Expectations and the Rate of Inflation Iván Werning MIT

NBER Summer Institute - Impulse and Propagation Meeting - July 2022

Expectations \rightarrow **Inflation?**

Q: Passthrough in standard models

Expectations → **Inflation?**

- Widespread belief ... YES!
 - managing expectations is key...
 - ... expectations cause inflation...
 - ... near one-for-one

Expectations \rightarrow **Inflation?**

- Widespread belief... **YES!**
 - managing expectations is key...
 - ... expectations cause inflation...
 - ... near one-for-one
- Recent events...

2021: expectations anchored, inflation will be small & transitory 2022: tighten monetary policy to lower expectations

Expectations \rightarrow **Inflation?**

- Widespread belief... **YES!**
 - managing expectations is key...
 - ... expectations cause inflation...
 - ... near one-for-one
- Recent events...

2021: expectations anchored, inflation will be small & transitory 2022: tighten monetary policy to lower expectations

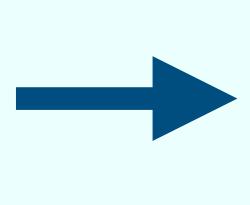
- What do we know?...
 - Evidence: difficult, but some promising recent work
 - Theories: Calvo gives 1-to-1? others?...

Passthrough in standard models Q:

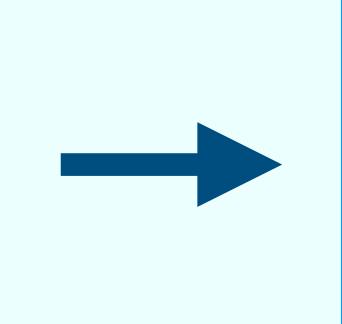
This Paper

- Standard pricing models...
 - time-dependent: Calvo, Taylor, general
 - state-dependent "menu costs"
- Solve: Optimal Pricing + Aggregation
- Important...
 - allow for arbitrary expectations π^e
 - "temporary equilibrium" (learning literature)
- Passthrough: $\pi = \phi \pi^e + \text{other stuff}$
- Full Phillips Curve $\pi_t = \sum \phi_s \pi_{t+s}^e + \sum \phi_s \pi_{t+s} + \cdots$

expectations of inflation

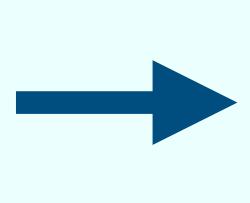


price/wage setters

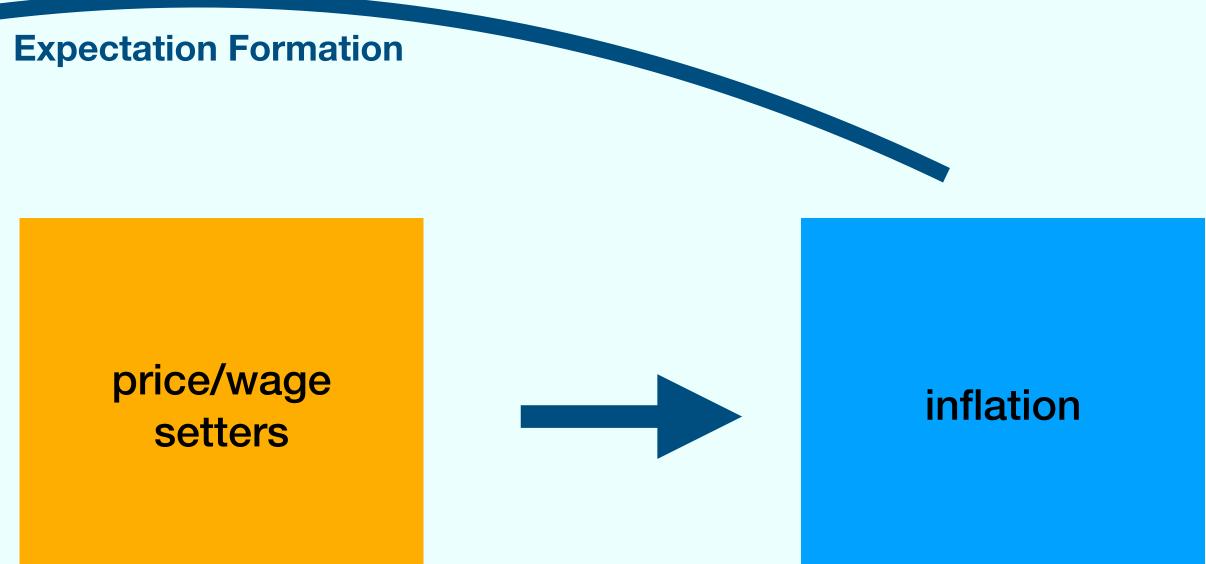


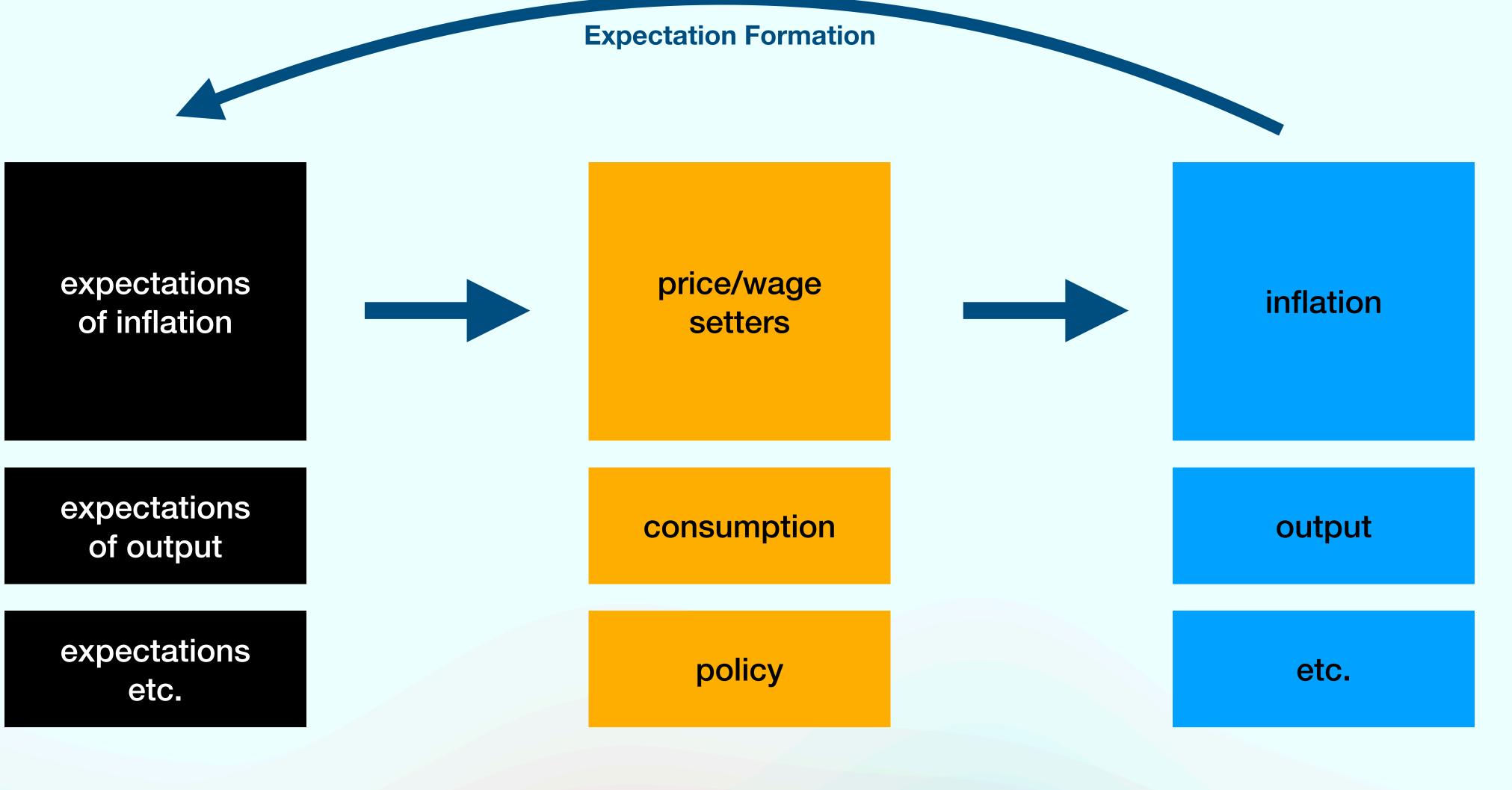
inflation

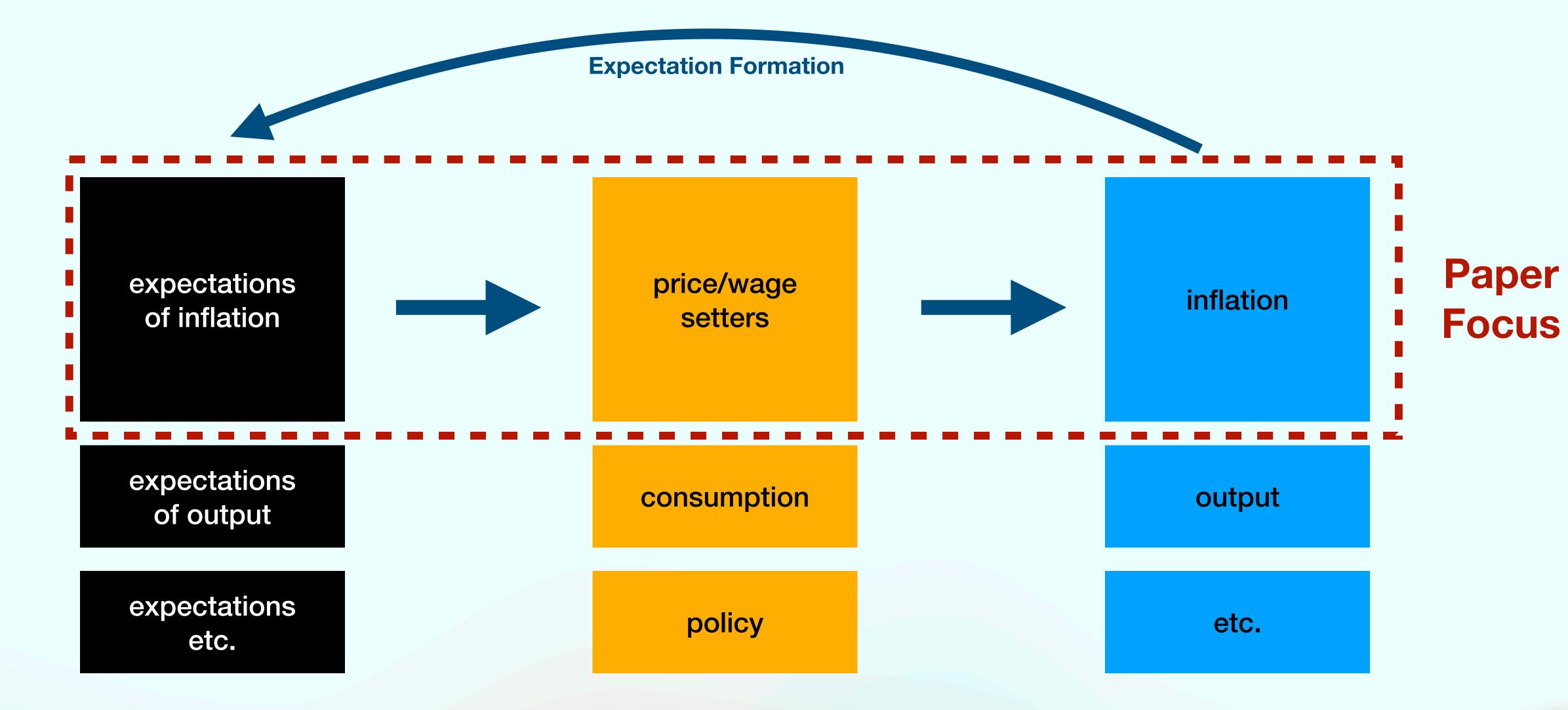
expectations of inflation



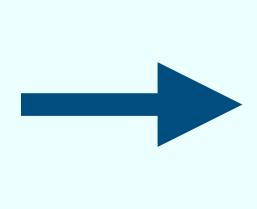
setters



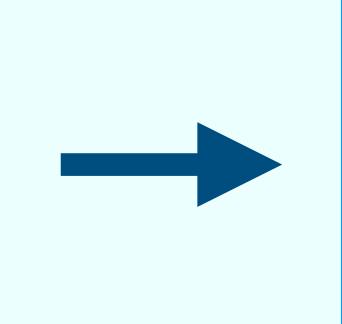




expectations of inflation

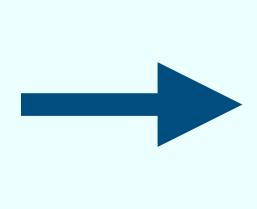


price/wage setters

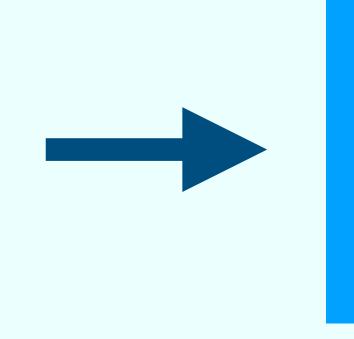


inflation

expectations of inflation



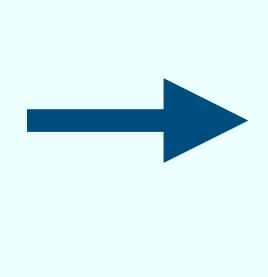
price/wage setters



inflation

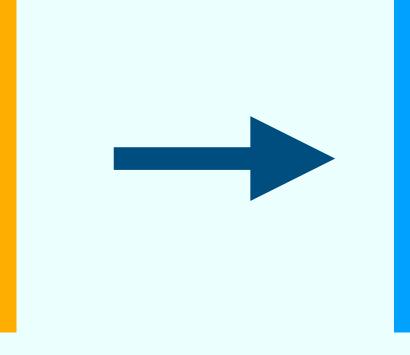
Simple Passthrough **Metric**

expectations of inflation



price/wage setters

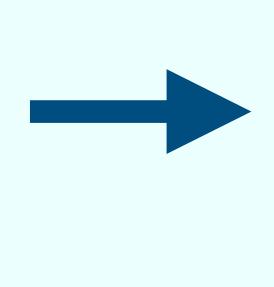
Explore Wide Range of Pricing Model



inflation

Simple Passthrough **Metric**

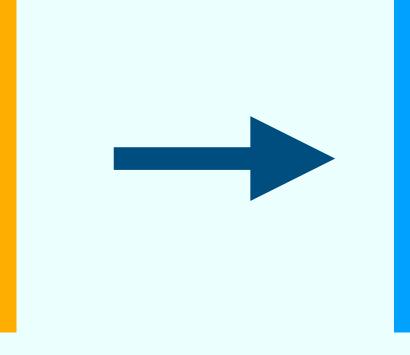
expectations of inflation



price/wage setters

Short vs Long Run **Expectations?**

Explore Wide Range of Pricing Model



inflation

Simple Passthrough **Metric**

- Passthrough: wide range...
 - dependent on pricing model
 - not ~1, potentially low
- Calvo: in theory $\phi \to 0$ if prices very sticky... ... in practice $\phi \approx 1$
- Taylor: $\phi = \frac{1}{2}$
- Sufficient statistics for general time-dependent...

duration of ongoing duration of completed

- Q: How low can we go? A: $\phi^* = \frac{1}{2}$ Taylor!
- Q: How high?

