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Abstract

Studies of wage cyclicality typically examine the behavior of average hourly earn-
ings or, in some cases, the wages of new hires. But both measures fail to capture
cyclicality in the effective cost of labor in the presence of (i) cyclical fluctuations in the
quality of worker-firm matches being compared, and (ii) wages being smoothed within
employment matches. To address both concerns, we estimate cyclicality in labor’s user
cost, that is the impact on present-discounted wages of employing an added worker,
while exploiting the expected long-run wage in a match as a proxy for its quality.
Using NLSY data for 1980 to 2019, we find that labor’s user cost is highly procyclical,
increasing by more than 5% for a 1 pp decline in the unemployment rate. Nearly half
of this magnitude reflects a procyclical quality-adjusted new-hire wage, while the rest
reflects that hiring in a boom predicts higher subsequent wages within a match.
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1 Introduction
Going back to Pigou’s Industrial Fluctuations (1927), economists have examined the cycli-
cality of real wages to disentangle the sources of employment fluctuations. Business cycle
models can be stratified between those that generate fluctuations along a stable labor de-
mand schedule, with a countercyclical real wage, versus those that assign a primary role to
procyclical shifts in the schedule and a procyclical real wage. The former includes Keynes
(1936) and many after who postulate sticky nominal wages, with nominal shocks driving
employment. The latter includes models with productivity shocks, financial shocks affecting
factor demands (Arellano, Bai, and Kehoe, 2019), or countercyclical markups (Rotemberg
and Woodford, 1999), possibly reflecting pricing frictions.

There have been many efforts since Pigou’s to estimate the cyclicality of real wages.1

For many countries and most periods, average hourly earnings appear acyclical or modestly
procyclical. But cyclicality in average hourly earnings is potentially a poor proxy for that in
the effective price of labor. For one, average hourly earnings fail to control for cyclicality in
the quality of workers or worker-firm matches. Secondly, it treats the wages of all workers,
even those in long-term employment relations, as if their wages are determined in a spot
market. The implicit-contracting literature, e.g., Azariadis (1975), stresses that employers
have an incentive to smooth wages to insure workers. Therefore, even if wages within matches
are rigid, this does not imply a rigid effective price for firms in hiring workers or for workers
in deciding whether to seek jobs.2

To hold the quality composition of workers fixed, many authors have examined wage
cyclicality excluding workers entering or exiting the workforce or even those changing em-
ployers.3 But this exacerbates the second measurement problem by restricting attention to
those workers whose wages are especially likely to be smoothed within longer-term employ-
ment relations.

Out of concern that wages are smoothed within employment matches, a number of au-
thors focus on wage cyclicality for new hires. But this approach to measuring labor’s price
still suffers from the issues of composition and wage smoothing. Firstly, the wage of new

1Pigou (1927) charted real wages for Britain from 1850 to 1910 and found that “the upper halves of trade
cycles have, on the whole, been associated with higher real wages than the lower halves.”

2Hall (1980) states this as: “Wages are insensitive to current economic conditions because they are
effectively installment payments on the employer’s obligation.” Consider an analogy to mortgage rates.
Basing the cyclicality of real wages on all matches parallels measuring mortgage rates based on the average
across all existing mortgages, including those initiated five or even twenty-five years earlier. Such a series
(see Berger, Milbradt, Tourre, and Vavra, 2021, Figure 9) is extremely smooth relative to a series reflecting
mortgage rates on newly initiated loans.

3See, for example, Stockman (1983), Bils (1985), Solon, Barsky, and Parker (1994), Devereux (2001), and
Grigsby (2021).
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hires at a given time reflects the particular workers and firms that compose those hires.
That composition is distinct from the workers and firms forming hires in adjoining periods
that provide a basis for cyclical comparisons. Therefore, focusing on new hires exacerbates
any concerns that estimated cyclicality reflects variation in the quality of workers, firms, or
matches. Secondly, with wage smoothing, the new-hire wage can still be a poor proxy for
measuring cyclicality in the price of labor. Intuitively, if hiring in the depth of a recession
locks in, to some extent, a lower wage going forward in the match, then the effective price of
labor, which captures the expected future wages, will be even lower than the new-hire wage
and, therefore, more cyclical than reflected by the new-hire wage (Kudlyak, 2014).

We estimate the cyclicality of the price of labor addressing (1) potential cyclical variations
in firm-worker match quality, and (2) wage smoothing within matches. We treat the expected
long-run wage in a match as an estimate for its quality. Intuitively, if workers predictably
exhibit faster subsequent wage growth if hired in recessions, then we infer that recessions act
to depress wages relative to match productivity. Or, in other words, that the quality-adjusted
wage is procyclical. Our approach to adjust for quality relies on two assumptions. While the
approach differences away any fixed heterogeneity in match qualities, it does not eliminate
quality changes that may occur within matches. Therefore, our first assumption is that any
quality change within matches is independent of whether a job begins in recessions or booms.
We provide empirical support for this assumption based on proxies for quality change. Our
approach allows for wage smoothing; that is, conditions at the start of a match can influence
the wage going forward. Our second assumption is that the impact of wage smoothing
dissipates in the long run, which we treat as eight years. If this assumption is violated, our
results give a conservative estimate for cyclicality of quality-adjusted wages because wage
effects that persist will be treated as quality, reducing cyclicality of quality-adjusted wages.

By the cyclical price of labor we mean cyclicality of its user cost, where, as in Kudlyak
(2014), user cost is defined as the impact on a firm’s present-discounted wages of adding a
worker today while adjusting future hiring to hold constant future employments. Cyclicality
of that user cost reflects, not only the cycle’s impact on the new-hire wage, but also its
impact cycle on the future wage path for a match that starts now rather than later. Given
these distinct components, we first estimate cyclicality of the quality-adjusted new-hire wage
before proceeding to estimate the cyclicality in labor’s user cost.

Our estimates are based on two long worker panels from the National Longitudinal Sur-
veys, the NLSY1979 and NLSY1997 spanning years 1980 to 2019. From these, we can
estimate cyclicality of the new-hire wage and user cost for 1980 to 2012. We find that the
quality-adjusted new-hire wage is highly procyclical, decreasing by 2.3% for a 1 pp increase in
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the unemployment rate. It is nearly as cyclical for those hires transiting via non-employment
as for those moving job-to-job.

We find that the user cost of labor is considerably more cyclical than the new-hire wage,
decreasing by more than 5% for a 1 pp increase in unemployment. This cyclicality is robust to
allowing for cyclicality in separation rates and rates of time discount. This strong cyclicality
for user cost is actually very much in line with that estimated, using different methods,
by Kudlyak (2014) and Basu and House (2016), and by Doniger (2021) for college-trained
workers. (Doniger estimates an even more cyclical user cost for college-trained workers.)

Our approach to match quality is most closely related to Bellou and Kaymak (2012,
2021). They demonstrate history dependence in wages by showing that wage growth within
matches reflects, not only current economic conditions, but also conditions earlier in the
match. Our focus on labor’s user cost follows Kudlyak (2014). Kudlyak (2014), Basu and
House (2016), and Doniger (2021), as mentioned, each find highly cyclical user cost. We
find that this remains true after controlling for quality of matches. Doniger (2021) takes
a control function approach to capture quality of new matches based on observables (e.g.,
match duration). One of our robustness exercises marries our approach with Doniger’s
control-function approach for jobs with shorter durations. Other papers studying cyclicality
of match quality include Devereux (2004) and Figueiredo (Forthcoming).

Our user-cost approach to the price of labor is motivated by a long list of works document-
ing history dependence or wage smoothing in wages (Beaudry and DiNardo, 1991; Baker and
Gibbs, 1994; Bellou and Kaymak, 2021). It is closely related to studies that examine cycli-
cality of wages for new hires versus incumbent workers (Bils, 1985; Carneiro, Guimaraes, and
Portugal, 2012; Martins, Solon, and Thomas, 2012; Haefke, Sonntag, and van Rens, 2013;
Gertler, Huckfeldt, and Trigari, 2020; Grigsby, Hurst, and Yildirmaz, 2021).4 That includes
studies that show a large, fairly persistent negative impact on wages from exiting school into
a weak economy (Kahn, 2010; Oreopoulos, von Wachter, and Heisz, 2012).

The balance of the paper proceeds as follows. The next section outlines our framework
to control for quality and the implied measures for cyclicality of wages for new hires and
cyclicality of labor’s user cost. We describe our data and empirical implementation in Section
3. Results are presented in Section 4, these include a number of robustness exercises to relax
our key identifying assumption. Section 5 compares our estimates for cyclicality of new-hire
wages to estimates taking prior approaches from the literature. We sum up in the last section,
then discuss the implications of our results for understanding employment fluctuations.

4Carneiro et al. (2012) and Martins et al. (2012) each find greater cyclicality of wages for new hires in
Portugal even controlling for measures of quality. Carneiro et al. (2012) employ firm fixed-effects as quality
controls, while Martins et al. (2012) restrict attention to entry-level jobs in order to reduce variation in
quality.
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2 Framework to Estimate the Cyclical Price of Labor
2.1 Wage smoothing and the cyclical price of labor

We can express the wage, gross of match quality, for worker i in firm j in period t+ τ for a
match that started in t as:

wij
t,t+τ = ϕt,t+τq

ij
t,t+τ , (1)

where qijt,t+τ is the idiosyncratic component of productivity, i.e., match quality. It reflects
worker i, firm j, and worker-firm ij match effects. The t+ τ subscripts allow match quality
to potentially change over the the course of the match.

We interpret match quality qijt,t+τ in terms of productivity. Therefore, netting it out
produces a quality-adjusted wage from the firm’s perspective. A quality-adjusted wage from
the worker’s perspective would instead net out amenity values of the match.

ϕt,t+τ denotes that quality-adjusted wage. For instance, the quality-adjusted new-hire
wage is ϕt,t. For this subsection, in order to focus on the impact of wage smoothing for
measures of cyclicality in the price of labor, we assume one can measure or control for qijt,t+τ .

If the labor market functioned like a spot market, with no history dependence in wages,
then we could drop the subscript reflecting starting date (ϕt,t+τ = ϕt+τ ). One could then
consistently estimate cyclicality in the price of labor based on behavior of average wages,
new-hire wages, or any other subset. But if wages within matches are insulated from market
fluctuations then it becomes necessary to net that insurance component from wages.

As a result, many papers have looked at wage rates for new hires. The differential in the
ln wage for new hires versus the average ln wage in time t, again, controlling for quality is:

lnϕt,t −
∞∑
i=0

ωi lnϕt−i,t =
∞∑
i=1

ωi

(
lnϕt,t − lnϕt−i,t

)
,

where the ωi’s are employment shares by duration of tenure, i. So the common finding
of greater wage cyclicality for new-hires is typically interpreted to show that the effective
cyclical price of labor is more cyclical than average wage rates, with more senior workers’
wages “smoothed” or insured.

But if ϕt,t differs from ϕt−1,t, then one should logically expect that ϕt,t+1 can differ from
ϕt+1,t+1, ϕt,t+2 from ϕt+1,t+2, and so forth. That is, the future wage path on a job can depend
on the state of the labor market as of its start date. This leads Kudlyak (2014) to examine
cyclicality in the user cost of labor as labor’s cyclical price. More exactly, define the wage
component of labor’s user cost as:

UCt = Et

[
ϕt,t +

∞∑
τ=1

βτ (1− δ)τ
(
ϕt,t+τ − ϕt+1,t+τ

)]
. (2)
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The discount factor β(1 − δ) reflects time discounting, β, and the rate of job exit, δ.5 For
exposition, (2) treats β(1 − δ) as constant; but we allow both β and δ to time-vary in the
empirical work. (Appendix A defines user cost allowing β to vary and the separation rate,
δ, to vary both with the time and with a match’s start date, t.)

