Expectations and the Rate of Inflation

Iván Werning MIT
Expectations → Inflation?

Q: Passthrough in standard models?
Expectations → Inflation?

- Widespread belief… YES!
 - managing expectations is key…
 - … expectations cause inflation…
 - … near one-for-one

Q: Passthrough in standard models?
Expectations → Inflation?

• Widespread belief… **YES!**
 • managing expectations is key…
 • … expectations cause inflation…
 • … near one-for-one
• Recent events…
 2021: expectations anchored, inflation will be small & transitory
 2022: tighten monetary policy to lower expectations

Q: Passthrough in standard models?
Expectations → Inflation?

• Widespread belief… YES!
 • managing expectations is key…
 • … expectations cause inflation…
 • … near one-for-one

• Recent events…
 2021: expectations anchored, inflation will be small & transitory
 2022: tighten monetary policy to lower expectations

• What do we know?…
 • Evidence: difficult, but some promising recent work
 • Theories: Calvo gives 1-to-1? others?…

Q: Passthrough in standard models?
This Paper

• Standard pricing models…
 ▪ time-dependent: Calvo, Taylor, general
 ▪ state-dependent “menu costs”

• Solve: Optimal Pricing + Aggregation

• Important…
 • allow for arbitrary expectations π^e
 • “temporary equilibrium” (learning literature)

• Passthrough: $\pi = \phi \pi^e + \text{other stuff}$

• Full Phillips Curve $\pi_t = \sum \phi_s \pi^e_{t+s} + \sum \phi_s \pi_{t+s} + \cdots$
expectations of inflation → price/wage setters → inflation
Expectation Formation

expectations of inflation → price/wage setters → inflation
Expectation Formation

- Expectations of inflation
- Expectations of output
- Expectations etc.

→ Price/wage setters

→ Consumption

→ Policy

→ Inflation

→ Output

→ Etc.
Expectation Formation

Paper Focus
Contributions

- expectations of inflation
- price/wage setters
- inflation
Contributions

- Expectations of inflation
- Price/wage setters
- Inflation

Simple Passthrough Metric
Contributions

expectations of inflation → price/wage setters → inflation

Explore Wide Range of Pricing Model
Simple Passthrough Metric
Contributions

- **Expectations of Inflation**
- **Price/Wage Setters**
- **Inflation**

Short vs Long Run Expectations?
Explore Wide Range of Pricing Model
Simple Passthrough Metric
Results #1

- Passthrough: *wide range*…
 - dependent on pricing model
 - not \(\sim 1\), potentially low

- Calvo: in theory \(\phi \to 0\) if prices very sticky…
 … in practice \(\phi \approx 1\)

- Taylor: \(\phi = \frac{1}{2}\)

- **Sufficient statistics** for general time-dependent…

\[
\phi = \frac{\text{duration of ongoing}}{\text{duration of completed}}
\]
Results #2

• Q: How low can we go? A: $\phi^* = \frac{1}{2}$ Taylor!

• Q: How high? A: any $\phi > 1$!

• Full Phillips Curve…

$$\pi_t = \sum_{s=0}^{\infty} \phi_s \pi_{t+s} + \sum_{s=-1}^{-\infty} \phi_s \pi_{t+s} + \cdots$$

• coefficients ϕ_s fall and zero outside rigidity

• long-run Phillips curve vertical: $\sum_{s=-\infty}^{\infty} \phi_s = 1$
Results #2

- Q: How low can we go? A: $\phi^* = \frac{1}{2}$ Taylor!
- Q: How high? A: any $\phi > 1$!