• Full Phillips Curve... • coefficients ϕ_{s} fall and zero outside rigidity

long-run Phillips curve versionen

A: any $\phi > 1!$

$\pi_t = \sum_{t=1}^{\infty} \phi_s \pi_{t+s}^e + \sum_{t=1}^{-\infty} \phi_s \pi_{t+s} + \cdots$ s=0 s=-1

ertical:
$$\sum_{s=-\infty}^{\infty} \phi_s = 1$$

- Q: How low can we go? A: $\phi^* = \frac{1}{2}$ Taylor!
- Q: How high?

• Full Phillips Curve... • coefficients ϕ_{s} fall and zero outside rigidity

• long-run Phillips curve vertical: $\sum \phi_s = 1$

A: any $\phi > 1!$

$\pi_t = \sum_{t=1}^{\infty} \phi_s \pi_{t+s}^e + \sum_{t=1}^{-\infty} \phi_s \pi_{t+s} + \cdots$ s=0 s=-1

Short-run NOT Long-Run **Expectations!**

 ∞ $s = -\infty$

- Basic state dependent "menu cost"...
 - passthrough extreme, very sensitive to specification...
 - Sheshinksi-Weiss: $\phi < 0$
 - Golosov-Lucas: $\phi > 1$
- Extensions...
 - Short run: fixed frequency $\phi < 1/2$
 - Menu costs for changing bands: $\phi = 0$

Related Literature

 Empirical Expectations: Colbion-Gorodnichenko-Ropele, Colbion-Gorodnichenko-Kumar, Rosolia

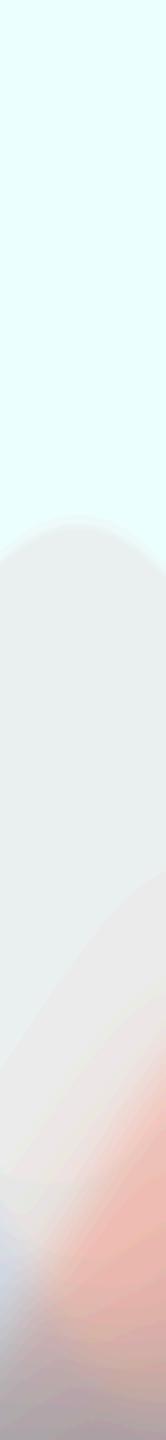
Non-Rational Expectations: Preston, Garcia-Woodford, Farhi-Werning

Straub

Menu Costs: Sheshinski-Weiss, Alvarez-Beraja-Gonzalez-Neumeyer

Phillips Curve: Whelan, Sheedy, Wang-Werning, Auclert-Rigato — Rognlie-

- **1.** Calvo $\phi = 1$
- 2. Taylor $\phi = \frac{1}{2}$
- 3. General Time-Dependent $\phi = \text{ongoing/completed}$
- 4. Basic State Dependent
- 5. Extension to State Dependent



- Goal...
 - passthrough from inflation expectation to inflation
 - interest rates, etc.
- Wrong answer: use NK Phillips curve $\phi = \beta \approx 1$

$$\pi_t = \kappa x_t + \beta \mathbb{E}_t \pi$$

holding everything else fixed, real marginal costs, demand,

 τ_{t+1}

- Goal...
 - passthrough from inflation expectation to inflation
 - interest rates, etc.
- Wrong answ

wer: use NK Phillips curve
$$\phi = \beta \approx 1$$

 $\pi_t = \kappa x_t + \beta \mathbb{E}_t \pi_{t+1} = \kappa \sum_{s=0}^{\infty} \beta^s \mathbb{E}_t [x_{t+s}]$

holding everything else fixed, real marginal costs, demand,

- Goal...
 - passthrough from inflation expectation to inflation
 - interest rates, etc.
- Wrong answer: use NK Phillips curve $\phi = \beta \approx 1$

$$\pi_t = \kappa x_t + \beta \mathbb{E}_t \pi$$

holding everything else fixed, real marginal costs, demand,

 $\phi = 0?$ ∞ $\pi_{t+1} = \kappa \sum \beta^s \mathbb{E}_t [x_{t+s}]$

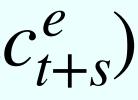
- Goal...
 - passthrough from inflation expectation to inflation
 - interest rates, etc.
- Wrong ansy

wer: use NK Phillips curve
$$\phi = \beta \approx 1$$
 $\phi = 0$?
 $\pi_t = \kappa x_t + \beta \mathbb{E}_t \pi_{t+1} = \kappa \sum_{s=0}^{\infty} \beta^s \mathbb{E}_t [x_{t+s}]$

holding everything else fixed, real marginal costs, demand,

Rational Expectation inflation & real marginal costs tied up **Need to separate them!**

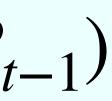
∞ $p_t^* = \mu + (1 - \beta \lambda) \sum_{t=1}^{\infty} (\beta \lambda)^s (P_{t+s}^e + mc_{t+s}^e)$ s=0

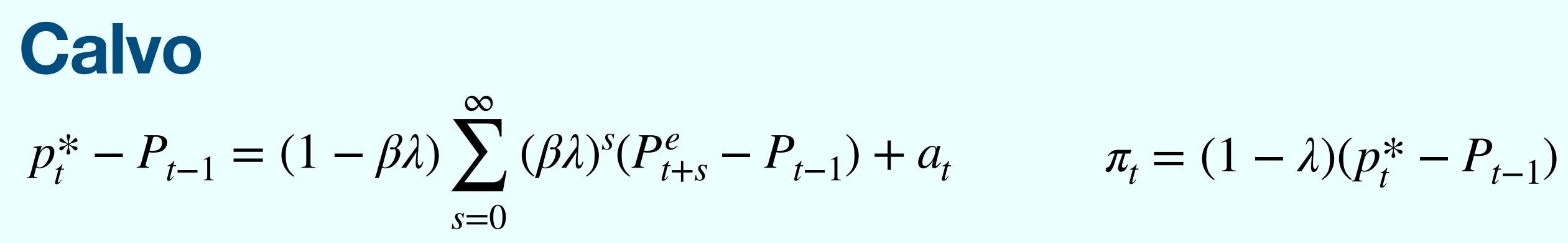


∞ $p_t^* - P_{t-1} = (1 - \beta \lambda) \sum (\beta \lambda)^s (P_{t+s}^e - P_{t-1}) + a_t$ s=0

∞ $p_t^* - P_{t-1} = (1 - \beta \lambda) \sum (\beta \lambda)^s (P_{t+s}^e - P_{t-1}) + a_t$ s=0

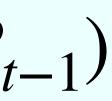
$\pi_t = (1 - \lambda)(p_t^* - P_{t-1})$

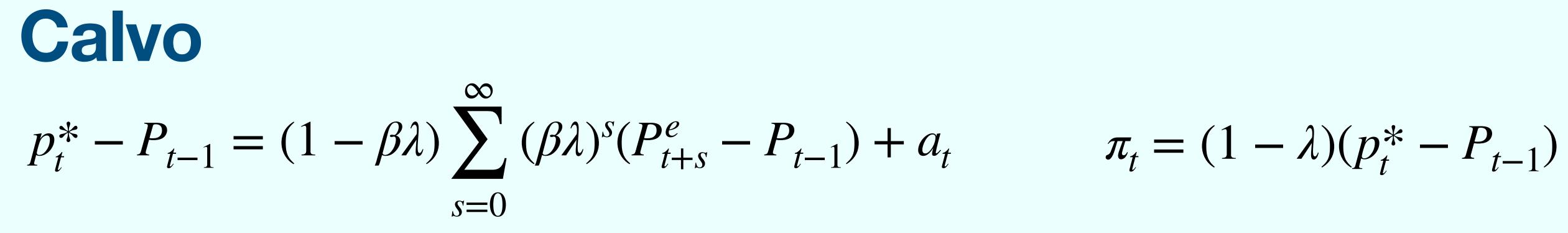




$$P_{t+s} - P_{t-1} = \pi^e (1+s)$$

Simple Inflation Expectation

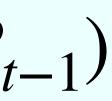


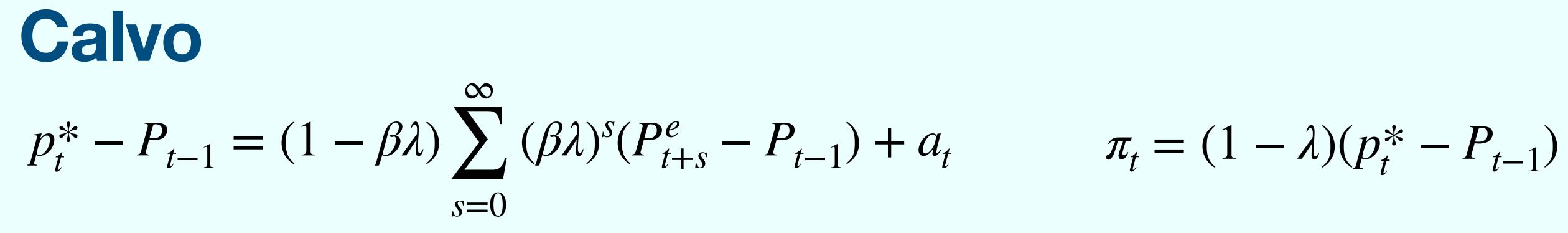


$$P_{t+s} - P_{t-1} = \pi^e (1+s)$$

$$p_t^* - P_{t-1} = \frac{1}{1 - \beta\lambda} \pi^e + a_t$$

Simple Inflation Expectation



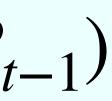


$$P_{t+s} - P_{t-1} = \pi^e (1+s)$$

$$p_t^* - P_{t-1} = \frac{1}{1 - \beta\lambda} \pi^e + a_t$$

Simple Inflation Expectation

$$\pi_t = \phi \pi^e + (1 - \lambda)a_t$$
$$\phi = \frac{1 - \lambda}{1 - \beta \lambda}$$

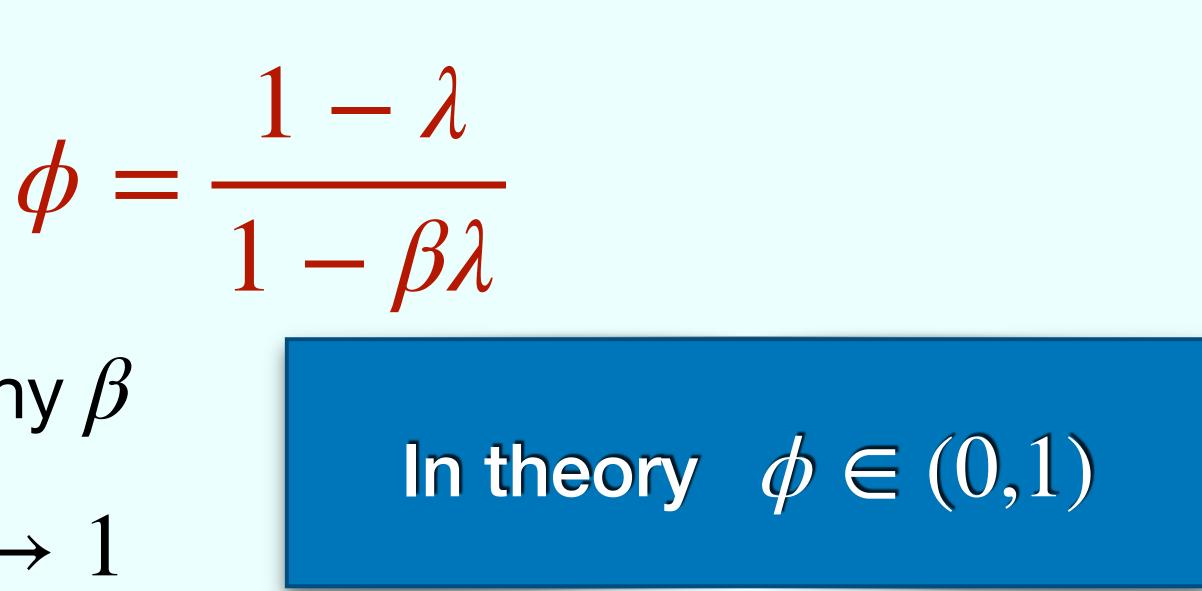


• $\phi \to 0$ as $\lambda \to 1$ for any β

- $\phi \to 0$ as $\lambda \to 1$ for any β
- $\phi \to 1 \text{ as } \lambda \to 0 \text{ or } \beta \to 1$

- $\phi \to 0$ as $\lambda \to 1$ for any β
- $\phi \to 1 \text{ as } \lambda \to 0 \text{ or } \beta \to 1$

- $\phi \to 0$ as $\lambda \to 1$ for any β
- $\phi \to 1 \text{ as } \lambda \to 0 \text{ or } \beta \to 1$



- $\phi \to 0$ as $\lambda \to 1$ for any β
- $\phi \to 1 \text{ as } \lambda \to 0 \text{ or } \beta \to 1$
- Continuous-time $\longrightarrow \phi = \frac{1}{\rho/\delta + 1}$ $\rho \le 0.05 \quad \delta \ge 1$ (one year stickiness)

1	— λ	
1	$-\beta\lambda$	
	In theory	$\phi \in (0,1)$

Calvo

- $\phi \to 0$ as $\lambda \to 1$ for any β
- $\phi \to 1 \text{ as } \lambda \to 0 \text{ or } \beta \to 1$
- Continuous-time $\rightarrow \phi = \frac{1}{\rho/\delta + 1}$ $\rho \le 0.05 \quad \delta \ge 1$ (one year stickiness) $\rightarrow \phi \ge 0.95$

$\phi = -\frac{1}{1}$	$1 - \lambda$
$\varphi = 1 - \beta \lambda$	
by β	In theory $\phi \in (0,1)$
→ 1	$\varphi \in (0,1)$

Calvo

- $\phi \to 0$ as $\lambda \to 1$ for any β
- $\phi \to 1 \text{ as } \lambda \to 0 \text{ or } \beta \to 1$

