Do Technology Standards Induce Innovation in Grid Modernization Technologies?

Myriam Gregoire-Zawilski, Centre for Policy Research, Syracuse University David Popp, Syracuse University and NBER

> Economics of Innovation in the Energy Sector National Bureau of Economic Research September 30th 2022

1. Motivation

Accelerating decarbonization

- Half of tech. for 2050 net-zero goals: still in the lab (IEA, 2021)
- Policy successes: wind and solar cost competitive with fossil-fuel generation
- Next challenge: integrating more renewables
 - Grid pressures
 - Ageing grid
 - Compounded by climate change
- What is needed is not just more innovation, but different innovation (Popp et al, 2022)

The smart grid

- Grid flexibility, resilience, reliability
- Aspiration: transformative technologies for new model of the grid
 - Decentralized
 - Digitalized
 - Big data
 - Automated
- Linchpin for flexibility tools: demand-side management, V2G/G2V, distributed storage, microgrids/islanding (Martinot, 2016)

New sector of innovation, new challenges?

- Not just environmental externalities and knowledge spillovers (Popp, 2019)
- Coordination challenge: compatibility
 - Opportunities to generate network externalities (Katz and Shapiro, 1985).
- Cross-sectoral technologies
 - Pooling knowledge from several sectors of technology

2. Literature

Literature: environmental innovation

- Effects of technology-push and demand-pull policies
 - Higher energy prices induce innovation in clean tech (Popp, 2002; Crabb and Johnson, 2020)
 - Demand-pull instruments (e.g. prices) have a greater impact on innovation than technology-push instruments (e.g. subsidies) (Costantini et al, 2017)
 - Consumer subsidies for solar panels increase innovation through effect on demand and cost reductions. Effect outlasts subsidies (Gerarden, 2018).
 - Emissions trading: regulated firms patent more than unregulated firms (Calel and Dechezlepretre, 2016)

Literature: environmental innovation

- Firm-level studies:
 - Switching decisions of firms dirty to clean induced by prices (Aghion et al, 2016).
 - Knowledge stocks : path-dependency (Aghion et al, 2016).
 - Increase in clean patenting driven by entry of specialized renewable energy firms and exit of specialized fossil fuel firms (Noailly and Smeets, 2015).
 - Complementarities: firms with experience in storage technologies more likely to patent in renewables (Lazkano et al, 2017).

Policies for smart grid innovation

- Voluntary standards for interoperability
 - Mandates:
 - US: EISA (2007)
 - EU: EC mandates M/441 (2009), M/490 (2011)
 - Roadmaps:
 - Canada: The Canadian Smart Grid Standards Roadmap (2012)
 - Germany: The German Standardization Roadmap E-Energy/Smart Grid (2010)
 - Korea: Korea's Smart Grid Roadmap 2030 (2010)

UNDERSTUDIED POLICY INSTRUMENT

Literature: standards and market failures

- Standards:
 - Codify knowledge (Contreras, 2017; Wiegmann et al, 2017)
 - Voluntary (not regulatory)
 - Proprietary
 - Open standards (consensus-building at SSOs) (Baron and Spulber, 2018)
- Typology of standards (Swann, 2000; Tassey, 1999; DeVries, 1999):
 - Quality standards: reduce transaction costs, redress information asymmetries
 - Information standards : reduce transaction costs, redress information asymmetries
 - Variety reduction standards: economies of scale
 - Compatibility standards: coordination, network externalities

Literature: standards and innovation

- Focus on how innovation 🖸 standards
 - Strategic interactions (Lerner and Tirole, 2006; Chiao et al, 2007, Kang and Bekker, 2015)
- Little empirical literature on how standards 🖸 innovation
 - Standards lead to high impact innovation by complementor firms (Wen et al, 2022)
 - Standards favor incremental innovation (Foucard and Li, 2021)

3. Questions and hypotheses

Research questions

- What is the effect of compatibility standards on inventive activity in smart grids?
 - Do these effects vary by type of firm?
 - age, size, expertise

Hypotheses: effect of standards on patenting

- Information hypothesis:
 - Standards provide credible information about technical specifications, reduces uncertainty for inventors. *Increases patenting activity*.
- Technology lock-in hypothesis:
 - Standards remove incentives to test out new ideas. *Reduces patenting* activity.
- Endorsement hypothesis:
 - Standards formalize what the industry has already *de facto* adopted. *No effect, or negative effect, on patenting activity.*

Channels work in opposing directions: net impact is ambiguous

4. Data and descriptive statistics

Data

- Patents:
 - European Patent Office: PATSTAT.
- Standards:
 - Searle Center on Law, Business and Economics, Northwestern University: Technology Standards and Standard Setting Organizations database (Baron and Spulber, 2018)
 - Lists of smart grids standards: SEPA, CEN/CENELEC/ETSI