- Full Phillips Curve...

$$\pi_t = \sum_{s=0}^{\infty} \phi_s \pi_{t+s} + \sum_{s=-\infty}^{-1} \phi_s \pi_{t+s} + \cdots$$

- coefficients ϕ_s fall and zero outside rigidity

- long-run Phillips curve vertical: $\sum_{s=-\infty}^{\infty} \phi_s = 1$
Results #3

• Basic state dependent “menu cost”...
 • passthrough extreme, very sensitive to specification...
• Sheshinksi-Weiss: $\phi < 0$
• Golosov-Lucas: $\phi > 1$

• Extensions...
 • Short run: fixed frequency $\phi < 1/2$
 • Menu costs for changing bands: $\phi = 0$
Related Literature

- **Empirical Expectations**: Coibion-Gorodnichenko-Ropele, Coibion-Gorodnichenko-Kumar, Rosolia

- **Non-Rational Expectations**: Preston, Garcia-Woodford, Farhi-Werning

- **Phillips Curve**: Whelan, Sheedy, Wang-Werning, Auclert-Rigato—Rognlie-Straub

- **Menu Costs**: Sheshinski-Weiss, Alvarez-Beraja-Gonzalez-Neumeyer
Overview

1. Calvo \(\phi = 1 \)
2. Taylor \(\phi = \frac{1}{2} \)
3. General Time-Dependent \(\phi = \text{ongoing/completed} \)
4. Basic State Dependent
5. Extension to State Dependent
Calvo

• Goal…
 • passthrough from inflation expectation to inflation
 • holding everything else fixed, real marginal costs, demand, interest rates, etc.

• Wrong answer: use NK Phillips curve $\phi = \beta \approx 1$

$$\pi_t = \kappa x_t + \beta E_t \pi_{t+1}$$
Calvo

• Goal…
 • passthrough from inflation expectation to inflation
 • holding *everything* else fixed, real marginal costs, demand, interest rates, etc.

• Wrong answer: use NK Phillips curve $\phi = \beta \approx 1$

$$\pi_t = \kappa x_t + \beta \mathbb{E}_t \pi_{t+1} = \kappa \sum_{s=0}^{\infty} \beta^s \mathbb{E}_t [x_{t+s}]$$
Calvo

- Goal...
 - passthrough from inflation expectation to inflation
 - holding *everything* else fixed, real marginal costs, demand, interest rates, etc.
- Wrong answer: use NK Phillips curve $\phi = \beta \approx 1$

\[
\pi_t = \kappa x_t + \beta \mathbb{E}_t \pi_{t+1} = \kappa \sum_{s=0}^{\infty} \beta^s \mathbb{E}_t [x_{t+s}] \]

$\phi = 0?$
Calvo

• Goal…

• passthrough from inflation expectation to inflation

• holding *everything* else fixed, real marginal costs, demand, interest rates, etc.

• **Wrong answer:** use NK Phillips curve $\phi = \beta \approx 1$

\[
\pi_t = \kappa x_t + \beta \mathbb{E}_t \pi_{t+1} = \kappa \sum_{s=0}^{\infty} \beta^s \mathbb{E}_t [x_{t+s}]
\]

Rational Expectation \rightarrow inflation & real marginal costs tied up

Need to separate them!
\[p_t^* = \mu + (1 - \beta \lambda) \sum_{s=0}^{\infty} (\beta \lambda)^s (P_{t+s}^e + m c_{t+s}^e) \]
Calvo

\[p_t^* - P_{t-1} = (1 - \beta \lambda) \sum_{s=0}^{\infty} (\beta \lambda)^s (P_{t+s}^e - P_{t-1}) + a_t \]
\[p_t^* - P_{t-1} = (1 - \beta \lambda) \sum_{s=0}^{\infty} (\beta \lambda)^s (P_{t+s}^e - P_{t-1}) + a_t \]

\[\pi_t = (1 - \lambda)(p_t^* - P_{t-1}) \]
Calvo

\[p_t^* - P_{t-1} = (1 - \beta \lambda) \sum_{s=0}^{\infty} (\beta \lambda)^s (P_{t+s}^e - P_{t-1}) + a_t \]

\[\pi_t = (1 - \lambda)(p_t^* - P_{t-1}) \]

\[P_{t+s} - P_{t-1} = \pi^e (1 + s) \]

Simple Inflation Expectation
Calvo

\[p_t^* - P_{t-1} = (1 - \beta \lambda) \sum_{s=0}^{\infty} (\beta \lambda)^s (P_{t+s}^e - P_{t-1}) + a_t \]

\[\pi_t = (1 - \lambda)(p_t^* - P_{t-1}) \]

\[P_{t+s} - P_{t-1} = \pi^e (1 + s) \]