For intuition for (2), contemplate a firm hiring one additional worker in t, then reducing
hiring by 1− δ workers in t+ 1. This perturbation leaves total labor input unaffected from
t + 1 forward and leaves the starting dates of workers unaffected, except as of t + 1 now
(1 − δ) workers will have start dates of t rather than t + 1. Absent history dependence in
wages, there will be no differential in wage paths going forward from t, and UCt reduces to
ϕt,t = ϕt. Even with history dependence, if there is no expected differential in wage paths
hiring at t and t+1, perhaps because expected labor market conditions are not expected to
change, then UCt would reduce to ϕt,t. But more generally, the user cost of labor will reflect
differential future wage paths. For instance, suppose that high unemployment reduces the
new-hire wage. If that lower wage persists in the match, and labor conditions are anticipated
to improve, then labor cost in (2) is pushed below the new hire wage because hiring in a
bust allows the firm to partially lock in a lower wage rate. If discounting, from β(1− δ), is
not too extreme and the lock-in effect on wages not too transitory, then equation (2) implies
labor’s user cost can be much more cyclical than the new-hire wage.

For the empirics, we will consider the ln of user cost. Taking a first-order approximation
to equation (2) in the neighborhood of ϕt+1,t+τ = ϕt,t+τ , that is, in the neighborhood of no
wage history dependence, yields:6

lnUCt ≈ Et

[
lnϕt,t +

∞∑
τ=1

βτ (1− δ)τ
ϕt,t+τ

ϕt,t

(
lnϕt,t+τ − lnϕt+1,t+τ

)]
.

If we evaluate this approximation for reasonably small business cycle movements in wages
(near ϕt,t+τ

ϕt,t
= 1) it further reduces to:

lnUCt ≈ Et

[
lnϕt,t +

∞∑
τ=1

βτ (1− δ)τ
(
lnϕt,t+τ − lnϕt+1,t+τ

)]
. (3)

5Labor’s user cost will also reflect the impact on the present-discounted value of any hiring costs, e.g.,
vacancy posting costs, of hiring at t versus t + 1. For instance, in Mortensen and Pissarides (1994) models
this cost is typically highly procyclical because the harvest-rate of vacancies is lower in booms. For this
reason, we follow Kudlyak (2014) in referring to (2) as the wage component of labor’s user cost.

6To see this approximation, rewrite eq. (2), taking into account that ϕt,t is in the information set at t, as

UCt = ϕt,tEt

[
1 +

∞∑
τ=t+1

βτ (1− δ)τ
ϕt,t+τ

ϕt,t

(
ϕt,t+τ − ϕt+1,t+τ

ϕt,t+τ

)]
.
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2.2 Identifying match quality by its expected long-run wage

From equation (3), labor’s user cost can be broken into the new-hire wage plus any differential
in the wage path for hires at t versus t + 1. Accordingly, our empirical work begins by
estimating cyclicality in the new-hire wage, while controlling for match quality, then proceeds
to examine cyclicality in labor’s user cost. But first we lay out our approach to control for
match quality based on a match’s expected long-run wage. In turn, that allows to estimate
cyclicality of new hire wages and user cost controlling for quality.

As discussed above, we can write the (ln of the) new-hire wage as:

lnwij
t,t = lnϕt,t + ln qijt,t,

where ϕt,t is the quality-adjusted new-hire wage. So, cyclicality of the quality-adjusted new-
hire wage is:

Cov(Cyclet, lnϕt,t) = Cov(Cyclet, lnw
ij
t,t)− Cov(Cyclet, ln q

ij
t,t)

= Cov(Cyclet, lnwt,t)− Cov(Cyclet, ln qt,t),
(4)

where Cyclet is a measure of the business cycle, such as the unemployment rate. lnwt,t

and ln qt,t, without ij superscripts, denote the population means of lnwij
t,t and ln qijt,t for jobs

starting at t. For example, lnwt,t =
∫
ij
lnwij

t,t. The transition to the second line of (4) reflects
that the variable Cyclet, being purely time-varying, cannot covary with deviations of lnwij

t,t

and ln qijt,t from their means for t. We see immediately from equation (4) that cyclicality of
new-hire wage provides a biased estimate of the cyclicality of the quality-adjusted new-hire
wage unless Cov(Cyclet, ln qt,t) = 0.

The quality of new-hire matches will be cyclical if there is cyclical selection into new jobs
in terms of worker quality, firm quality, or match-specific quality. The direction of overall bias
is hard to sign a priori. In terms of worker quality, Mueller (2017) finds, based on the 1962-
2012 Current Population Surveys, that during recessions the unemployed pool shifts toward
workers with relatively high wages in their prior job, suggesting that the quality of hires will
be countercyclical. Uncontrolled for, this will act as a countercyclical bias in new-hire wages.
At the same time, several papers estimate a sullying effect of recessions, with “good jobs” not
hiring (Barlevy, 2002; Carneiro et al., 2012; Haltiwanger, Hyatt, McEntarfer, and Staiger,
2021). This implies procyclical firm quality, which will lead to a procyclical bias. Finally, the
theories of a cleansing effect of recessions (Mortensen and Pissarides, 1994; Caballero and
Hammour, 1994) imply that matches created in recessions are of a higher quality (higher
threshold for qijt ). That cleansing effect implies countercyclical match quality creating a
countercyclical bias in new-hire wages.
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We can write the quality-adjusted new-hire wage as follows:

lnϕt,t = lnwij
t,t − ln qijt,t

= lnwij
t,t − lnwij

t,t+τ +
(
ln qijt,t+τ − ln qijt,t

)
+ lnϕt,t+τ ,

where the last equality obtains from adding and subtracting lnwij
t,t+τ .

Therefore, cyclicality of the quality-adjusted new-hire wage can be expressed as:

Cov(Cyclet, lnϕt,t) = Cov(Cyclet, lnwt,t − lnwt,t+τ )

+ Cov(Cyclet, ln qt,t+τ − ln qt,t) + Cov(Cyclet, lnϕt,t+τ ),
(5)

where
(
lnwt,t − lnwt,t+τ

)
and

(
ln qt,t+τ − ln qt,t

)
denote the population means of

(
lnwij

t,t −
lnwij

t,t+τ

)
and

(
ln qijt,t+τ − ln qijt,t

)
for jobs starting at t. For example, lnwt,t − lnwt,t+a =∫

ij
(lnwij

t,t− lnwij
t,t+a).7 We take the population for means

(
lnwt,t− lnwt,t+τ

)
and

(
ln qt,t+τ −

ln qt,t
)

as all matches starting at time t. For exposition, we set aside here the important
question of whether matches survive from t to t + τ . We return explicitly to this matter in
Section 3.2.

We now state two assumptions sufficient for the covariances in the second row to be zero.
Assumption 1:

Cov(Cyclet, ln qt,t+τ − ln qt,t) = 0 (6)

Assumption 1 states that the mean change in match quality for matches started at t is
orthogonal to cycle at t. We provide empirical support for this assumption in Section 4.2.2.

Assumption 2:

Cov(Cyclet, lnϕt,t+a) = 0, for a sufficiently large. (7)

Assumption 2 can be viewed more intuitively as implied by a pair of conditions. The first
being Cov(Cyclet, lnϕt+a,t+a) = 0, and the second Cov(Cyclet, lnϕt,t+a − lnϕt+a,t+a) = 0.

The first condition imposes that the current stage of the business cycle does not predict
the new-hire wage a periods ahead. We see this as a natural assumption if a is chosen large
enough so that the current cyclical state does not predict Cyclet+a, that is, the stage of cycle
a periods ahead. We test this assumption in the data for the a we choose in practice, given
measures of the cycle at t and t+ a.

The second condition imposes that wage smoothing is transitory. This is consistent with
models with limited commitment, e.g., Thomas and Worrall (1988), and is supported in the
data, e.g., Beaudry and DiNardo (1991), Bellou and Kaymak (2021). It is important to note
that, to the extent this assumption is violated in practice, it will cause us to understate

7As with equation (4), match-specific deviations from
(
lnwt,t − lnwt,t+τ

)
are orthogonal to Cyclet.
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procyclicality of new-hire wages. For instance, suppose that wages for workers hired during
a recession are lowered indefinitely, as predicted by models with perfect commitment. Then
our assumption will understate the quality of matches that begin in recessions, thereby
understating the procyclicality of wages.

Under these two assumptions, we immediately obtain the following from equation (5):
Implication 1. Given Assumptions 1 and 2, the cyclicality of the quality-adjusted new-

hire wage is

Cov(Cyclet, lnϕt,t) = Cov (Cyclet, lnwt,t − lnwt,t+a) for a≫ 1. (8)

That is, cyclicality of the quality-adjusted new-hire wage equals the negative of cyclicality of
the match’s cumulative wage growth as it moves to its long-term expected wage. Note that
Assumptions 1 and 2, and their Implication 1, do not require that qijt,t = wij

t,t+a, only that
deviations between wij

t,t+a and qijt,t not be correlated with the stage of the cycle at t.
We illustrate Implication 1 in Figure 1a for a match that starts in a recession. Match

quality is captured by the expected wage at t+a. To the extent the match wage predictably
grows faster starting in a recession, this implies that ϕt,t is depressed. Our estimate ϕ̂t,t

reflects that predictable cumulative wage growth from t to t + 8. Figure 1a is drawn such
that Assumption 2 is not completely satisfied as of t + 8, as wt,t+8 still remains below qt,
equal to the expected wage at t+ a. This illustrates the conservative nature of Assumption
2 – to the extent wt,t+8 remains below the expected wage at t + a, we underestimate how
much the recession at t depresses ϕt,t.

Next consider the quality-adjusted user cost. From equation (3), its cyclicality reflects
not only the new-hire wage, but also any impact on future wages by hiring at t versus t+1.
For t+ τ , as an example, that means any impact on lnϕt,t+τ − lnϕt+1,t+τ . But, similarly to
Implication 1, Assumptions 1 and 2 imply that cyclicality of the quality-adjusted wage τ
periods into the match, Cov (Cyclet, lnϕt,t+τ ), is given by Cov (Cyclet, lnwt,t+τ − lnwt,t+a).
Substituting in equation (3), we obtain:

Implication 2: Given Assumptions 1 and 2, for a≫ 1

Cov(Cyclet, lnUCt) = Cov

(
Cyclet, lnwt,t − lnwt,t+a

+
a∑

τ=1

βτ (1− δ)τ
[(

lnwt,t+τ − lnwt,t+a

)
−
(
lnwt+1,t+τ − lnwt+1,t+a+1

)] )
,

(9)

where component lnwt,t − lnwt,t+a reflects the quality-adjusted new-hire wage and the re-
mainder reflects future wage paths.8

8Comparing with equation (3), note that the summation in (9) can be truncated at a. Given Assumption
2, there is no predicted discrepancy between lnwt,t+τ and lnwt,t+a for τ ≥ a. Secondly, while user cost reflects
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τ = 8

wt,t+τ (τ)

ϕ̂t,t

(a) New-Hire Wage

w

ττ = 8

wt,t+τ (τ)

wt+1,t+τ (τ)

(b) User Cost of Labor

Figure 1: Illustration of Our Approach

There are two key observations from eq. (9). First, for a match started in t, the higher is
cumulative wage growth to t+a, the lower is the new-hire wage at t, and so the lower is user
cost. Intuitively, predictably rapid wage growth indicates the wage is below match quality
(again see Figure 1a). Second, the higher is wage growth from t + 1 forward for matches
started at t, compared to those started in t + 1, the lower is the user cost in t. The impact
of future wage paths on user cost for a match starting in a recession at t is illustrated in
Figure 1b. Faster cumulative wage growth from t + 1 to t + a + 1 for a match starting at t
versus t+1 indicates that the t-start match continues to exhibit a lower wage relative to its
quality than if started at t+ 1.

