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Abstract

How will self-driving trucks affect U.S. interstate trade flows? I argue that
human drivers’ preferences to return home generate geographic specialization
in the trucking freight market, and that self-driving trucks would eliminate this
"home preference." I build a model of trucking carriers who make dynamic
decisions about where to work, given that they prefer to be at home. A large
home preference increases the value of driving places that are likely to bring one
home and increases the value of taking time off at home. Using trucking freight
transactions and highway inspections data, I estimate the model parameters
and find that carriers value being at home at $90 per day or about one-half
of their daily wage. In a counterfactual where self-driving trucks lower per-
mile costs, increase daily driving range, and eliminate home preference, overall
freight prices fall by 28.6 percent. Without home preference, carriers shift from
driver-rich states to driver-poor states and total driving increases as carriers
spend less time off. This paper therefore shows how automation can reshape
transportation costs by removing the role of worker preferences.
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1 Introduction

Trucking freight is an integral part of the U.S. economy, responsible for over 80 percent
of domestic shipments and the plurality of international trade. In normal times, this
market is an input into almost every consumed good found on a supermarket or
store shelf. The post-2020 supply chain disruptions have particularly highlighted its
relevance, when a tight supply of truckers collided with increased demand from e-
commerce to create long delays and high transport costs. I argue that a first-order
feature of the trucking freight market is truckers’ preferences to return home, which I
call home preference. Unlike other transportation markets, where truckers live affects
where they drive, because different routes present different opportunities to return
home. This horizontal heterogeneity among truckers means that the distribution of
where truckers live will affect shipping costs and trucking flows.

Studying home preference is particularly timely because trucking freight is an
exciting frontier for self-driving technology. Technologically, freight trucks are more
straightforward to automate than passenger vehicles because highways are more pre-
dictable than city streets. Financially, high labor costs and driver turnover present
an economic case that has invited significant financial investment: In 2021, four self-
driving truck firms — TuSimple, Plus, Embark, and Aurora — raised $5.7 billion in
funding and were collectively valued at about $26 billion. TuSimple and Plus began
fully driverless tests in 2021 and 2022 and expect to start commercial production
of autonomous trucks capable of operating on highways without a human driver in
2024. Further, by eliminating the driver, self-driving trucks could break the link be-
tween drivers’ homes and trucking prices generated by home preference. Given the
rapid pace of innovation, understanding the impact of self-driving trucks on freight
is essential today.

In this paper, I build and estimate a model of the trucking freight market which
captures home preference. I find that trucking carriers value starting a day at home
at $93 per day, or about one-half of the average daily wage. Compared to a reference
setting without home preference, home preference causes carriers to shift operations
from carrier-poor states to carrier-rich states. This relocation of carrier supply means,
for example, that driver-rich California sees a 9 percent decrease in average export
prices while driver-poor Massachusetts sees a 9.6 percent increase in average export
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prices. Carriers also take less time off because it is less attractive to stay at home. The
increase in capital utilization results in an 8 percent increase in overall freight prices.
In the context of a counterfactual which also includes the effect of self-driving trucks
on daily driving ranges and per-mile costs, I find that eliminating home preference is
responsible for about 25 percent of the total fall in overall prices.

I use several overlapping data sources to analyze this historically fragmented in-
dustry. For trucking prices and quantities, I use transactions from DAT RateView,
which aggregates transaction data from shippers, carriers, and brokers. I combine
this data with pre-transaction job postings and searches on DAT’s online electronic
marketplace (the largest spot marketplace for trucking freight). I merge this DAT
data with highway inspection data from the Federal Motor Carrier Safety Adminis-
tration, which offers insights into carriers’ home locations and travel patterns. These
datasets reveal how carriers’ geographies — both where they are based and where
they work — affect aggregate prices and quantities. I document three facts about
the industry: carriers are concentrated in particular states, carriers are more likely to
work in surrounding states, and the mix of home locations among carriers working in
a given location predicts prices.

I build a dynamic model of trucking carriers and shippers across the United States,
where carriers are differentiated by their home locations. Each day, carriers can either
choose to work one of a set of available routes, or elect not to work. For every day they
start at home, carriers receive a flow payoff which I call “home preference.” Carriers
that work a given route receive a market price and pay route-specific travel costs.
After travelling, they begin again from the destination of their previous route. On
the other side of the market, shippers are differentiated by the origins and destinations
of the goods they need shipped, and they decide whether to ship based on market
prices. I study a steady-state equilibrium where shippers and carriers optimize, prices
equalize supply and demand along each route, and the geographic distribution of
truckers is constant over time.

In this model, the home preference directly increases the value of being home for
a given carrier, which indirectly increases the value of being in any location which
is likely to bring the carrier home. In equilibrium, home preference spills across the
economy and shapes the desirability of all locations through carrier value functions.
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The price of shipping along a given origin-destination route therefore depends on both
the desirability of the destination and the mix of carriers at the origin. For example,
if a large share of carriers working in Washington state are from California, then the
preferences of Californian carriers will have a larger weight on prices than those of
carriers from other states.

Next, I estimate shipper and carrier parameters separately. On the shipper side, I
estimate the price elasticity of trucking demand with linear IV. I use route snowiness,
which makes driving harder and increases carrier costs, as a price instrument. I find
that demand is relatively price-inelastic: A one percent increase in trucking freight
prices yields a 0.57 percent decrease in quantity demanded.1

On the carrier side, the key parameters of interest are the home preference, the
price sensitivity of supply, and the observable components of route costs: distance and
diesel. I estimate these parameters using two moments from the data: the geographic
distribution of carriers and carrier choice probabilities. Intuitively, the geographic
distribution of carriers identifies the level of home preference. At higher levels of
home preference, carriers specialize more geographically. This specialization is visible
in the inspection patterns of carriers from different home locations. Highway inspec-
tions are therefore informative about the level of home preference. Meanwhile, carrier
choice probabilities are informative about how carriers react to prices and route char-
acteristics. Finally, I use the availability of rivers as a price instrument. Rivers allow
barge shipping, thereby increasing shippers’ outside options and generating a demand
shock to trucking prices independent of trucking costs.

I find a level of home preference where carriers value a day at home at $93 per
day — and considering that the average wage of a U.S. truck driver is $200 per day,
this is sizeable. I also recover reasonable estimates of carrier costs. I estimate the
marginal cost to carriers of distance at $1.65 per mile, which is in line with industry
cost estimates of $1.55 per mile. Routes with higher local diesel prices also have
higher costs.2

1My demand estimates build on previous studies of trucking freight demand (e.g., Oum (1979);
Graham and Glaister (2004); Litman (2013)).

2My cost estimation builds on previous work on estimating cost functions for trucking (Spady and
Friedlaender (1978); Chiang and Friedlaender (1984); Daughety and Nelson (1988); Gagne (1990)),
as well as more general work studying the effect of U.S. highways on trade (Duranton and Turner
(2012); Duranton et al. (2014); Fajgelbaum (2016); Allen and Arkolakis (2019)).
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Using my parameter estimates, I study the effect of home preference on the U.S.
trucking market by comparing a simulation of the economy without home preference
to a baseline simulation. Two effects emerge when home preference is added. First,
I document a reallocation effect wherein carriers shift operations from carrier-poor
states to driver-rich states. For example, when home preference is added, I find that
the share of all carriers working in California rises by 4.5 percent, and California’s
average export prices fall by 9 percent. The opposite scenario occurs in carrier-
poor regions such as New England: Fewer carriers working in New England, and
fewer carriers willing to travel away from home to New England, leads to higher
shipping costs in the area. Quantitatively, Massachusetts sees an 11 percent decrease
in carrier supply and a 9.6 percent increase in export prices when home preference
is added. Second, there is a capital utilization effect as more carriers choose to take
the outside option at home. Less driving decreases the supply of carriers across the
economy. Overall, home preference raises average prices by 8 percent and decreases
total shipping volume by 4 percent.

I apply these estimates to a first counterfactual where I study the effect of a vehicle
miles tax on trucking prices. I find that a 19 cent per mile vehicle miles tax leads to
a 7.1% increase in the cost of shipping, and this increase is concentrated in regions
with long average lengths of haul. Home preference causes carriers to relocate away
from places with higher tax incidence. The decline in local carrier supply therefore
amplifies the effect of the tax.

Next, I apply my estimates to a counterfactual where I consider the effect of a
transition to self-driving trucks. I focus on three effects of self-driving trucks: the
elimination of home preference, changes in per-mile costs, and daily driving ranges.
Based on previous work in the transportation literature, I reduce estimated per-
mile costs by 25 percent (to account for the increase in efficiency) and increase the
maximum daily driving time from 11 hours to 22 hours (to account for the decrease
in rest time). Together, these three changes to the economy lower average shipping
prices by 28.6 percent and contribute $16.65B to annual shipper profits. The fall
in per-mile costs makes up roughly 50 percent of the total effect of automation on
prices and quantities, while eliminating home preference contributes 25 percent and is
comparable to the effect of doubling daily driving range. The effects are concentrated
in states which have high average length of haul, which benefit the most from lower
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per-mile costs and driving range, and carrier-poor states, which benefit the most from
eliminating home preferences. Relative to existing traffic, I predict that trucking
traffic will rise the most in the Northwest and Northeast.

In summary, my paper suggests that ,beyond homogeneous cost reductions from
labor savings, automation can reshape the geography of transportation costs by re-
moving workers’ preferences over where production occurs.

This paper contributes to several literatures. At the most applied level, I con-
tribute to the literature studying the effect of autonomous vehicles3. Recent aca-
demic work has considered the effects of trucking automation on per-mile cost savings
(Huang and Kockelman (2020)), labor turnover (Burks et al. (2018)), labor demand
(Gittleman and Monaco (2020)), traffic and road utilization (Carrone et al. (2021)),
emissions (Liu et al. (2018)), the rail industry (Bao and Mundy (2018)), the macroe-
conomy (Waschik et al. (2021)), and interactions with electrification (Ghandriz et al.
(2020)). Other papers which study the effects of self-driving vehicles more broadly
include Ostrovsky and Schwarz (2018) and Clements and Kockelman (2017). Winston
and Karpilow (2020) highlights the potential for automation to decrease congestion
externalities from transportation. On the labor side, Viscelli (2018) and Viscelli
(2020) survey scenarios for the trucking labor market under automation. I push in a
new direction by highlighting the effect of autonomation on geographic specialization
by transportation firms.

More generally, my model contributes to the literature on competition in search
and matching markets, building on Lagos (2003). Recent papers in this literature fo-
cusing on transportation markets have studied competition in oceanic shipping (Bran-
caccio et al. (2020)), taxicabs (Buchholz (2022); Fréchette et al. (2019)), rideshare
markets (Rosaia (2020)), and railroads (Chen (2021)). In these markets, heterogene-
ity in the transportation firms has been relatively unimportant: Brancaccio et al.
(2020) notes that home ports are unimportant for ocean shipping because crews fly
home a few times per year, while Buchholz (2022) finds that although taxi cabs dif-
fer by home garage, these initial conditions “wash out” and become unimportant by

3A broader literature has studied the general interaction between information technology and
firm organization in trucking and transportation markets (Hubbard (1998, 2000, 2001); Baker and
Hubbard (2003); Hubbard (2003); Baker and Hubbard (2004); Barla et al. (2010)), with a focus on
monitoring and on-board computer adoption.
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7:00 a.m. every day. An exception is Vreugdenhil (2018), which studies the offshore
drilling industry and adds vertical heterogeneity in searching agents’ productivities.
In contrast, I study a setting where horizontal differentiation - home location - is first
order and demonstrate how to incorporate it into this class of models.

My paper also builds on the literature on endogenous trade costs, especially re-
search on the backhaul effect (Behrens and Picard (2011); Ishikawa and Tarui (2018);
Hayakawa et al. (2020); Wong (2020)). In this literature, transportation firms are
constrained to return to their home after completing any trip - this causes prices on
the fronthaul and backhaul legs to be correlated. The most closely related paper to
mine is Allen et al. (2020), which studies trucking markets in Colombia with a focus
on the effect of remoteness on competition and prices. In their model, truckers choose
where to live, choose a single route to service (potentially traveling to the origin and
back from the destination), and set markups along each route. The home preference
in my paper generalizes the backhaul effect in this literature by allowing the carriers
to follow any arbitrary pattern of trips or trip chains. In equilibrium, demand, travel
costs, and the magnitude of the home preference jointly determine when and how
often carriers return home.