Simple Inflation Expectation

\[p_t^* - P_{t-1} = \frac{1}{1 - \beta \lambda} \pi^e + a_t \]
Calvo

\[p_t^* - P_{t-1} = (1 - \beta \lambda) \sum_{s=0}^{\infty} (\beta \lambda)^s (P_{t+s}^e - P_{t-1}) + a_t \]

\[\pi_t = (1 - \lambda)(p_t^* - P_{t-1}) \]

\[P_{t+s} - P_{t-1} = \pi^e(1 + s) \]

Simple Inflation Expectation

\[p_t^* - P_{t-1} = \frac{1}{1 - \beta \lambda} \pi^e + a_t \]

\[\pi_t = \phi \pi^e + (1 - \lambda) a_t \]

\[\phi = \frac{1 - \lambda}{1 - \beta \lambda} \]
\[\phi = \frac{1 - \lambda}{1 - \beta \lambda} \]
\[\phi = \frac{1 - \lambda}{1 - \beta \lambda} \]

- \(\phi \to 0 \) as \(\lambda \to 1 \) for any \(\beta \)
$\phi = \frac{1 - \lambda}{1 - \beta \lambda}$

- $\phi \to 0$ as $\lambda \to 1$ for any β
- $\phi \to 1$ as $\lambda \to 0$ or $\beta \to 1$
\[
\phi = \frac{1 - \lambda}{1 - \beta \lambda}
\]

- \(\phi \to 0 \) as \(\lambda \to 1 \) for any \(\beta \)
- \(\phi \to 1 \) as \(\lambda \to 0 \) or \(\beta \to 1 \)
Calvo

\[
\phi = \frac{1 - \lambda}{1 - \beta \lambda}
\]

- \(\phi \to 0\) as \(\lambda \to 1\) for any \(\beta\)
- \(\phi \to 1\) as \(\lambda \to 0\) or \(\beta \to 1\)

In theory \(\phi \in (0,1)\)
Calvo

\[
\phi = \frac{1 - \lambda}{1 - \beta \lambda}
\]

- \(\phi \to 0\) as \(\lambda \to 1\) for any \(\beta\)
- \(\phi \to 1\) as \(\lambda \to 0\) or \(\beta \to 1\)

In theory \(\phi \in (0,1)\)

- Continuous-time \(\phi = \frac{1}{\rho/\delta + 1}\)

\(\rho \leq 0.05\) \(\delta \geq 1\) (one year stickiness)
Calvo

\[\phi = \frac{1 - \lambda}{1 - \beta \lambda} \]

- \(\phi \to 0 \) as \(\lambda \to 1 \) for any \(\beta \)
- \(\phi \to 1 \) as \(\lambda \to 0 \) or \(\beta \to 1 \)

In theory \(\phi \in (0,1) \)

- Continuous-time \(\phi = \frac{1}{\rho / \delta + 1} \)

\(\rho \leq 0.05 \quad \delta \geq 1 \) (one year stickiness) \(\phi \geq 0.95 \)
Calvo

\[\phi = \frac{1 - \lambda}{1 - \beta \lambda} \]

- \(\phi \to 0 \) as \(\lambda \to 1 \) for any \(\beta \)
- \(\phi \to 1 \) as \(\lambda \to 0 \) or \(\beta \to 1 \)

In theory \(\phi \in (0,1) \)

- Continuous-time \(\phi = \frac{1}{\rho/\delta + 1} \)

\(\rho \leq 0.05 \quad \delta \geq 1 \) (one year stickiness) \(\phi \geq 0.95 \)