3 Empirical Implementation
3.1 Data, sample selection and variable definitions

We combine data from the two National Longitudinal of Youth Surveys: the NLSY79 and
the NLSY97. The NLSY79 cohort consists of 12,686 young men and women born from 1957
to 1964. Respondents were interviewed annually from 1979 until 1994, then biannually since.
The NLSY97 cohort consists of 8,984 young men and women born between 1980 and 1984,
with respondents interviewed annually from 1997 until 2010 and biannually since. Our last
NLSY79 and NLSY97 surveys are, respectively, 2018 and 2019.

the expectations of the future wage paths, not realized, we drop the expectations operator in equation (9).
This assumes the realized deviations from expectations at t are orthogonal to the cyclical stage at t.
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An important advantage of the National Longitudinal Surveys for our purposes is that
they track respondents’ work history over the panel, with identifiers for each distinct em-
ployer. In particular, at each survey, the NLSY79 provides data on up to five jobs held
since the prior survey, while the NLSY97 does so for all jobs held. We use these data to
identify starting dates for worker-employment matches and to construct the durations and
wage growth within those matches.

Our sample reflects the NLSY79 and NLSY97’s nationally-representative samples.9 We
further restrict to respondents who are at least 21 years old and who are not enrolled in
school. The oldest respondents in our NLSY79 sample are 62, while in our NLSY97 sample
39. We exclude respondents who are self-employed or employed in the government or armed
forces. We also exclude jobs with less than 25 usual hours worked per week.

We define a job as a period of working for the same employer.10 We allow jobs to
experience interruptions, provided they last less than a year. That is, we treat any separation
of 52 weeks or longer as a break to a new job. From the NLSY surveys, we can identify
the calendar week a job starts and ends. Of course, we do not observe the end date for a
job held by a respondent at their last survey. We can record the start date for a job held
at a respondent’s first interview, but only based on a retrospective question.11 We define
a match as a new hire if it represents the first wage observed for the worker at that job
and it has match tenure of less than one year. We distinguish new hires that occur via
non-employment versus job-to-job. We classify a transition as via non-employment if the
worker was non-employed during the month before the start of the new job.

Our wage measure is the hourly wage constructed by the BLS: It is the reported hourly
wage for those paid hourly; for others, it is computed based on reported earnings per pay
period and hours worked. The wage reflects any tips, overtime, and bonuses.12 For ongoing
jobs, we assign the observed wage to the interview date; for jobs that have ended, we assign it
to the job’s ending date. When available, we use a question asking the wage retrospectively

9We do still employ the NLSY sampling weights in all empirical work. These weights estimate how many
U.S. individuals are represented by each respondent.

10If the respondent simultaneously works multiple jobs, we consider all jobs that satisfy our sample re-
strictions, including working at least 25 hours per week.

11We exclude jobs that the respondent started at age less than 16. In actuality, only 9.5 percent of jobs
have starts prior to age 21, when we begin measuring their wages, and only 0.8 percent have starts prior to
age 18. We also exclude jobs that: (i) have no valid ending date, despite ending (ii) report starting later
than ending, or (iii) start before 1980.

12For the NLSY79, our wage measure is the hourly wage variable HRP#, where # references each
job for which wage information was collected. For NLSY97, the compatible measure is the variable
HRLY_COMPENSATION#, since it includes overtime, tips, and bonuses. NLS User Services responded
to a request for clarification by stating that for the NLSY79: i) pay rate questions do ask respondents to
include tips, overtime, and bonuses; and ii) there is no way to create a pay rate that does not include this
information.
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at the start of the job, which allows us to observe what happens in its beginning years.13 We
compute a real wage using the CPI deflator. We drop observations with a reported wage less
than half the federal minimum hourly wage for nonfarm workers or above the 99th percentile
of the wage distribution for that survey year.

Using our wage data, we construct an individual’s wage growth as the log difference of
their wage rates across two consecutive surveys. Note that the length of the time between
two successive wage observations in our data varies. In particular, in the early years of the
NLSY79 and NLSY97, observations are at an annual frequency, while, in later years, they
are only biannual. Therefore, for calculating wage growth, we restrict the interval between
the wage observations to 0.5 to 1.5 years across annual surveys and 1.5 to 2.5 years across
biannual. In addition, to deal with possibly extreme values, we trim wage growth rates below
the 1st and above the 99th percentiles of the growth distribution for that survey year.

We additionally use information on gender, race, educational attainment, and age as
control variables. These are dummies for male/female, white/black, and schooling categories.
We specify age effects as a cubic polynomial for any wage-level specifications and a quadratic
for those specified in changes.

Our resulting sample consists of 144,367 wage observations from 11,769 unique individ-
uals (90,176 observations from 5773 NLSY79 individuals and 54,191 from 5996 NLSY97
individuals). When working with growth rates, our sample consists of 63,986 observations
from 10,152 distinct individuals (42,836 observations from 5,199 NLSY79 individuals and
21,150 from 4,953 NLSY97 individuals). In addition, in our sample, some jobs have a really
short duration. We restrict our sample to jobs whose maximum observed tenure is more
than 18 months. Lastly, because our approach uses expected future wages to control for
quality, we restrict our sample to jobs starting up to 2011 for some exercises. In these cases,
the observation number of each sample is described in table notes. Table 13 in the data
appendix provide statistics on the key variables for our sample.

We employ two alternative measures of the business cycle — the unemployment rate and
real GDP — and several different de-trending methods for defining the cycle. Unemployment
rate and real GDP data are from the BLS and BEA, respectively.

13In practice, the BLS did not construct a starting wage rate as they did for the wage at the time of the
interview. However, all variables necessary to create it are available in the NLSY public release (the reported
pay rate, the time unit to interpret the pay rate, and the usual weekly hours). We construct the starting
wage rate following the procedure used by the NLSY to create the available hourly pay rate measure and
described in the NLSY documentation appendix. The starting wage question has been available since 1986
in the NLSY79 (some years have strangely few respondents) and for all years in the NLSY97.
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3.2 Estimation approach

We estimate the cyclicality of the new-hire wage and user cost from the following regression:

ln yt = χ ∗ Cyclet + trendt + ϵt,

in which yt reflects, in turn, the quality-adjusted new-hire wage or user cost, Cyclet is a
measure of the cycle, and trendt is chosen to remove slower-moving time trends. Our bench-
mark specification controls for a cubic trend. For robustness, we also consider a quadratic
trend, one and two-sided Hodrick–Prescott filters, and a Hamilton filter. In this section,
we describe how we employ wage growth within job matches to construct the dependent
variables, ln yt, to estimate the cyclicality of quality-adjusted new-hire wages and user cost.

First, consider the choice of a, which is the horizon for Assumption 2 to apply. That is,
it is the duration for a match such that the match wage, conditional on quality, no longer
reflects labor-market conditions at its start. Guided by the models of limited commitment,
as Thomas and Worrall (1988), we set a benchmark value for a of eight years, a period more
than sufficient to cover the duration of business cycles. Models of limited commitment, with
workers not committed, suggest that the discrepancy between inherited contract wages and
new-hire wages dissipates with the arrival of a cyclical peak. We also consider shorter cutoffs
for a — six or four years. An advantage of a shorter cutoff for a is that more matches will
reach that duration. The downside is that it biases downward the cyclicality of our estimates
to the extent that the impact of wage smoothing remains intact.

This leads to the question of how to deal with matches that do not reach duration a.
Estimating based only on matches that last a full a years would clearly throw out a lot of
information from those lasting up to a−1 years. Our approach is to use all matches starting
at t, except those lasting less than one year and a half, to construct wage growth for matches
starting at t. Relative to considering only matches lasting eight years, this greatly reduces,
though does not eliminate, concerns with selection bias. We discuss the selection issues at
length at the end of this subsection.

It is convenient to rewrite cumulative wage changes in terms of annual growth rates,
in particular: lnwij

t,t − lnwij
t,t+a = −

∑a
τ=1 ∆ lnwij

t,t+τ . ∆ lnwij
t,t+τ denotes the wage growth

between years t + τ − 1 and t + τ of worker i on job j, which we can construct from the
individual wage data within a match. Implication 2 can then be rewritten as:

Cov(Cyclet, lnUCt) = Cov

(
Cyclet,

−
a∑

τ=1

∆ lnwt,t+τ −
a∑

τ=2

Ωτ

(
∆ lnwt,t+τ −∆ lnwt+1,t+τ

)
+ Ωa+1∆ lnwt+1,t+a+1

)
,

(10)
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where Ωτ = β(1−δ)[1−βτ−1(1−δ)τ−1]
1−β(1−δ)

, Ωa+1 is Ωτ evaluated at τ = a + 1, and ∆ lnwt,t+τ =∫
ij
∆ lnwij

t,t+τ . Note that cyclicality of the new-hire wage is captured by the covariance of
the cycle with the first term, −

∑a
τ=1 ∆ lnwt,t+τ , with cyclicality of the future wage path

captured by the balance. That difference in paths is reflected in whether matches starting
in t exhibit faster wage growth from t+1 to t+ a than matches starting at t+1. Note that,
with the wage paths expressed in terms of growth rates, the weight Ωτ is actually increasing
in τ . This reflects that predictably faster wage growth further out, for instance from t+a−1

to t+ a, implies a lower ϕt+τ , not just at t+ a− 1, but all the way back to t+ 1.
To estimate match wage growth as a function of its start date, ∆ lnwt,t+τ , we employ the

NLSY data to regress ∆ lnwij
t,t+τ on dummies to capture the full set of interactions between

the calendar year a match started (the t’s) and all subsequent periods observed in the data
(the t+τ ’s).14 Specifically, we estimate the ψt,t+τ ’s from the following regression for workers’
rates of wage growth within matches:

∆ lnwij
t,t+τ = Ψxijt+τ +

2010∑
d0=1980

2018∑
d=d0+1

ψd0,dD
ij
d0,d

+ ϵijt+τ . (11)

in which gummy variables Dij
d0,d

equal 1 if d0 = t and d = t + τ , equaling 0 otherwise, and
xijt+τ reflects additional controls for individual characteristics that could affect measured wage
growth. These are dummies capturing the respondent’s sex, race, educational attainment,
survey instrument (NLSY79 or NLSY97), and a quadratic in their age. Because we set a to
eight years, we estimate the regression on the sample of jobs that start between 1980 and
2011, i.e., eight years before our sample ends in 2019.15

Given estimates for ψt,t+τ , we then substitute in equation (10) to obtain:

Cov(Cyclet, lnUCt)

= Cov

(
Cyclet, −

a∑
τ=1

ψ̂t,t+τ −
a∑

τ=2

Ωτ

(
ψ̂t,t+τ − ψ̂t+1,t+τ

)
+ Ωa+1ψ̂t+1,t+a+1

)
,

(12)

14Both NLSY started annually and became biannually after some time, so the wage growth between survey
years could be annual or biannual. We annualize two-year growth rates by assigning half to the first year
and half to the second. In practice, we annualize the growth rate between t + τ and t + τ + 2 by creating
two observations and assigning half of the growth to t + τ + 1 and half to t + τ + 1. We assign half of the
original sampling weight for these two new observations.