2 Industry and Data

2.1 Industry Background

The trucking freight industry is a significant component of the U.S. economy. In 2019,
the truck transportation industry employed over 2 million people, generated $797.7
billion in revenue, and moved 11.84 billion tons of freight - representing 80.4 percent
of total freight by value and 72.5 percent of total freight by weight (Adler (2020); Day
and Hait (2019)). Compared to alternative modes, trucking freight is less cost-efficient
but more flexible than rail or water and slower but cheaper than air. Trucking freight
dominates most commodity classes except for very low-value density commodities
such as bulk grains, very high-value density commodities such as electronics, and
specific categories of hazardous materials. In 2020 and 2021, the Covid pandemic has
only reiterated the importance of the trucking sector, as truckers played a major role
in sustaining supply chains for vital medical supplies as well as increased e-commerce
purchasing. Continuing capacity constraints in trucking, on both labor and capital,
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have driven freight costs up to 40 percent higher than pre-Covid levels.

In this paper, I focus on a specific segment of the freight industry: the over-the-
road, general freight, truckload market. This market has several important implica-
tions for my paper. The over-the-road market refers to long distance trips between
cities, and is the market segment most susceptible to automation in the near term.
The general freight market refers to delivery of standardized van trailers, which re-
duces the potential degree of driver specialization. In the truckload market, firms buy
and sell an entire truck’s worth of capacity at a time. This means that unlike other
markets such as the less-than-truckload or parcel markets, returns to scale from effi-
cient sorting and routing are diminished. Consistent with this, the truckload market
is more characterized by smaller, competitive firms - the Bureau of Labor Statistics
reports that 88 percent of long-haul general freight business are owner operators.
These features - non-local travel, lack of specialization, and small competitive firms
- inform my modeling choices. For more details on market structure, see Appendix
D.1.

As a mode of transportation, trucking has been historically resistant to substi-
tuting inputs from labor to capital. While freight trains have increased in length,
and barges and ships in tonnage, trucks have maintained a high ratio of human
operators to freight shipped. The necessity of a human creates an opportunity for
drivers’ preferences to play an important role, and for automation to disrupt the
market. Ocean shipping in the 1800s may provide a historic parallel; Glaeser (2005)
describes how larger ships de-emphasized sailing skills and lead to a decline in sailor-
rich Boston.

Automation has generated significant industry and policy interest in recent years.
Many firms have entered the self-driving truck space, from entrants like TuSimple,
Waymo, Embark, and Otto, to incumbents like UPS. Plus, Aurora, Torc, and TuSim-
ple began on-road testing of Level 4 autonomous trucks in 2021.4 Plus and TuSimple
expect to start mass production of Level 4 trucks in 2024. While passenger vehicles
must achieve Level 5 automation to cover most use cases, freight trucks could run

4SAE defines Level 4 autonomy as “features that can drive the vehicle under limited conditions,”
where “limited conditions” could include the National Highway System but not local city streets.
The U.S. Department of Transportation describes Level 4 systems as having “an [operational design
domain] of limited-access highways” and “capable of operating within their ODD with no human
operator in the vehicle.”
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long-haul and regional routes under Level 4 autonomy alone. On the other hand, tasks
like loading/unloading at the warehouse and last-mile delivery are likely to remain
human-operated.

In this paper, I will focus on the “Exit-to-Exit” model of Level 4 autonomous op-
eration, which is described as the “odds-on favorite for near-time adoption” (Viscelli
(2018), Viscelli (2020))5. Under this model, a trip begins at a customer warehouse
with a human driver. The human driver takes the trailer along local roads to an
autonomous truck port near a highway, where the trailer is transferred to an au-
tonomous tractor. The autonomous tractor travels on the highway network until it
reaches another truck port near the final destination. A human driver at the destina-
tion port then makes the last mile delivery to the customer’s destination. This model
purely employs local drivers - never taking anyone further than the nearest truck port
- and is feasible with Level 4 autonomy. In practice, for example, in 2021 TuSimple
contracted with Ryder to use Ryder’s existing network of maintenance facilities to
build a future truck port network.

In early 2021, the U.S. Department of Transportation released its Automated
Vehicles Comprehensive Plan, detailing how it plans to support the integration of au-
tomated vehicles into the surface transportation system. The three key goals of this
plan include promoting collaboration and transparency, modernizing the regulatory
environment, and preparing the transportation system. The U.S. DOT and FMCSA
have begun preparing the regulatory system for automation, e.g., eliminating legal
assumptions that humans are always present in commercial motor vehicles. Policy
discussions have centered on the safety of self-driving trucks and the potential dis-
employment effects; the International Brotherhood of Teamsters union has lobbied
lawmakers to create stricter regulations over driverless vehicles. Meanwhile, enthu-
siasts point to the potential for heightened efficiency and safer roads without driver
fatigue. In this context, my paper points in a different direction: the potential for
self-driving trucks to integrate previously geographically segmented markets and shift
carriers away from their home locations.

5Firms have explored other models, including human-drone platooning (Peloton 2011-2021, Lo-
comation) and drone operation (Starsky 2015-2020). In the past few years, firms pursuing alternate
models have largely exited the market.
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2.2 Data

I combine several datasets to capture the spot trucking market.

First, I use a dataset of spot market transactions from DAT RateView. DAT
Freight & Analytics operates the dominant trucking freight marketplace platform in
the U.S. DAT also combines in-house data generated by this platform with external
data to produce data analytics products. DAT collects transactions from shippers,
carriers, and third-party brokers to construct the RateView dataset. In my version of
the dataset, for each origin-destination-week from 2016 to 2020, I observe the number
of trips and moments of transaction prices (mean, standard deviation, etc.) for spot
and contract transactions. In total, I see 669 million trips over these four years and
107 million trips for 2019 alone. Origins and destinations are observed at the Key
Market Area (KMA) level. A KMA is a collection of 3-digit zip code areas roughly
comparable in size to an MSA.

Next, I use DAT Trucks in Market data to measure the distribution of active
carriers in the spot market. On DAT’s trucking freight marketplace platform, shippers
(loads) and carriers (equipment) can search for counterparties, make posts or offers,
and match with each other. In the Trucks in Market dataset, for each origin-day from
2016 to 2020, I observe the number of load and equipment searches and posts on the
platform. In total, I see 458 million carrier searches over the four years and 50 million
carrier searches for 2019 alone.

Thus far, the DAT datasets aggregate across carriers from different home loca-
tions. To study carrier heterogeneity, I turn to motor carrier highway inspections.
Under the Federal Motor Carrier Safety Administration’s (FMCSA) Motor Carrier
Safety Assistance Program, inspectors conduct roadside inspections of motor carriers.
These inspections ensure that drivers and vehicles are safely operating in compliance
with FMCSA regulations and vary in intensity from driver-only inspections to the
most thorough inspections which evaluate brake systems, suspensions, etc. For each
inspection, I observe the date, the state of inspection, the DOT number of the in-
spected vehicle, and registration state of the tractor and trailer (if present). I use the
tractor’s registration state as the home location as, unlike trailers, it is difficult to
register a tractor outside one’s home state.6 The inspections dataset spans 3.2 million

6Alternatively, I could link each inspection report with the inspected carrier’s registration data in
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inspections and 1.8 million unique tractors over 2019.7

To measure the total size of potential trucking freight demand, I use 2017 Cen-
sus Bureau’s Commodity Flow Survey (CFS). The Commodity Flow Survey samples
shippers to estimate state-state shipping for each major freight modes: truck, rail,
water, air, pipeline, etc. I also use the FMCSA’s Census of Motor Carriers to measure
the total population of potential carriers.

I use several data sources to construct route characteristics within the United
States. I begin by using Open Street Maps to compute the fastest driving route be-
tween any two locations. Next, I use the Highway Performance Monitoring System,
an annual census of U.S. highways, to measure physical road characteristics at the
road segment level, and I use state average diesel prices from AAA. I take a weighted
average of these characteristics over the fastest Open Street Maps route to construct
route characteristics, where the weights are the mileage share elapsed in a given state.
This construction represents the average road conditions experienced by drivers be-
tween origin and destination. For example, a carrier driving from Texas to Florida
will spend a small share of the journey in Alabama. My method assigns a correspond-
ingly small weight to Alabama diesel prices when constructing route-average diesel
prices.

To construct a cost shifter, I construct the percentage of days in a year that a
state experiences snow. I use a weather dataset constructed by Moosavi et al. (2019)
which collects reports from airport weather stations. This paper shows that airport
reports of snow positively predicts deterioration in traffic, which would raise the cost
for a tracker to travel along a route. For each state, I compute the average share of
days in the year that snow is reported, and for each route, I weight the average state
snowiness by the mileage share to construct the route-level cost shock.

To construct a demand shifter, I construct the availability of river or water ship-
ping from origin to destination using the Army Corps of Engineers’ Fuel-Taxed Inland

the FMCSA’s Census of Motor Carriers. However, the FMCSA Census has known data challenges,
and multiple drivers/tractors may work for a given firm. For more details, see Burks et al. (2017).

7For more details on this dataset, see Liang (2021). She finds that states vary systematically in
how intensely and frequently they inspect - I will incorporate this explictly in my estimation section.
She also argues that, conditional on truck characteristics, there are no pre-trends between trucks
which are inspected and trucks which are not.
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Waterway system.8 For an origin-destination pair, I define an indicator variable which
is 1 if a river flows from the origin to destination, or if an intracoastal waterway con-
nects the origin and destination, and 0 otherwise.

2.3 Descriptive Statistics

I begin by documenting three empirical patterns about the trucking freight industry
which will motivate my economic analysis. First, I show that carrier homes are
unevenly distributed across states. Some states, such as California, have a much larger
population of registered carriers than other states, such as Massachusetts. Second, I
show that the number of carriers living in the origin or destination states of a given
rotue predicts prices and quantities. A larger number of carriers living in the origin
predicts higher prices and higher quantity, while the number of carriers living in the
destination predicts lower prices and higher quantity. Third, I focus on the role of
where carriers drive by defining a home share variable, which captures the probability
that a given route brings carriers in the origin location back to their home location. I
find that this home share variable predicts lower prices and higher quantities. Finally,
I run descriptive quantity and pricing regressions which summarize these patterns.
The combination of these three patterns motivate my model of trucking freight with
geographic specialization. For additional descriptive figures, see Appendix B.

In Figure 1, I document the unequal distribution of carriers across the United
States. To select for firms actively engaged in inter-state freight, I combine carrier
registrations with highway inspections to measure the population of active carriers.
I define an active carrier as any U.S.-licensed tractor inspected in the U.S. at least
once in 2019. I focus on tractors because tractors are more difficult to register outside
one’s state of residency than trailers. Compared to the population, the distribution of
active carriers is much more concentrated in a few states: California, Texas, Illinois,
and Florida.

8This system represents the main internal water shipping in the United States, and covers the
navigable components of major river systems such as the Mississippi, the Missouri, the Ohio, the
Arkansas, the Columbia, and others, major artificial waterways such as the Tennessee-Tombigbee
Waterway, and the Gulf and Atlantic Intracoastal Waterways.
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Figure 1: Geographic Distribution of Trucking Carriers

Notes: This figure plots the share of all active interstate carriers by U.S. state. Active
interstate carriers are defined as carriers which (1) were inspected at least once, and (2)
were registered for interstate, non-hazmat, non-passenger carriage.
Data sources: 2019 FMCSA Motor Carrier Inspections, 2019 FCMSA Registrations.

To explore the implications of this carrier distribution on the trucking market, I
plot bin scatters of route-level prices and quantities on the number of carriers from
the origin location in Figure 2. Routes where the origin state has a larger number
of carriers tend to have higher prices and higher quantities. This is consistent if,
for example, carriers are more likely to live in places which demand more trucking
exports.

Figure 2: Effect of Number of Carriers from Origin

Notes: This figure plots bin scatters of price (Panel A) and quantity (Panel B) for a given
route i→ j against the number of carriers from the origin location i.
Data sources: DAT, 2019 FCMSA Registrations.
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On the other side, in Figure 3 I plot bin scatters of route-level prices and quan-
tities on the number of carriers from the destination location. Routes where the
destination state has a larger number of carriers tend to have lower prices and higher
quantities.

Figure 3: Effect of Number of Carriers from Destination

Notes: This figure plots bin scatters of price (Panel A) and quantity (Panel B) for a given
route i→ j against the number of carriers from the destination location j.
Data sources: DAT, 2019 FCMSA Registrations.

