigma \rho z_i - (1 + 2 \beta \kappa \Lambda \lambda) p \right)$$

with $\Lambda = \frac{-(N - 2) + \sqrt{(N - 2)^2 + 8 \beta \kappa \lambda (N - 1) \rho \sigma}}{\sqrt{4 \beta \kappa \lambda (N - 1)}}$.

The equilibrium exists if λ which solves $E - \kappa p^* \eta(p^*) = 0$ with $p^* : \sum_i a_i(p^*) = A$ is non-negative. This is the case when κ is sufficiently high given all other parameters.

Assume that the capital constraint is relaxed so that λ decreases. Then demand becomes flatter, the market price and price impact increase.
Let dealer i have value $v_i(q) = \frac{\sigma \rho}{1+\lambda \kappa} [\mu - (z_i + q)]$ for amount q, with z_i being drawn from iid across i from a distribution with support $[\underline{z}, \overline{z}]$.

If winning quantities are drawn from a distribution with CDF $F_i(q) = 1 - \left(\frac{\nu_i + \xi q}{\nu_i} \right)^{-\frac{1}{\xi}}$ with $\xi \in (-\infty, -1]$, $\nu_i = -\xi \left(\frac{N(1-\xi)-1}{N(1-\xi)} \right)(\overline{z} - z_i) - \xi \left(\frac{Q}{N} \right)$, there exists an equilibrium in which dealer i submits the demand curve

$$
q_i(p) = \left(\frac{N(1-\xi)-1}{N-1} \right) \frac{1}{\sigma \rho} (\mu_i - (1 + \lambda \kappa)p)
$$

with $\mu_i = \mu + \frac{\rho \sigma}{1-\xi} (\overline{z} - z_i) + \frac{\rho \sigma A}{N(1-\xi)-1}$ as long as $\mathbb{E}[\mu_i] \geq \frac{\rho \sigma A(N-1)}{N(N(1-\xi)-1)}$.

Yield effect

Table: Correlation between yield and LR

<table>
<thead>
<tr>
<th></th>
<th>(OLS)</th>
<th>(FE1)</th>
<th>(FE2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>-0.360</td>
<td>-0.370</td>
<td>-0.245</td>
</tr>
<tr>
<td></td>
<td>(0.0362)</td>
<td>(0.0411)</td>
<td>(0.0521)</td>
</tr>
<tr>
<td>controls</td>
<td>—</td>
<td>—</td>
<td>✓</td>
</tr>
<tr>
<td>fixed effects</td>
<td>—</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Observations</td>
<td>2912</td>
<td>2912</td>
<td>2904</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.032</td>
<td>0.679</td>
<td>0.789</td>
</tr>
</tbody>
</table>

This shows results of $yield_d = \alpha + \beta LR_{qi} + \epsilon_{ti}$ in (OLS). In (FE1) we add dealer and year fixed effects; in (FE2) other control variables. Yield and LR are in %. Standard errors are in parentheses, clustered at the dealer level in (FE1) and (FE2).
Implied volatility index

- Measures the expected volatility of Treasury yields (in % per year)
- Based on option prices on interest rate futures (Chang and Feunou (2014))
- Similar to MOVE for US Treasuries, VIX for stocks
Sanity check

Use observed bids instead of estimated values:

<table>
<thead>
<tr>
<th></th>
<th>2020q1-2020q2</th>
<th>2021q4-2022q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>+0.686/10^4 (0.010/10^4)</td>
<td>+2.050/10^4 (0.046/10^4)</td>
</tr>
<tr>
<td>λ_κ</td>
<td>+0.844 (0.169)</td>
<td>+0.169 (0.076)</td>
</tr>
<tr>
<td>N</td>
<td>23,074</td>
<td>12,894</td>
</tr>
</tbody>
</table>

Tables shows the estimate of $\text{bid}_{tik} = \zeta_{ti} + \rho \times \text{exempt}_t \sigma_t q_{tik} + \frac{\rho}{1+\lambda_\kappa} \times (1-\text{exempt}_t) \sigma_t q_{tik} + \epsilon_{tik}$ with bids expressed as yields to maturity in %, quantities are in million C$, standard errors are in parentheses

Findings

- Both parameters are downward biased due to shading
- But magnitudes are roughly similar
Shading

Figure: Distribution of bid shading per step k
Supporting descriptive evidence

Follow Hortaçsu (2002) and check R_t^2 of

$$b_{t_1 t_k} = \zeta_{t_1 t_k} + \beta_t q_{t_1 t_k} + \epsilon_{t_1 t_k}$$

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>median</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_t</td>
<td>0.20</td>
<td>0.17</td>
<td>0.11</td>
</tr>
<tr>
<td>R_t^2</td>
<td>0.82</td>
<td>0.83</td>
<td>0.16</td>
</tr>
<tr>
<td>Adj. R_t^2</td>
<td>0.77</td>
<td>0.77</td>
<td>0.21</td>
</tr>
<tr>
<td>Within R_t^2</td>
<td>0.53</td>
<td>0.54</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Subsample: bidding-functions with at least 2 steps. Bids are in yields (bps) and quantities in % of supply.