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Abstract

We explore alternative methods for adjusting price indices for quality change at scale.
The methods we consider can be used with large-scale item-level transactions data
that has been digitized with price, quantity, and item-attribute data. We consider
hedonic methods that take into account the changing valuation of both observable
and unobservable characteristics in the presence of product turnover. We also con-
sider demand-based approaches that take into account changing product quality from
product turnover and changing product appeal of continuing products. Using these
methods, we find evidence of substantial quality-adjustment in prices for a wide range
of goods, including high-tech consumer products and food products.
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1 Introduction

Retail businesses create item-level data on the prices and quantities of the goods that they

sell. Such data form the basis for re-engineering key economic indicators by building consis-

tent aggregates of value, volume, and price directly from item-level transactions. Aggregation

of transactions data could supplant traditional surveys and enumerations conducted by sta-

tistical agencies (see, e.g., Ehrlich et al., 2021). While ambitious, such re-engineering has

many potential advantages. One is to address the issue of rapid product turnover that is

associated with quality improvements. We find quarterly product-level entry and exit rates

that range between 5 and 15 percent across product groups. Current statistical agency

procedures for measuring prices inadequately address such turnover. This paper considers

scalable procedures using item-level transactions data that can be used to measure quality

change, and therefore account for entering and exiting goods as well as changing consumer

valuations of product attributes.

Use of high-frequency, item-level sales data to produce accurate inflation measures also

requires incorporation of advances in index number and economic theory. We consider two

complementary approaches: hedonics and demand-based models. Both approaches suggest

that quality improvement is widespread across a large range of consumer goods, including

in categories in which technological progress is not immediately visible.

Our preferred hedonic approach builds on the insights of Erickson and Pakes (2011, here-

after “EP”), who develop a novel method of calculating hedonic price indices that accounts

for product quality changes that are unobserved to the econometrician. Higher-frequency,

item-level transactions data with prices, quantities, and attributes greatly facilitate the im-

plementation of the EP methodology. These data permit implementing the hedonics ap-

proach with superlative price indices (such as the Fisher or Tornqvist) in real time using

internally consistent expenditure weights. We compare and contrast the EP methodology

with more commonly used alternative hedonic methods such as the time dummy method.

Our demand-based approach builds on the exact price indices developed from theoret-
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ical models of consumer demand: the Sato-Vartia price index (Sato, 1976; Vartia, 1976);

the Feenstra (1994) adjustment to the Sato-Vartia index, which adjusts for quality change

from product entry and exit (denoted the Feenstra index hereafter); and the CES Unified

Price Index (CUPI) developed in Redding and Weinstein (2020), which adjusts for changing

consumer preferences. The demand-based approaches have the attractive feature that they

yield exact price indices under certain sets of assumptions. Moreover, in principle these

methods impose sufficient structure that they do not require attribute data beyond a basic

product taxonomy to implement. Empirically implementing these methods at scale intro-

duces a number of challenges, however, including classifying the goods in a manner so that

the CES assumptions are valid. We have found that, in practice, the attribute data proves

helpful in addressing these challenges.

A common feature of the frontier research methods using both hedonic and demand-

based approaches is that they can account for changing consumer valuations of products or

product characteristics. In principle, the CUPI of Redding and Weinstein (2020) captures

both quality change due to product turnover and time-varying product appeal over the course

of products’ time in the marketplace, without directly using detailed product attributes. The

EP approach also reflects changing consumer valuations of various product attributes over

time as they translate into the changing mapping between prices of characteristics along

with the changing mix of characteristics given product entry and exit.

We implement the hedonic and demand-based approaches at scale using item-level trans-

actions data from two major sources. The first platform we use is from NPD, which covers

a wide range of general merchandise goods from bricks and mortar and online retailers. In

this paper, we construct data for a select number of product groups: memory cards, head-

phones, coffee makers, boys’ jeans, and work and occupational footwear. The NPD data

include rich product attributes, which facilitate the implementation of the EP methodology.

The second platform we use is the Nielsen Marketing data provided by the Kilts Center for

Marketing at the University of Chicago Booth School of Business, which covers a wide range
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of food products from grocery stores, discount stores, pharmacies and liquor stores.1 Two

challenges in the Nielsen data are that, first, it contains sparse data on product attributes,

and second, it contains far more product groups (over 100) than the select group we used

in the NPD data (five). We overcome those challenges by adapting the EP methodology to

incorporate machine learning (ML) techniques that can relate product prices to seemingly

limited characteristic data.