The previous figures did not use any information on where carriers are actually
located when they are driving. To isolate the effect of carriers’ location decisions, I use
my highway inspections data to construct a home share variable hji : the share of the
carriers in the origin location who make their homes in the destination location. For
example, for California to Massachusetts shipments, about 0.037 percent of carriers
in California are from Massachusetts. Intuitively, this variable measures the share of
available carriers for whom this trip would be a homecoming trip. If preferences to
return home are important for prices and quantities, this home share variable should
have predictive value.

In Figure 4, I plot the relationship between prices, quantity shipped, and the
distribution of carriers. Panel A presents a bin scatter of price against the share
variable in blue. Along lanes with larger home shares, prices are lower. Since carriers
are more likely to work in states which are close to their home state, the share variable
is negatively correlated with distance. To control the effect of distance, I plot a second
bin scatter in orange which absorbs route distance. The slope is flatter but the overall
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pattern remains negative. Panel B presents a bin scatter of log quantity against the
share variable in blue. Lanes with a higher share of carriers in the origin being from
the destination location see higher quantity shipped. This relationship is robust to
controls for distance, as shown by a second bin scatter in orange which controls for
route distance.

Figure 4: More Carriers in origin from destination are correlated with lower prices
and higher quantities

Notes: This figure plots bin scatters of price (Panel A) and quantity (Panel B) for a given
route i → j against the share of carriers in origin i that are from destination location j. I
refer to this share as the home share.
Data sources: DAT, 2019 FCMSA Registrations.

2.3.1 Descriptive Regressions

I synthesize the previous patterns using a pair of descriptive regressions predicting
trucking flows and prices.

In Table 1, I present the results of a regression of (log) trucking quantity on
distance, the home share variable described in the previous section, and the number
of carriers from the origin and destination states. Model 1 estimates the following
equation,

logQij = βddij + βh log hji + βorig logCi + βdest logCj

where hji is the share of carriers in i who are from j, and Ci is the total number of
carriers from i. Routes which are shorter, have a higher home share, and connect
locations with more carriers, tend to have greater quantities.

In Model 2, I estimate the same equation with origin and destination fixed effects.
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Model 1 2
Distance -0.353 (0.0244) -0.226 (0.0128)
Log Home Share 1.514 (0.505) 1.345 (0.255)
Log Carriers from Orig 0.415 (0.0138)
Log Carriers from Dest 0.393 (0.0171)
Constant -0.132 (0.111) 3.764 (0.0609)
Fixed Effects No Yes
Observations 1936 1936
R-squared 0.522 0.929

Table 1: Descriptive Trucking Flow Regression

Notes: This table presents results from a regression of log trucking quantities on distance,
home share, and carrier population. Robust standard errors in parentheses.
Data sources: DAT, 2019 FCMSA Registrations.

The fixed effects absorb the effect of origin and destination carriers.

logQij = FEi + FEj + βddij + βhhji

I continue find a negative relationship between distance and trucking flows, in-
dicating a gravity-like relationship in this setting. Further, I confirm the patterns
previously presented: quantity is rising in the share of potential homecoming carri-
ers, and in the total number of carriers from the origin and destination locations.

I estimate a parallel pricing equation and present the results in Table 2. In Model
1, I run a regresion of prices on the same set of variables: distance, home share, and
number of carriers from origin and destination.

pij = βddij + βh log hji + βorig logCi + βdest logCj

In Model 2, I add origin and destination fixed effects, which absorb the effect of
origin and destination carriers.

pij = FEi + FEj + βddij + βhhji
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Model 1 2
Distance 1.190 (0.0106) 1.162 (0.00507)
Log Home Share 0.271 (0.219) -0.391 (0.101)
Log Carriers from Orig 0.0495 (0.00598)
Log Carriers from Dest -0.123 (0.00744)
Constant 0.730 (0.0481) 0.302 (0.0241)
Fixed Effects No Yes
Observations 1936 1936
R-squared 0.880 0.985

Table 2: Descriptive Price Regression

Notes: This table presents results from a regression of prices on distance, home share, and
carrier population. Robust standard errors in parentheses.
Data sources: DAT, 2019 FCMSA Registrations.

I find that longer trips are associated with higher prices. This descriptive regres-
sion suggests a price-distance gradient of around $1.20 per mile. In Model 1, the share
of potential homecoming carriers is positive and noisy, while in Model 2, the coeffi-
cient becomes negative. Finally, as in the previous figures, more carriers in the origin
are associated with higher prices, and more carriers in the destination are associated
with lower prices. This is consistent with a story where carriers must be compensated
to leave home, and are willing to accept lower prices to return home.

In practice, both prices and the distribution of working carriers are determined
in equilibrium. For example, the home share variable may be driven by carriers
responding to underlying demand patterns. Similarly, prices both reflect the supply
of available carriers, and the demand for shipping along each route. To disentangle
these forces, I turn to my model in the following section.

3 Model

In this section, I develop a dynamic spatial equilibrium model to explore the effects of
geographic specialization. For intuition, I begin by presenting a two-location version
of the model. This simplified setting allows me to isolate the main economic forces
in the model. After, I extend this to a many-location setting which I will take to
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CA MA

Figure 5: Two Location Model: Markets

estimation.

3.1 Two-Location Model

I begin by presenting a two-location model which captures the main economic forces
in this market. There are two locations, CA and MA. Every day, there is symmetric
demand for shipping between the two locations, and within each location,

Dij(pij) = σpij + ω (1)

for all i, j ∈ {CA,MA}, where pij is the price of shipping from i to j. Figure 5
presents the geography in this model, along with the four shipping routes.

There are a set of carriers in the economy. Each of them has a home location: CA
or MA. At the beginning of every day, a carrier is either in a location (CA or MA)
- available to begin a new trip - or en-route between a pair of locations (CA→MA,
MA → CA, CA→ CA, or MA → MA). There are therefore six total states that a
carrier can be in.

Consider a CA carrier who begins the day in CA. Since she began the period at
home, she receives a home preference flow utility b. Next, she has three choices, as
summarized in the first panel of Figure 6: Taking an interstate job to MA, taking an
intrastate job, or taking the day off and exercising an outside option. If she takes an
interstate job to destination MA, she receives payoff

pCA,MA − c+ V CA
CA→MA + εCA,MA
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Panel A: CA carrier in CA

CA MA

InterstateIntrastate

Outside Option

Panel B: CA carrier in MA

CA MA

Interstate Intrastate

Outside Option

Figure 6: Two Location Model: Choices

where pCA,MA is the price of a trip from CA to MA, c is a travel cost, and εCA,MA

is an i.i.d. Logit shock. The carrier takes prices as given. Next period, she will
begin travelling to MA, and receive continuation value V CA

CA→MA for being a CA

carrier travelling from CA to MA. If she takes an intrastate job, she instead receives
payoff

pCA,CA − c+ V CA
CA→CA + εCA,CA

where pCA,CA is the price of a CA intrastate trip. Similarly, next period she will begin
travelling to her destination, and her continuation value is V CA

CA→CA. Finally, she can
take an outside option, choose not to work, and receive payoff

βV CA
CA + εOO

where εOO is i.i.d. Logit. Since she is available to work the following day, her con-
tinuation utility if she takes the outside option is V CA

CA , discounted by her discount
factor β.
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Putting these together, the payoff of a carrier who starts in CA is

V CA
CA (ε) = b︸︷︷︸

Home Preference

+ max


pCA,MA − c+ V CA

CA→MA + εCA,MA Interstate to MA

pCA,CA + V CA
CA→CA + εCA,CA Intrastate within CA

βV CA
CA + εOO Outside Option

If she instead started the day inMA, she faces the same three choices, as depicted
in the second panel of Figure 6. Her payoffs are symmetric, with the exception of the
home preference utility,

V CA
MA(ε) = max


pMA,MA − c+ V CA

MA→CA + εCA,MA Interstate to CA

pMA,MA + V CA
MA→MA + εCA,CA Intrastate within CA

βV CA
MA + εOO Outside Option

Note that she is free to choose to stay in MA for as long as she desires. There is no
restriction on the pattern or order of trips, or a maximum number of days after which
she must return to CA.

When travelling, It takes two days to travel between CA and MA, and one day
to perform a within-state trip. This implies that the continuation value of beginning
a trip is

V CA
CA→MA = β2V CA

MA

V CA
CA→MA = βV CA

CA

The shape of the logit shocks implies choice probabilities for this CA carrier in
CA,

sCACA→MA(p) =
exp(pCA,MA − c+ V CA

CA→MA)

exp(pCA,MA − c+ β2V CA
MA) + exp(pCA,CA + βV CA

CA ) + exp(βV CA
CA )

(2)

sCACA→CA(p) =
exp(pCA,CA + βV CA

CA )

exp(pCA,MA − c+ β2V CA
MA) + exp(pCA,CA + βV CA

CA ) + exp(βV CA
CA )

(3)
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as well as the expected value of beginning the period in CA,

V CA
CA (p) = log(exp(pCA,MA − c+ β2V CA

MA) + exp(pCA,CA + βV CA
CA ) + exp(βV CA

CA )) (4)

Given a set of prices p, the value function of the CA carrier can therefore be solved
for when she is in CA and when she is in MA. Finally, the above equations hold
symmetrically for carriers from MA.

There is a fixed population of carriers, CCA and CMA. Among the California
carriers, there are CCA

CA carriers in CA, and CCA
MA carriers in MA. Since some carriers

will be travelling, CCA
CA + CCA

MA 6= CCA. Given a set of carrier locations and prices,
total quantity supplied from CA to MA is a weighted average of the probability that
a CA carrier chooses to go to MA, and the probability that an MA carrier chooses
to go to MA,

QCA→MA = CMA
CA sh

MA
CA→MA + CCA

CAsh
CA
CA→MA

where the relative share of CA or MA carriers in CA provides the weights.

I will focus on a steady-state equilibrium where the number of carriers of each
type in each location are constant. For example, every day CCA

MAs
CA
MA→CA carriers

from CA arrive in MA, and CCA
CAs

CA
CA→MA carriers leave. In steady state,

CCA
MAsh

CA
MA→CA = CCA

CAsh
CA
CA→MA (5)

Finally, prices are set to clear markets,

Dij(pij) = Qi→j (6)

A steady state equilibrium of this two-state model is a vector of four prices
(pCA,CA, pCA,MA, pMA,CA, pMA,MA) , four quantities (qCA,CA, qCA,MA, qMA,CA, qMA,MA),
eight choice probabilities (sCACA,CA, sCACA,MA, s

CA
MA,CA, s

CA
MA,MA, s

MA
CA,CA, s

MA
CA,MA, s

MA
MA,CA, s

MA
MA,MA),

four value functions (V CA
CA , V

CA
MA, V

MA
CA , V MA

MA ), and four equilibrium carrier locations
(CCA

CA , C
CA
MA, C

MA
CA , C

MA
MA), which satisfies four demand equations (1), four market clear-

ing conditions (6), eight choice probability equations (2 and 3), four value function
equations (4), and four steady-state equations (5).
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Given this model, I run a set of simulations to illustrate how the model parameters,
especially the magnitude of the home preference b, affect equilibrium outcomes. I
begin with a base setting where the number of carriers in CA andMA are symmetric9.
I compute a series of equilibria for different values of home preference b, and plot the
results in Figure 7. Panel A plots the share of carriers in each location which are
either at home (i.e., from that location) or away (i.e., from the other location). As
home preference increases, the carriers in each location are more likely to be at home
at home. While this does not change the total supply of carriers in each location,
since the two locations have symmetric populations of carriers, carriers become more
hesistant to travel to the other location. This raises inter-state prices and lowers
intra-state prices, as seen in Panel B. Given constant demand, inter-state quantity
shipped falls and intra-strate quantity rises as in Panel C. An increase in the degree
of home preference generates a steeper negative relationship between quantity and
distance.

Figure 7: Two Location Setting, Symmetric Locations

Note: Figure 7 plots the results of simulations of the two-location model, as the home
preference parameter varies. Panel A plots the share of carriers in each location which are
home (from that location) or away (from the other location). Panel B plots the prices for
intra-state and inter-state trips. Panel C plots the trade flows of intra-state and inter-state
pairs.