15When estimating ψt,t+τ , we require each combination of starting and current year, (t,t+τ), to have
more than 20 wage change observations. This restriction is binding for some first wage growth rates, i.e.,
those between t and t+ 1. For example, in our baseline specification, we cannot estimate the ψt,t+1 for the
following combinations of starting year and current year: 1980-1981, 1995-1996, and 1997-1998. In these
cases, we impute the first growth rate using the growth between t+ 1 and t+ 2 as proxy.
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where a = 8 years. This yields 32 annual observations – for each year from 1980 to 2011 –
to estimate the cyclicality of the quality-adjusted new-hire wage and labor’s user cost.16

Substituting ψ̂t,t+τ ’s in Equation (12) implicitly imputes the average wage change from
t + τ − 1 to t + τ for matches that survive to t + τ for the hypothetical wage growth for
those matches that end before t + τ . Due to this selection, the expected value of ψ̂t,t+τ is:
E
[
lnwij

t,t+τ−lnwij
t,t+τ−1| Γ

ij
t,t+τ−1 = 1,Γij

t,t+τ = 1
]
, where Γij

t,t+τ−1 and Γij
t,t+τ are 0/1 variables,

equal to 1 if match ij survives to t+ τ − 1 and t+ τ , respectively. If there are idiosyncratic
shocks to match quality, then this is potentially biased from E

[
lnwij

t,t+τ − lnwij
t,t+τ−1

]
by

selection on which matches survive. But the direction of that bias is difficult to predict as
it reflects selection on the wage at t+ τ − 1 as well as at t+ τ .17

For our purposes, what matters is whether the magnitude of any selection effect varies
systematically with the state of the business cycle at t. That is, the contribution to the
covariance terms in Equation (10) based on surviving matches is Cov

(
Cyclet, E

[
∆ lnwij

t,t+τ

| Γij
t,t+τ−1 = 1,Γij

t,t+τ = 1
])

rather than the covariance of Cyclet with ∆ lnwt,t+τ , expected
wage growth for all matches that start at t. One possible reason for concern is that there
is evidence, e.g., Mustre-Del-Rio (2019), that matches formed in recessions have shorter
average duration. Below we document such an effect, though small, for our data. So the set
of matches surviving τ periods, starting from a recession, is potentially more selected.

For this reason, in Section 4.2, we conduct a number of extensions to test the robustness
of our findings for wage cyclicality. These include varying the threshold duration a as well
as employing a selection correction for whether a match at t + τ − 1 survives to t + τ . We
also include all workers in constructing cumulative eight-year wage growth, including those
who change matches. In doing so, we control for subsequent changes in match quality based
on the new match’s relative hours worked and realized duration.

We should also highlight that our estimates are not biased by differences in match quality
that are fixed within a match. Any such differences in match quality, which have been the
focus of the literature, e.g., Hagedorn and Manovskii (2013) or Gertler et al. (2020), are
differenced away by our first step estimation of equation (11) as it is based on wage growth
within a match. A corollary is that our estimates are unaffected by any selection on match

16For term Ωaψ̂t+1,t+a+1, we set ψ̂2012,2020 equal to the mean of matches’ eighth-year wage change. Oth-
erwise we would lose the last observation we treat as t, 2011, for estimating cyclicality of user cost.

17Selection would be for positive match shocks at both t+τ−1 and at t+τ ; so selection on their difference,
which the wage change reflects, is ambiguous. If the variance of match shocks is greater at t + τ than at
t+ τ − 1, then selection would presumably bias upwards realized wage changes, with the converse holding if
the variance is greater at t+ τ − 1.
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duration driven by the fixed quality of a match because, again, the first-step estimates of
wage growth removes those differences.

Our presentation has assumed constant separation and discount rates, e.g., as in equation
(12). But, in the estimation, we allow both for time-varying separation and time-discount
rates. We estimate fluctuations in the separation rate from the NLSY data, and we estimate
time variations in the discount factor β based on variations in the growth rate of consumption.
Details for both are provided in Section 4.3.

4 Cyclicality of the New-hire Wage and User Cost
4.1 Preliminaries

Labor’s user cost reflects the new-hire wage and the impact of hiring now, versus later, on
future match wages. For this reason, we first estimate cyclicality of the new-hire wage in
Section 4.2, then cyclicality of user cost in 4.3. Because most estimates of wage cyclicality
are based on average hourly earnings, we first examine cyclicality for this measure in our
NLSY data. Table 1 gives results from the NLSY data for 1980 to 2011, reflecting 115,795
observations from 11,467 distinct individuals. We stop the sample in 2011 so that the period
is comparable to that for our estimates of the quality-adjusted new-hire wage and user cost
reported below. (We report results for 1980 to 2019 in the notes to Table 1). The cycle is
measured by the national unemployment rate, controlling for a cubic trend.

Table 1: Cyclicality of Average Hourly Earnings

Dependent Variable is log of real wage: ln(w
p
)

(1) (2) (3)
Age Control Individual FE Matching FE

Unemp Rate -0.25 -0.76 -0.41
(0.48) (0.35) (0.32)

Notes: Our sample – NLSY79 and NYSY97 panels – has 115,795 observations for 1980 to 2011. Additional
controls are a cubic trend and dummies for sex, race and education groups and cubics in age and tenure. All
coefficients are specific to the NLSY79 and NLSY97 samples except those for the unemployment rate and
cubic trend. Standard errors are clustered by survey year. All regressions reflect survey sampling weights.
For the full period of 1980-2019 the estimated coefficients are -0.00 (0.33), -0.82 (0.29), and -0.43 (0.24),
respectively.

Table 1, Column 1 presents results without any individual controls except age, as a cubic,
which we include because each NLSY panel ages through time. Real average hourly earnings
are nearly acyclical, decreasing by 0.25 percent for a 1 pp increase in unemployment rate with
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a standard error of 0.48.18 This estimate will reflect any cyclical changes in the composition
of the workforce – and many papers have noted that employment is more cyclical for lower-
wage workers. We correct for that compositional effect in Column 2 by including individual
fixed effects in the regression while also controlling for cubics in the worker’s age and match
tenure. The estimated impact of 1pp higher unemployment goes from −0.25 to −0.76 and
is now statistically significant (standard error 0.35).19

Lastly, Column 3 includes a full set of match-specific fixed effects. The estimate now
captures the response of the real wage relative to its match average to a 1 pp increase in
unemployment relative to the average over the match. The estimate is reduced back to −0.41

with a standard error of 0.32. Echoing our discussion above, there are two clear competing
explanations for why match controls reduce cyclicality. One is that job turnover produces
strongly procyclical firm and match quality. The second is that wages are largely insulated
within matches, as predicted by many contracting models, so including match effects misses
much of the cycle’s impact on wages. To progress past this perceived impasse, we turn to
our quality-adjusted estimates for the new-hire wage and user cost.

4.2 Cyclicality of the quality-adjusted new-hire wage
4.2.1 Benchmark estimates

We first estimate wage-growth dummies, ψt,t+τ ’s in equation (11), from the NLSY worker-
firm match histories. Those estimates reflect 82,557 observations from 9,361 individuals
across 17,794 matches. We then construct our dependent variable, −

∑8
τ=1 ψ̂t,t+τ , to estimate

new-hire wage cyclicality. For convenience, we refer to this variable as the new-hire wage for
the balance of this section. But, more accurately, our assumptions imply it is equal to the
quality-adjusted new-hire wage at t plus an error that is orthogonal to the cycle at t.

Figure 1 presents the time series for our new-hire wage for the 32 annual observations for
1980 to 2011, with our benchmark-treatment of a = 8, together with the national unemploy-

18For comparison, we estimate cyclicality of average hourly earnings measured from the Current Population
Surveys (CPS) IPUMS microdata or by the Current Employment Surveys (CES) national series for 1980
to 2011. The CPS measure is calculated by dividing an individual’s annual wage and salary income by the
product of their weeks worked and usual weekly hours worked. (For the CPS regression, we control for a
cubic in age as well as the cubic time trend.) The CES measure is its average hourly earnings of production
and nonsupervisory employees, total private. So it a more restrictive sample of workers than we consider
in the NLSY. Furthermore, given it reflects aggregate earnings relative to aggregate hours, in estimating
cyclicality it implicitly weights individual workers by their relative earnings. Comparable to our estimates
from the NLSY panels in Column 1, the average hourly earning series from the CPS is perhaps slightly
procyclical (estimated impact of 1pp higher unemployment on real wages of −0.49 with standard error 0.28),
while that from the CES is essentially acyclical (estimated impact of −0.13 with standard error 0.26).

19If we drop the individual fixed effects, but control for the worker’s demographics (education, gender,
race) and age and tenure, estimated cyclicality goes from −0.25 to −0.64, with a standard error of 0.39. So
most of the cyclicality in worker fixed effect is captured by cyclicality in these observables.
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ment rate. The new-hire wage is clearly highly procyclical. Most notably, it decreases by
about 9.2% and 12.9% for the two large recessions in 1980-82 and 2007-2009. Table 2, Col-
umn 1 gives the estimated cyclicality of the new-hire wage: The new-hire wage decreases by
2.30% for each percentage point cyclical increase in the unemployment rate, with a standard
error of 0.67%.
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Figure 2: Time Series of the Quality-Adjusted New-Hire Wage

Our approach relies on two assumptions. The first is that the cyclical state at t does not
predict quality growth within matches, either fundamentally or via selection in the matches
that we can follow. We turn to a number of tests for violations of this assumption in the
next section. The second is that the state of the cycle does not predict the quality-adjusted
wage in the match eight years ahead. This would be violated if the cyclical state at t either:
(i) is correlated with the cyclical state eight years later, or (ii) still helps to predict wages
eight years into the match because of the highly persistent effects of cyclical wage smoothing.
Note that the latter violation should act to bias our estimates toward zero cyclicality.

We can test condition (i) by seeing whether the unemployment rate at t, relative to
any trend movements, predicts the rate at t + 8. It does not. Furthermore, Column 2 of
Table 2 shows that controlling for the unemployment rate at t + 8 yields essentially the
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same cyclicality of the new-hire wage, with a response to a one percentage point higher
unemployment rate at t of −2.46 percent (standard error 0.60).

Table 2: Cyclicality of the Quality-Adjusted New-Hire Wage

(1) (2)
URate -2.30 -2.46

(0.67) (0.60)

URate 8yr Ahead 1.15
(0.53)

Notes: The table shows the percent change in wage in response to a 1 pp increase in unemployment. 32 annual
observations: 1980-2011. Regressions include a cubic trend. Robust standard errors are in parentheses.

Cyclicality of match quality

Our measure of match quality for a match started at t is its expected wage at t+8. We can,
therefore, construct a time series for the average match quality in these matches by taking the
predicted eight-year wage growth for t-start matches and adding it to the average starting
wage for new hires at t. This yields 32 annual observations from which we can estimate
cyclicality of match quality. In constructing the average starting wage at t, we control for
the effects of the same demographic variables that are controlled for in estimating wage
growth (gender, race, and education dummies and a cubic in age). So the implied measure
of match quality should be viewed as net of the impact of these worker characteristics.

We regress our implied measure of match quality for hires at t on the unemployment rate
at t and a cubic trend. The estimated coefficient implies that a 1 pp higher unemployment
rate is associated with 0.06% lower quality of new hires (standard error 0.67%). Thus, our
approach implies that the quality of new hires is acyclical. We discussed above the forces
for quality of new matches to be countercyclical (recession’s cleansing effect) or procyclical
(recession’s sullying effect). So our estimate of acylical match quality is consistent with these
effects roughly canceling or neither being overly important.