In practice \(\phi \approx 1 \)
Overview

1. Calvo $\phi = 1$

2. Taylor $\phi = \frac{1}{2}$

3. General Time-Dependent $\phi = \text{ongoing/completed}$

4. Basic State Dependent

5. Extension to State Dependent
Taylor $\beta \rightarrow 1$

- Fixed prices for N periods…
- … staggered across goods

\[p_t^* - P_t = \frac{1}{N} \sum_{s=0}^{N-1} P_{t+s}^e + a_t \]

\[\pi_t = \frac{1}{N} (p_t^* - P_{t-1}) \]
Taylor $\beta \rightarrow 1$

- Fixed prices for N periods…
- … staggered across goods

\[p_t^* - P_t = \frac{1}{N} \sum_{s=0}^{N-1} P_{t+s}^e + a_t \]

\[\pi_t = \frac{1}{N} (p_t^* - P_{t-1}) \]

\[\pi_t = \phi \pi^e + \frac{1}{N} a_t \]

\[\phi = \frac{1}{2} + \frac{1}{N} \]
Taylor $\beta \rightarrow 1$

- Fixed prices for N periods...
- ... staggered across goods

\[p_t^* - P_t = \frac{1}{N} \sum_{s=0}^{N-1} P_{t+s}^e + a_t \]

\[\pi_t = \frac{1}{N} (p_t^* - P_{t-1}) \]

\[\pi_t = \phi \pi^e + \frac{1}{N} a_t \]

\[\phi = \frac{1}{2} + \frac{1}{N} \]

\[\phi \approx \frac{1}{2} \]
Taylor $\beta \rightarrow 1$

- Fixed prices for N periods…
- …staggered across goods

\[
\begin{align*}
 p_t^* - P_t &= \frac{1}{N} \sum_{s=0}^{N-1} P_{t+s}^e + a_t \\
 \pi_t &= \frac{1}{N} (p_t^* - P_{t-1})
\end{align*}
\]

\[
\begin{align*}
 \pi_t &= \phi \pi^e + \frac{1}{N} a_t \\
 \phi &= \frac{1}{2} + \frac{1}{N}
\end{align*}
\]

Intuition: Overshooting

Pt^*
Intuition: Overshooting
Intuition: Overshooting

\[P_t \]

\[p_t^* \]

Calvo short spell
Intuition: Overshooting

Graph

- **p_t^***
- **P_t**
- **Calvo long spell**

Legend:
- Orange line represents a long spell.
Intuition: Overshooting

\[P_t \]

\[p_t^* \]

Calvo long spell

tail risk
Intuition: Overshooting

\[P_t \]

long spell

\[p_t^* \]
Intuition: Overshooting

Pt^*

bigger overshoot

long spell
Overview

1. Calvo $\phi = 1$
2. Taylor $\phi = \frac{1}{2}$
3. General Time-Dependent $\phi = \text{ongoing/completed}$
4. Basic State Dependent
5. Extension to State Dependent
General Time Dependent Model

- General profit function: complementarities, markups, real marginal costs etc.
- General hazard rate $\{h_s\}$ for $s = 0, 1, \ldots$
- Two probability densities…
 - completed spells f_s (fraction of spells ending at s)
 - ongoing spells ω_s (fraction time spent at s)
- Accounting…
General Time Dependent Model

- General profit function: complementarities, markups, real marginal costs etc.
- General hazard rate \(\{h_s\} \) for \(s = 0,1,\ldots \)
- Two probability densities...
 - completed spells \(f_s \) (fraction of spells ending at s)
 - ongoing spells \(\omega_s \) (fraction time spent at s)
- Accounting...

\[
\begin{align*}
\bar{h} &= \sum_{s=0}^{\infty} \omega_s h_s = \frac{1}{\bar{d}} \\
\bar{d} &= \sum_{s=0}^{\infty} f_s s \\
\hat{d} &= \sum_{s=0}^{\infty} \omega_s s
\end{align*}
\]

frequency \hspace{2cm} completed duration \hspace{2cm} ongoing duration
General Time Dependent Model $\beta \to 1$

$$\phi = \bar{h} \sum_{s=0}^{\infty} \omega_s (1 + s) = \frac{\sum_{s=0}^{\infty} \omega_s (1 + s)}{\sum_{s=0}^{\infty} f_s (1 + s)} = \frac{\hat{d}}{\bar{d}}$$
General Time Dependent Model $\beta \rightarrow 1$

$$\phi = \bar{h} \sum_{s=0}^{\infty} \omega_s (1 + s) = \frac{\sum_{s=0}^{\infty} \omega_s (1 + s)}{\sum_{s=0}^{\infty} f_s (1 + s)} = \frac{\hat{d}}{\bar{d}}$$
General Time Dependent Model $\beta \rightarrow 1$

$$\phi = \bar{h} \sum_{s=0}^{\infty} \omega_s (1 + s) = \frac{\sum_{s=0}^{\infty} \omega_s (1 + s)}{\sum_{s=0}^{\infty} f_s (1 + s)} = \frac{\hat{d}}{\tilde{d}}$$