Next, suppose that the two locations are asymmetric in their endowments of
carriers. Specifically, suppose that one location (CA) has 75 percent of the carrier

9Specifically, I let CCA = CMA = 1
2 . For the other parameters, I set ωij = 1 for all (i, j), σ = − 1

2 ,
c = 1, α = 1.
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population, and the other location (MA) has the remaining 25 percent, while holding
all other parameters fixed. I compute a new set of equilibria for varying levels of
home preference.

Panel A plots the share of carriers in each location which are from each location.
At zero home preference, the share of carriers in each location matches the overall
distribution of home locations - 75 percent of carriers in both CA and MA are from
CA. As home preference increases, CA truckers make up more of the population
in CA, and likewise for MA truckers. On net, this leads to fewer carriers in MA

and more carriers in CA. The implications can be seen in Panel B, where intra-state
prices now diverge between MA and CA. On average, inter-state prices rise relative
to intra-state prices. For MA, this works in the opposite direction as the overall
number of carriers, so MA sees a modest rise in intra-state prices. A higher home
preference leads to a steeper price-distance gradient. This carries into quantities, as
plotted in Panel C, where a higher home preference leads to more intra-state quantity
for the carrier-rich location, modest changes in quantity for the carrier-poor location,
and a decrease in inter-state quantity.

Figure 8: Two Location Setting, Asymmetric Locations

Note: Figure 8 plots the results of simulations of the two-location model, as the home
preference parameter varies. Panel A plots the share of carriers in each location which are
home (from that location) or away (from the other location). Panel B plots the prices for
intra-state and inter-state trips. Panel C plots the trade flows of intra-state and inter-state
pairs.
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3.2 General Model

3.2.1 Setup, Agents, and Timing

There is a set of locations in the economy, L. There are two types of infinitesimal
agents: shippers who demand shipping and carriers who supply shipping. Shippers
are short-lived, myopic, and differentiated by their origin-destination. Carriers are
risk-neutral, long-lived, and differentiated by their home location h.

Each carrier may either begin the period in a location i ∈ L, or begin the period
en-route from i to j for i, j ∈ L. There is a fixed total quantity of carriers of each
type h, Ch, and the number of carriers in each location i, Ch

i , or en-route along each
route ij, Ch

ij, must sum up, so that

Ch =
∑
i∈L

Ch
i +

∑
i,j∈L

Ch
ij ∀h ∈ L (7)

In contrast, I refer to the number of carriers of each type present in location i

Ci =
∑
h

Ch
i

as the supply of carriers in location i. Importantly, for example, the number of
California carriers, CCA, is not equal to the supply of carriers in California, CCA, as
carriers of all types move around the economy.

Each period is one day. First, shippers and carriers draw idiosyncratic cost and
demand shocks. Second, prices are set to clear shipper demand & carrier supply.
Third, matched carriers begin travelling. Finally, travelling carriers arrive at their
destination with some probability.

3.2.2 Carrier Choices / Freight Supply

Each period, a carrier c of type h in location i can choose to either accept a job to
any destination j ∈ L, or choose to take an outside option and remain in i.

A carrier c who accepts a job from i to j receives flow utility

uijc = αpij + κijc
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where pij is the route price and κij is the route cost10. Carriers are price-takers and
observe p = (pij)i,j∈L, a vector of prices along all routes.

Route costs are decomposed as

κijc = κ̄ij + ξij + εcj (8)

where κ̄ij is an observable component, ξij is a systematic unobservable cost compo-
nent, and εcj is an idiosyncratic cost shock which is i.i.d. Logit across all carriers.
For example, distance may be an observable component of κ̄ij, while unobserved
congestion or scarce public bathrooms may be unobserved components of ξij.

A carrier who accepts a job to j arrives at the destination with probability λij.
If they arrive, they may immediately take another job the following period. With
probability 1 − λij, the carrier does not arrive and instead begins the next period
en-route from i to j. Each day, an en-route carrier arrives with probability λij. The
expected days of travel for a job from i to j is therefore 1/λij.

A carrier c who takes the outside option in location i receives flow utility

ui,OO = δi,OO + εc,OO (9)

where δi,OO is a common flow payoff and εc,OO is an i.i.d. Logit cost shock. Let
εc = {εcj}j ∪ εc,OO be the entire vector of cost shocks received by carrier c.

Finally, a carrier which begins the day in its home location hc receives a home
preference flow payoff, b. Economically, b can represent both positive preferences for
being at home as well as costs associated with being away at home.

Putting these together, the carrier’s daily flow payoffs are

b× 1hc=i +



uijc Accept job to j

uikc Accept job to k

. . .

ui,OO Outside Option

= b× 1hc=i +



αpij + κ̄ij + ξij + εcj

αpik + κ̄ik + ξik + εck

. . .

δi,OO + εc,OO

(10)

10The carrier pays the entire cost of a trip at the beginning of the trip. Equivalently, κij can be
interpreted as the expected discounted value of flow costs that the carrier pays during the trip.
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For convenience, let δij denote the component of flow payoffs which is common across
carriers,

δij = αpij + κ̄ij + ξij (11)

To complete the carrier optimization problem, let V h
ic be the expected value func-

tion of a carrier with home h which starts a day available in i. Let W h
ijc be the

expected value function of a carrier with home h which starts a day en-route from
i to j. Carriers have a discount factor of β. The carrier’s choice problem is, given
idiosyncratic shocks εcj,

max



δij + εcj + βE[W h
ij] Accept job to j

δik + εck + βE[W h
ik] Accept job to k

. . .

δi,OO + εc,OO + βEεc [V
h
ic (εc)] Outside Option

(12)

and the carrier’s value function is defined by

V h
ic (εc) = b× 1hc=i + max



δij + εcj + βE[W h
ij] Accept job to j

δik + εck + βE[W h
ik] Accept job to k

. . .

δi,OO + εc,OO + βEεc [V
h
ic (εc)] Outside Option

(13)

Given the stochastic arrival probabilities, the value function in the en-route state
is

E[W h
ij] = λijEε[V

h
j ] + (1− λij)βE[W h

ij] (14)

where E[W h
ij] is a weighted average of the value function in the destination and the

value function of being in the en-route state. Since there are no idiosyncratic shocks
in the en-route state, I do not index W by c.

Given the logit cost shocks, the share of carriers of type h in origin i who choose
destination j is given by

shij =
exp(δij + E[W h

ij])∑
k∈L exp(δik + E[W h

ik]) + exp(δi,OO + βEε[V h
ic ])

(15)
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I call this the type-specific choice probability, as it is specific to carriers of type
h.

The aggregate share of carriers who choose to take jobs from i to j

sij =
∑
h

(
Ch
i∑

h′ C
h′
i

)
shij (16)

is a weighted average of type-specific choice probabilities, where the weights are the
share of carriers in i which are from h. Intuitively, a larger share of shipping flows
from origin i to destination j if origin i has a large share of carriers who like des-
tination j (high Ch

i∑
h′ C

h′
i

for h with high shij). For example, suppose a large share of
carriers working in Washington have homes in California. These carriers’ preferences
(e.g., to return to California) will have an outsized weight on aggregate exports from
Washington.

Given the type-specific choice probabilities, aggregate supply

Sij =
∑
h

Ch
i s

h
ij (17)

is the sum of choice probabilities weighted by the distribution of available carri-
ers.

3.2.3 Shipper Optimization / Freight Demand

Every day, a mass of Nij potential shippers enter with fixed origin i ∈ L and desti-
nation j ∈ L. Each shipper draws a willingness-to-pay for freight ωij + ν where ωij
is a common demand shock, and v is an idiosyncratic shock distributed exponential
with mean σ−1.

Each shipper makes a binary decision over whether to pay price pij and ship via
truck, or to take an outside option with payoff normalized to 0. The outside option
can include alternative freight modes such as rail or barge. If the shipper does not
ship, it exits at the end of the day. The shipper’s choice problem is

max{ωij + v − pij, 0} (18)
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Aggregating over the mass of potential shippers, demand for shipping from i to j
given prices pij is

Dij = Nij × P (ωij + v > pij) = Nij exp(−σpij + σωij) (19)

and the share of shippers who choose trucking is

sshipperij =
Dij

Nij

= exp(−σpij + σωij)

Since shippers have a fixed origin and destination, there is no substitution across
destinations and the price of shipping along other routes does not enter demand
for shipping from i to j. After taking logs, the log share of shippers who choose
trucking

log sshipperij = logDij − logNij = −σpij + σωij (20)

is linear in prices.

3.2.4 Equilibrium

This model, the number of carriers of type h in location i is constant period to period
if ∑

k

λki( Ch
ki︸︷︷︸

inflows from en-route carriers

+ Ch
k s

h
ki︸ ︷︷ ︸

inflows from new trips

) = Ch
i

∑
j

shij︸ ︷︷ ︸
outflows

(21)

holds, where the left-hand-side captures all carriers of type h which arrive from all
potential origin locations k, and the right-hand-side captures all carriers of type h
who choose to leave i.

The number of carriers of type h in an en-route state from i to j is constant period
to period if

Ch
i s

h
ij(1− λij)︸ ︷︷ ︸

new trips beginning to travel

= λijC
h
ij︸ ︷︷ ︸

en-route carriers arriving

(22)

holds, where the left-hand-side captures all carriers of type h which began trips from
i to j this period, and the right-hand-side captures the share of travelling carriers
from i to j which arrive (and thereby leave the travelling state).

A steady-state equilibrium of this model is a set of prices pij, quantities Qij, and
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carrier locations Ch
i , C

h
ij , such that (1) markets clear, (2) the geographic distribution

of carriers is constant over time, (3) carriers make optimal choices, and (4) shippers
make optimal choices. Specifically, the following must hold:

• For each i, j ∈ L, total supply equals total demand

Qij = Sij(p) = Dij(p) (23)

• For each available state i and en-route state i → j, for each carrier type h,
inflows equal outflows (Equations 21 and 22)

• For each h, i ∈ L, carrier market shares are optimal (Equation 15) and value
functions are consistent (Equations 13 and 14)

• For each i, j ∈ L, shipper decisions are optimal (Equation 20)

3.3 Discussion

I make several simplifying assumptions to tailor my model for the long-haul truckload
market.

First, I assume that all shipments are of equal size. This is true of the truck-
load market where a shipper purchases an entire truck’s worth of capacity. Unlike
less-than-truckload (LTL) and parcel markets, there are no complementarities across
shipments along a route. For example, trucks have no reason to take a detour to drop
off a portion of their load before continuing to their final destination.

Second, I assume that all carriers are optimizing independently. My model there-
fore rules out large carriers who may be able to exert market power. The existing
literature characterizes the truckload market as more competitive than the less-than-
truckload market (Corsi et al. (1992); Keeler (1989); Savage (1995); Laing and Nolan
(2009)). In the less-than-truckload market, there are strong scale economies due to
large firms’ ability to operate hubs and repack freight efficiently. At the extreme end,
the parcel market is dominated by just a few major firms.

Third, I abstract away from considerations of the spot, contract, and private fleet
markets. This model focuses on the cross-sectional variation in freight prices, rather
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than the time-series interaction of spot and contract prices, or the contracting problem
of whether to develop a private fleet. In practice, the spot and contract prices are
highly correlated.

Fourth, I assume that there is a single market-clearing price for each origin-
destination route. This prevents carriers of different types from charging different
prices from shippers for a given route. Since I focus on the general freight market,
there is less differentiation that would be true if I were considering a broader market
including refrigerated or hazardous materials carriers.

4 Estimation

I begin by making parametric assumptions. I estimate the demand side of my model
using a linear IV. I construct an estimator for my supply-side parameters. Finally, I
discuss my estimated parameters and interpret their magnitudes.

4.1 Parametric Assumptions

For the remainder of this section, I assume that the observable route cost κij is linear
in observable route characteristics Xij.

κij = γXij (24)

The common component of the carrier flow payoff δij is linear in prices, route charac-
teristics, origin and destination fixed effects, and an unobservable route cost shock.

δij = αpij + γXij + FEi + FEj + ξij (25)

In this specification, destination fixed effects capture geoegraphic variation in the at-
tractiveness of a destination. When FEj is high, the flow payoff to travelling to j rises
for carriers in all origin locations. Origin fixed effects capture geographic variation in
the attractiveness of the outside option. When FEi is high, the payoff to taking the
outside option falls relative to the payoff of accept a trip, so the outside share falls.
Since FEi enters symmetrically for trips from i to all potential destinations, it does
not affect the relative choice probabilities when leaving i.
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Parameter OLS IV
Price ($) -0.197 (0.0248) -0.323 (0.101)
Constant -0.184 (0.0411) -0.0160 (0.129)
Fixed Effects Yes Yes

Table 3: Demand Estimation Results

Notes: Regression of log shipper trucking share log sshipperij from i to j on the price of
trucking pij . IV uses snowiness of the route from i to j as a cost shifter. Standard errors in
parentheses, clustered by origin and destination.