4.2.2 Robustness to changing match quality during the match

We assume that quality growth within a match is not predicted by the state of the cycle when
it started (our first identifying assumption). If matches that begin in recessions exhibit faster
quality growth, that would bias our estimate towards a more procyclical wage. Conversely,
if matches starting in recessions exhibit less quality growth, our estimate is countercyclically
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biased. Selection for remaining in the match can also bias our estimate if that selection acts
differently for matches that start in recessions. For instance, if remaining in a match selects
positively on match quality growth and that selection happens to be stronger for matches
that begin in recessions, then our estimate would be procyclically biased.

Both Bowlus (1995) and Mustre-Del-Rio (2019) find from NLSY79 data that jobs that
began in recessions exhibited somewhat shorter average duration.20 This is suggestive that
selection on shocks to match quality growth could differ by whether a match begins in a
recession. For our sample, we similarly find lower match survival for matches that begin under
higher unemployment rates, though the differential is quantitatively quite small. We estimate
survival probabilities from a proportional Cox model as a function of the unemployment rate
at the match’s start, a cubic trend, and our standard controls for worker characteristics. We
estimate survival for matches starting between 1980 and 2011 to be comparable to our
sample for estimating match wage growth. We find that a 1 pp higher unemployment rate
at the beginning of the job increases the separation hazard relative to the baseline by 1.61%
(standard error 0.37%). Figure 3 presents the estimate by comparing a match that starts
in a boom (blue line), evaluated at an initial unemployment rate of 4.3%, versus one that
starts in a severe recession (red line), at an unemployment rate of 9.6%. While we strongly
reject statistically that the survival functions are the same, the magnitude of that difference
is slight.

Even though these survival rates differ little quantitatively for matches started in booms
versus recessions, we perform four robustness exercises to address if match quality grows
faster for matches that began in recessions: i) We examine proxies for match quality; ii) we
shorten the duration we follow matches; iii) we control for cyclical selection in the estimation
by controlling for a match’s relative duration in its cohort of matches or based on a Heckman
correction in our wage-growth estimates; iv) we follow wages for eight years from the start of
job matches, even if the worker moves to a new match; but control for observable differences
in match-quality between any new job at t+ 8 versus the job started at t.

Changes in measures of match quality

We examine two measures of job quality to test whether starting in a boom or bust predicts
greater within-match quality growth. Our first measure of quality change is based on any
occupational upgrading within matches. The second is the growth in weekly hours worked

20Mustre-Del-Rio (2019) further finds that those matches that end in a move to non-employment are the
ones that exhibit longer durations if started in a boom, whereas those that end in a job-to-job transition
actually exhibit shorter durations conditional on starting in a boom. He interprets this as the first set of
matches showing procyclical quality, while the latter showing countercyclical quality. Repeating, because
our approach is based on wage growth within matches, it is robust to such quality differences across matches.
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Figure 3: Survival Analysis

Notes: The figure shows the estimated survival probability from a proportional Cox model. The left-hand
side in the model is the survival hazard, the right-hand side is the initial unemployment rate, cubic age
polynomial, cubic time trend, and gender, education, and race dummies. We interact all variables (except
the initial unemployment rate) with the dummy for the NLSY97 sample.

during matches. Hours worked should positively reflect predictable increases in quality within
matches because, being predictable, the quality change should not affect permanent income.21

To measure occupational upgrading, we construct an occupation quality index by regress-
ing the log of hourly wage on a set of occupational dummies.22 We then use the estimated
coefficients on the dummies as our measure of occupation quality. Finally, we associate a
quality index value for each wage observation and construct its change using any changes in
occupational codes within matches across surveys.

Table 3, Column 2 presents the results from regressing annualized growth in the occupa-
tional wage index on the unemployment rate at the start of the match, the concurrent change
in the unemployment rate, and a cubic trend. We include all survey changes that fall within

21More precisely, if predictable quality changes do not affect the marginal utility of consumption, then
an efficient contract should yield a change in hours equal to the change in match quality times the Frisch
elasticity of labor supply relevant for weekly hours.

22We use the crosswalk of David Autor and David Dorn to create a consistent occupation code between
survey years. Unfortunately, the regular 3-digits codes are too fine for our exercise, having several occupations
with only a few wage observations. We aggregate occupations to 2-digits, which gives 81 occupations. For
example, occupation 166 – economists, market and survey researchers – is classified as group 16, together
with i) Vocational and educational counselors, ii) Librarians, archivists, and curators, iii) Psychologists, and
iv) Social scientists and sociologists. In the regression, we control for a worker’s sex, race, and education,
cubics in age and tenure, and survey-year fixed effects.
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the first eight years of match tenure to be consistent with our estimates for the new-hire
wage and user cost. Because these regressions, unlike those in Table 2, are estimated on
the micro NLSY data, we cluster standard errors by survey year. We see no evidence that
within-match occupational upgrading depends on the state of the economy when a match
starts. From column 2, 1 pp. higher unemployment at match start predicts upgrading that
would increase the wage by one-hundredth of one percent per year. High unemployment
at the start also predicts declining unemployment during the match. But the impact of a
decline in the unemployment rate on upgrading during the match is also extremely small
and insignificant.

For comparison, the first column of the table gives results from estimating the same spec-
ification for annualized wage growth within the first eight years of matches. Consistent with
our results for cyclicality of the new-hire wage from Table 2, matches display significantly
faster growth of 0.32% per year for each additional percentage point of unemployment at
their start (standard error 0.10%). If one were to deduct the estimated impact of occupa-
tional upgrading on wage growth from column 2, this would leave this magnitude essentially
unaffected. We also see from column 1 that, consistent with wage smoothing, wage growth
within matches is not significantly related to concurrent changes in the unemployment rate.

Table 2, Column 3 gives results for the growth of the workweek within matches. We again
see no evidence that quality growth is greater for matches starting in recessions. The coeffi-
cient on the initial unemployment rate, −0.041 with standard error 0.046, actually suggests
less quality growth within matches that start at higher unemployment rates, implying that
within-match quality changes actually bias our results by making the new-hire wage appear
less procyclical. But the implied bias is not especially large, nor statistically significant.

Robustness to following matches less than 8 years

Assumption 2 states that, for sufficiently large a, the t+ a quality-adjusted wage of a match
started at t is uncorrelated with the cycle at t. Hence, any path-dependence of the initial
match conditions on wages should have vanished after a years. Our benchmark estimates
treat a to be eight years. We now consider reducing the threshold for a to six or even
four years. Doing so presumably lessens the impact of any selection on idiosyncratic shocks
to growth in match quality on our first-stage estimates of wage growth. The downside of
shortening a is that it will also bias our estimates toward an acyclical new-hire wage to the
extent that the impact of the cycle at t is still exhibited in wages at t+ 6 or t+ 4.

Table 4, Column 1 shows that the estimates of the cyclicality of the quality-adjusted new-
hire wage are little affected by shortening a to six years. The impact of a one percentage
point higher unemployment rate is now to reduce the new-hire wage by 2.07 percent, with
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Table 3: Cyclicality of Quality Measures within Matches

(1) (2) (3)
∆ ln (wage) ∆ (occ index) ∆ ln (wk week)

∆ Unrate -0.002 -0.001 -0.004
(0.002) (0.001) (0.001)

Unrate at t0 0.317 -0.011 -0.041
(0.099) (0.057) (0.046)

Notes: Sample reflects 47,531 observations from 1980 to 2019 for matches started between 1980-2011 and
have 8 years of tenure or less. Changes in wage, weekly hours, the occupation index, and the unemployment
rate can reflect a one or two-year change across consecutive surveys. Changes are annualized, by dividing
by the time in years between the observations. with observations also weighted by the time spanned by the
change as well as the NLSY survey weight. Regressions also include a cubic trend, defined by the match’s
start year, controls for sex, race, education, and quadratics in age and tenure. We allow all coefficients to
differ between the NLSY79 and NLSY97 samples except those on the cubic trend, initial unemployment
rate, and change in unemployment rate. Standard errors are clustered by survey year.

standard error 0.51 percent, rather than by 2.30 percent. Cutting a to four years further
reduces the cyclicality of the new-hire wage, with 1 pp in the unemployment rate predicting
a 1.50 percent lower wage, standard error 0.57 percent. This could reflect that selection on
wage change modestly increases our estimated cyclicality. It could alternatively reflect that
the impact of the unemployment rate at t on the wage at t + τ subsides only two-thirds as
much at τ = 4 as at τ = 8. Regardless, the estimated new-hire wage, even setting a = 4, is
highly procyclical.

Table 4: Cyclicality of New-Hire Wage: Robustness to Cutoff Horizon

(1) (2) (3)
Cut off after 8 years Cut off after 6 years Cut off after 4 years

URate -2.30 -2.07 -1.50
(0.67) (0.51) (0.57)

Notes: 32 annual observations: 1980-2011. Coefficients are percent responses to the unemployment rate.
Regressions include cubic trend. Robust standard errors in parentheses.

Robustness to controls for selection

Repeating, selection to remain in matches that display higher quality growth can bias pro-
cyclically our estimate if that selection acts more strongly for matches that begin in reces-
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sions. In Table 5, we extend our benchmark results by including controls for such selection
in our first step that estimates wage growth as a function of year and match start date.

We first control for a match’s relative realized duration among its cohort in predicting its
wage growth from equation (11). By match cohort, we mean the set of matches starting in
the same year. Assuming longer duration within a cohort proxies for better shocks to match
quality, then removing the impact of that relative duration on predicted wage growth should
also act to control for match shocks being deferentially selected across cohorts. Relative
duration is measured by the ventile of a match’s realized duration in its cohort. We find
that a one ventile increase in relative duration in a cohort does predict 0.48% higher annual
wage growth, with standard error 0.04%. But, comparing Columns 1 and 2 from Table 5,
controlling for this effect in our first stage has little effect on the estimated cyclicality of the
new-hire wage: A one percentage point higher unemployment rate predicts a 2.39% lower
wage with a standard error of 0.72%.

We next treat cyclical selection by employing a Heckman correction in wage-growth
equation (11). So now our exercise is composed of three steps. The first step is a probit
regression modeling whether a match that survives to t + τ − 1 further survives to t + τ ,
that is, whether we observe the match’s rate of wage growth for t + τ .23 To help capture
turnover the probit includes, in addition to all variables from the wage-growth regression,
variables for marital status, residence in an urban area, and the number of children (ages
less than 18) in the household.24 In the second stage, our wage growth-regression controls
for the inverse Mills ratio. Its coefficient is positive (1.29%) but not statistically significant
(standard error of 1.02%), meaning that the average observed rate of wage growth is slightly
higher for those that have a lower probability of selecting into the sample.

The third column of Table 5 reports the resulting cyclicality of the new-hire wage with
predicted match wage growth augmented for the Heckman correction. Estimated cyclicality
is smaller than our benchmark estimate, with a 1 pp. higher unemployment rate associated
with a decrease in the new-hire wage of 2.03%, with standard error 0.64%. But the estimate
still implies a new-hire wage that is economically and statistically highly procyclical.

23More exactly, the dependent variable is equal to one if a match from one survey remains intact, at 25
hours per week or more, at the following survey so that wage growth for the match is observed across the
surveys. We treat an observation as missing for our first step if the respondent departs from the NLSY
sample between the two surveys.