- Calvo $\tilde{d} = \hat{d}$
- Taylor $\hat{d} = \frac{1}{2} \tilde{d}$
General Time Dependent Model $\beta \rightarrow 1$

\[
\phi = \bar{h} \sum_{s=0}^{\infty} \omega_s (1 + s) = \frac{\sum_{s=0}^{\infty} \omega_s (1 + s)}{\sum_{s=0}^{\infty} f_s (1 + s)} = \frac{\hat{d}}{\bar{d}}
\]

- Calvo $\bar{d} = \hat{d}$
 Taylor $\hat{d} = \frac{1}{2} \bar{d}$

- Frequency of price adjustments irrelevant!
 \uparrow frequency \downarrow overshoot
General Time Dependent Model $\beta \rightarrow 1$

$$\phi = \bar{h} \sum_{s=0}^{\infty} \omega_s (1 + s) = \frac{\sum_{s=0}^{\infty} \omega_s (1 + s)}{\sum_{s=0}^{\infty} f_s (1 + s)} = \frac{\hat{d}}{\bar{d}}$$

- Calvo $\bar{d} = \hat{d}$
 Taylor $\hat{d} = \frac{1}{2} \bar{d}$

- Frequency of price adjustments irrelevant!
 \uparrow frequency \downarrow overshoot

- Heterogeneity

$$\phi = \int \frac{\hat{d}(i)}{\bar{d}(i)} \, di$$

- Ongoing
- Completed
General Time Dependent Model $\beta \rightarrow 1$

\[
\phi = \bar{h} \sum_{s=0}^{\infty} \omega_s (1 + s) = \frac{\sum_{s=0}^{\infty} \omega_s (1 + s)}{\sum_{s=0}^{\infty} f_s (1 + s)} = \frac{\hat{d}}{\bar{d}}
\]

- Calvo $\hat{d} = \hat{d}$
 Taylor $\hat{d} = \frac{1}{2} \hat{d}$

- Frequency of price adjustments irrelevant!

 \uparrow frequency \downarrow overshoot

- Heterogeneity

\[
\phi = \int \frac{\hat{d}(i)}{\bar{d}(i)} \, di \neq \int \frac{1}{\bar{d}(i)} \, di \cdot \int \hat{d}(i) \, di
\]
General Time Dependent Model $\beta \rightarrow 1$

$$
\phi = \bar{h} \sum_{s=0}^{\infty} \omega_s (1 + s) = \frac{\sum_{s=0}^{\infty} \omega_s (1 + s)}{\sum_{s=0}^{\infty} f_s (1 + s)} = \frac{\hat{d}}{\bar{d}}
$$

- Calvo $\hat{d} = \hat{d}$
- Taylor $\hat{d} = \frac{1}{2} \bar{d}$

- Frequency of price adjustments irrelevant!
 - \uparrowfrequency \downarrowovershoot

- Heterogeneity

$$
\phi = \int \frac{\hat{d}(i)}{\bar{d}(i)} di \neq \int \frac{1}{\bar{d}(i)} di \cdot \int \hat{d}(i) di \neq \frac{\int \hat{d}(i) di}{\int \bar{d}(i) di}
$$
Phillips Curve

Proposition.

\[\pi_t = \sum_{s=0}^{\infty} \phi_s \pi_{t+s}^e + \sum_{s=-1}^{-\infty} \phi_s \pi_{t+s} + a_t \]

\(\phi_s \) decreasing \(\phi_s \rightarrow \infty \rightarrow 0 \)

Long-Run Phillips Curve Vertical \(\sum_{s=-\infty}^{\infty} \phi_s = 1 \)
Phillips Curve