For details on how I construct route characteristics and other elements of the data,
see Appendix D.2.

4.2 Demand Estimation

My model implies a linear equation for the share of shippers who choose truck-
ing,

log sshipperij = σpij + ωij (26)

This equation faces the classic simultaneity problem: equilibrium prices p are a func-
tion of demand shocks ω. I use a linear IV strategy to estimate σ. Specifically, I
use supply shifters which affect prices but are independent of demand shocks ω: the
snowiness of the route from i to j as a cost shifter. Snowy conditions make driving
more difficult and intensify traffic, and multiple routes from the same origin or to
the same destination may have different degreees of snow risk. In Table 3, I report
demand estimation results.. The price coefficient is significant and negative. For
interpretation, the estimated price coefficient on -0.323 corresponds to an average
demand elasticity of -0.574, which is comparable in magnitude to previous work in
the trucking freight literature as plotted in 9. Beuthe et al. (2001) estimate short
distance trucking demand elasticities at -0.58 and long distance elasticities at -0.63.
In one survey of the literature, Litman (2013) reports truck demand elasticities be-
tween -0.25 and -0.47. In another survey, Graham and Glaister (2004) report that 66
percent of estimates fall between -0.5 and -1.3. Trucking demand appears comparable
and slightly less elastic compared to rail or water. Chen (2021) estimates a rail freight
demand elasticity of -0.739, which is in line with earlier literature surveyed in that
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Figure 9: Demand Elasticity Comparison

Notes: This figure presents demand elasticity estimates in context with other point estimates
from the literature.

paper. Brancaccio et al. (2020) finds a trade elasticity with respect to ocean freight
shipping prices of -1.03.

4.3 Supply Estimation

The remaining structural parameters of my model are the discount factor β, the
expected travel time λ−1ij , the home preference b, the supply price coefficient α, and
the observable cost coefficients γ. I will calibrate β and λ and estimate the home
preference and price and cost coefficients.

4.3.1 Overview

I present a high-level overview of my supply side estimation here; additional details
can be found in Appendix A. My estimation problem is a standard dynamic discrete
choice problem with two differences.

My first difference is that I do not observe choice data at the most granular level.
Home preference is reflected in differences in choice probabilities across carriers of
different types (i.e., from different home locations). However, my trucking share data
is too aggregated - I do not observe the home location of the trucker engaged in a
given trucking transaction. In the language of my model, I observe aggregate shares
sij but not type-specific shares shij. To handle this, I will augment my choice data
with auxiliary data which does contain the identify of the carrier: highway inspec-
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tions. Each highway inspection contains a record of both the identity (registration)
of the inspected carrier, along with the location of the inspection. This allows me to
construct the differential geographic distributions of carriers of different types.

Differences in the inspection patterns of different types of carriers are informative
about the magnitude of the home preference. Intuitively, suppose that the home
preference is zero. All carriers are homogenous, so they will have identical inspection
patterns across states. California carriers will make up the same share of inspected
carriers in California as in Massachusetts. Alternatively, let the home preference
go to infinity. Carriers will choose to only stay in their home state and do within-
state jobs, so carriers will have very different inspection patterns. If the observed
world is somewhere in the middle, then the degree of carrier geographic specialization
will identify the level of home preference b. As a caveat, if I only observed data
on the distribution of California carriers, any such pattern could be explained by the
underlying pattern of trucking demand. For example, California carriers being mostly
inspected near California could be consistent with any level of home preference if most
trucking demand out of California is to nearby destinations. Crucially, I will observe
different patterns between, for example, California and Massachusetts carriers, which
allows me to control for the role of common demand shocks.

More formally, I assume that inspections are generated by the following process.
For origin i, destination j, and intermediate location k, let mijk be the mileage share
of the total ij route spent in k. A carrier is inspected in location k with probability ρk
if the carrier is available in k, or with probability ρimijk if the carrier is en-route in ij.
Carriers which take the outside option are not inspected. This process allows different
states to have different inspection intensities, but restricts states from discriminating
against carriers registered in any particular state. The probability of inspecting a
type h carrier, conditional on making an inspection in k, is

ιhk =
ρkC

h
k +

∑
i,j ρkmijkC

h
ij∑

h′(ρkC
h′
k +
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(27)

In the first stage of my supply side estimation, I will estimate the magnitude of
home preference which maximizes the likelihood of the observed pattern of inspec-
tions.
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Second, my cost function contains unobservables shocks ξij. To handle this, I will
use an approach similar to BLP for demand estimation where I use demand shifters
as instruments independent of the ξij cost shocks. Recall the mean payoff of a route
from i to j,

δij = αpij + γXij + ξij ∀(i, j) (28)

For every level of home preference b, I can find a vector of mean payoffs which matches
observed shares sOij.

δ∗(b, sO) = δ s.t. sij(b, δ) = sOij ∈ (0, 1) ∀(i, j) (29)

For this vector to be unique, I must make L normalizations. I choose to normalize
the flow payoff of taking the outside option δOO,i to zero for all locations i. I find this
ex-ante more plausible than normalizing the payoff or the value of the unobservable
cost for any other choice; the value of not working is plausibly more comparable
across states than, for example, the value of a within-state trip. This normalization
creates a convenient interpretation for b: the magnitude of the home preference is
the difference in utils between not working at home versus not working somewhere
else.

I solve for δ∗ using an iterative algorithm which is analogous to the BLP con-
traction mapping, with the addition of accounting for how value functions and the
equilibrium location of carriers depend on δ. For details on this algorithm, see Ap-
pendix A.1.

δ′ij(b) = δij(b) + log sOij − log sij(δ) (30)

Given a value of δ∗, and a price instrument which is orthogonal to ξij, I can recover
price and cost coefficients with IV. Specifically, I use the availability of river and inter-
nal waterway shipping between i and j. Rivers increase the availability of substitutes
for trucking (barge shipping), thereby shifting demand for trucking and varying prices
independent of ξij.
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4.4 Estimation Results

I present my estimates in Table 4. Standard errors are taken from 500 bootstrap
sample draws11. Given my estimated price coefficient, the daily flow payoff of being
at home is about $93 per day. For context, this is one-half of the average daily wage
of about $200 (Williams and Murray (2020)). Turning to the coefficients in Table 4,
I find a positive coefficient on price and negative coefficients on the components of
the cost function: distance and local diesel prices.

Parameter Estimate (Utils) Estimate ($)
Price ($) 0.315 (0.067) -
Home Preference (daily) 29.69 (0.450) 93.46 (1.416)
Distance (miles) -0.520 (0.080) -1.648 (0.253)
Diesel ($/gal x miles) -1.041 (0.033) -3.305 (0.104)

The first column presents estimates from the supply-side estimation in util units. The second
column presents a 95% bootstrap confidence interval from 500 bootstrap draws. The third
column converts estimates into dollar units using the estimated price sensitivity.

Table 4: Supply Structural Estimates

For interpretation of the magnitudes, I divide the coefficients by the estimated
price coefficient α to convert into dollar units. I estimate the marginal cost of distance
at $1.648 per mile. This marginal cost is comparable with contemporaneous 2019
industry average cost estimates of $1.55 per mile.12 I find that carriers value a route
with $1 per gallon lower average diesel prices at $3.305 per mile.

To examine the effect of different model assumptions, I compare price and cost
estimates across four specifications in Table 5. The first column contains estimates
without origin and destination fixed effects, without using a price instrument, and
holding home preference b to zero. The price coefficient is negative, which is implau-
sible for the supply-side, and the diesel coefficient is positive. The second column

11I interpret my trip and inspection data, which is observed weekly, as coming from repeated
samples from an equilibrium. I therefore perform a block bootstrap which resamples data with
replacement at the weekly level. For robustness to correlation across time and states, I also perform
a block bootstrap which resamples data at the state-week level. The resulting confidence intervals
are similar to the original bootstrap confidence intervals.

12See Williams and Murray (2020) for this analysis using an accounting approach. They sum over
fuel costs, capital lease and maintenance, license and toll expenses, and driver wages to arrive at
their number.
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adds origin and destination fixed effects. The price coefficient rises and is slightly
positive, while the diesel coefficient becomes negative. This specification implies a
marginal cost of distance of over $17 per mile. The third column adds the price
instrument. This specification implies a more plausible marginal cost of distance of
$2.34. The difference between the IV and OLS coefficients is consistent with prices
being correlated with unobserved cost shocks, which would cause an upward bias in
the price coefficient. For example, if highly demanded transcontinental routes also
involve more difficult terrain, then carriers would appear less sensitive to prices than
expected. The fourth column presents my main specification as in Table 4. The price
coefficient falls and the distance coefficient falls. This is consistent with short-range
trips returning home being more affected by home preference. If these trips tend to
be lower distance and higher price, then failing to consider home preference would
over-estimate carriers’ sensitivity to price and distance.

Parameter Spec 1 Spec 2 Spec 3 Main Specification
Price ($) -0.249 0.0272 0.386 0.315
Home Preference (daily) 0 0 0 29.69
Distance (miles) -0.170 -0.482 -0.905 -0.520
Diesel ($/gal x miles) 0.0357 -1.152 -1.269 -1.041
Fixed Effects No Yes Yes Yes
Price Instrument No No Yes Yes
Estimated b No No No Yes

This table presents estimates from alternative regression specifications. The first column
omits origin and destination fixed effects, forces home preference to be zero, and omits a
price instrument. The second column adds origin and destination fixed effects. The third
column adds a price instrument. The fourth column estimates home preference, and is my
main specification.

Table 5: Comparing Estimates Across Specifications

In Table 6, I study the effect of additional route covariates on the cost function. In
specification five, I add the international roughness index (IRI), as a measure of road
quality, and the density of truck parking spaces, as a measure of local amenities, as
components of Xij. For both, I construct the average characteristics over the entire
length of the trip. I find a positive coefficient on IRI, indicating a preference for
rougher roads, and a negative coefficient on truck parking spaces. Since road quality
responds to local public investment, which may take trucking demand into account,
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I may be concerned about endogeneity. In specification six, I introduce an additional
instrument, rail density, and treat IRI as potentially endogenous. I define rail density
as the ratio of railroad tracks to highway miles, averaged over the length of the truck
trip. Intuitively, this operates similarly to the river instrument as a shifter of the
outside option of shippers. Along routes where rail access is better, shippers may
substitute to rail, so trucking receives a demand shock. Specification six finds that
carriers prefer less rough roads, and they prefer routes with more parking spaces.

Parameter Main Specification Spec 5 Spec 6
Price ($) 0.315 0.317 0.340
Home Preference (daily) 29.69 29.69 29.69
Distance (miles) -0.520 -0.523 -0.566
Diesel ($/gal x miles) -1.041 -1.017 -1.338
IRI - 0.0329 -0.231
Spaces (per 1000 miles) - -0.0031 0.0314
IRI Instrument - No Yes

This table presents estimates from alternative regression specifications which add additional
covariates.

Table 6: Additional Covariates

4.5 Quantifying Effect of Home Preference

To evaluate the effect of home preference on the trucking market, I compare the
status quo against a no-home-preference simulation. Specifically, I set the counter-
factual home preference b to zero for all carriers and compute a new equilibrium while
holding all other parameters constant. I compute counterfactual equilibria using a
tatonnement procedure. Beginning at a candidate price vector p0, I iterate the price
vector with excess supply until convergence. For a given level of prices, I update the
value of δ, re-compute value functions, and re-compute the equilibrium distribution
of carriers.

pt+1
ij = ptij + (Sij(p

t)−Dij(p
t)) (31)

where demand and supply are computed as

Dij(p
t) = Nij exp(σptij + ω̂ij) (32)
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∑
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i (δ)
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k (b, δ)) + exp(βV h

i (b, δ))
(33)

I find two main effects of home preference. First, it causes carriers to work closer
to home, so in aggregate, carriers reallocate from working in driver-poor states to
driver-rich states. This benefits certain locations rather than others. Second, the
overall attractiveness of taking the outside option increases when home preference is
present. This effectively shifts the supply curve in, thereby raising prices and lowering
quantities.