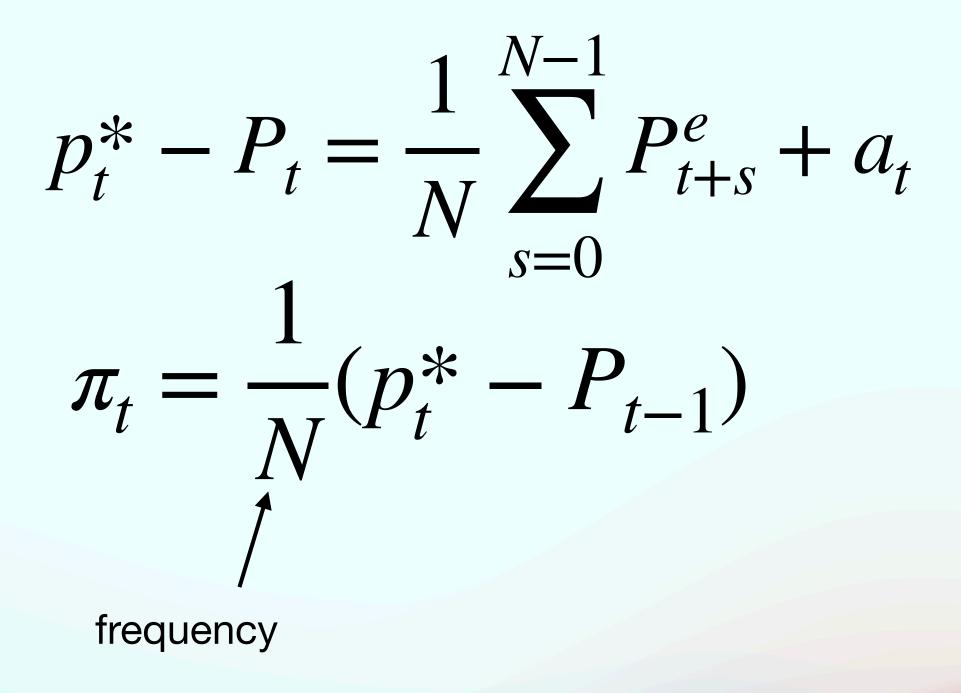
• Continuous-time $\rightarrow \phi = -\frac{1}{\rho/c}$ $\rho \le 0.05$ $\delta \ge 1$ (one year stickiness) $\rightarrow \phi \ge 0.95$

h = -	$-\lambda$ $-\beta\lambda$
$ \rightarrow 1 $	In theory $\phi \in (0,1)$
$b = \frac{1}{\rho/\delta}$	+1

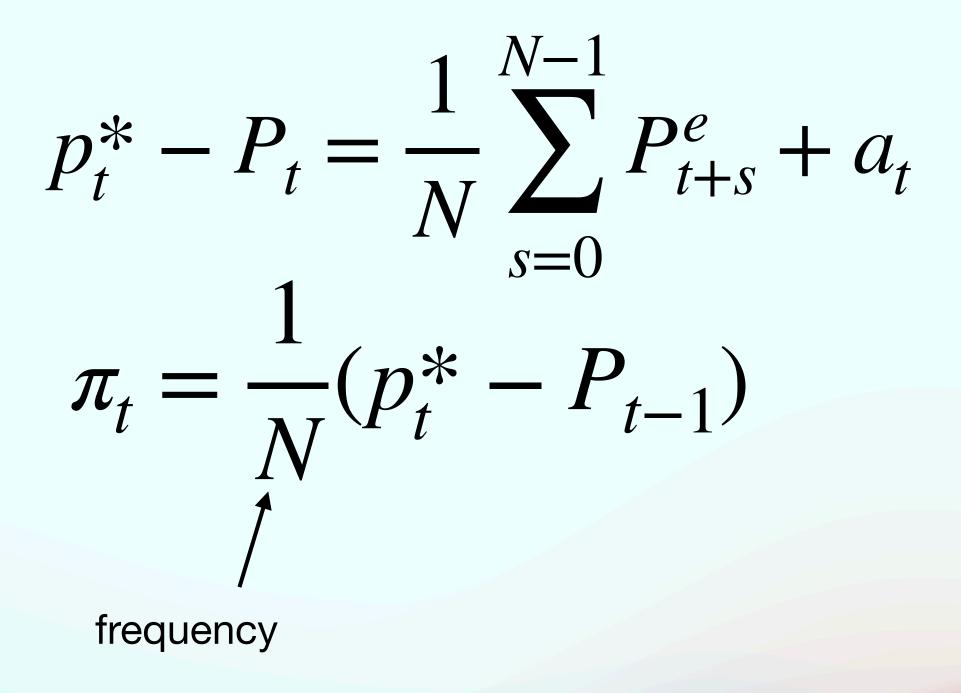
In practice $\phi \approx 1$

- 1. Calvo $\phi = 1$
- 2. Taylor $\phi = \frac{1}{2}$
- 3. General Time-Dependent $\phi = \text{ongoing/completed}$
- 4. Basic State Dependent
- 5. Extension to State Dependent

- Fixed prices for N periods...
- ... staggered across goods

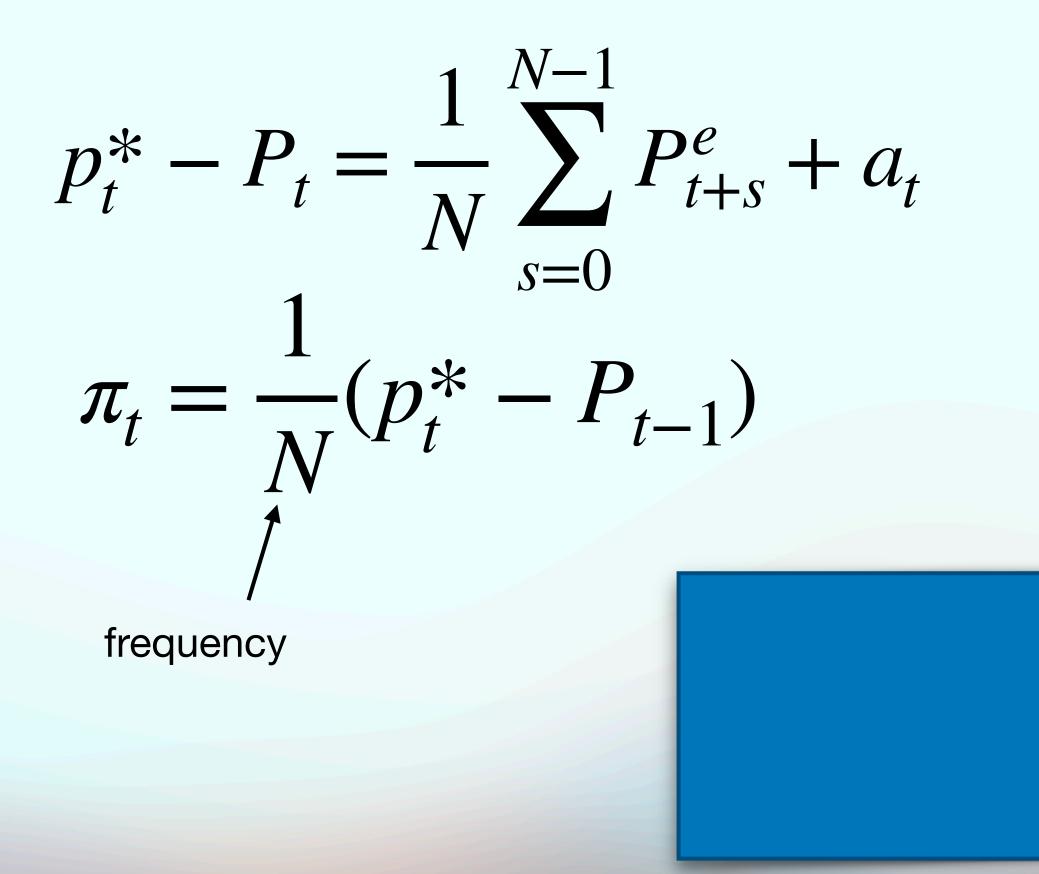


- Fixed prices for N periods...
- ... staggered across goods

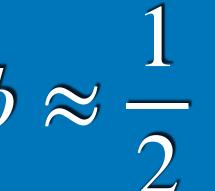


 $\pi_t = \phi \pi^e + \frac{1}{N} a_t$ $\phi = \frac{1}{2} + \frac{1}{N}$

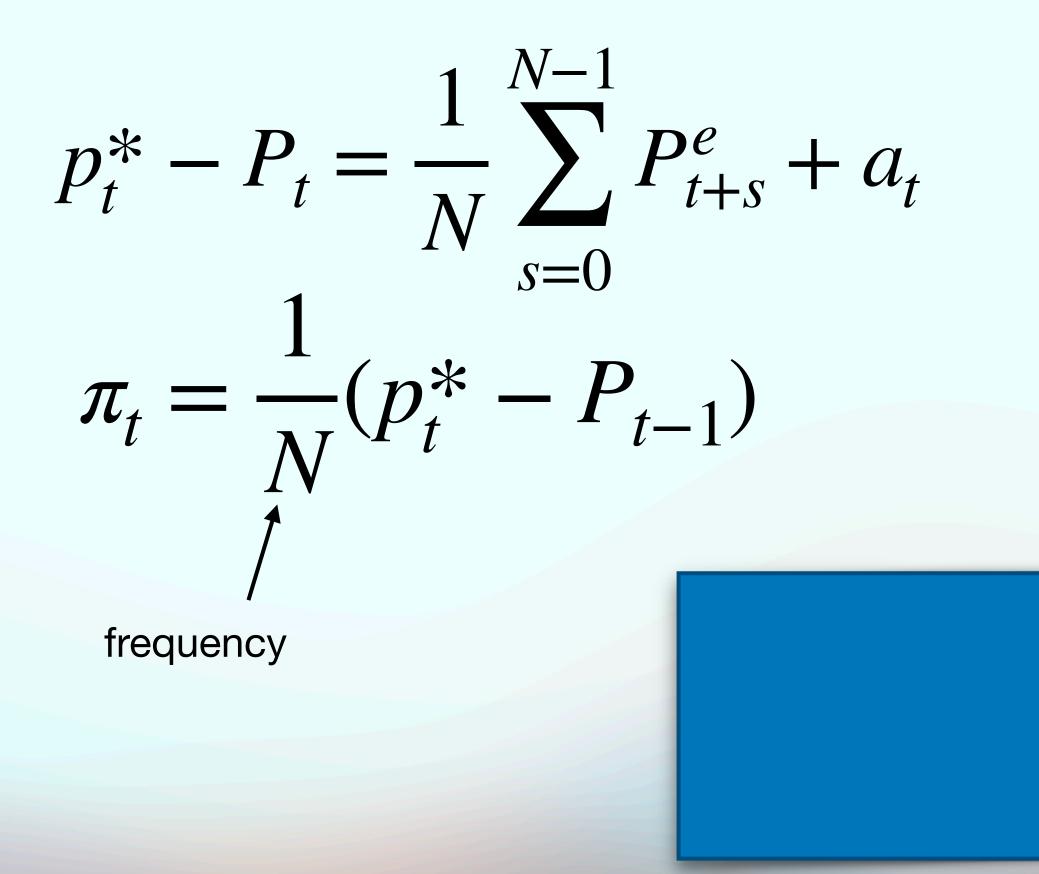
- Fixed prices for N periods...
- ... staggered across goods



 $\pi_t = \phi \pi^e + \frac{1}{N} a_t$ $\phi = \frac{1}{2} + \frac{1}{N}$

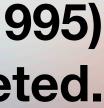


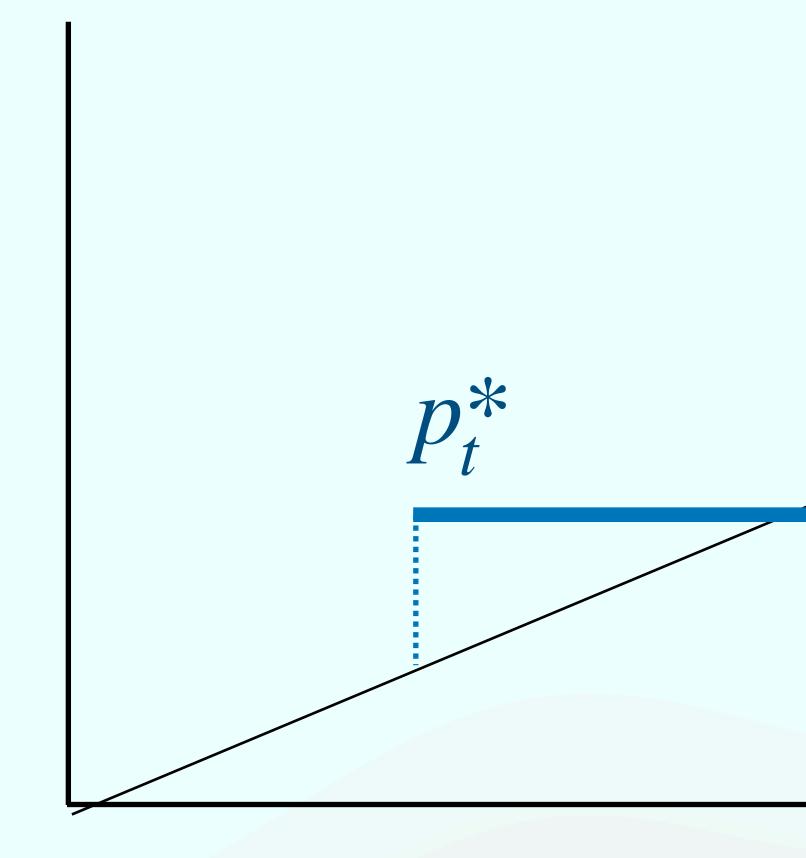
- Fixed prices for N periods...
- ... staggered across goods