Proposition.

\[\pi_t = \sum_{s=0}^{\infty} \phi_s \pi_{t+s} + \sum_{s=-1}^{-\infty} \phi_s \pi_{t+s} + a_t \]

\(\phi_s \) decreasing \(\phi_s \rightarrow \infty \rightarrow 0 \)

Long-Run Phillips Curve Vertical \(\sum_{s=-\infty}^{\infty} \phi_s = 1 \)

• Intuition: early inflation affects current and future periods effects zero outside rigidity!
Phillips Curve

Proposition.

\[\pi_t = \sum_{s=0}^{\infty} \phi_s \pi_{t+s}^e + \sum_{s=-1}^{-\infty} \phi_s \pi_{t+s} + a_t \]

\(\phi_s \) decreasing \(\phi_s \to \infty \to 0 \)

Long-Run Phillips Curve Vertical \(\sum_{s=-\infty}^{\infty} \phi_s = 1 \)

• **Intuition:** early inflation affects current and future periods effects zero outside rigidity!

• Sheedy (2010) Rational Expectations: \(\hat{\phi}_1 = 1 \) (as NK) and \(\hat{\phi}_s < 0 \)
Overview

1. Calvo $\phi = 1$
2. Taylor $\phi = \frac{1}{2}$
3. General Time-Dependent $\phi = \text{ongoing/completed}$
4. State Dependent
5. State Dependent with Frictions
State Dependent “Menu Costs”
State Dependent “Menu Costs”

- Steady State: Sheshinski-Weiss (1977)
 - menu cost c of changing price
 - constant inflation π
 - bands for $x = p - P$
State Dependent “Menu Costs”

- Steady State: Sheshinski-Weiss (1977)
 - menu cost c of changing price
 - constant inflation π
 - bands for $x = p - P$

- Out of Steady Steady…
 - start at steady state π_0
 - shock expectations: π^e rises
 - what do firms do on in short run?
State Dependent “Menu Costs”
State Dependent “Menu Costs”

- $t < 0$ uniform density over interval $[x, x^*]$
State Dependent “Menu Costs”

- $t < 0$ uniform density over interval $[x, x^*]$
- $t = 0$ widen bands! …
State Dependent “Menu Costs”

• $t < 0$ uniform density over interval $[x, x^*]$

• $t = 0$ widen bands! …

No Price Changes!

$\pi = 0$
State Dependent “Menu Costs”

- $t < 0$ uniform density over interval $[x, x^*]$
- $t = 0$ widen bands! ...

Proposition. (Sheshinksi-Weiss)

a. ↑ π^e \hspace{1cm} $\pi = 0$

b. ↓ π^e \hspace{1cm} $P_+ > P_-$

- No Price Changes!
 \[\pi = 0 \]

\[\text{“} \phi = -\infty \text{”} \]
Overview

1. Calvo $\phi = 1$
2. Taylor $\phi = \frac{1}{2}$
3. General Time-Dependent $\phi = \text{ongoing/completed}$
4. Basic State Dependent
5. Extension to State Dependent
State Dependent

- Extreme shifts in frequency of price changes
- Realistic? Maybe not…
 - Firms *really* stop changing prices? Unlikely!
- Two ideas…
 - short-run fixed frequency
 - fixed costs of changing bands
Short Run Frictions (Extension #1)
Short Run Frictions (Extension #1)

• Idea…
 • devoted resources for changing prices
 • fixed in very short run (or adjustment costs)…
 • … but not in medium run
Short Run Frictions (Extension #1)

• Idea…
 • devoted resources for changing prices
 • fixed in very short run (or adjustment costs)…
 • … but not in medium run

• Optimal…
 • firm keeps changing lowest prices
 • how much upper bound?
\[\pi = \bar{h}(x^* - x) \]
Proposition. Sheshinksi-Weiss with Short Run Friction

$\phi \in (0, \frac{1}{2})$

$\pi = \bar{h}(x^* - x)$

x x^* x^*
Proposition. Sheshinksi-Weiss with Short Run Friction

\[\pi = \bar{h}(x^* - x) \]

\(\phi \in (0, \frac{1}{2}) \)

- Intuition…
 - adjust reset price up, **but less than Taylor!**
 - firm anticipates adjusting reset price more quickly
Intuition: Modern Times (1936)
Intuition: Modern Times (1936)
Intuition: Modern Times (1936)
Intuition: Modern Times (1936)
Cost of Changing Pricing Policies
Cost of Changing Pricing Policies

- Menu costs?...
 - cost of menus/stickers
 - manager time
- ... but changing pricing also incurs manager time!