IEC standard 61400: Wind energy generation systems

Standard part	First release
Part 1: Design Requirements	1994
Part 2: Small wind turbines	1996
Part 3-1: Design requirements for fixed offshore wind turbines	2019
Part 3-2: Design requirements for floating offshore wind turbines	2019
Part 4: Design requirements for wind turbine gearboxes	2012
•••	
Part 25-1 Communications for monitoring and control of wind power plants - Overall	2006
description of principles and models	
Part 25-2 Communications for monitoring and control of wind power plants -	2006
Information models	
Part 25-3 Communications for monitoring and control of wind power plants -	2006
Information exchange models	
Part 25-4 Communications for monitoring and control of wind power plants - Mapping	2008
to communication profile	
Part 25-5 Communications for monitoring and control of wind power plants -	2006
Compliance testing	
Part 25-6 Communications for monitoring and control of wind power plants - Logical	2010
node classes and data classes for condition monitoring	17

Accreditation of parts 25-2 and 25-3

Austria	61400-25-2	2007
	61400-25-3	2014
Germany	61400-25-2	2006
	61400-25-3	2006
Switzerland	61400-25-2	2007
	61400-25-3	2015

Sample

- 2,751 firms
- 10,312 patents (counted at the patent family level)
- 1,482 country-level standards adoptions
- 19 OECD countries
 - Austria, Australia, Canada, Switzerland, Czech Republic, Germany, Denmark, Spain, Finland, France, United Kingdom, Italy, Japan, Korea, Netherlands, Norway, Sweden, Turkey and the United States
- 2000-2016

Figure 1. Trends in smart grids patenting

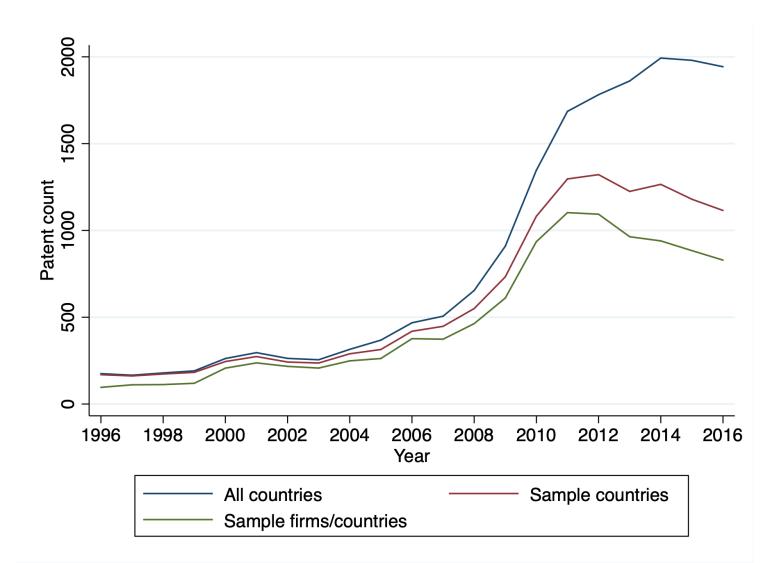
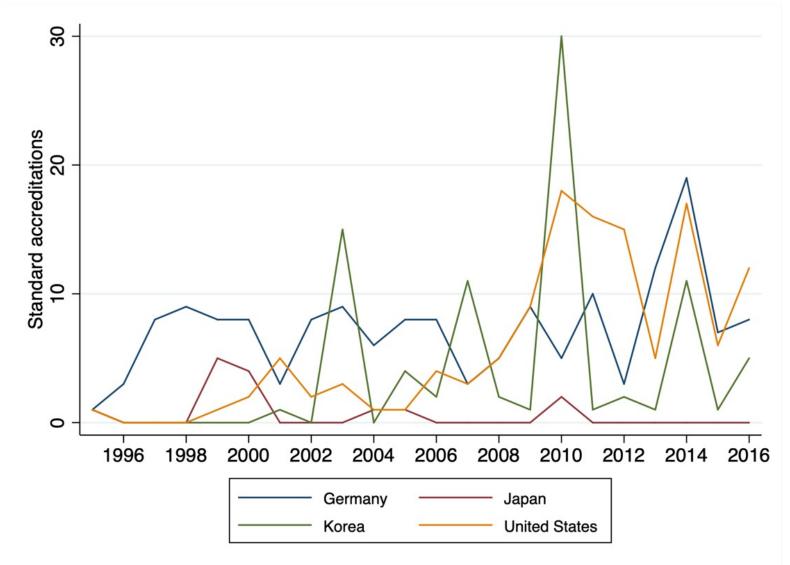



Figure 2. Smart grids standards accreditations in select markets

5. Model

Estimation

- Zero-inflated Poisson:
 - Two-stage model: whether to patent, how much to patent
 - Excess zeros generated by separate process
- Pre-sample mean estimator: weak exogeneity (Blundel et al, 1995; Noailly and Smeets, 2015; Rozendaal and Vollebergh, 2021)
 - Controls for unobserved attributes of the firms (confounding)
 - Knowledge stocks violate strict exogeneity assumptions of fixed effects model