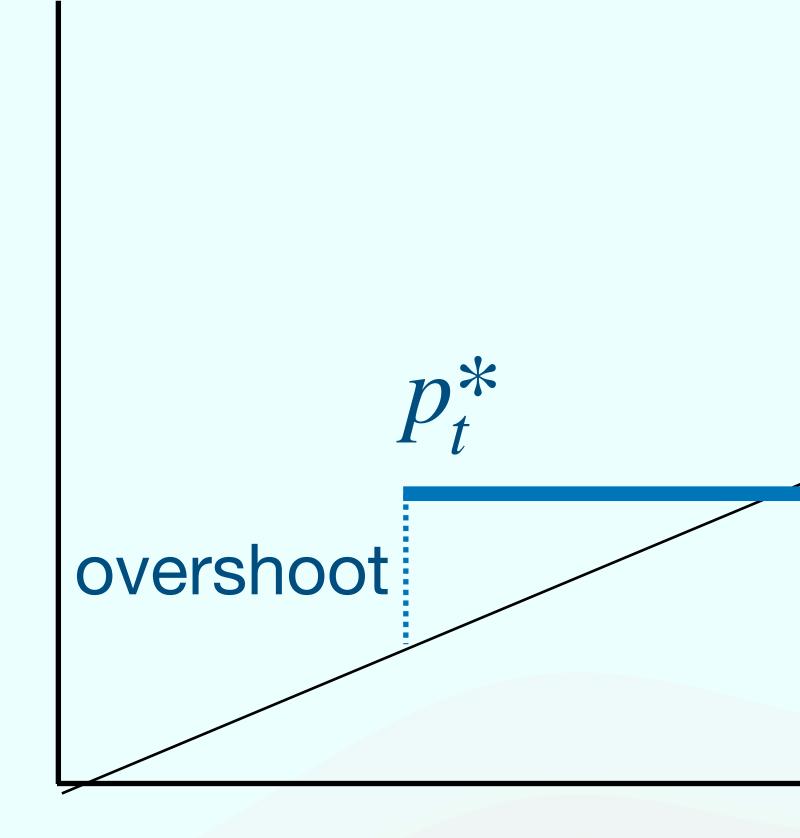


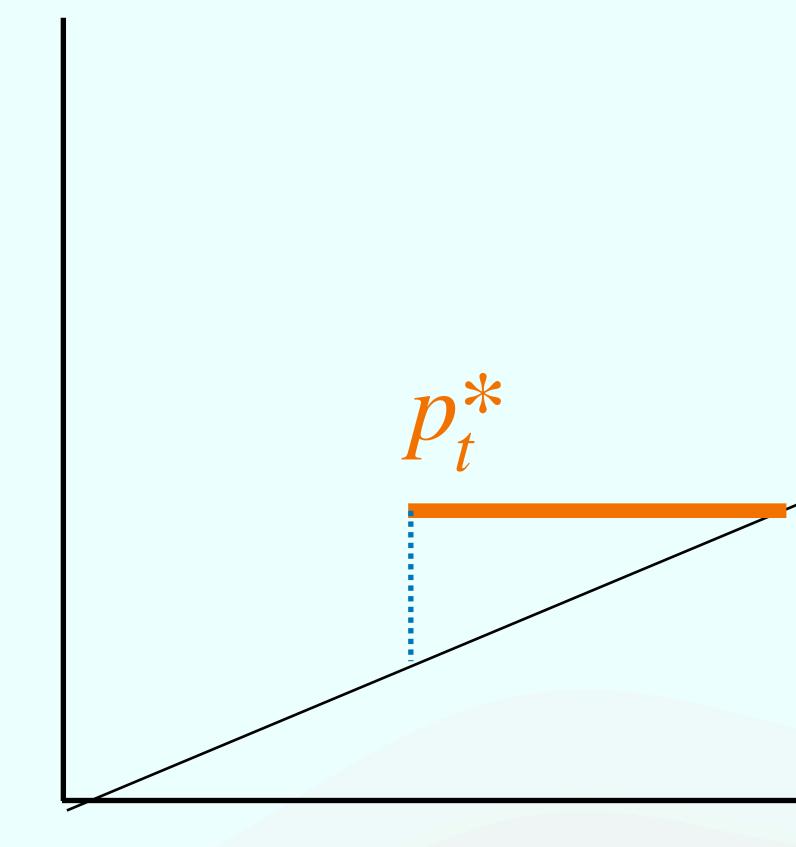
 $\pi_t = \phi \pi^e + \frac{1}{N} a_t$ $\phi = \frac{1}{2} + \frac{1}{N}$

Sidenote: Roberts (1995) equation misinterpreted.

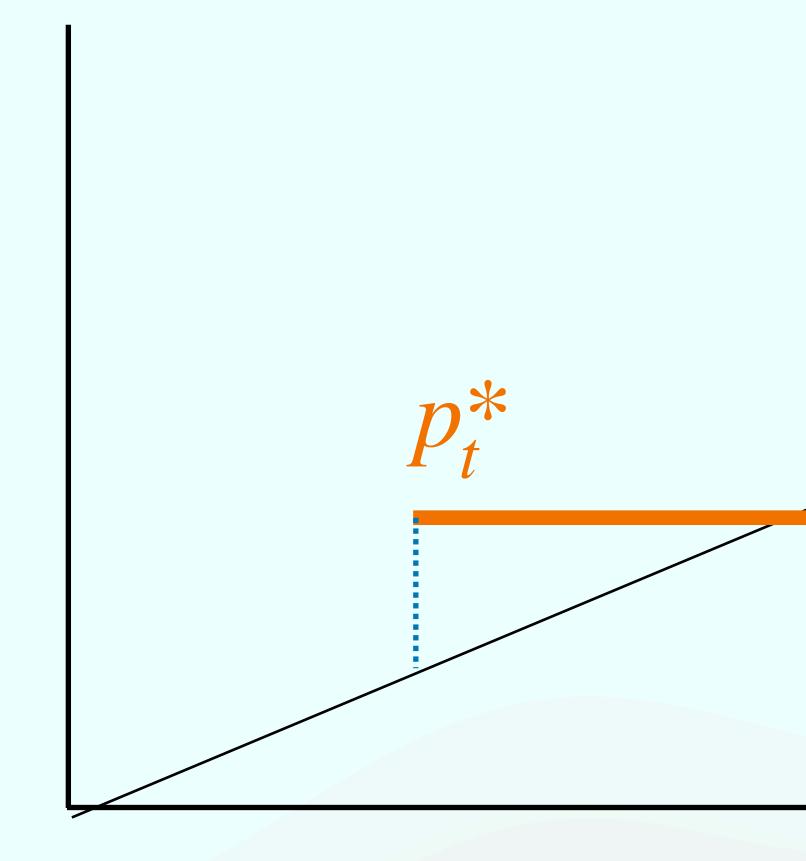


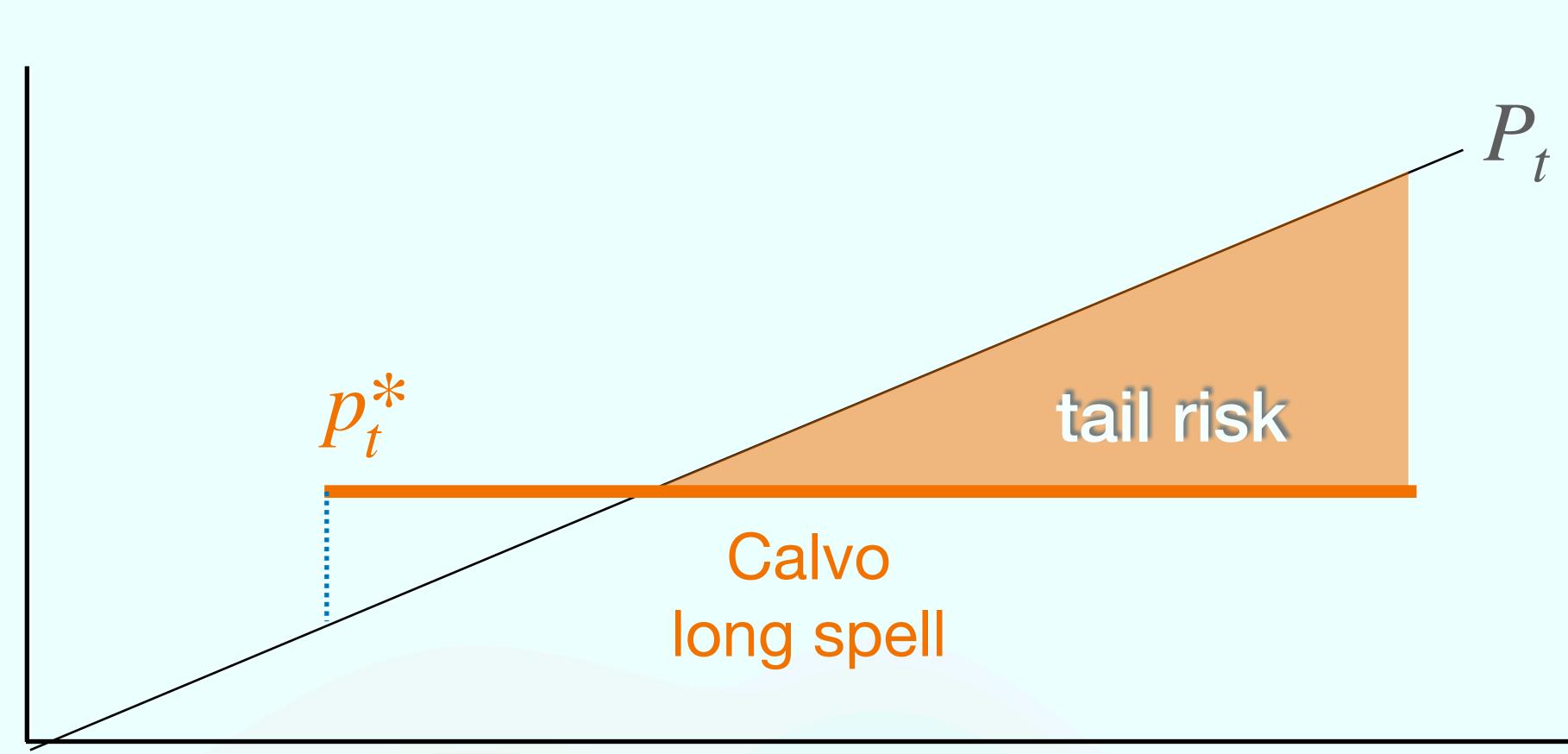


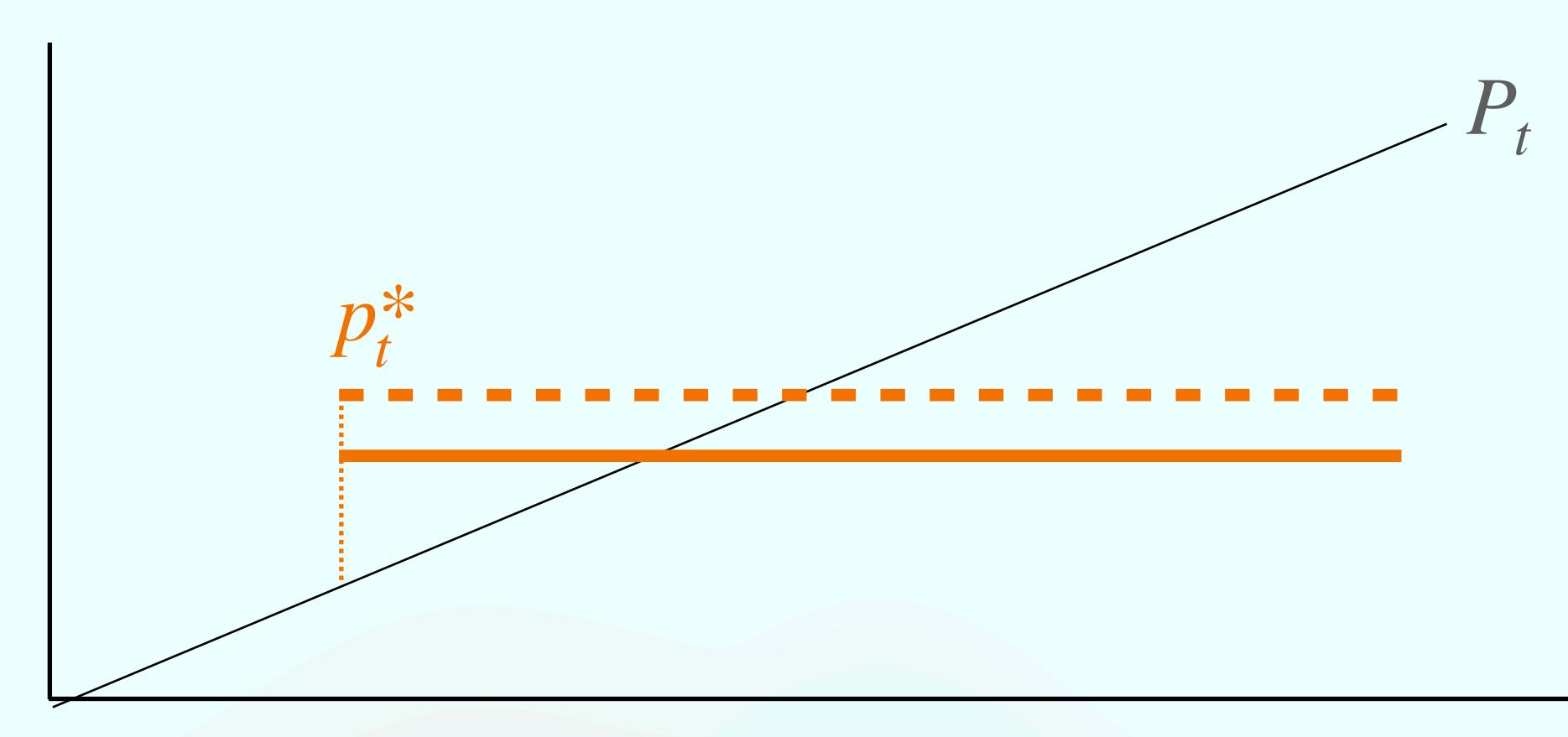




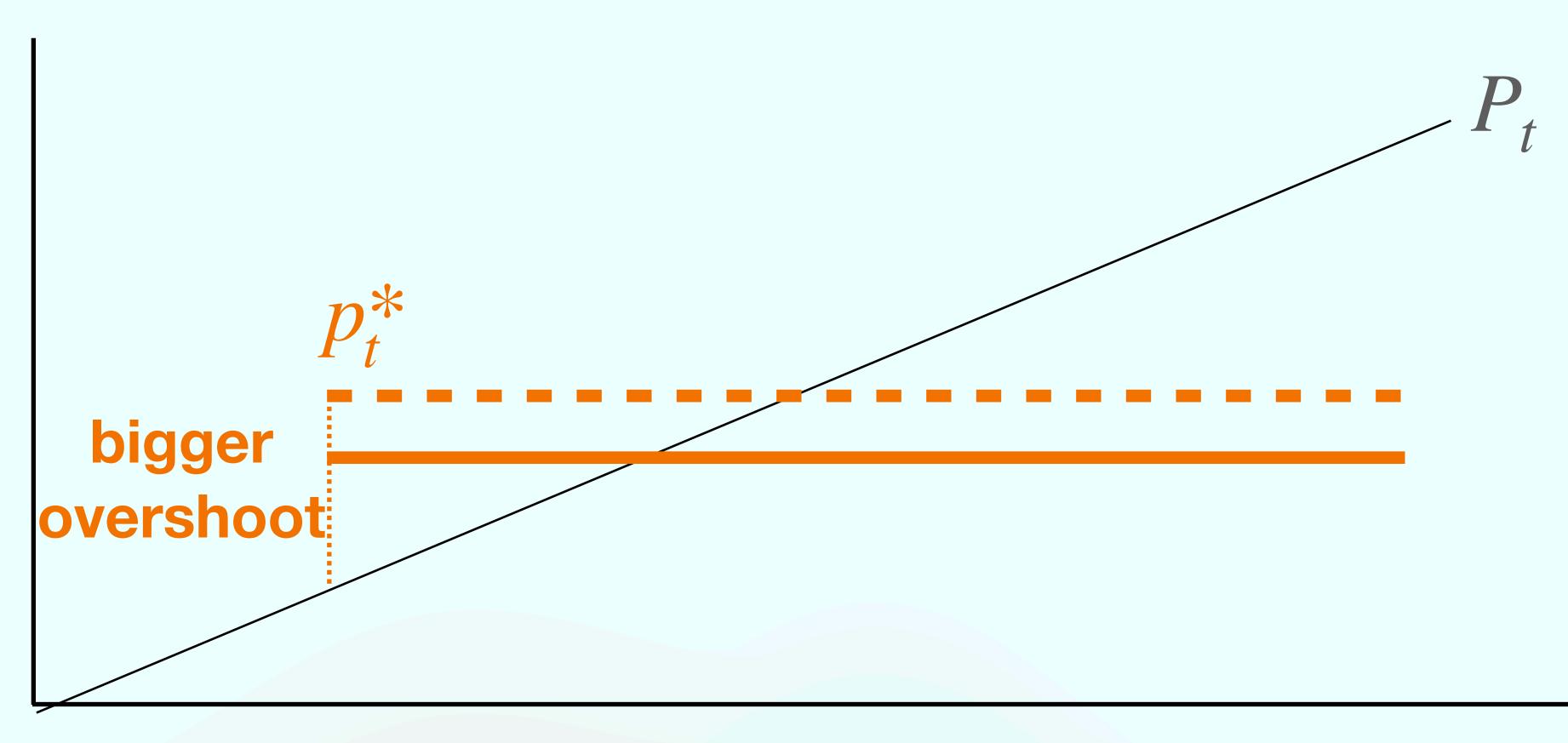
Calvo short spell





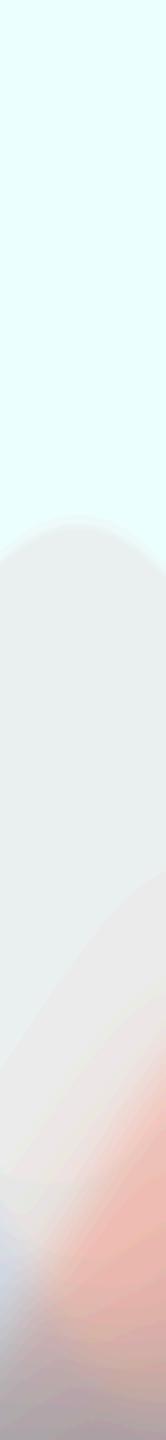


long spell



long spell

- 1. Calvo $\phi = 1$
- 2. Taylor $\phi = \frac{1}{2}$
- 3. General Time-Dependent $\phi = \text{ongoing/completed}$
- 4. Basic State Dependent
- 5. Extension to State Dependent



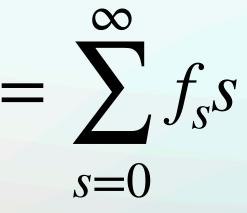
General Time Dependent Model

- General profit function: complementarities, markups, real marginal costs etc.
- General hazard rate $\{h_s\}$ for s = 0, 1, ...
- Two probability densities...
 - completed spells f_s (fraction of spells ending at s)
 - ongoing spells ω_{c} (fraction time spent at s)
- Accounting...