- Cost c_B of changing bands e.g. $c_B/c \in [1,10]$
- Used old policies if mc^2
Cost of Changing Pricing Policies

- Menu costs?...
 - cost of menus/stickers
 - manager time
- ... but changing pricing also incurs manager time!

- Cost c_B of changing bands e.g. $c_B/c \in [1,10]$
- Used old policies if

$$V(x(\pi_0), x^*(\pi_0), \pi^e) \geq V^*(\pi^e) + c_B$$
Proposition.

a. inaction region: $\pi^e \in [\pi, \bar{\pi}] \implies \phi = 0$

b. $\bar{\pi}$ increasing in c_B and

$$\frac{\partial}{\partial c_B} \bar{\pi} \big|_{c_b=0} = \infty$$
Proposition.

a. inaction region: \(\pi^e \in [\pi, \bar{\pi}] \implies \phi = 0 \)

b. \(\bar{\pi} \) increasing in \(c_B \) and

\[
\left. \frac{\partial}{\partial c_B} \bar{\pi} \right|_{c_B=0} = \infty
\]
Golosov-Lucas

- Adds idiosyncratic shocks… (follow Alvarez et al)
 - extreme: $\phi = \infty$
 - move both bands up!
• Adds idiosyncratic shocks… (follow Alvarez et al)
 • extreme: \(\phi = \infty! \)
 • move both bands up!

• Short run friction…
 • mitigates effect
 • less if constraint on total adjustments \(h_+ + h_- \)
Golosov-Lucas

- Adds idiosyncratic shocks… (follow Alvarez et al)
 - extreme: \(\phi = \infty \)
 - move both bands up!

- Short run friction…
 - mitigates effect
 - less if constraint on total adjustments \(h_+ + h_- \)
Golosov-Lucas

• Adds idioysncratic shocks… (follow Alvarez et al)
 • extreme: $\phi = \infty$!
 • move both bands up!

• Short run friction…
 • mitigates effect
 • less if constraint on total adjustments $h_+ + h_-$

• mc^2 even stronger mitigation (care less as much about inflation)
Golosov-Lucas

• Adds idiosyncratic shocks… (follow Alvarez et al)
 • extreme: $\phi = \infty$!
 • move both bands up!

• Short run friction…
 • mitigates effect
 • less if constraint on total adjustments $h_+ + h_-$

• mc^2 even stronger mitigation (care less as much about inflation)
Golosov-Lucas

- Adds idiosyncratic shocks… (follow Alvarez et al)
 - extreme: $\phi = \infty$!
 - move both bands up!

- Short run friction…
 - mitigates effect
 - less if constraint on total adjustments $h_+ + h_-$

- mc^2 even stronger mitigation (care less as much about inflation)

- Generation 3.0 menu cost models? (N goods, free price changes, etc.)
Conclusions

• Results…
 - time dependent: lower passthrough than 1, sufficient statistics, short-run expectations …
 - state dependent: extreme, added frictions
Conclusions

• Results…
 • time dependent: lower passthrough than 1, sufficient statistics, short-run expectations …
 • state dependent: extreme, added frictions

• Other benefits?…
 • inspect mechanisms: economic intuition (overshoot)
 • look at other shocks in menu costs than just monetary policy
 • suggests extensions of menu cost models
 • spillovers to learning: inspect feedback (understood to be important)
 • spillover to empirics: measure overshoot, sufficient stats, …
Inattention and Behavioral Agents

• Other options to affect response of inflation
 • agents do not revise expectations
 • or just do not act on them:
 • Examples: rational inattention, imperfect information, Hybrid NK Phillips curve