24We allow coefficients for these variables to differ by NLSY survey. Economically and statistically sig-
nificant effects in the probit include: Married or never-married respondents have a higher probability of
staying in a match than those separated, divorced, or widowed; rural respondents have a higher probability
of staying than urban; and having more children increases the probability of staying.
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Table 5: Cyclicality of New-Hire Wage: Robustness to Selection Controls

(1) (2) (3)
Benchmark Control Relative Duration Heckman Correction

URate -2.30 -2.39 -2.03
(0.67) (0.72) (0.64)

Notes: 32 annual observations: 1980-2011. Coefficients are percent responses to the unemployment rate.
Regressions include cubic trend. Robust standard errors in parentheses. Because we add new regressors in
these two specifications, our first-stage sample size is not the sample for all specifications. The baseline has
82,557 wage-growth observations, while the relative duration and the Heckman ones have 81,923 and 82,285,
respectively. When estimating our baseline regressions again with the more restrictive samples, we obtain
coefficients of -2.40 (0.67) and -2.30 (0.67).

Robustness to following all workers for 8 years

Finally, we check the robustness of our results to following wage growth for all workers
starting matches at t until t + 8, even those that have moved from the t-match by then.
The advantage of this alternative is that it removes any issue of cyclical selection on whom
we can follow for eight years. The downside is that it violates the spirit of our approach
by looking across matches for some workers. To limit that downside, in estimating wage
growth from t to t+ 8 we include controls for match quality for the match observed at t+ 8

versus that started at t. These are average working hours in the match and dummies for the
realized duration of the match (less than 2 years, 2 to 4 years, or more than 4 years). We
presume that matches that generate higher working hours or last longer are of better quality
on average. Of course, for matches that last to t+8, these variables take the same values at
t and t+ 8. Including these controls is kindred to the approach to match quality in Doniger
(2021), who includes such controls to control for the quality of new matches versus past and
future matches in the worker’s wage panel.

Table 5 reports estimated cyclicality of the new-hire wage constructed from wage growth
for workers fully 8 years from match start, including those who leave the match. Columns
1 and 2 give results respectively without and with the controls for match quality. A 1
pp. higher unemployment rate is associated with a 2.78% lower new-hire wage (standard
error 0.65%). When we add the match-quality controls, the new-hire wage is slightly more
cyclical, with coefficient −2.89% (standard error 0.61%). Both estimates imply modestly
greater cyclicality than our benchmark estimate, −2.30.25

25The average workweeks enter positively in the cumulative wage-growth regression but are not statistically
significant, with respective coefficients of 0.056% (standard error 0.077%) and 0.065% (standard error 0.065%)
for the current and the 8-years ahead matches. The dummies for realized match duration (2 to 4, and more
than 4 years) have respective coefficients of −2.68% (standard error 0.96%) and −1.57% (standard error
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Table 6: Cumulative Wage Growth 8 Years Ahead Even if Change Jobs

(1) (2)
Cut off after 8 years Using Quality Controls

URate -2.78 -2.89
(0.65) (0.61)

Notes: 32 annual observations: 1980-2011. Coefficients are percent responses to the unemployment rate.
Regressions include cubic trend. Robust standard errors in parentheses. Quality controls reflect workweeks
and realized duration in jobs started at t and working at t+ 8.

4.3 Cyclicality of the user cost of labor

We now move to estimates of the cyclicality of labor’s user cost. That will reflect cyclicality
in the new-hire wage, just reported, as well as any cyclical differential in the wage path
from t + 1 forward for matches starting at t versus t + 1. This latter effect is discounted
to reflect match separation rates as well as for time discounting. To illustrate directly the
role of future wage paths, we first consider a constant discount factor and separation rate,
setting β = 0.989 and δ = 0.228. The separation rate of 0.228 is estimated from the first
eight years of the matches we construct from our NLSY samples.26

We also provide estimates for user cost constructed with time-varying separation rates
and time-varying discount rates. We estimate the separation rate, δt, based on year dummies
in a linear probability model for staying in a match.This is described in Appendix B.2.
We estimate a time-varying discount factor, βt, based on movements in real consumption
of nondurables and services as, for instance, in Bansal, Kiku, Shaliastovich, and Yaron
(2014). But we restrict attention to CRRA preferences with an intertemporal elasticity of
substitution equal to 0.5. More detail is provided in Appendix B.3. With time-varying δt

and βt the discount-factors in equation (12) become: Ωt,t+τ =
∑τ−2

i=0

(∏i
j=0 βt+j(1− δt+j)

)
;

and Ωt,a+1, equal to Ωt,t+τ for τ = a+ 1.
Results for cyclicality of labor’s user cost are given in Table 7. Assuming a constant

separation rate and discount factor, we find that a 1 pp higher unemployment rate is asso-
ciated 5.69% decline in the user cost, with a standard error of 2.03%. To put this decline in
perspective, consider the 2007-09 recession: between 2007 and 2009, the unemployment rate
went from about 5% to 10%, so a 5 pp increase. Our estimates associate a decline in labor’s

0.95%) for the current match and 6.98% (standard error 1.36%) and 9.30% (standard error 1.16%) for
the match 8-years ahead. But differences in these measures at t versus t + 8 are little predicted by the
unemployment rate at t.

26The sample restrictions mirror those for our sample for estimating match wage-growth, except to estimate
separation rates we do not require that a match lasts one year and a half.
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user cost of more than 25 percent with such a large recession, implying a substantial decline
of the price of labor.

The user cost of labor is more than twice as cyclical as the quality-adjusted new-hire
wage. Intuitively, consider a firm hiring a worker in a recession, with the unemployment rate
high and the new-hire wage low. As the economy recovers, wages of these workers respond
less to business cycle conditions than subsequent hires. Therefore, their present-discounted
wages from t+1 forward are lower. We can isolate cyclicality of the discounted future wage
path by simply subtracting the impact of the cycle on the new-hire wage from its impact on
user cost: 1 pp higher unemployment reduces discounted future wages by −3.39%, with a
standard error of 1.62%.

Table 7: Cyclicality of Quality-Adjusted New-Hire Wage and User Cost

Unemployment
New-Hire Wage -2.30

(0.67)
User Cost -5.69

(2.03)
User Cost w/ time-varying discount rates -5.96

(2.07)
User Cost w/ time-varying separation & discount rates -5.69

(2.16)
User Cost w/ time-varying sep. & disc. rates, sep. rate start-date specific -5.46

(2.38)

Notes: 32 annual observations: 1980-2011. Regressions include cubic trend. Robust standard errors are in
parentheses.

The high cyclicality of the user cost of labor is robust to allowing for cyclical discount and
separation rates. Allowing for cyclical βt, row 3 of Table 7, we estimate that a 1 pp higher
unemployment rate reduces labor’s cost by 5.96% (standard error 2.07%). This is slightly
more procyclical than under our baseline of a constant β; but that difference is insignificant.
The effective discount factor in this case, βt(1− δ), is highly procyclical.27 But this has little
influence on the cyclicality of user cost. While higher discounting in recessions acts to lower
the impact of future wage paths on user cost, the decline in discounting in booms acts in
the opposite direction.

In row 4 of Table 7, we allow for time variation in the separation rate as well as the
discount rate. (Appendix B.2 details how we construct the separation rate series.) User cost

27For instance, regressing
∏i

τ=0 βt+τ (1 − δ) on the unemployment rate at t and a cubic trend yields
respective coefficients for a pp of unemployment of -1.00 (0.29), -0.99 (0.22), and -0.40 (0.09) for i = 1, 3, 7.
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is now estimated to have the same response to 1 pp of unemployment, −5.69%, as under
constant δ and β.28

Finally, we allow, that the separation rate varies both with time and with a match’s start
date, while still allowing β to time vary. (See Appendix A for the definition of user cost for
this general case.) Results appear in the last row of Table 7. The estimated response of user
cost to 1 pp of unemployment, −5.46, remains quite close to our benchmark estimate that
assumes βt = β, δt,t+τ = δ. But the standard error, 2.38%, is now modestly higher.

4.4 Robustness to measures of the business cycle

In Table 8, we report cyclicality in the new-hire wage and our baseline user cost of labor
(with constant separation rate and discount factor) across alternative methods of detrending
to define the cycle, as well as expressing the cycle in terms of (log of) real GDP rather than
the unemployment rate.

In addition to our benchmark of a cubic trend, we consider the following filters: a
quadratic trend, two and one-sided Hodrick-Prescott (HP) filters (parameter 6.25), and
the Hamilton Filter. The cyclical response of the new-hire wage to the unemployment rate
is fairly similar across the filters: It declines by a little more than 2% for a pp increase in
unemployment defined relative to a quadratic or cubic trend; it declines by around 1.7% for
a pp in unemployment defined by either HP filter or the Hamilton filter. So, regardless of
the filter, the new-hire wage is both economically and statistically highly procyclical. The
cyclicality of labor’s user cost is similar, varying from −5.0 to −6.4% for a pp of unemploy-
ment, across all the filters except the Hamilton. With the Hamilton filter, user cost declines
by less, by −3.12% for a pp in unemployment (standard error 1.74%).

Looking across the columns of Table 8, the new-hire wage is highly procyclical regardless
of whether the cycle is measured by unemployment or real GDP. The elasticity of the new-
hire wage with respect to real GDP varies from 0.84 under the Hamilton filter to 1.44 under
our benchmark of a cubic trend. The elasticity of user cost with respect to real GDP is larger
than that of the new-hire wage for all the filters: by about double for the quadratic and cubic
trends, by about triple for the two HP filters; and by about 50% for the Hamilton filter. As
with the cycle measured by unemployment, the estimated standard errors for responses in
user cost are uniformly much larger than for the new-hire wage. But all estimated elasticities
are significantly procyclical except for user cost under the Hamilton filter.

28Our estimated combined discount factor, βt(1− δt), is mildly countercyclical, though that cyclicality is
not statistically significant. Regressing

∏i
τ=0 βt+τ (1 − δt+τ ) on the unemployment rate (and trend) yields

respective coefficients for 1 pp of unemployment of 0.50 (0.70), 0.12 (0.60), and -0.33 (0.19) for i = 1, 3, 7.
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Table 8: Robustness to Measure of Cycle

New-Hire Wage User Cost
Unemployment log(GDP) Unemployment log(GDP)

Quadratic trend -2.41 1.33 -4.99 2.39
(0.39) (0.18) (1.51) (0.70)

Cubic -2.30 1.44 -5.69 2.94
(0.67) (0.26) (2.03) (0.90)

HP filter -1.73 1.11 -6.42 3.83
(0.70) (0.35) (2.63) (1.42)

One-Sided HP filter -1.82 1.21 -5.47 3.18
(0.46) (0.26) (2.12) (1.31)

Hamilton Filter -1.68 0.84 -3.12 1.28
(0.49) (0.20) (1.74) (0.81)

Notes: All regressions have 32 annual observations from 1980-2011, except the ones using using Hamilton
Filter that has 29 observations from 1983-2011. Robust standard errors are in parentheses.

5 Comparison with Prior Treatments of Quality
The literature has mainly used two approaches to control for quality to estimate cyclicality of
new-hire wages. The first compares the new hires’ wage to the worker’s wage fixed-effect (e.g.,
Carneiro et al., 2012; Kudlyak, 2014). The second examines growth rates in wages, implicitly
comparing the worker’s new-hire wage to their wage at the end of the prior match (e.g., Bils,
1985; Gertler et al., 2020). This section discusses the biases affecting each approach. We
estimate each on our NLS data, comparing the results to those from our new approach to
adjust for cyclical match quality.