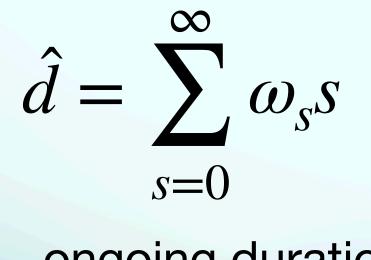
General Time Dependent Model

- General profit function: complementarities, markups, real marginal costs etc.
- General hazard rate $\{h_s\}$ for s = 0, 1, ...
- Two probability densities...
 - completed spells f_s (fraction of spells ending at s)
 - ongoing spells ω_{c} (fraction time spent at s)
- Accounting...

$$\bar{h} = \sum_{s=0}^{\infty} \omega_s h_s = \frac{1}{\bar{d}} \qquad \bar{d} =$$
frequency comp



pleted duration



ongoing duration

$$\phi = \bar{h} \sum_{s=0}^{\infty} \omega_s (1+s) = \frac{\sum_{s=0}^{\infty} \omega_s (1+s)}{\sum_{s=0}^{\infty} f_s (1+s)} = \frac{\hat{d}}{\bar{d}}$$

$$\phi = \bar{h} \sum_{s=0}^{\infty} \omega_s (1+s)$$

$$=\frac{\sum_{s=0}^{\infty}\omega_s(1+s)}{\sum_{s=0}^{\infty}f_s(1+s)}=\frac{\hat{d}}{\bar{d}}$$

$$\phi = \bar{h} \sum_{s=0}^{\infty} \omega_s (1+s)$$

- Calvo $\bar{d} = \hat{d}$ Taylor $\hat{d} = \frac{1}{2}\bar{d}$

$$=\frac{\sum_{s=0}^{\infty}\omega_s(1+s)}{\sum_{s=0}^{\infty}f_s(1+s)}=\frac{\hat{d}}{\bar{d}}$$

$$\phi = \bar{h} \sum_{s=0}^{\infty} \omega_s (1+s) = \frac{\sum_{s=0}^{\infty} \omega_s (1+s)}{\sum_{s=0}^{\infty} f_s (1+s)} = \frac{\hat{d}}{\bar{d}}$$

- Calvo $\bar{d} = \hat{d}$ Taylor $\hat{d} = \frac{1}{2}\bar{d}$
- Frequency of price adjustments irrelevant! ↑frequency ↓overshoot

$$\phi = \bar{h} \sum_{s=0}^{\infty} \omega_s (1+s) = \frac{\sum_{s=0}^{\infty} \omega_s (1+s)}{\sum_{s=0}^{\infty} f_s (1+s)} = \frac{\hat{d}}{\bar{d}}$$

• Calvo
$$\bar{d} = \hat{d}$$
 Taylor $\hat{d} = \frac{1}{2}\bar{d}$

- Frequency of price adjustments irrelevant! ↑frequency ↓overshoot
- Heterogeneity

$$\phi = \int \frac{\hat{d}(i)}{\bar{d}(i)} di$$

$$\phi = \bar{h} \sum_{s=0}^{\infty} \omega_s (1+s) = \frac{\sum_{s=0}^{\infty} \omega_s (1+s)}{\sum_{s=0}^{\infty} f_s (1+s)} = \frac{\hat{d}}{\bar{d}}$$

• Calvo
$$\bar{d} = \hat{d}$$
 Taylor $\hat{d} = \frac{1}{2}\bar{d}$

- Frequency of price adjustments irrelevant! ↑frequency ↓overshoot
- Heterogeneity

$$\phi = \int \frac{\hat{d}(i)}{\bar{d}(i)} \, di \neq \int \frac{1}{\bar{d}(i)} \, di \cdot \int \hat{d}(i) \, di$$

Ongoing Completed

$$\phi = \bar{h} \sum_{s=0}^{\infty} \omega_s (1+s) = \frac{\sum_{s=0}^{\infty} \omega_s (1+s)}{\sum_{s=0}^{\infty} f_s (1+s)} = \frac{\hat{d}}{\bar{d}}$$

• Calvo
$$\bar{d} = \hat{d}$$
 Taylor $\hat{d} = \frac{1}{2}\bar{d}$

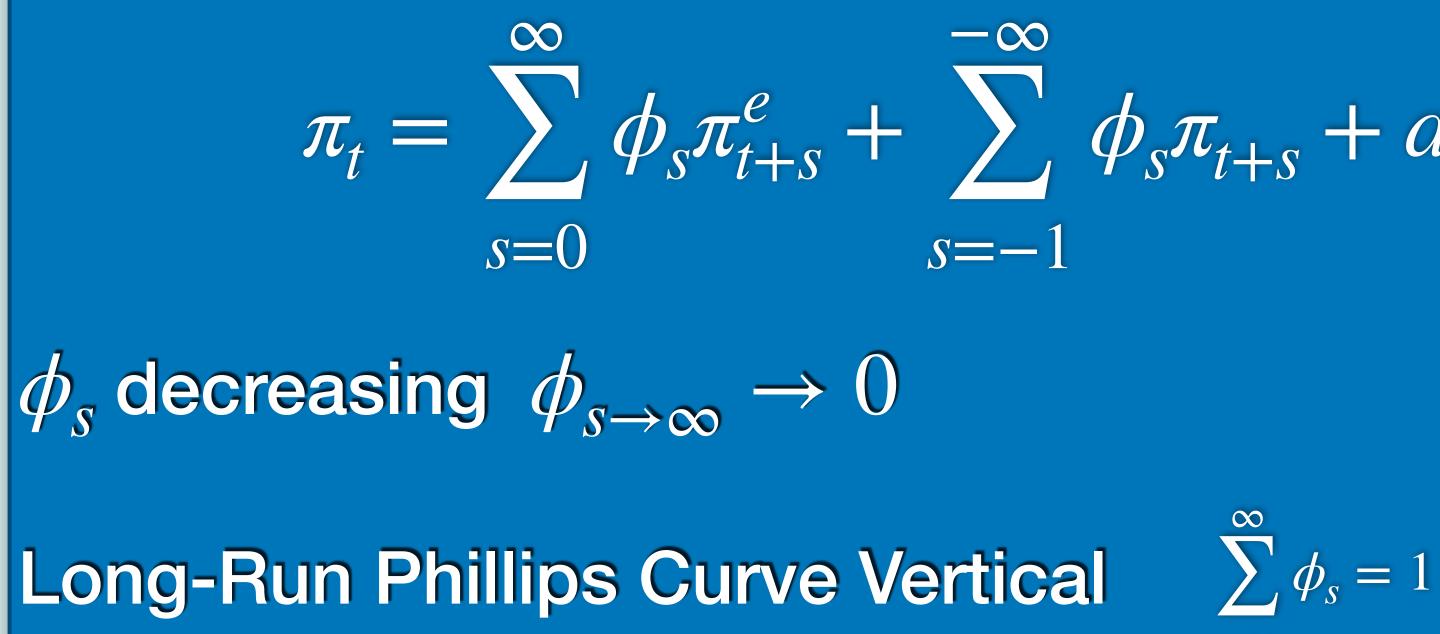
- Frequency of price adjustments irrelevant! ↑frequency ↓overshoot
- Heterogeneity

$$\phi = \int \frac{\hat{d}(i)}{\bar{d}(i)} di \neq \int \frac{1}{\bar{d}(i)} di$$

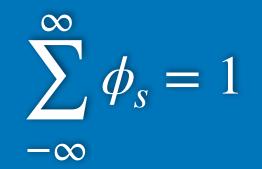
 $\frac{di}{di} \cdot \hat{d}(i) di \neq \frac{\int \hat{d}(i) di}{di}$ $\int \bar{d}(i) di$

Phillips Curve

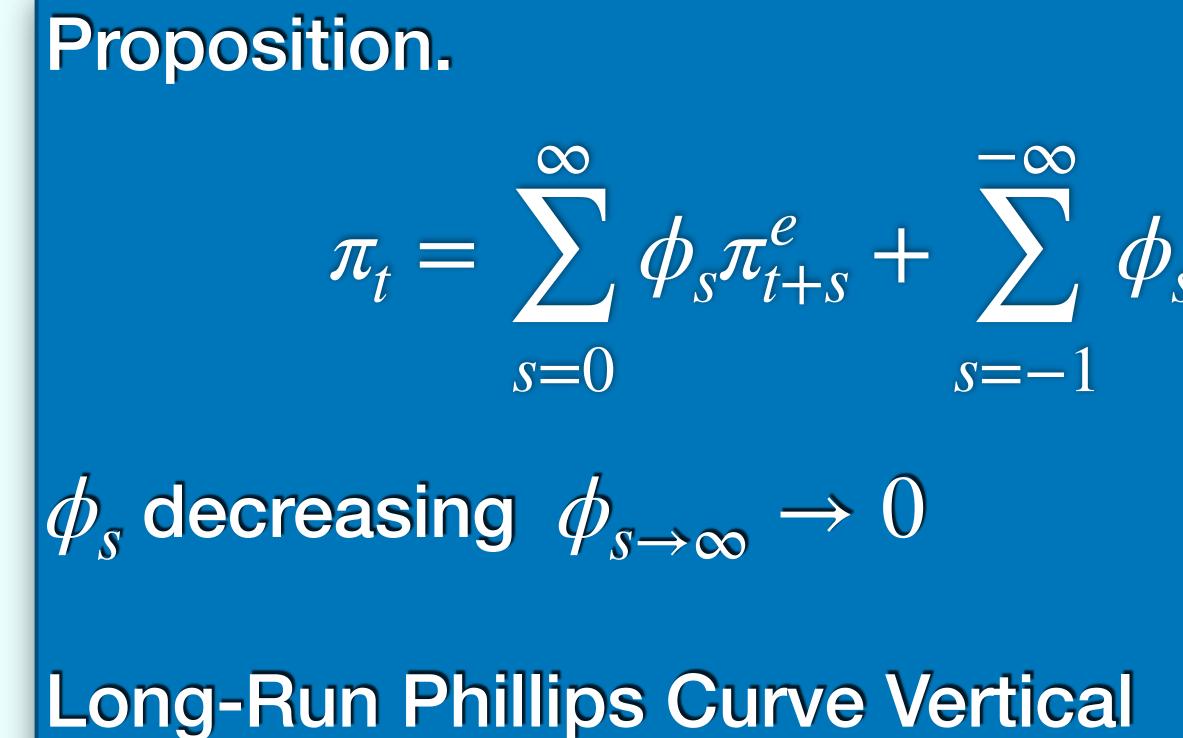
Proposition.



 $\pi_t = \sum_{s=0}^{\infty} \phi_s \pi_{t+s}^e + \sum_{s=0}^{-\infty} \phi_s \pi_{t+s} + a_t$



Phillips Curve

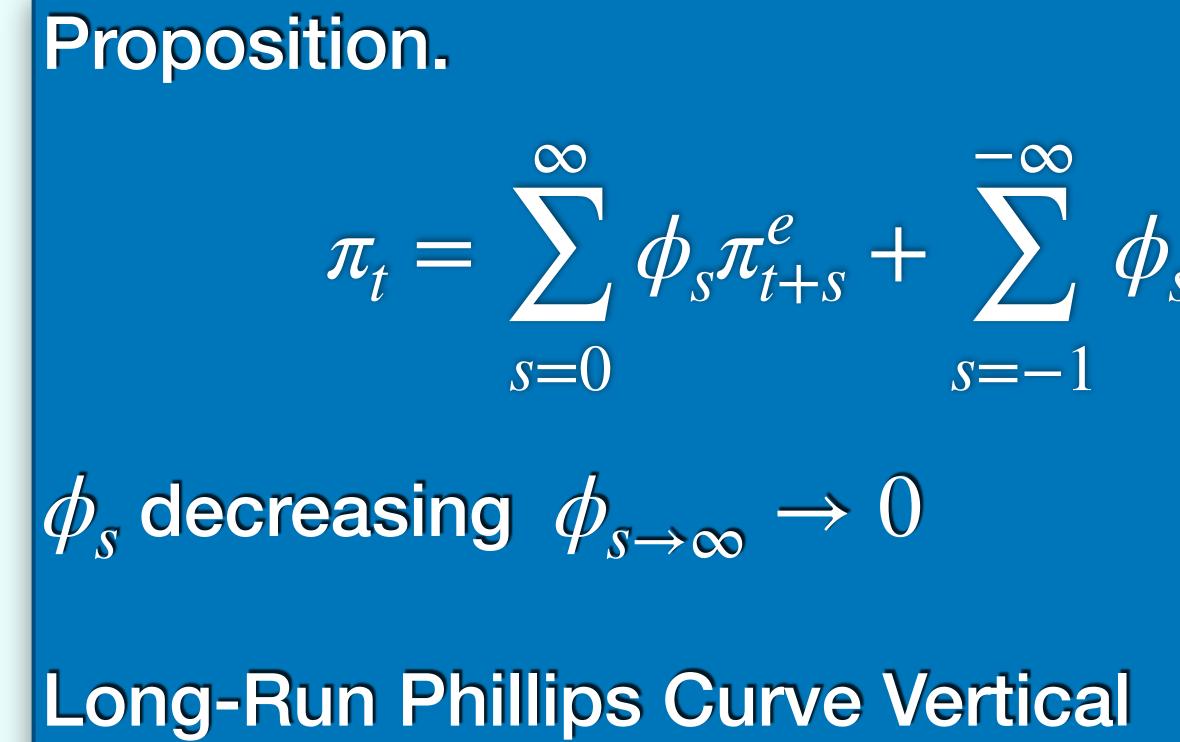


effects zero outside rigidity!