Model

 $patents_{it} = f(standards_{it-2}, gov. R\&D_{it-2}, int. knowledge_{it-2}, ext. knowlege_{it-2}, controls_{it-2})$

Policy variables:

- Count of standards
- Government RD&D budgets in grid-related technologies
- Government RD&D budgets in renewables

Internal and external knowledge stocks

- Smart grid
- Green tech
- Electricity
- Information and communication technologies

Control variables:

- Share of renewables in electricity generation
- Growth in electricity consumption
- Household electricity prices
- GDP per capita

- New firm dummy
 - 4 zero stocks dummies
 - Yearly average of patents in pre-sample
 - Year dummies

Policy weights

- Weight country-level variables: markets where firm operated in presample period in relevant CPC classes (Noailly and Smeets, 2016; Aghion et al, 2016; Lazkano et al, 2017; Rosendaal and Vollebergh, 2021).
 - Relative importance of each market to the firm: exposure to policy variables

6. Results

Standards reduce both entry (decision to patent) and the intensity of patenting

Table 1. Regression results from Zero-Inflated Poisson Regressions		
Variables	Level of patenting	Prob. zero patents
Standards	-0.038***	0.016*
	(0.012)	(800.0)
Marginal effect, standards		76*** 021)
Observations	30,628	30,628
Log-likelihood	-47022	-47022

Internal knowledge stocks matter: prior experience in smart grids, green technology, electricity associated with more patents

Table 1. Regression results from Zero-Inflated Poisson Regressions		
Variables	Level of patenting	Prob. zero patents
Int. knowledge stocks - smart grids	0.598***	-1.436***
	(0.032)	(0.050)
Int. knowledge stocks - green tech	0.075**	-0.180***
	(0.032)	(0.022)
Int. knowledge stocks - electricity	0.137***	-0.147***
	(0.034)	(0.029)
Int. knowledge stocks - ICTs	-0.165***	-0.012
	(0.029)	(0.025)
Observations	30,628	30,628
Log-likelihood	-47022	-47022

Table 1. Regression results from Zero-Inflated Poisson Regressions		
Variables	Level of patenting	Prob. zero patents
Ext. knowledge stocks - smart grids	0.454**	-0.414***
	(0.185)	(0.098)
Ext. knowledge stocks - green tech	-0.565***	0.078
	(0.151)	(0.096)
Ext. knowledge stocks - electricity	-0.010	0.013
	(0.177)	(0.094)
Ext. knowledge stocks - ICTs	0.108	0.290***
	(0.151)	(0.101)
Observations	30,628	30,628
Log-likelihood	-47022	-47022

Tradeoffs between smart grid innovation and other green technology innovation

Standards reduce patenting in large firms Government incentives affect the R&D decisions of small firms

Table 3. Regression results by firm size					
	Larg	e firms	Sma	Small firms	
Variables	Level of patenting	Prob. zero patents	Level of patenting	Prob. zero patents	
Standards	-0.051***	0.043***	-0.001	-0.001	
	(0.015)	(0.016)	(0.015)	(0.011)	
RD&D smart grid	-0.015	0.085	0.236***	0.062	
	(0.117)	(0.067)	(0.081)	(0.050)	
RD&D renewables	0.013	0.021	-0.445***	-0.116*	
	(0.127)	(0.081)	(0.101)	(0.069)	
Marginal effect, standards (combined)	-0.238***		-0.001		
	(0.062)		(0.011)		
Numer of firms	597	597	2,154	2,154	
Observations	9,523	9,523	21,105	21,105	
Log-likelihood	-23768	-23768	-21228	-21228	

Standards increase entry by firms with no prior smart grid innovation experience

Table 4. Effect of standards on new entrants		
Variables	Level of patenting	Prob. zero patents
Standards	-0.033**	0.120***
	(0.015)	(0.013)
Interaction standards and zero stock dummy	-0.014	-0.165***
	(0.015)	(0.011)
Joint significance	-0.047***	-0.044***
	(0.011)	(0.009)
Observations	30,628	30,628
Log-likelihood	-46872	-46872

Technology maturity matters: standards encourage patenting early but reduces patenting in later years

Table 5. Regression results for early-stage versus mature technology		
2010		
0.105***		
(0.033)		
-0.049***		
(0.013)		
-0.063**		
(0.025)		
0.019**		
(0.008)		
32,068		
-50556		

Note: These regressions use the same specification and control variables as the main model, but add an interaction between the count of standards and the cut-off year. Robust standard errors are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Takeaways

<u>Main results</u>

- Standards decrease innovation
 - Effect driven by large firms
 - Standards increase entry by new entrants
 - Standards increase innovation when technology is in early stages and reduce innovation when technology is more mature

Policy implications

- Timing?
- Quantity versus quality? Tech development versus tech diffusion?

Thank you!

Contact: <u>mgregoir@syr.edu</u> <u>dcpopp@syr.edu</u>