5.1 Individual fixed effects

Under the fixed-effect approach, the cyclicality of wages of new hires is estimated from:

lnwij
t,t = αCyclet + lnwi

fe + ϵijt,t. (13)

Here wi
fe is a fixed effect in worker’s wages; it serves as the control for worker/match qual-

ity. The fixed effect, l̂nwi
fe, is estimated using all available wage observations. Thus, the

estimated quality-adjusted price of labor is:

ln ϕ̂t,t = lnϕt,t + (ln qij − l̂nwi
fe). (14)

This yields a biased estimate of new-hire wage cyclicality if

Cov
(
Cyclet, ln q

ij − l̂nwi
fe

)
̸= 0.
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There are distinct reasons this might be the case. First, the worker’s wage fixed effect,
l̂nwi

fe, reflects match qualities in the individual’s entire panel, not only on the job started at
t. So, if match quality at t differs from the worker’s average match quality over their sample,
then this will affect estimated cyclicality. As discussed from the outset, this bias could be
procyclic (sullying effect of recessions) or countercyclic (cleansing effect of recessions). By
comparison, our approach is based on wage growth within matches. That eliminates the
concern of using other matches’ information when estimating new-hire wage cyclicality.

Second, if wages are smoothed, then the worker’s wage fixed effect will reflect the impact
of the cycle at t on the worker’s wage in the periods subsequent to t. This is more problematic
the shorter the worker panel. From equation (14), to the extent that l̂nwi

fe reflects ϕt,t, ϕ̂t,t

will understate fluctuations in ϕt,t. Therefore, Cov(Cyclet, ln ϕ̂t,t) will understate cyclicality
of new-hire wages. By comparison, our exercise uses the expected long-run wage in a match
as a proxy for its quality. More exactly, to alleviate the bias of cyclicality at t affecting the
control for match quality, we look at the expected wage eight years ahead.

Table 9 gives estimates of wage cyclicality separately for stayers versus new hires con-
trolling for a worker fixed effect on wages.29 We find that wages for stayers are only mildly
procyclical, decreasing by −0.54% for each pp increase in the unemployment rate (standard
error 0.32%). New-hire wages are considerably more procyclical, decreasing by -1.86% for
each pp in unemployment (standard error 0.38).30 When estimated with fixed-effects, the
new-hire wage is modestly less cyclical than based on our approach; but it is economically
and statistically highly procyclical.

Cyclicality of new-hire wage, job-to-job versus via non-employment

Recently Gertler et al. (2020) estimate new-hire wage cyclicality from both a fixed-effects
and wage-change specification stratifying new-hires by whether the match was job-to-job
or preceded by a spell of non-employment. They estimate, based on Survey of Income
and Program Participation (SIPP) data, that wages are more procyclical for job-to-job hires
than hires transiting non-employment. Figueiredo (Forthcoming) finds a comparable pattern
based on NLSY79 data. Gertler et al. (2020) interpret this differential in the context of a
model that exhibits a procyclical wage bias for job-to-job hires because job-to-job movers
leave particularly bad matches in booms. In terms of equation (14), they presume that
Cov

(
Cyclet, ln q

ij − l̂nwi
fe

)
= 0 for hires from non-employment while being positive for

29We restrict our sample to matches active at the survey interview. If the respondent works multiple jobs,
we select the one with higher hours per week (or longer tenure in the case of a tie).

30Our fixed-effects estimate of cyclicality for new-hire wages is in line with findings by Figueiredo (Forth-
coming) for NLSY data and by Gertler et al. (2020) for SIPP data.
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Table 9: Cyclicality of Wages, Fixed-effect Approach

(1)
log(wage)

Stayer × Urate -0.54
(0.32)

New Hires × Urate -1.86
(0.38)

Notes: The table shows the percent change in wages in response to a 1 pp increase in the unemployment
rate. The sample is for 1980 to 2011; it reflects 78,491 observations weighted by survey sampling weights.
Additional controls are a cubic trend and cubics in age and tenure. We allow all coefficients to differ for
the NLSY79 and NLSY97, except the unemployment rate and cubic trend coefficients. Standard errors are
clustered by survey year.

job-to-job hires. But an alternative interpretation is that Cov
(
Cyclet, ln q

ij − l̂nwi
fe

)
< 0

for hires from non-employment, for instance, because workers entering unemployment in
recessions leave particularly bad matches. Then the new-hire wage is countercyclically biased
for hires that experienced non-employment. As discussed above, the literature is consistent
with match quality being either pro or countercyclical. Our approach avoids the confounding
effects of changes in match quality by exploiting wage changes within matches.

In Table 10, we estimate the fixed-effects specification allowing separate interactions of
the unemployment rate for new hires that experienced non-employment and those hired
directly from another job. Non-employment is defined by reporting any weeks not employed
in the month prior to the start of the new match. Consistent with the estimates in Gertler
et al. (2020) and Figueiredo (Forthcoming), with fixed effects as the implicit quality control,
the estimates suggest much more procyclical wages for job-to-job hires: their coefficient for
1 pp of unemployment is −2.16% (standard error 0.49%) versus −1.20% (standard error
0.33%) for hires from non-employment.

For comparison, Row 1 of Table 11 gives estimates for our approach, but now it is
estimated separately for hires from non-employment and job-to-job. We estimate greater
cyclicality for job-to-job hires, but the difference is not statistically significant. The impact
of 1 pp. of unemployment is −2.09% for hires from non-employment (standard error 0.97%)
compared to −2.91% for those job-to-job (standard error 0.60%). Thus the new-hire wage
is highly cyclical for both groups, especially compared to cyclicality in wages for all workers
(See Table 1). Our approach yields greater cyclicality than using fixed effects both for
hires from non-employment (−2.09 versus −1.20) and job-to-job (−2.91 versus −2.16). One
interpretation is that fixed-effects estimates are biased by countercyclical match quality,
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Table 10: Fixed-effects, Splitting New Hires by whether Job-to-Job

(1)
log(wage)

Stayer × Urate -0.54
(0.32)

Via Non-Emp × Urate -1.20
(0.33)

Job-to-Job × Urate -2.16
(0.49)

Notes: The table shows the percent change in wages in response to a 1 pp increase in the unemployment
rate. The sample is for 1980 to 2011; it reflects 66,423 observations weighted by survey sampling weights.
Additional controls are a cubic trend and cubics in age and tenure. We allow all coefficients to differ for
the NLSY79 and NLSY97, except the unemployment rate and cubic trend coefficients. Standard errors are
clustered by survey year.

especially for hires from non-employment. But, at the same time, it is not surprising that
the fixed-effects estimate yields less cyclical wages for both types of hires, given that, if wages
are smoothed, it is biased toward zero cyclicality.

We considered a number of specifications for robustness in the prior subsection. The
results from the first row of Table 11 largely apply to these as well. For instance, the
remaining rows of Table 11 show the breakdown for our exercises, including a Heckman
correction in predicting wage growth or using a full eight years of wage growth for all workers,
even those who move again before t + 8. With the Heckman correction, Row 2, the results
closely parallel our benchmark estimates in Row 1, though wages are a little less procyclical
for both sets of new hires. Following wages for all new hires for eight years, Row 3, wages
for new hires from non-employment and job-to-job are equally procyclical.

5.2 First differences

Under the wage-growth approach, the cyclicality of wages of new hires is estimated by:

lnwij
t,t − lnwij−1

·,t−1 = α∆Cyclet + (ϵijt,t − ϵij−1
·,t−1).

wt−1
·,t−1 is the wage for a job that began before, or at, t − 1 and ended in t − 1. As a result,

a worker’s wage at the end of their prior match implicitly serves as the control for match
quality for the match starting at t, yielding an estimated change in new-hire wage:

ln
̂(
ϕt,t

ϕt−1,t−1

)
= ln

(
ϕt,t

ϕt−1,t−1

)
+
(
ln qij − ln qij−1

)
+
(
lnϕt−1,t−1 − lnϕ·,t−1

)
.
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Table 11: Cyclicality of new-hire wage, job-to-job versus via non-employment

All New Hires Via Non-emp Job-to-Job
Benchmark -2.30 -2.09 -2.91

(0.67) (0.97) (0.60)
Heckman Correction -2.03 -1.72 -2.68

(0.64) (0.93) (0.59)
8-years Change w/ Quality Controls -2.89 -2.85 -2.68

(0.61) (0.66) (0.65)

Notes: 32 annual observations: 1980-2011. Coefficients are percent responses to the unemployment rate.
Regressions include cubic trend. Robust standard errors in parentheses. When estimating our baseline
regressions again with the Heckman correction sample, we obtain coefficients -2.30 (0.67), -2.10 (0.96), -2.91
(0.60) for all hires, hires via non-employment, and hires via job transition, respectively.

qij−1 is the actual quality for the prior job that ended in t−1; and ϕ·,t−1 is the corresponding
quality-adjusted wage. This estimate of the cyclicality of the new-hire wage is biased if:

Cov(∆Cyclet, ln q
ij − ln qij−1) + Cov(∆Cyclet, lnϕt−1,t−1 − lnϕ·,t−1) ̸= 0.

The first covariance is the simplest to interpret. It creates a procyclical bias if workers
move to higher quality matches when the economy improves (the unemployment rate is
falling), or a countercyclical bias if they move to worse matches. As discussed repeatedly
above, the literature welcomes either prior.

The second covariance is zero if there is no wage smoothing, as ϕ·,t−1 = ϕt−1,t−1. With
wage smoothing its sign will reflect the autocorrelation of changes in the cycle. For instance,
if an expansion (declining unemployment) is typically preceded by a bust (rising unemploy-
ment), then booms should produce ϕ·,t−1 > ϕt−1,t−1. Therefore, Cov(∆Cyclet, lnϕt−1,t−1 −
lnϕ·,t−1) < 0, imparting a countercyclical bias to the wage-change estimate.

In the first column of Table 12, we present cyclicality of wages, separately for stayers
and new hires, by regressing changes in log wages on changes in the unemployment rate for
our NLSY sample as well as a quadratic trend.31 Consistent with most earlier studies, we
find that wage growth for new hires responds more to changes in the unemployment rate
than that for stayers. A 1 pp higher change in the unemployment rate is associated with
−1.12% lower wage growth for new hires (standard error 0.50%). Wage growth for stayers
is essentially acyclical. The new-hire coefficient estimated from wage growth and changes
in the unemployment rate is smaller than that estimated from our approach (−2.30%) or
by fixed effects (−1.86%). But the estimates are not especially comparable as the definition

31As with the fixed-effects, we restrict our sample to jobs active at the survey interview and, if the
respondent works multiple jobs, select the one with higher hours worked.

32



of the cycle here – changes in the unemployment rate – differs considerably from the cycle
defined by filtering the level of the unemployment rate.

In Column 2, we distinguish job-to-job hires from those with a spell of non-employment.
We find that wage changes are similarly procyclical for the two groups – with 1 pp higher
growth in the unemployment rate reducing the rate of wage growth by about one percent.
But the standard errors are sufficiently large that the estimate is not statistically significant
for either group if viewed separately.32

Table 12: Cyclicality of Wages, First-Differences Approach

(1) (2)
∆ log(wage) ∆ log(wage)

Stayer ×∆ Urate -0.16 -0.17
(0.29) (0.29)

New Hires ×∆ Urate -1.12
(0.50)

Via Non-Emp ×∆ Urate -1.07
(0.81)

Job-to-Job ×∆ Urate -0.90
(0.52)

Notes: The table shows the percent change in wages in response to 1 pp in the unemployment rate. The
sample covers 1980 to 2011 reflecting 46,050 wage changes. Additional controls are dummies for sex, race
and education groups, and quadratic trend, age and tenure polynomials. We allow all coefficients to differ
for the NLSY79 and NLSY97, except the unemployment rate and quadratic trend coefficients. Standard
errors are clustered by survey year. All regressions are estimated using survey sampling weights.