In Figure 10, I plot the percentage change in the number of available carriers
Ci in each state when going from the no-home-preference setting to the status quo.
States with a high number of carriers — California, Texas, Illinois, and Florida — see
increases in the number of available carriers as carriers increase their probabilities of
return home. By comparison, low carrier states see a relative decline in the number
of available carriers. Within the high-carrier states, California sees a much higher
increase in carrier supply compared to Texas, despite having similar numbers of carrier
residents. This reflects the difference in demand for trucking trips between California
and Texas.

Figure 10: Home Preference: Carrier supply shifts toward carrier-rich states

Note: Figure 10 plots the percentage change in the supply of carriers in each state, where

Percentage Change =
∑

hC
h
i∑

hC
h
i,nohomepreference

− 1

States which see rising supply are blue, while states which see falling supply are red. Larger
magnitudes are indicated by darker colours.
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This redistribution can also be seen in changing driving patterns. Table 7 presents
statistics on driving patterns in the no-home-preference simulation and the baseline.
When going from the no-home-preference simulation to the baseline, carriers spend
four times as many days at home per year, and drive 17 percent closer to home on
average.

No Home Preference Baseline
Time at Home (Days per Year) 8.30 32.26

Average Distance from Home (Miles) 1262.59 1050.75

Table 7: Effect of Home Preference on Driving Behavior

Carrier home preference also affects prices. I construct the change in a Laspeyres
export price index for each state,

∆pexporti =

∑
j p
′
ijqij∑

j pijqij
− 1 (34)

which holds the composition of destinations fixed, where p′ are the new set of prices
being compared. Figure 11 plots the change in this export price index. Compared
to a no-home-preference equilibrium, adding home preference causes prices to rise
across the board due to decreased capital utilization. However, states which saw
an increase in the supply of available carriers - especially California - see modest
increases or decreases in prices. Home preference in the status quo subsidizes exports
from California and other carrier-rich states relative to the rest of the U.S.
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Figure 11: Home Preference: Higher average prices, lower prices for carrier-rich states

Note: Figure 11 plots the percentage change in the average trucking export price from each
U.S. state, as defined by a Laspeyres index. States which see rising export prices are blue,
while states which see falling export prices are red. Larger magnitudes are indicated by
darker colours.

Diving deeper, I run a descriptive regression of prices on distance and empiri-
cal home shares. I present the regression coefficients in Table 8. In the no-home-
preference world, routes with a high empirical home share have comparable prices
with routes with low empirical home shares. When home preferences are present, the
relationship becomes negative, in line with the pattern in the data. The coefficient
on distance also increases modestly.

Price No Home Preference Baseline
Distance 1.155 (0.00683) 1.168 (0.00653)
Log Home Share 0.00199 (0.206) -0.252 (0.129)
Constant 0.198 (0.0166) 0.352 (0.0161)
Fixed Effects Yes Yes
Observations 1936 1936
R-squared 0.987 0.987

Table 8: Pricing Regression (No Home Preference)

Note: This table presents results from a regression of prices in the no-home-preference
simulation on distance and home shares. For consistency, I use empirical home shares
rather than re-computing home shares in the simulation.
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4.6 Extension: Choice over Home Locations

In the previous section, I have taken the home locations of carriers as exogeneous.
However, carriers might choose their home locations given the wages and amenities
of working as a long-haul truck driver in different states. In this section, I consider
an extension where carriers first choose their home locations, and then participate in
the steady-state equilibrium of my main model.

I use a nested logit model to capture this initial decision. There is a fixed popu-
lation of potential carriers. Each of these carriers makes a one-time choice: they can
choose to live in each location i ∈ L, and conditional on living in a location, they can
choose to work as a long-haul driver, a non-long-haul driver, or an outside option.
After they make their choice, they pay a local rent cost ri, and then participate in the
steady state equilibrium of the main model, taking all the individual carrier location
choices as fixed.

If a carrier chooses to work as a long-haul driver in location i, they receive pay-
off

π(i, LH) = −βrri + βVE[V i] + βhhi + εiLH

where ri is the rent in location i, E[V i] is the expected value function of a carrier
from i, and hi is the expected share of time spent at home for carriers from i.

If a carrier chooses to work as a non-long-haul driver in location i, they receive
payoff

π(i, SH) = −βrri + βwwi + βh + εiSH

where wi is the average wages of a non-long-haul driver, and I assume that home time
hi = 1. Finally, the payoff of taking the outside option is

π(i, OO) = −βrri + εiOO

(εiLH , εiSH , εiOO) are distributed a la a nested logit model, where all occupation choices
within the same home location i are contained in a single nest. The carrier’s problem,
conditional on drawing a set of shocks ε, is

max
i∈L,j∈{LH,SH,OO}

π(i, j | ε)
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Model Nested Logit
Value Function 1.167 (0.0324)
Home Time 1.146 (0.246)
Rent -1.697 (0.401)
Outside Wages 0.294 (0.0816)
Observations 1936

Table 9: Extension: Choice over Home Locations

Notes: Robust standard errors in parentheses.

I bring a mix of predictions from my main estimation and additional data to estimate
this extension. Expected value functions E[V i] and home time hi are predictions
from my estimated model. For each state, I construct rents ri, wages wi, and the
estimated population of commercial drivers using the American Community Survey.
I am interested in estimating three main parameters: βr, the sensitivity of location
choice to rent, βV and βw the sensitivity of location choice to long haul and non-long-
haul profitability, and βh, the sensitivity of location choice to the amount of time
spent at home. I estimate these parameters using PyBLP and present the results
in Table 9. As expected, carriers value both long-haul profits and non-long-haul
trucking wages when making location choices. The latter is particularly relevant for
states such as Massachusetts, which have very high wages for non-long-haul truckers.
The presence of these attractive alternatives lowers the number of long-haul truckers.
Carriers also dislike states with high rents, and prefer to work as long-haul truck
drivers in states where the model-predicted time spent at home is high.

5 Counterfactual Simulations

I apply my model and estimates to two sets of counterfactuals. First, I consider the
effect of a vehicle miles tax on trucking freight. Second, I consider the effect of a shift
to self-driving trucks.
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5.1 Counterfactual 1: Vehicle-Miles Tax

Freight trucking traffic is a major user and source of damages on U.S. road infrastruc-
ture. While fuel taxes have historically captured this externality in part, vehicle-miles
taxes have been proposed as an alternative which directly targets driving behaviour.
Advocates suggest that differential tax rates based on vehicle weight could account
for the greater damage done by heavy trucks compared to lighter passenger vehicles
and better capture the externalities of highway traffic (Boesen (2020)). A 2017 Con-
gressional Budget Office found that, for example, the estimated total cost imposed
by a fully-loaded combination truck weighing 80,000 pounds is about 19 cents per
mile, significantly higher than the cost of a passenger vehicle (Office (2019)). Finally,
implementing a vehicle miles tax has become more relevant recently as technological
improvements have made monitoring more feasible, and rising gas mileage decreases
the effectiveness of fuel taxes; the U.S.’s 2021 Infrastructure Investment and Jobs Act
included an allocation to fund pilot programs for potential national, state, and local
vehicle miles taxes.

Beyond the fiscal implications, a vehicle miles tax will also affect trucking prices
and flows by changing the cost of travelling different routes. In my first counterfactual,
I apply a vehicle miles tax by changing the marginal cost of distance γdistance and
computing the resulting equilibrium. Specifically, I take the 19 cents per mile CBO
estimate, and I use my estimated price sensitivity α to convert into utility units.
Compared to my estimated marginal cost of distance of $1.648 per mile, this represents
a significant 11.5 percent increase in marginal costs. I plot the resulting change in
the distribution of carriers in Figure 12. First, because longer routes are now more
expensive relative to shorter routes, carriers prefer to be in states with shorter average
length of haul. This lowers the number of carriers in the West (where lengths of haul is
long) toward the East (where lengths of haul are shorter). Second, because travelling
away from home is now more expensive, carriers are more likely to stay closer to their
home state. States which are carrier-rich see increases in the number of available
carriers.
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Figure 12: Counterfactual: Effect of Vehicle Miles Tax on Distribution of Carriers

Note: Figure 12 plots the percentage change in the supply of carriers in each state, where

Percentage Change =
∑

hC
h
i∑

hC
h
i,nohomepreference

− 1

States which see rising supply are blue, while states which see falling supply are red. Larger
magnitudes are indicated by darker colours.

Turning to prices, I compute changes in the export price index and plot the results
in Figure 13. Prices rise across the country, and especially for long average length of
haul states. Maryland, on the low end, sees a 4.5 percent increase in prices, while
Iowa, on the high end, sees a 10.4 percent increase in prices. The effect of the vehicle
miles tax will therefore not be felt uniformly by consumers across all states. On
average for the entire country, prices rise by 7.1 percent, reflecting a passthrough of
about 60 percent of the tax to prices.
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Figure 13: Counterfactual: Effect of Vehicle Miles Tax on Prices

Note: Figure 13 plots the percentage change in the average trucking export price from each
U.S. state, as defined by a Laspeyres index. Larger magnitudes are indicated by darker
colours.

Finally, if I run a parallel experiment where I apply a vehicle miles tax to the no-
home-preference economy of Section 4.5, I find a slightly more modest price increase
of 6.9 percent. Home preference has an amplifying effect on the vehicle miles tax, as
carriers reallocate away from states where the tax is likely to have a large effect. This
shrinks the local supply of carriers and raises prices further.

5.2 Counterfactual 2: Full Automation

In this second counterfactual, I study the effect of self-driving trucks by considering
three channels: the elimination of home preference, decreasing marginal costs per
mile, and increased daily driving range.

First, as in Section 4.5, I eliminate home preference by setting b = 0. Since I hold
the value of the outside option constant, carriers can still choose not to operate. In
the counterfactual, this would capture mechanical breakdowns or maintenance which
stop work both at home and on the road13.

Second, self-driving trucks are expected to experience decreases in marginal costs
per mile along several dimensions.14 Labor costs are eliminated, a decreased risk of

13In practice, returning to a home base for maintenance may induce a smaller level of home
preference.

14Engholm, Pernestal, and Kristoffersson (2020) provides a detailed cost analysis of self-driving
trucks.
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accidents lowers depreciation and insurance costs, and more efficient driving increases
fuel economy. Estimates of the total cost difference from the transportation literature
range from 15 percent (Wadud (2017)) to 33 percent (Engholm et al. (2020)) for 40-
ton trucks. Following Huang and Kockelman (2020), I consider a moderate scenario
where costs-per-mile decrease by 25 percent. In the context of my model, γdistance
and γdiesel would decrease by 25 percent.

Third, self-driving trucks would no longer be subject to hours-of-service regulation
which caps daily driving times for safety reasons. A 2021 Deloitte report suggests
that without hours-of-service regulation, daily driving ranges would double (Zarif
et al. (2021)). In my model, I set the stochastic arrival rate, λij, to double the daily
driving range.

I run counterfactual simulations with each of the eliminating home preference,
lowering costs, and increasing range counterfactuals, as well as a full counterfactual
with all three changes. In Table 10, I present the effects of each counterfactual on
three measures: aggregate prices, total quantities, and shipper welfare. Under the full
automation counterfactual, prices fall by 28.6 percent and shipper welfare increases
by $16.65B per year. For scale, U.S. Census reported annual expenditure on long-
distance general freight trucking at $111.1B for 2019. On average, eliminating home
preference would be responsible for about 25 percent of the total impact of automation
on prices, quantities and welfare, comparable to the effect of double daily driving
range.

Counterfactual Price Index Total Quantity Shipper Welfare ($B/year)
No Home preference -7.7% +4.1% +3.91B
Lower Per-Mile Costs -14.0% +7.6% +7.62B
Longer Daily Range -7.2% +4.0% +4.36B
Full Automation -28.6% +16.3% +16.65B

Table 10: Counterfactual: Automation Effects Summary

In Figure 14, I plot the change in average export prices by state. The states that
see the largest declines in prices are carrier-poor states with long average length of
haul. The elimination of home preference benefits the carrier-poor states, while lower
per-mile marginal costs and increased daily driving range benefits the long average
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length of haul states. These are especially focused in the West and Midwest, including
states such as Iowa, Arizona, and Idaho. Among the larger states, Texas sees larger
declines in prices relative to California because it has a smaller relative decline in
carrier supply.