 $\pi_t = \sum_{s=0}^{\infty} \phi_s \pi_{t+s}^e + \sum_{s=0}^{\infty} \phi_s \pi_{t+s} + a_t$ $\sum \phi_s = 1$ $-\infty$

Intuition: early inflation affects current and future periods

Phillips Curve



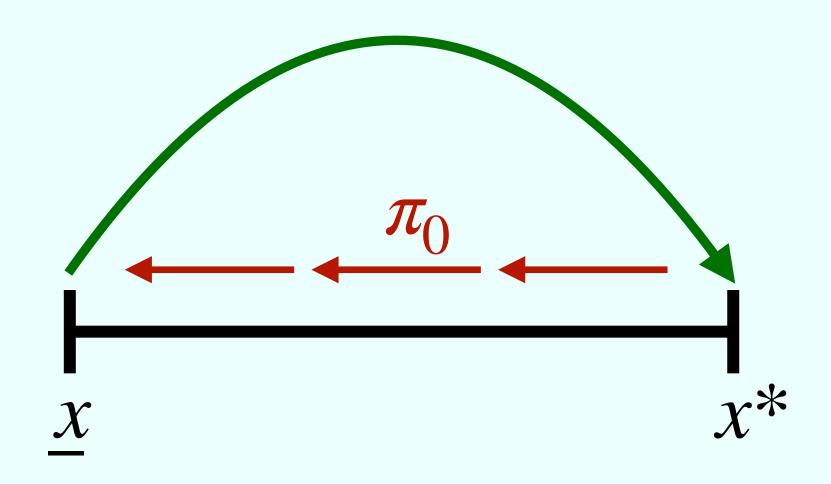
 Intuition: early inflation affects current and future periods effects zero outside rigidity!

• Sheedy (2010) Rational Expectations: $\hat{\phi}_1 = 1$ (as NK) and $\hat{\phi}_s < 0$

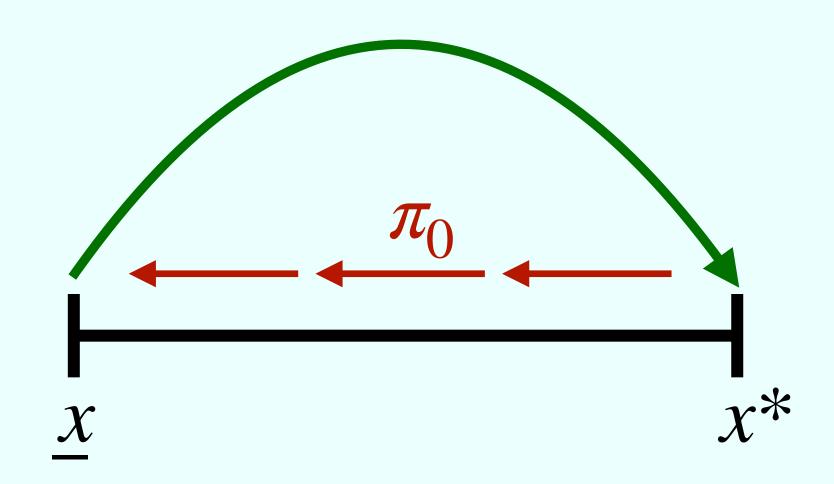
 $\pi_t = \sum_{t=1}^{\infty} \phi_s \pi_{t+s}^e + \sum_{t=1}^{-\infty} \phi_s \pi_{t+s} + a_t$ $\sum \phi_s = 1$ $-\infty$

Overview

- 1. Calvo $\phi = 1$
- 2. Taylor $\phi = \frac{1}{2}$
- 3. General Time-Dependent $\phi = \text{ongoing/completed}$
- 4. State Dependent
- 5. State Dependent with Frictions

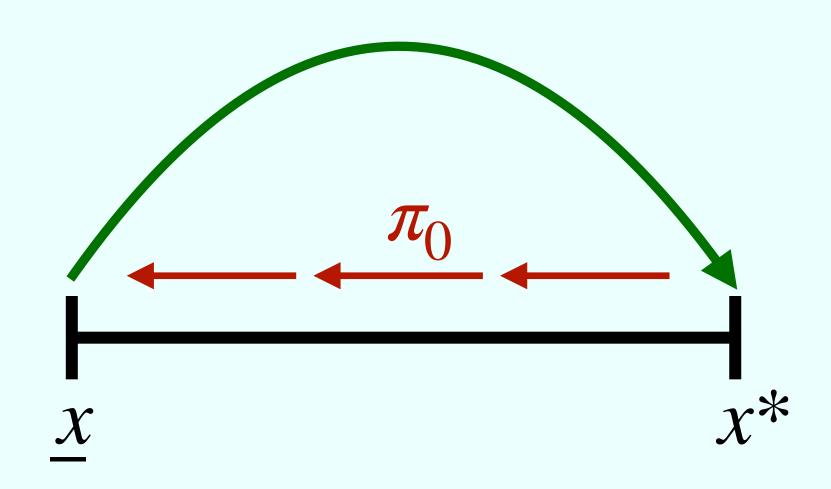


- Steady State: Sheshinski-Weiss (1977)
 - menu cost c of changing price
 - constant inflation π
 - bands for x = p P

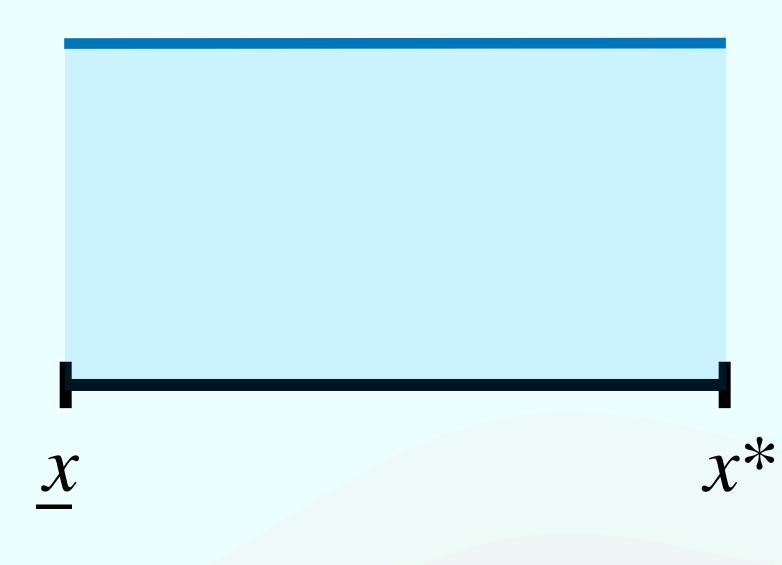


- Steady State: Sheshinski-Weiss (1977)
 - menu cost c of changing price
 - constant inflation π
 - bands for x = p P

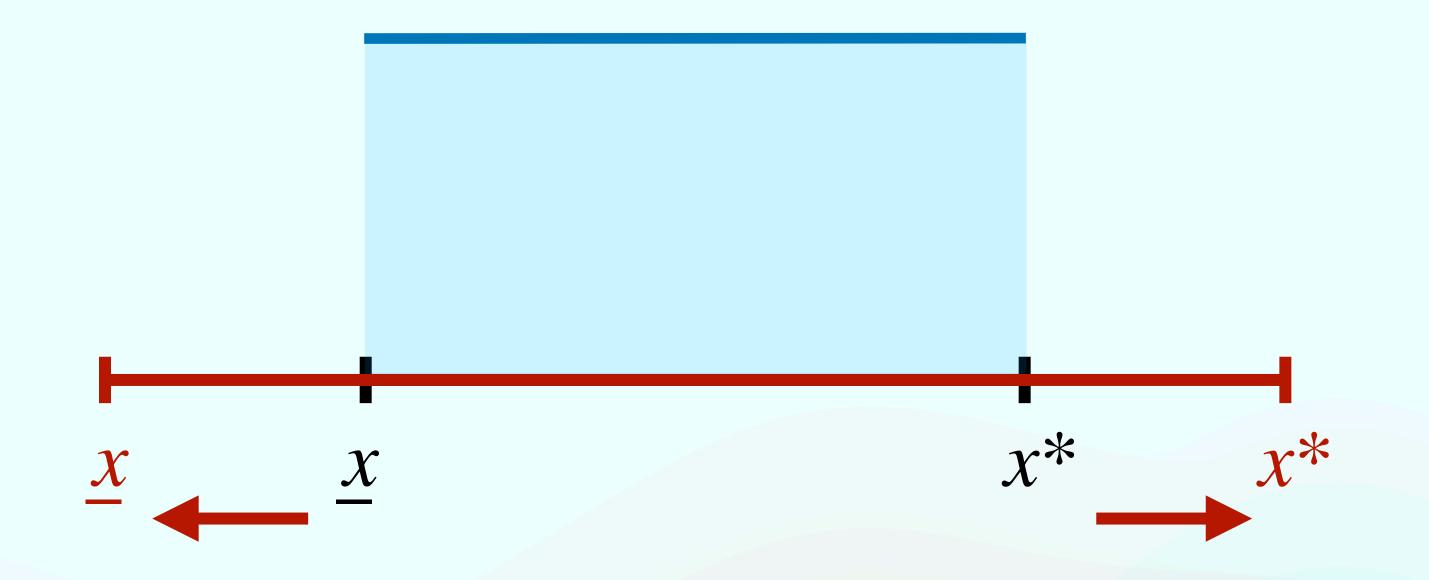
- Out of Steady Steady...
 - start at steady state π_0
 - shock expectations: π^e rises
 - what do firms do on in short run?



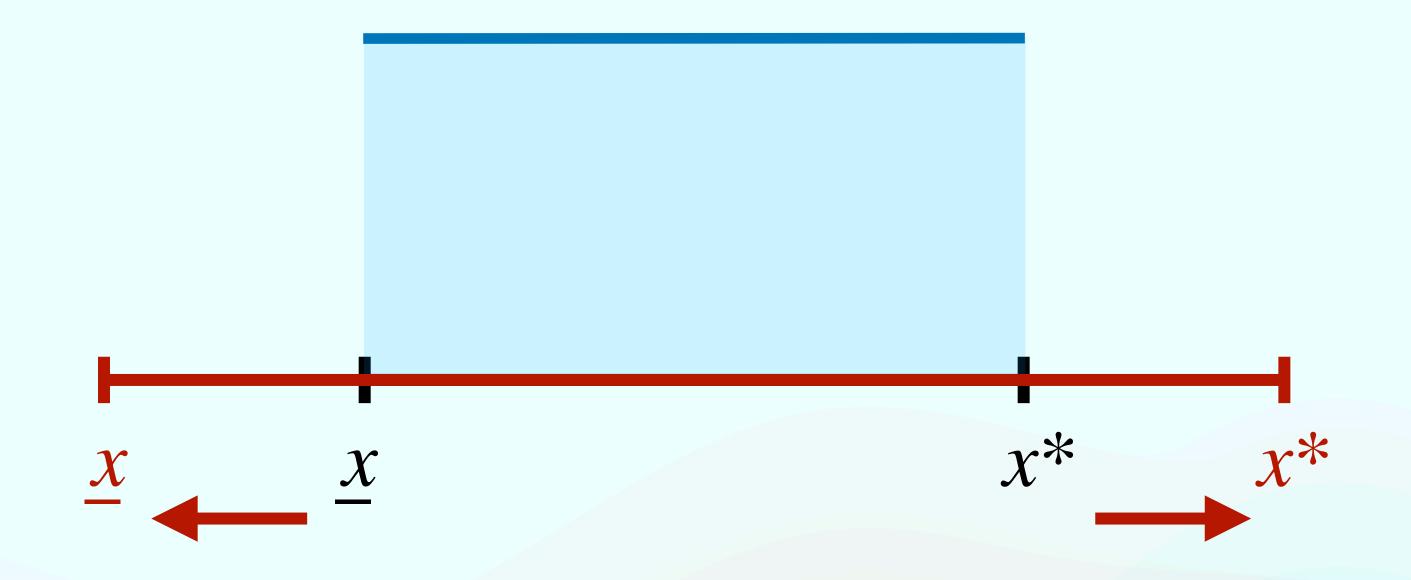
• t < 0 unform density over interval [\underline{x}, x^*]



- t < 0 unform density over interval $[x, x^*]$
- t = 0 widen bands! ...



- t < 0 unform density over interval $[x, x^*]$
- t = 0 widen bands! ...



No Price Changes! $\pi = 0$

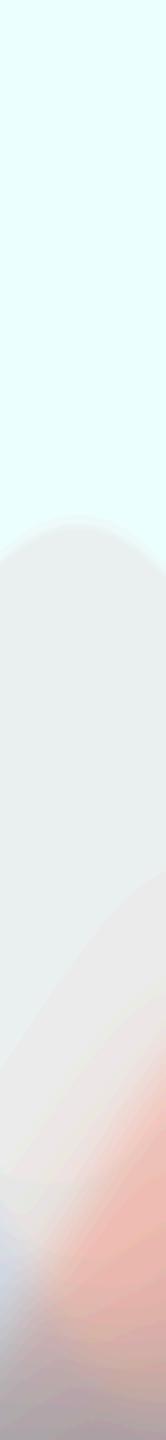
- t < 0 unform density over interval $[x, x^*]$
- t = 0 widen bands! ...