6 Conclusions
We estimate the cyclicality of the price of labor taking into account wage smoothing within
matches and cyclical variation in match quality.

32From SIPP data, Gertler et al. (2020) estimate a positive relationship between changes in the unemploy-
ment rate and the rate of wage growth for new hires that is statistically significant for job-to-job hires but
not for those that had a spell on non-employment. Beyond being different samples, the SIPP and NLSY data
differ in their frequency of wage observation. The SIPP asks for respondents’ wages at four-month intervals.
Our NLSY data collect individuals’ wages annually or biannually. The differences in frequencies not only
affect the definition of the cycle but could also affect the importance of the alternative biases outlined in
this subsection that affect estimates from the wage-growth specification.
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We estimate that the new-hire wage is highly procyclical, decreasing by more than 2%
for a 1 pp increase in the unemployment rate. Many prior studies have estimated highly
procyclical wages for new hires. But those studies employed proxies for match quality (e.g.,
fixed effects) that reflect wages not only from the current match but also from past and future
matches, thereby potentially biasing these estimates if match quality changes cyclically with
job transitions. We construct a measure of match quality, the expected long-run match wage,
to avoid any impact of quality changes across matches.

We find that the price of labor, which we measure by the user cost of labor, is even more
procyclical, decreasing by about 5% for a 1 pp increase in the unemployment rate, or with
an elasticity with respect to real GDP in the range of 2 to 3. Our estimates are robust to
allowing for cyclical separation and time discount rates.

Our results for labor’s user cost require some force, or forces, for highly cyclical labor
demand to explain fluctuations in employment and hours. It is common to introduce that
force in models via procyclical productivity shocks. But, given that labor productivity was
not procyclical for our sample period (e.g. Fernald and Wang, 2016), this suggests a key role
for other drivers of procyclical labor demand. A number of explanations have been proposed
in the literature. One is price stickiness that constrains sales during downturns, depress-
ing labor demand. Countercyclical desired markups have a comparable upshot (Rotemberg
and Woodford, 1999). If producing has an investment component, then tightening financial
constraints will reduce production and labor demand, with no decline in labor productiv-
ity. Examples include models where, by producing more, firms expand their customer base
(Gilchrist, Schoenle, Sim, and Zakrajšek, 2017), or generate a more productive future work-
force (Kehoe, Lopez, Midrigan, and Pastorino, 2022). Yet another force suggested in the
literature is via uncertainty. More exactly, uncertainty is modeled as reducing labor demand
in combination with evidence that uncertainty is heightened during recessions. Examples
include Arellano et al. (2019), Jo and Lee (2022), and Wang (2022).
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A User Cost: Separation Rate Varying with Time and
Start Date

The thought experiment of the labor’s user cost compares the wage cost of hiring a worker
today versus tomorrow. In this comparison, we ensure that the firm’s employment is left
unaffected from t + 1 forward. This means that, if a worker separates, the firm is assumed
to hire to replace that separated worker at the prevailing wage path starting that date. The
user cost of labor is then the difference between the expected discounted present value of
wages paid at the job opened in period t and the one opened in period t + 1. Since these
options give the same expected employment in the future, their difference gives the implicit
price of the services of adding one worker in period t.

Figure 4 shows all the possible paths for a firm to have an additional worker after three
periods. Observe that we allow the separation rate to depend on the hiring and current
periods, so δt,t+τ is the separation rate at the end of t + 1 for a worker hired in t. We also
allow for time-varying discount rates, so βt is the discount rate at period t. The right-most
path depicts if a separation never occurs; so, at period t+ 3, a firm pays ϕt,t+3 for a worker
hired at t. Conversely, the left-most path depicts a scenario with separations each period;
then the firm pays ϕt+3,t+3 for a worker hired at t+ 3.

Looking at Figure 4, the discounted present value of wages for a position opened in
t (PDVt) reflects summing across all possible paths for that position. However, we can
simplify this summation by writing it recursively. For example, observe that, if the firm
needs to replace due to separation at t + 1, that cost is the discounted present value of
opening a position in t + 1 — the shaded blue region in Figure 4. The same observation
holds for hirings after separation at t + 2 and t + 3 — the shaded red and green areas.
Consequently, PDVt can be written as:

PDVt = Et

[
ϕt,t + βt(1− δt,t)ϕt,t+1 + ...+Πτ

j=0βt+j(1− δt,t+j)ϕt,t+τ + ...

+ βtδt,tPDVt+1 + ...+
[
Πτ−1

j=0βt+j(1− δt,t+j)
]
βt+τδt,t+τPDVt+j + ...

] (15)

As defined in Kudlyak (2014), the user cost of labor in period t can be viewed as the
difference between the expected discounted present value of wages paid at the position opened
in period t and t+ 1,

UCt = Et [PDVt − βtPDVt+1] .

This definition is equivalent to the definition in the main text for the special case illustrated
there of time-invariant separation and discount rates: δt,t+τ = δ and βt = β:

UCt = Et

[
ϕt,t +

∞∑
τ=1

βτ (1− δ)τ
(
ϕt,t+τ − ϕt+1,t+τ

)]
.
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To capture user cost, allowing the separation rate to depend on both the hiring and
current periods, we first find all PDV s by solving a system of linear equations. Observe that
all PDV s, equation (15), can be rearranged and stacked in a linear system as:

1 Ωt,t+1 Ωt,t+2 Ωt,t+3 . . .
0 1 Ωt+1,t+2 Ωt+1,t+3 . . .
0 0 1 Ωt+2,t+3 · · ·
... ... ... ...



PDVt
PDVt+1

PDVt+2
...

 =


ωt

ωt+1

ωt+2
...

 .
Ωt,t+τ = −

[
Πτ−1

j=0βt+j(1− δt,t+j)
]
βt+τδt,t+τ is the weight of the future PDV in PDVt,t+τ ; and

ωt =
∑∞

τ=0 Π
τ
j=0βt+j(1 − δt,t+j)ϕt,t+τ is the discounted present value of the wage payments

for the conceptual path without separations.
To empirically implement this method, we first invoke our second assumption and set

Ωt,t+τ = 0 for all τ > 7. We then write the matrix of weights as an upper-triangular matrix,
meaning that, in our final sample year, PDV2012 = ω2012. The resulting linear system can be
expressed as:

1 Ω1980,1981 . . . Ω1980,1987 0 . . . 0
0 1 . . . Ω1981,1987 Ω1981,1988 . . . 0
... ... ... ... ...
0 0 . . . 0 0 . . . 1



PDV1980
PDV1981

...
PDV2012

 =


ω1980

ω1981
...

ω2012


We find the vector of PDV by inverting the weighting matrix. Lastly, the realized user cost
is easily computed by UCt = PDVt − βtPDVt+1.
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ϕt,t

ϕt+1,t+1

ϕt+2,t+2

ϕt+3,t+3

βt+2(1− δt+2,t+2)

ϕt+2,t+3

βt+2(1− δt+2,t+2)

βt+1δt+1,t+1

ϕt+1,t+2

ϕt+3,t+3

βt+2δt+1,t+2

ϕt+1,t+3

βt+2(1− δt+1,t+2)

βt+1(1− δt+1,t+1)

βtδt,t

ϕt,t+1

ϕt+2,t+2

ϕt+3,t+3

βt+2δt+2,t+2

ϕt+2,t+3

βt+2(1− δt+2,t+2)

βt+1δt+1,t+1

ϕt,t+2

ϕt+3,t+3

βt+2δt,t+2

ϕt,t+3

βt+2(1− δt,t+2)

βt+1(1− δt+1,t+1)

βt(1− δt,t)

Figure 4: Present Discounted Value of Wages
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B Data Appendix
B.1 Sample Description

Table 13: Sample Description

Full Sample NLSY 79 NLSY 97
Mean Mean Mean

Avg. Age 32.64 35.59 27.72
Fraction of Male 0.54 0.54 0.55
Avg. Years of Schooling 13.28 13.18 13.44
Avg. Hourly Wage 19.92 20.35 19.20
Avg. Weekly Hours 42.34 43.10 41.07
Avg. Tenure (in weeks) 207.76 251.67 134.67
Fraction new hires 0.29 0.27 0.32
Avg. match length 6.27 7.78 3.76
Avg. ind. length in panel 22.31 28.12 12.64
Observations 144,367 90,176 54,191
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B.2 Separation rate series

We use a slightly different approach to estimate the separation rates, δ, as a function of their
current dates. First, we construct a dummy that equals one if a match termination happens,
1δ. A termination event is defined as 1) the last observation in which we observe a match
and the worker reports a reason why he left the job or 2) the last observation in which we
observe a match and the worker appears in subsequent surveys. Second, we use all matches
except those lasting less than half a year.

As with the wage regression, we employ the NLSY data to regress 1ij
δ,t on dummies to

capture when the job terminated (the t’s). Different from the wage regression, we stratify
each survey in a different set of dummies. Specifically, we estimate δsd for survey s from the
following regression:

1
ij
δ,t = Ψxijt +

2018∑
d=1980

δ79d 1
ij
79 D

ij
d +

2018∑
d=1980

δ97d 1
ij
97 D

ij
d + ϵijt+τ .

Dummy variables Dij
d equal 1 if d = t and 0 otherwise; 1ij

79 and 1
ij
97 are dummies capturing

survey instrument (NLSY79 or NLSY97); and xijt reflects additional controls for individual
characteristics that could affect the match separation. These are dummies capturing the
respondent’s sex, race, age, educational attainment, and survey instrument. We allow the a
flexible function for age (several dummy variables) to ensure that most estimated probabil-
ities be between 0 and 1.

When a NLSY survey runs annually, each estimated coefficient, δ̂st , captures the average
separation that happened between period t and t + 1 for a job that started at t. When it
runs biannually, each estimated coefficient will capture the average separation that happened
between t and t+2. In this case, we annualize the separation rate between years t and t+1

using the formula,
δ̃st = δ̃st+1 = 1−

√
1− δ̂st

in which δ̃st is the adjusted annual separation rate for the year t. When we have only one
NLSY survey, we set the separation rate as the estimated coefficient for this survey. When
both NLSY surveys run together, we aggregate the estimated coefficients giving each of them
1/2 as weight.
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B.3 Discount rate series

We construct the time-varying discount rate series as a function of one-period consumption
growth rates. Assuming a CRRA utility function, the Euler equation can be approximated
by

log(rt) ≈ log(β)− θEt [∆ log(Ct/Ct−1)] .

θ is the risk aversion parameter, β is intertemporal discount factor, and log(Ct/Ct−1) is the
one-period consumption growth rate. First, we set β = 0.989, the inverse of the average real
one-month T-bill rate is our sample, downloaded from Kenneth French’s website. We use the
personal consumption expenditures (PCE) price index to deflate the interest rate. Second,
we use non-durable plus services consumption from NIPA as our measure of consumption.
Third, we set θ = 2, as usual in the macro literature. Finally, we adjust our time-varying
discount factor series to have an average equal to β.

The user-cost of labor holds in expectation. However, we construct it using realized
(or ex-post) wage growth. When we allow for a time-varying discount rate, we also use
the realized discount rate and construct expectations when projecting our measure into the
unemployment rate.
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