Figure 14: Counterfactual: Effect of Trucking Automation on Prices

Note: In a second self-driving truck counterfactual, I eliminate home preference while low-
ering per-mile costs by 25 percent and doubling daily driving range. Figure 14 plots the
percentage change in export prices from each state as defined by a Laspeyres index which
weights prices by quantity in the baseline. States which see rising export prices are blue,
while states which see falling export prices are red. Larger magnitudes are indicated by
darker colours.

In this counterfactual, I hold demand fixed and ignore externalities from trucking.
Longer daily driving ranges would decrease travel times, which would further im-
prove shipper welfare if shippers care about delivery time. In addition, time-sensitive
shippers may substitute more from air (the next fastest mode) in ways which are
not captured by my demand estimation. Major externalities from trucking include
emissions, congestion, and road wear and tear. The increase in quantity under the
full counterfactual yields 2.27 billion additional miles driven per year. Using EPA
estimates of emissions (65 grams per ton-mile) and gas mileage (7 miles per gallon),
this translates into 325 million additional gallons of diesel consumed per year and
3.33 million additional metric tons of CO2 per year. By comparison, Liu et al. (2018)
estimates a 3 percent decrease in CO2 emissions for self-driving vehicles, suggesting
that greater efficiency from self-driving vehicles is not enough to counteract the effect
of increased quantity. To study the potential incidence for these externalities, I com-
pute the change in trucking miles travelled by state in Figure 15. The regions that
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see the greatest increases in trucking mileage are the Northwest and the Northeast.
These are regions where long length of haul trips tend to pass through, and also begin
or end in a carrier-poor state.

Figure 15: Counterfactual: Effect of Trucking Automation on Trucking Mileage

Note: Figure 15 plots the percentage change in the amount of trucking traffic passing through
each U.S. state. Larger magnitudes are indicated by darker colours.

To summarize the effects of my counterfactuals on prices, I run regressions of
prices under each counterfactual on distance and home share, and present the results
in Table 14. Under the vehicle-miles-tax counterfactual, as expected, the increase in
marginal costs causes the relationship between prices and distance to become steeper.
This increase is greater than it would be without home preference, as carriers also
relocate away from states which ship long distances on average. Under the automation
counterfactual, all three effects - elimination of home preference, falling marginal
costs per mile, and increased daily driving range - contribute to a flatter relationship
between prices and distance. The role of home share also becomes smaller under
automation, as I would expect due to the elimination of home preference. For more
detailed analysis, I present additional counterfactuals in Appendix C. In my main
counterfactuals, I focus on a long-run outcome where all trucks are replaced with self-
driving trucks. In counterfactual C.1, I consider a transition path to automation using
a set of counterfactuals where a portion of the trucking fleet becomes self-driving while
the remainder is human. I find a smooth transition path in terms of overall prices and
quantities. In counterfactual C.2, I consider a transition path to automation where
self-driving trucks are geographically constrained along the transition path. At first,
self-driving trucks gain access to technically simple routes in the sunny Southwest,
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Price Baseline VMT Full Automation
Distance 1.168 (0.00653) 1.263 (0.00650) 0.851 (0.00746)
Log Home Share -0.252 (0.129) -0.285 (0.124) -0.130 (0.164)
Constant 0.352 (0.0161) 0.382 (0.0161) 0.388 (0.0187)
Fixed Effects Yes Yes Yes
Observations 1936 1936 1936
R-squared 0.987 0.989 0.975

Table 11: Counterfactual Pricing Equations

Note: This table presents results from a regression of prices in the automation counterfactual
on distance and home shares. For consistency, I use empirical home shares rather than re-
computing home shares in the simulation.

before expanding North and East. I find that geographic restrictions cause trucks to
be misallocated and freight costs can increase even if self-driving trucks have lower
per-mile costs and longer driving range. Intermediate levels of automation, combined
with geographic restrictions, can lead to price increases and welfare losses for states
which do not have yet access to self-driving trucks.

6 Conclusion

In this paper, I have developed a dynamic spatial model of trucking freight, estimated
demand, cost, and carrier preference parameters, and conducted a counterfactual
simulation where I study the potential effect of self-driving trucks to remove carrier
home preference. I have found that human preferences to return home are significant
and shape the cost of transportation across the United States today.

Drivers’ preferences to return home systematically subsidize driver-rich states and
create a divide between short-haul and long-haul shipping. From the perspective of a
driver, short-haul routes are much less lucrative than long-haul routes to compensate
for being able to return home. From the perspective of a shipper, short-haul routes
are attractively cheaper on a per-mile basis than longer routes - unless those long
routes are to destinations which can routinely bring a driver home with return traf-
fic. Under automation, the distinction between short- and long-haul routes collapses,
and the two markets integrate. My findings suggest a new way that automation and
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artificial intelligence can affect our economy. When human labor cannot be substi-
tuted with capital, worker preferences will shape how and where production occurs.
Artificial intelligence can de-link workers from production, and workers’ preferences
from outcomes.
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Appendix A: Estimation Details

A.1 Computational Details of δ∗(b)

I will compute δ∗(b) using the following iterative algorithm analogous to the nested
fixed point of Berry et al. (1995).

Iterative Algorithm Recall that a carrier which starts traveling from i to j has a
probability λij of arriving tomorrow.

W h
ij = λijE[V h

j ] + (1− λij)βW h
ij (35)

I can rearrange this to find W h
ij as a function of V h

j .

W h
ij =

λij
1− β(1− λij)

V h
j (36)

For notational convenience, let β̃ij =
λij

1−β(1−λij) be the effective route-specific “discount
factor.” This allows me to dispense with tracking the en-route state value functions
W h
ij.

Step 1. Given a guess for (b, δ), compute V h
i .

In a steady-state equilibrium, conditional on δ, a carrier does not need to know
what any other carrier is doing in the future. Let T be the following operator defined
on a space B(X) of functions f : X → R where X = L× L.

Tf(h, i) = b× 1h=i + Eε[max{max
j
{δij + β̃ijf(j) + εj}, βf(i)] (37)

T is a contraction mapping, so V h
i can be computed using value function itera-

tion.

Step 2. Given V h
i , compute the type-specific choice probabilities shij using Equation

8.
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shij(p) =
exp(δij + β̃ijV

h
j )∑

k∈L exp(δik + β̃ikV h
k ) + exp(βV h

i )
(38)

Step 3. Given shij, compute equilibrium carrier locations Ch
i .

The en-route state steady-state condition implies that the population of the en-
route carriers is a multiple of the origin location carriers.

(1− λij)Ch
i s

h
ij = λijC

h
ij =⇒ Ch

ij =
(1− λij)shij

λij
Ch
i (39)

Substitute this into the available state steady-state condition to find a relationship
between all available carrier locations.

∑
k

λki(C
h
ki + Ch

k ski) = Ch
i

∑
j

shij =⇒ Ch
i =

∑
j s

h
jiC

h
j∑

j s
h
ij

(40)

Finally, the carriers must sum up.

Ch =
∑
i

Ch
i +

∑
i,j

Ch
ij =

∑
i

Ch
i (1 +

∑
j

(1− λij)shij
λij

) (41)

I can combine these two equations as a linear system

(
A

B

)
(Ch

1 . . . C
h
L) =


Ch

1

. . .

Ch
L

Ch

 (42)

where A is an L × L matrix where Aij =
shji

1−
∑

j s
h
ij

and B is an 1 × L matrix where

Bi = 1 +
∑

j

(1−λij)shij
λij

. This system can be solved for Ch. Intuitively, A captures
the flows across locations, and B enforces that the distribution of carriers sums to
C̄h.

Step 4. Given (Ch
i , s

h
ij), compute predicted aggregate shares sij(b, δ) using Equation

10.
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sij =
∑
h

(
Ch
i∑

h′ C
h′
i

)shij (43)

Step 5. Repeat Steps 1-4 and iterate δ′ij = δij + log sOij − log sij(δ) until conver-
gence.15

A.2 Supply-side Estimation Steps

I conduct the supply-side estimation in two steps.

In the first step, I estimate the home preference by maximizing the likelihood
of observed inspections. For each guess of the home preference parameter b, I use
the δ∗-algorithm to solve for mean payoffs which match observed shares. As part of
computing δ∗, I also find equilibrium carrier locations C(b, δ) which are consistent
with b and δ∗(b, sO). These imply the probability of inspecting a carrier from h

conditional on drawing an inspection in k.

ιhk(b, δ) =
Ch
k (b, δ) +

∑
i,jmijkC

h
ij(b, δ)∑

h′(C
h′
k (b, δ) +

∑
i,jmijkCh′

ij (b, δ))
(44)

Combine with the probability of drawing an inspection in k, ρk, to form the first stage
optimization problem.

b∗ = arg min
b,ρk

∑
h,i

Ihk × log ιhk(b, δ
∗(b, sO))× ρk (45)

where

δ∗(b, sO) = δ .s.t sij(b, δ) = sOij ∀i, j (46)

In the second step, I take the mean payoffs corresponding to the optimal home
preference, δ∗(b∗, sO) and I estimate price and cost coefficients using linear IV. I use
the availability of rivers as a price instrument.

15For one carrier type, it is straightforward to prove that this δ∗-algorithm is a contraction map-
ping. For multiple carrier types, the algorithm converges quickly to a solution in practice.
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A.3 Observing the Outside Share

To operationalize this estimation, I need to be able to compute empirical aggregate
shares, sij. In my DAT RateView dataset I only observe carriers who choose to sell
shipping. To resolve this, I turn to the DAT Trucks in Market dataset, which records
search on the DAT marketplace by location. These searches should include both
carriers chose to work, as well as carriers who searched and decided not to work,
and will therefore be informative about the number of carriers who took the outside
option.

Let Ti be the number of searches made by carriers in 2019. I assume that number
of available carriers are distributed proportional to the share of searching carriers in
the Trucks in Market dataset.

Ci = (
Ti∑
i Ti

)× (
∑
h

Ch) (47)

I can then compute empirical aggregate shares:

sOij =
Qij

Ci
(48)

A.4 Calibrated Parameters

The expected arrival time for a trip is 1/λij. For across-state trips, I set λij = 500
dij

to fit the expected numbers of days to travel distance dij, under the assumption that
carriers average speed 45 miles per hour and drive the DOT-mandated maximum of
11 hours a day.16 For within-state trips of distance less than 250 miles, I set λij to
1 because a carrier can make a round trip in one day. Otherwise, I set λii = 250

dii
. In

practice, only California has average within-state trips above 250 miles; this accounts
for the lower probability that a carrier taking a within-California trip can return home
and receive a home preference.

I calibrate the discount factor β to 0.995. Specifically, since the time periods are
short, I set the discount factor to reflect carrier exit rates rather than time preferences.

16See Williams and Murray (2020) for survey-based statistics and average moving speed. See
Federal Motor Carrier Safety Administration (2020) for the full hours-of-service regulations.
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Suppose that carriers are patient but have an exogenous 1 − β = 0.005 probability
of exiting the market every day and being replaced by an identical carrier. This
generates a discount factor of β, a daily exit probability of 0.5 percent, and an annual
attrition rate of 84 percent which is consistent with 2019 industry annual attrition
rates of 70-100 percent (e.g. Association (2020)).
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Appendix B: Summary Figures

Figure 16: Annual Trips by Trip by Origin / Destination

Note: Panel A plots the total number of annual trips from each state as an origin. Panel
B plots the total number of annual trips to each state as a destination. Larger magnitudes
are indicated by darker colours. The largest origins and destinations for trucking freight are
California and Texas.
Data source: 2019 DAT RateView

Figure 17: Average Length of Haul by Origin / Destination

Note: Panel A plots the average length of haul (trip distance) for trips from each state as
an origin. Panel B plots the average length of haul for trips to each state as a destination.
The West Coast has the longest average trip distances, while the Midwest has the shortest
average trip distances.
Data source: 2019 DAT RateView
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Figure 18: Average Price per Mile by Origin / Destination

Note: Panel A plots the average price per mile of trucking freight for each state as an origin.
Panel B plots the average price per mile for each state as a destination. The Midwest has
the highest average export prices, while the coastal states have lower average export prices.
Destination states which are further east have higher prices per mile for imports.
Data source: 2019 DAT RateView

Figure 19: Ratio of Inspections to Trips Originating from Each State

Note: Figure plots the ratio of inspections conducted to number of trips for each state.
Consistent with industry interviews, several states appear to be more likely to inspect,
including California, Texas, Arizona, and Maryland.
Data source: 2019 DAT RateView, 2019 FMCSA Motor Carrier Inspections

6.0.1 Distance and Prices

In Figure 20, I plot the relationship between distance, prices, and quantity shipped
in this market. Panel A presents a bin scatter of price against distance at the lane
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level. Panel B presents a bin scatter of log quantity against distance at the lane level.
Quantities fall with distance, consistent with a gravity-like relationship in trucking
flows.