No Price Changes! $\pi = 0$

Overview

- 1. Calvo $\phi = 1$
- 2. Taylor $\phi = \frac{1}{2}$
- 3. General Time-Dependent $\phi = \text{ongoing/completed}$
- 4. Basic State Dependent
- 5. Extension to State Dependent



State Dependent

- Extreme shifts in frequency of price changes
- Realistic? Maybe not...
 - Firms *really* stop changing prices? Unlikely!
 - Two ideas...
 - short-run fixed frequency
 - fixed costs of changing bands

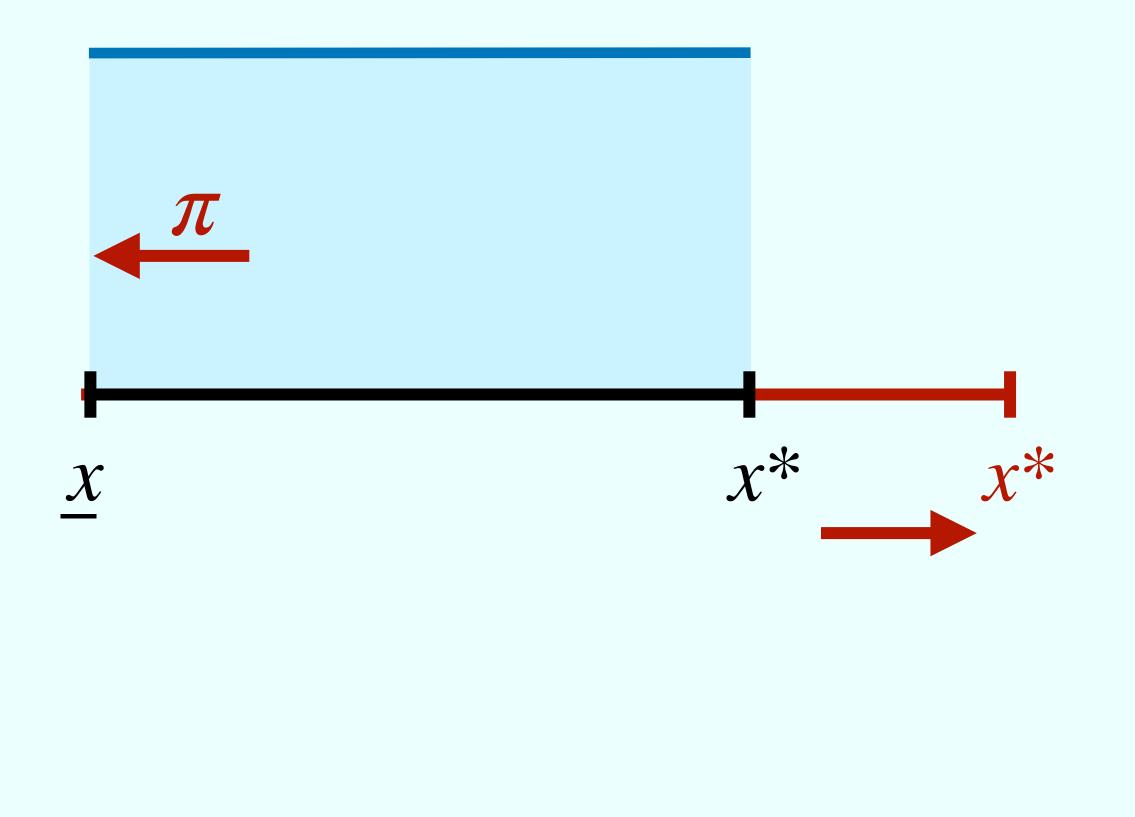
Short Run Frictions (Extension #1)

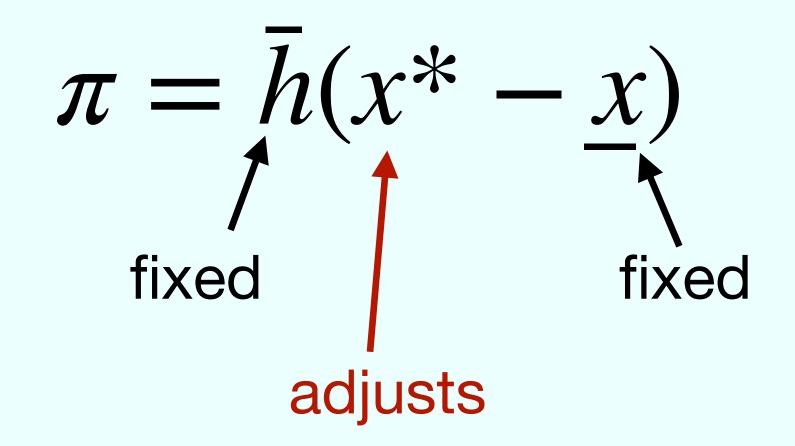
Short Run Frictions (Extension #1)

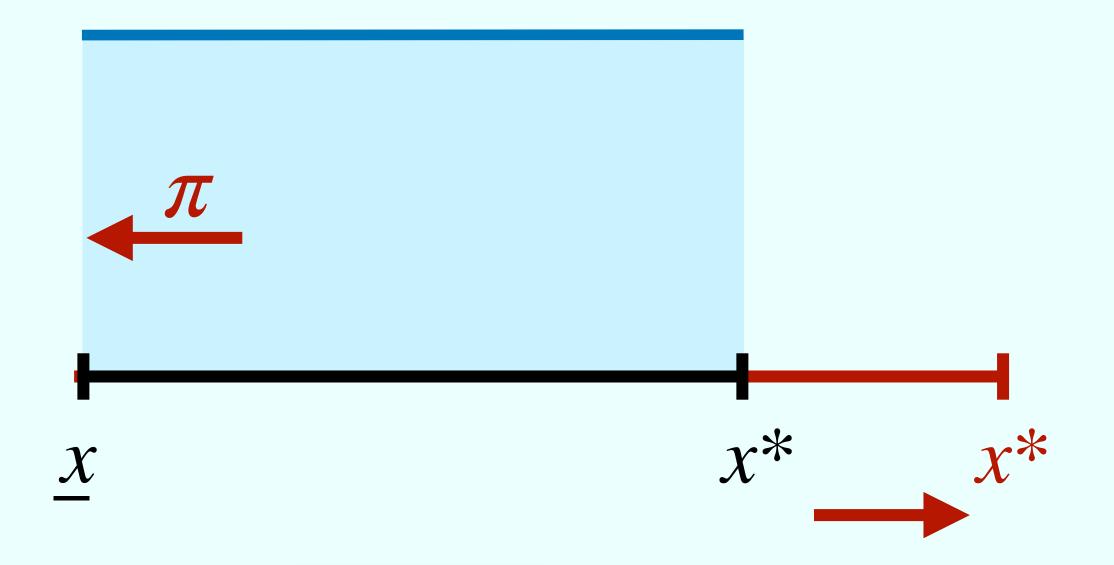
- Idea...
 - devoted resources for changing prices
 - fixed in very short run (or adjustment costs)...
 - ... but not in medium run

Short Run Frictions (Extension #1)

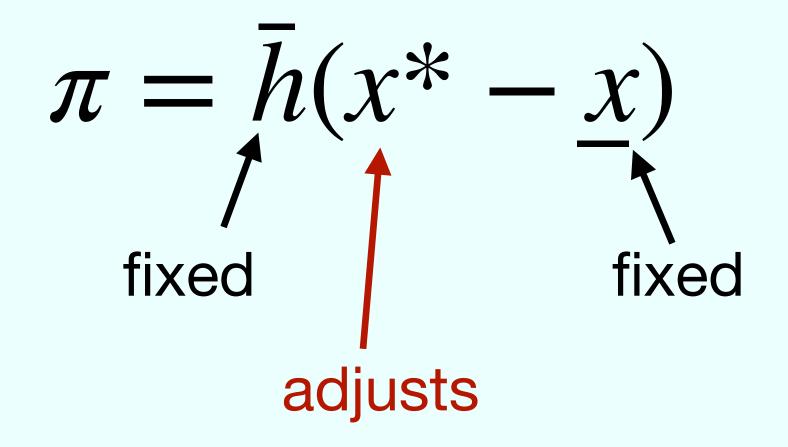
- Idea...
 - devoted resources for changing prices
 - fixed in very short run (or adjustment costs)...
 - ... but not in medium run
- Optimal...
 - firm keeps changing lowest prices
 - how much upper bound?

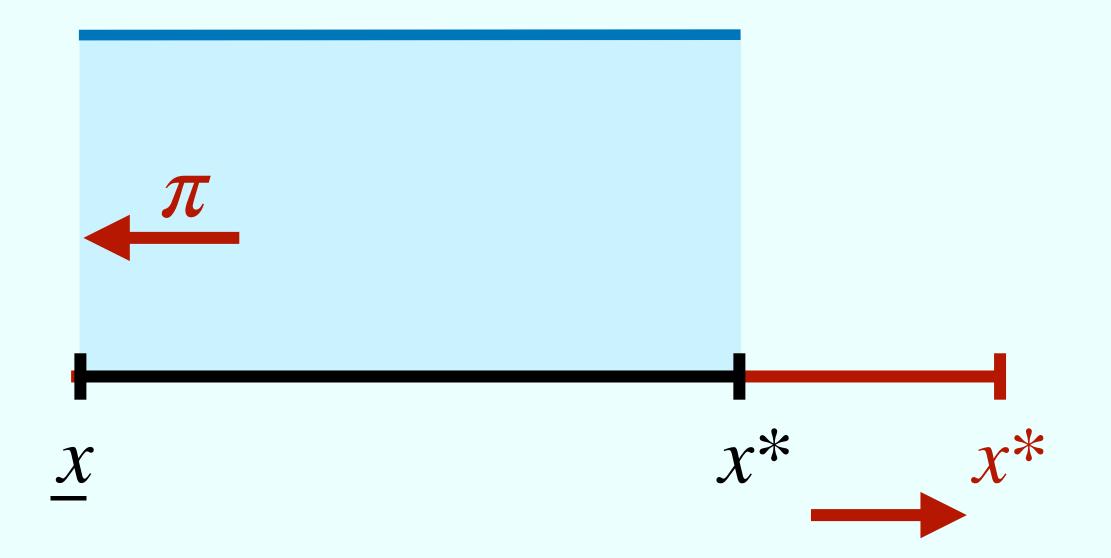






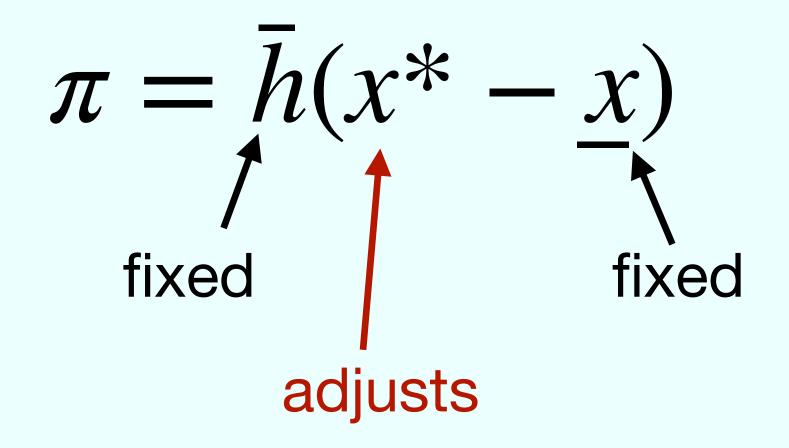
Proposition. Sheshinksi-Weiss with Short Run Friction $\phi \in (0, \frac{1}{2})$