Figure 20: Longer distance trips are correlated with higher prices and lower quantity

6.0.2 Carriers are more likely to work close to home

In Figure 21, I document that carriers are more likely to be inspected in states that
are close to their home state. Each highway inspection records the home (registration)
state and current state of the inspection. I compute the distance between the centroids
of the home and inspection states and plot a density histogram of those distances.
Carriers are more likely to be inspected in their home state or in adjacent states than
random. For scale, a randomly drawn pair of U.S. states has on average 1,000 miles
between their centroids. By comparison, inspected carriers are on average 871 miles
away from their home state centroid.

64



� ���� 
��� ����
�����
����	�����

�

����

�����

�����


����

Figure 21: Carriers are more likely to be inspected closer to home

Note: This figure plots a histogram of carrier inspections by the distance from the state of
inspection to the home state of the carrier. Distances are measured between state centroids.
Data sources: 2019 FMCSA Motor Carrier Inspections
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Appendix C: Additional
Counterfactuals

Counterfactual C.1: Transition to Automation

In my main counterfactuals, I consider a complete transition from human drivers to
self-driving trucks. In this set of counterfactuals, I could consider a transition path
where a share of trucks convert to self-driving while the remainder retain their home
preference.

In Figure 22, I plot average prices and total quantity for a variety of automation
levels between 0 percent and 100 percent. The 0 percent counterfactual is the baseline,
and the 100 percent counterfactual is the main counterfactual. I find a relatively
smooth transition path from 0 percent automation to 100 percent automation.

Figure 22: Prices and Quantities on Transition to Automation

Note: Figure plots average prices (Laspeyres Index) and total quantity under transitional
counterfactuals where 0 percent, 25 percent, 50 percent, 75 percent, and 100 percent of
existing trucks are replaced with self-driving trucks.

Counterfactual C.2: Geographic Transition to Automation

Geographic rollout of self-driving trucks may not be instant across the United States.
For example, while highways are much more regular than city streets, snowy north-
ern highways may be a more challenging automation problem than sunny southern
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highways. A Deloitte report projects that in a first stage, southwestern states from
Oregon and California down through Texas may be feasible first. In a second stage,
snowier states from Nevada east through Illinois to Virginia may become feasible. Fi-
nally, in the third stage automated trucks would be able to travel through any state.
In Figure 23, I plot the geographic distribution of these stages.

Figure 23: Rollout Stages of Self-Driving Trucks

Note: Figure plots the three stages of automation rollout identified in Zarif et al. (2021).
The first stage covers southwestern states from Oregon to Texas. The second stage expands
north and east. The third stage covers the northernmost U.S. states.

In this set of counterfactuals, I consider progressive rollout of self-driving trucks
in stages.

In the first counterfactual, I convert 25 percent of trucks from Stage I states to
self-driving, and I restrict self-driving trucks to only travel to Stage I states. In this
counterfactual, self-driving trucks have no home preference, and also benefit from the
25 percent reduced per-mile costs and doubled daily range of the full counterfactual.
In the Stage I counterfactual, I find that overall export prices increase everywhere as
shown in Figure 24. Although self-driving trucks have lower costs and longer range,
constraining some trucks to the Stage I states decreases overall efficiency. These two
effects moderate each other for Stage I states such as California and Texas, which
see minimal changes in export prices. Meanwhile, Midwestern states see the largest
decline in carriers and increase in export prices.
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Figure 24: Counterfactual export prices under Stage I rollout

Note: In the Stage I rollout counterfactual, I convert 25 percent of trucks in Stage I states to
self-driving and restrict self-driving trucks to Stage I states. Figure 16 plots the percentage
change in the average trucking export price from each U.S. state, as defined by a Laspeyres
index which weights prices by quantity in the baseline. States which see rising export prices
are blue, while states which see falling export prices are red. Larger magnitudes are indicated
by darker colours.

In the second counterfactual, I convert 25 percent of trucks from Stage I or Stage II
states to self-driving, and I restrict self-driving trucks to only travel to Stage I or Stage
II states. In the Stage II counterfactual, I find that export prices fall for Stage I and
II states with access to self-driving trucks, but rise for Stage III states without access,
as shown in Figure 25. Compared to the Stage I counterfactual, self-driving trucks
are less constrained so overall efficiency is higher. However, Stage III states now lose
significantly more carrier supply than in the Stage I counterfactual, since more trucks
are now automated. This is particularly pronounced in the Midwest, where Illinois
is a Stage II state but many of its main export destinations (Michigan, Ohio, Iowa,
and Minnesota) are not. This figure suggests that short-run economic consequences
of self-driving trucks may depend importantly on the geography of rollout.
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Figure 25: Counterfactual export prices under Stage II rollout

Note: In the Stage II rollout counterfactual, I convert 25 percent of trucks in Stage I and
Stage II states to self-driving and restrict self-driving trucks to Stage I or Stage II states.
Figure 25 plots the percentage change in the average trucking export price from each U.S.
state, as defined by a Laspeyres index which weights prices by quantity in the baseline.
States which see rising export prices are blue, while states which see falling export prices
are red. Larger magnitudes are indicated by darker colours.

In the third counterfactual, I convert 25 percent of trucks from all states to self-
driving, and I allow trucks unrestricted access to all states. Without the geographic
restrictions, self-driving trucks efficiently distribute across the economy. Figure 26
shows that export prices fall for all states, and the pattern mirrors that of the “full”
counterfactual.
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Figure 26: Counterfactual export prices under Stage III rollout

Note: In the Stage III rollout counterfactual, I convert 25 percent of trucks in all states to
self-driving and do not restrict self-driving trucks. Figure 26 plots the percentage change
in the average trucking export price from each U.S. state, as defined by a Laspeyres index
which weights prices by quantity in the baseline. States which see rising export prices are
blue, while states which see falling export prices are red. Larger magnitudes are indicated
by darker colours.
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Appendix D: Industry and Data
Details

D.1 Industry Details

In this section, I provide a brief overview of the industry structure.17 Since deregu-
lation under the Motor Carrier Act of 1980, the trucking freight industry has been
characterized by a decentralized market structure. According to Day and Hait (2019),
88 percent of the 396,000 long-distance trucking businesses in 2016 were self-employed
truckers. The trucking market is further segmented by (1) freight type, (2) shipment
size, (3) geographic scope, and (4) contracting structure. In this paper, I will focus
on the general freight, over-the-road, truckload market.

Most truckers haul general freight: commodities that can be shipped in standard-
ized van trailers. By contrast, specialized freight types require specific licenses and
skills and include refrigerated trailers (“reefer”), flatbed trailers, tanker trailers for
shipping oil, hazardous materials shipping, and specialized trailers for large machin-
ery and other non-standard items. Due to trailer-type-specific skills investments and
certifications, carriers often specialize in one trailer type.

Shippers may choose between several shipment sizes. Truckload (TL) services,
which are the focus of this paper and the majority of shipments, sell the entire trailer
capacity to one client. Less than truckload (LTL) services combine items from mul-
tiple clients in one trailer, yielding potentially lower fixed costs in exchange for lower
quality service. Parcel services such as UPS and FedEx handle the smallest shipment
sizes. Parcel and LTL firms are more labor-intensive than T.L. firms and rely on
infrastructure for packing and re-packing trailers.

Shipments can also be segmented by the distance travelled, or “length of haul.”
Long-haul or “over the road” carriers specialize in shipments over 150-250 miles, and
on average, return home once every three weeks. Regional carriers focus on shipments
within 150-250 miles, which they can deliver and return home within a 500-mile daily

17For additional details, I refer readers to Burks et al. (2017) which provides a detailed industry
primer covering the industry, market segments, and ongoing challenges and changes.
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driving limit. Local carriers make deliveries of less than 150 miles, such as warehouse-
to-final-destination trips. Finally, some consider the low end of the long-haul segment,
150-500 miles, the “tweener” category. Shipments in this region are undesirable for
both carriers who want to do longer or shorter days.

The trucking market can be divided into a spot market, a contract market, and
private fleets. On the spot market, shippers and carriers match either using word-of-
mouth, electronic platforms such as DAT, or centralized matching algorithms. Large
shippers and carriers may directly use the spot market, while smaller shippers tend to
use brokers. On the contract market, shippers conduct RFP processes where carriers
bid with rates. Given bids, shippers construct routing guides that establish a priority
among bidding carriers for volume.18 Finally, carriers may choose to retain drivers
and truckers in private fleets.

Since carriers may serve either spot or contract markets, and shippers may flexibly
adjust between TL, LTL, and private fleets, the relative market share of these markets
is volatile. Holm (2020) estimates a 46 percent market share for full truckload, 10
percent market share for less than truckload, and 45 percent for private fleets. Within
full truckload, up to 80 percent of quantity moves through the contract market.
Williams and Murray (2020) reports that in 2019 surveys, 26 percent of trips were
less than 100 miles, 39 percent of trips were between 100 and 500 miles, 22 percent
of trips were between 500 and 1,000 miles, and 13 percent of trips were over 1,000
miles.

18Shippers keep the option of going to the spot market rather than to one of their contracted
carriers, and carriers keep the option of going to the spot market rather than accepting a load.
When spot prices are higher than contract prices, shippers use their contracted carriers more, and
carriers are less likely to accept. The reverse holds when spot prices are lesser than contract prices.
Recent papers such as Scott, Parker, and Craighead (2016), Aemireddy and Yuan (2019), Acocella,
Caplice, and Sheffi (2020), and Harris and Nguyen (2021) investigate the interaction between the
spot and contract markets. For my paper, this interaction means that transacted spot and contract
prices tend to be very similar: in 2016, average spot and contract prices at the city-city level had
a correlation of 98.04 percent, and average prices at the state-state level had a correlation of 99.09
percent.
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D.2 Data Details

Since locations in highway inspections are observed at the state level, I aggregate my
data to the state-state level and let L be the set of U.S. states19.

For distance, I use the PC-Miler Effective Distance from i to j, an engineering
estimate of the distance between origin and destination along truck-legal routes.

For diesel, I use a route-mileage-weighted average of state average diesel prices
from AAA. I scale the dollar-per-gallon price by the distance, and I de-mean diesel
prices so I can interpret my distance coefficient as an all-in marginal cost per mile.

For road quality, I filter road segments from the 2019 Highway Performance Mon-
itoring System for interstate and principal arterial roads. For each segment, I observe
cracking, faulting, and rutting as continuous measures20. I standardize these qual-
ity measures to have mean zero and standard deviation one, so that positive values
indicate lower quality roads. I take compute state averages for each quality mea-
sure, and I weight states by the route mileage shares to compute route road quality
measures.

I begin by finding the centroid of the origin and destination state and using Open-
StreetMaps to compute the shortest route using U.S. highways. Let mijk be the share
of miles on the shortest route from i to j spent in state k. For each route, I use the
mileage shares to weight these state averages.

I measure quantity Qij using total daily trips in DAT RateView, and the share of
shippers who choose trucking sshipperij using freight shipments in the 2017 Commodity
Flow Survey (CFS). I use the total shipping across all modes in the Commodity Flow
Survey as my measure of Nij. Since the Commodity Flow Survey is reported in tons,
I assume that 22 tons corresponds to a full truckload21. I use average 2019 prices in
DAT RateView for pij.

19Due to discontinuity from the main U.S. highway system, I omit Alaska, Hawaii, and Puerto
Rico from my analysis. In addition, due to data limitations in DAT RateView, I also omit Delaware,
Rhode Island, and Vermont. Due to data limitations in DAT Trucks in Market, I omit Wyoming
from analyses which depend on Trucks in Market.

20Cracking measures the percentage of road area which exhibits fissures and discontinuities. Fault-
ing measures the average vertical misalignment of pavement joints. Rutting measure the average
depth of surface depressions.

21Staff (2020) reports average payload for a dry van at 44,000 to 45,000 pounds
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I use inspections and registrations from the FMCSA. This dataset co-mingles
carriers who are involved in freight transportation with other carriers. I filter these
for the set of carriers that are (1) engaged in inter-state freight, (2) not engaged in
passenger carriage, and (3) not engaged in hazardous materials carriage. Registration
address may not be reflective of home address for large carriers. As a result, I drop
all carriers which report more than X power units.
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