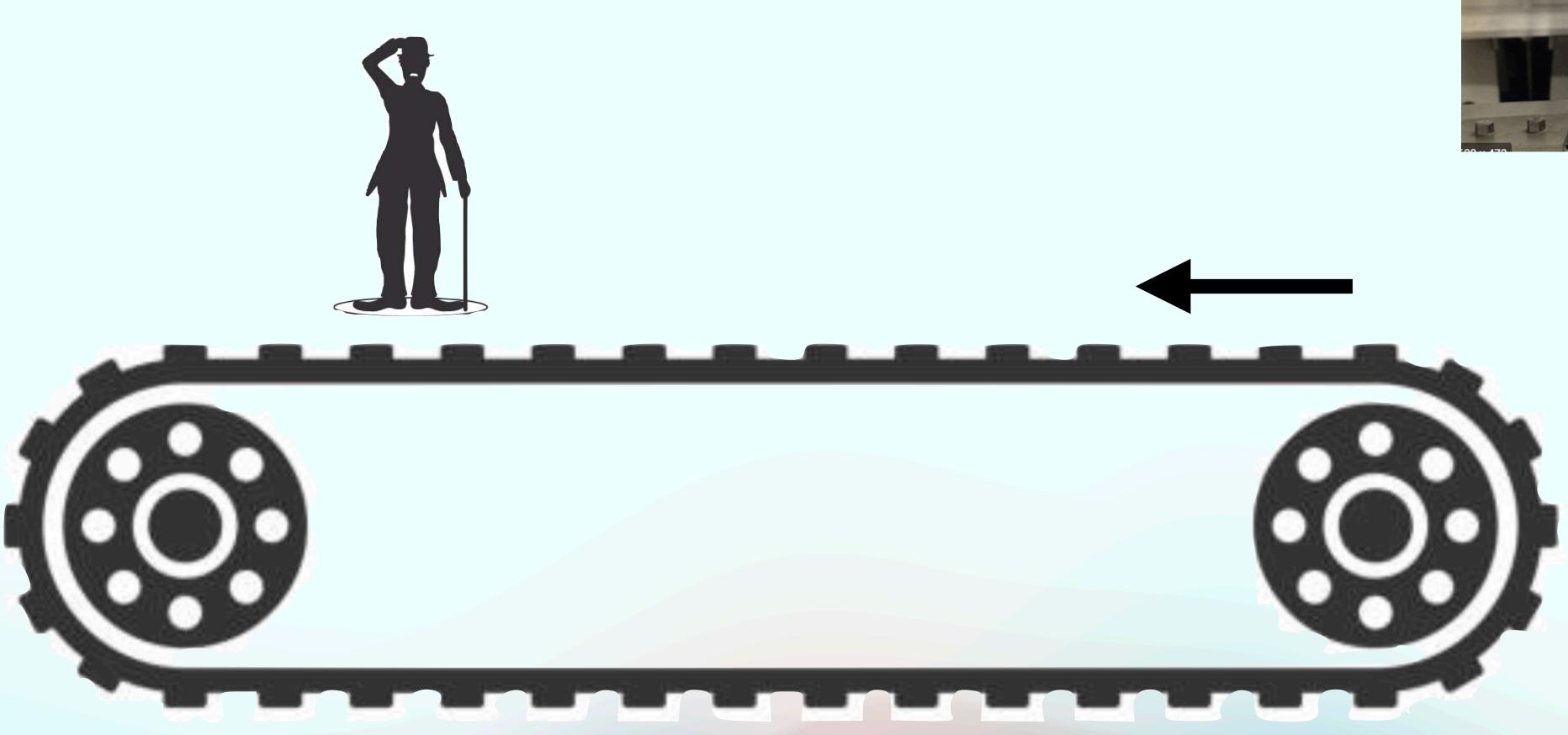


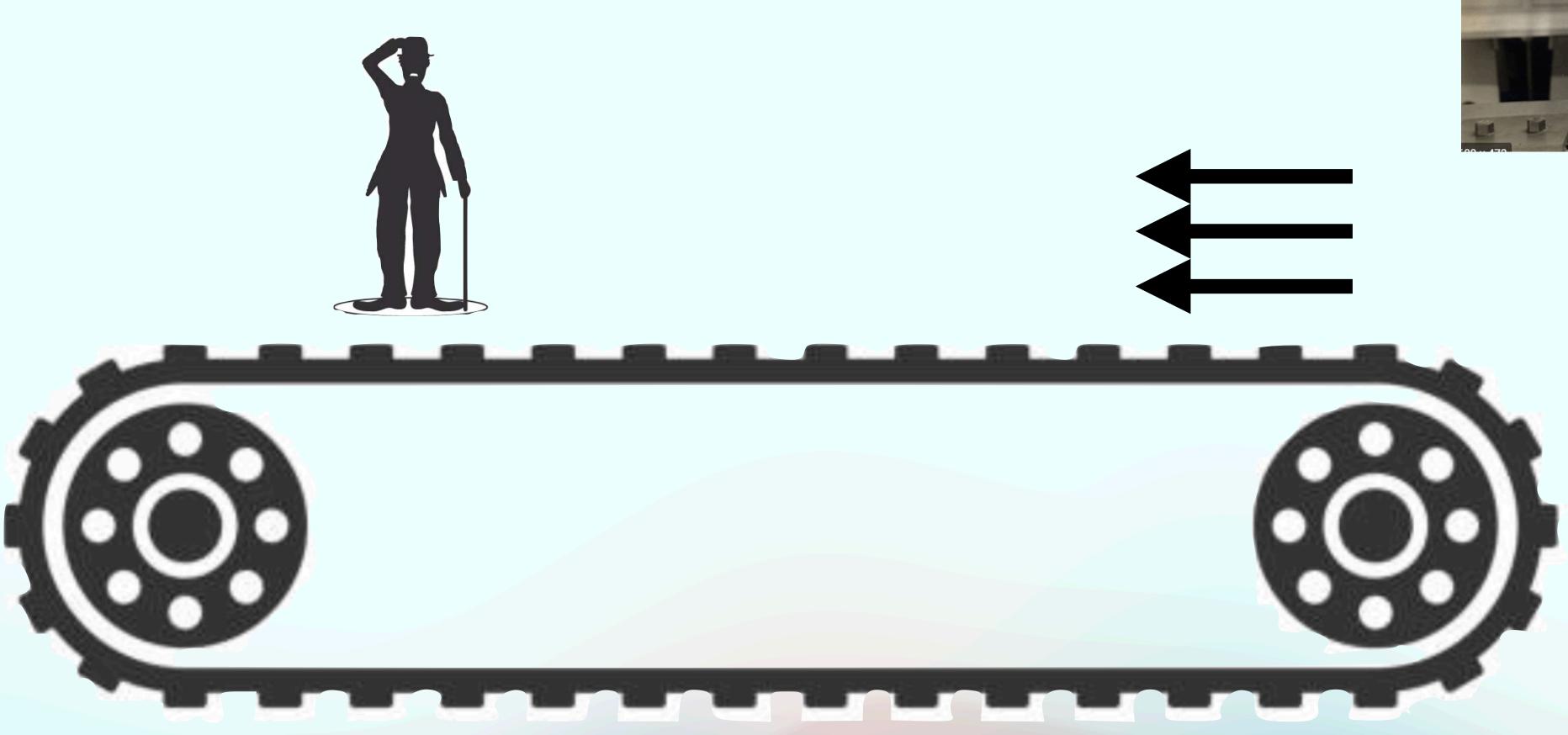


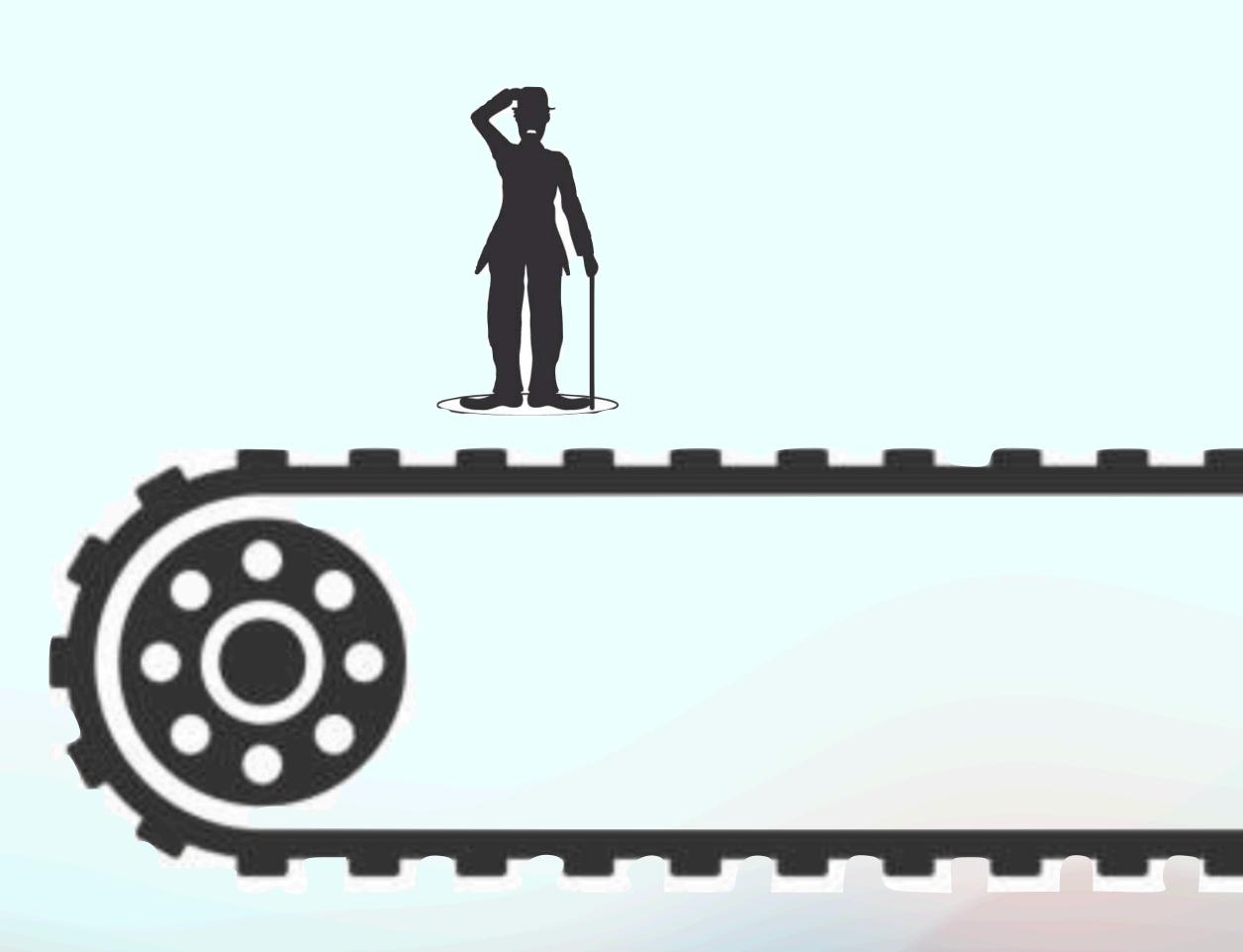
Proposition. Sheshinksi-Weiss with Short Run Friction $\phi \in (0, \frac{1}{2})$

- Intuition...
 - adjust reset price up, but less than Taylor!
 - firm anticipates adjusting reset price more quickly









- Menu costs?...
 - cost of menus/stickers
 - manager time
- ... but changing pricing also incurs manager time!

- Cost c_R of changing bands e.g.
- Used old policies if

$$c_B/c \in [1,10]$$

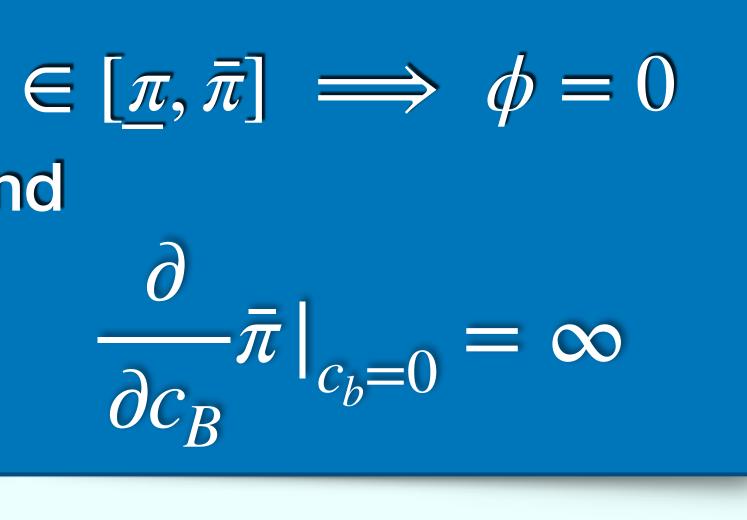
- Menu costs?...
 - cost of menus/stickers
 - manager time
- ... but changing pricing also incurs manager time!

- Cost c_R of changing bands e.g.
- Used old policies if

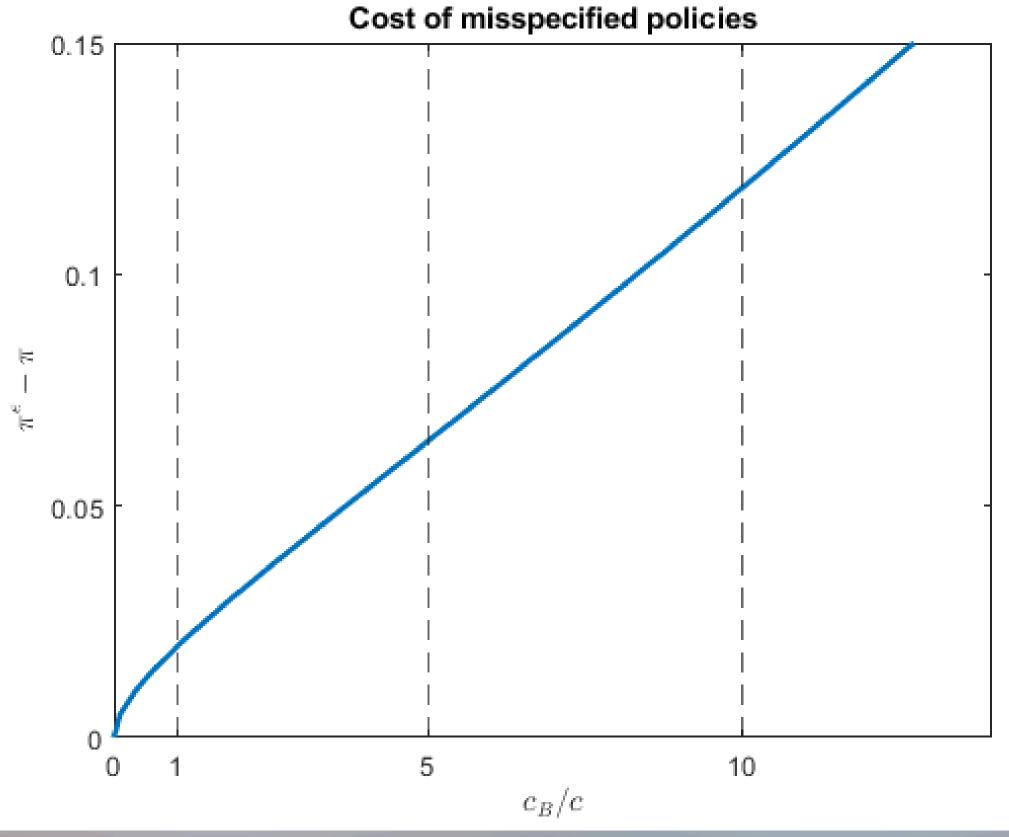
$$V(\underline{x}(\pi_0), x^*(\pi_0), \pi^e) \ge V^*(\pi^e) + c_B$$

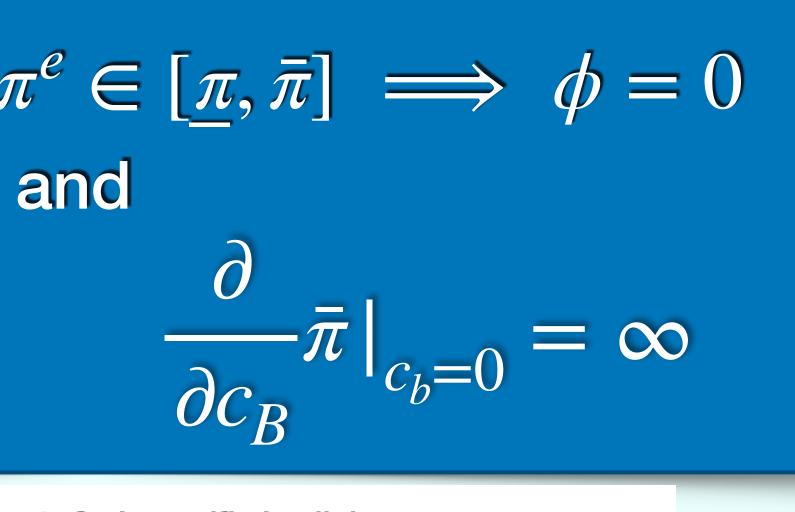
$$c_B/c \in [1, 10]$$

Proposition. a. inaction region: $\pi^e \in [\underline{\pi}, \overline{\pi}] \implies \phi = 0$ b. $\overline{\pi}$ increasing in c_B and



Proposition. a. inaction region: $\pi^e \in [\underline{\pi}, \overline{\pi}] \implies \phi = 0$ b. $\bar{\pi}$ increasing in c_B and





- Adds idioysncratic shocks... (follow Alvarez et al)
 - extreme: $\phi = \infty$!
 - move both bands up!

- Adds idioysncratic shocks... (follow Alvarez et al)
 - extreme: $\phi = \infty!$
 - move both bands up!
- Short run friction...
 - mitigates effect
 - less if constraint on total adjustments $h_+ + h_-$

- Adds idioysncratic shocks... (follow Alvarez et al)
 - extreme: $\phi = \infty!$
 - move both bands up!
- Short run friction...
 - mitigates effect
 - less if constraint on total adjustments $h_+ + h_-$

- Adds idioysncratic shocks... (follow Alvarez et al)
 - extreme: $\phi = \infty!$
 - move both bands up!
- Short run friction...
 - mitigates effect
 - less if constraint on total adjustments $h_+ + h_-$
- mc^2 even stronger mitigation (care less as much about inflation)

- Adds idioysncratic shocks... (follow Alvarez et al)
 - extreme: $\phi = \infty!$
 - move both bands up!
- Short run friction...
 - mitigates effect
 - less if constraint on total adjustments $h_+ + h_-$
- mc^2 even stronger mitigation (care less as much about inflation)

- Adds idioysncratic shocks... (follow Alvarez et al)
 - extreme: $\phi = \infty!$
 - move both bands up!
- Short run friction...
 - mitigates effect
 - less if constraint on total adjustments $h_+ + h_-$
- mc^2 even stronger mitigation (care less as much about inflation)
- Generation 3.0 menu cost models? (N goods, free price changes, etc.)

Conclusions

Conclusions

- Results...
 - expectations ...
 - state dependent: extreme, added frictions

• time dependent: lower passthrough than 1, sufficient statistics, short-run

Conclusions

- Results...
 - expectations ...
 - state dependent: extreme, added frictions
- Other benefits?...
 - inspect mechanisms: economic intuition (overshoot)
 - look at other shocks in menu costs than just monetary policy
 - suggests extensions of menu cost models
 - spillovers to learning: inspect feedback (understood to be important)
 - spillover to empirics: measure overshoot, sufficient stats, ...

• time dependent: lower passthrough than 1, sufficient statistics, short-run

Inattention and Behavioral Agents

- Other options to affect response of inflation
 - agents do not revise expectations
 - or just do not act on them:
 - curve

Examples: rational inattention, imperfect information, Hybrid NK Phillips