Consistent with the literature using scanner data, we find enormous product turnover

at a quarterly frequency, along with rich post-entry product life-cycle dynamics. Products’

market shares peak several quarters after entry, while on average prices decline monoton-

ically after entry. We also find evidence of substantial quality adjustment in price indices

using either hedonic or demand-based approaches across the full range of product groups

we consider. The magnitude of the quality adjustment is greater for high-tech goods such

as memory cards and headphones, but we find that quality adjustment is pervasive for food

product groups as well. While the latter result might be surprising, our findings are consis-

tent with the changing and increasing variety of food products available over time.

We find that the EP method of hedonic adjustment, which can account for unobservable

product characteristics, yields more systematic evidence of pervasive quality adjustment than

the time dummy hedonic method. Currently, the Bureau of Labor Statistics (BLS) uses

hedonic adjustment for only about 7 percent of products in the CPI. Our results suggest

potentially substantial gains from implementing hedonic methods at scale using the EP

method with item-level transactions data.

Among the demand-based methods, we find that the Feenstra (1994) index, which ad-

justs the Sato-Vartia for product turnover, systematically yields lower price inflation than the

Sato-Vartia. This result suggests that product turnover is associated with quality improve-

ment. The most general demand-based index we consider is the CUPI, which generalizes the

Feenstra index to allow for changing product appeal over product life cycles. We find the

1We focus in this paper on product groups classified as “food” in the Nielsen data to sidestep potential
concerns about the representativeness of the nonfood product groups.
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CUPI implies substantial quality adjustment beyond what the Feenstra index implies.

A challenge in implementing the CUPI is that two of its three components are unweighted

geometric means. These terms are sensitive to the inclusion of goods with very small quanti-

ties or market shares, which is one reason that unweighted indices are generally discouraged

in the index number literature. Redding and Weinstein (2020) employ a reallocation proce-

dure, by which they move a subset of goods out of the CUPI’s unweighted geometric mean

terms and into the Feenstra (1994) adjustment term using what we term a common goods rule

based on the durations of products’ time in the marketplace.2 Applying a common goods

rule brings the CUPI’s measurement of price changes closer in line with other indices. Our

results suggest more research is needed to provide guidance about how to define a common

goods rule.

We proceed as follows. Section 2 describes the underlying data. The conceptual frame-

work we use for hedonic and demand-based indices is presented in section 3. Section 4

presents our main results and discusses the advantages and drawbacks of the alternative

approaches that we have considered in light of those results. Section 6 provides concluding

remarks.

2 Data

This section provides an overview of the two data sets that we use to compute price indices.

The first comes from the NPD Group and the second comes from Nielsen. For both data

infrastrucures, we aggregate the item-level transactions data to the quarterly, national data

and focus on quarterly price indices. This approach is motivated by our objective to compare

traditional, hedonic, and demand-based price indices in a manner consistent with the recent

2Redding and Weinstein (2020) refer to these rules “as alternative definitions of common varieties.”
In his insightful discussion of Ehrlich et al. (2021), Robert Feenstra motivated a common goods rule as a
necessary recognition that it takes time for goods to enter and exit markets, a concept he denoted seasoning.
As we discuss below, one limitation of the Redding and Weinstein (2020) specification of the common goods
rule is that it requires forward-looking information and therefore cannot be implemented in real time. We
find we can mimic their results using only backward-looking and real-time information.
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literature, particularly the CUPI developed by Redding and Weinstein (2020).

2.1 NPD Data

We use proprietary data that the NPD Group provided to the U.S. Census Bureau, which

consists of monthly sales and quantity data at the product-store level from 2014 through

2018.3 The NPD group tracks more than 65,000 retail stores, including online retailers. The

retail stores cover a wide range of general merchandise products. The NPD data analyzed

here consist of five broad product groups, within which we conduct our analysis separately:

memory cards, coffee makers, headphones, boys’ jeans, and work/occupational footwear

(hereafter simply “occupational footwear”). The NPD data have unique item-level identifiers

that are consistent cross-sectionally and over time. We aggregate the item-by-store-level

observations to the national product-quarter level and calculate total quantity sold and

average price for each product-quarter. The item-level data cover tens of thousands of

product-quarter-level observations.

An attractive feature of the NPD data is that they contain detailed and organized in-

formation on the characteristics of each product. Beyond basic information such as product

category and brand, these characteristics include details on different types of products within

the broader categories (e.g., on-ear vs. in-ear headphones; coffee vs. espresso machines) and

the features or attributes of different products (e.g. built-in grinders or auto-on/off settings

for coffee makers). In some cases, the attributes include continuous variables, which facilitate

estimation of hedonic models. We use the detailed product characteristics in the estimation

of hedonic price indices and to group products into subcategories in our estimation of nested

CES models.

Table 1 displays average item-level product turnover rates for each product group. Each

3Month definitions follow the National Retail Federation (NRF) calendar. The NRF calendar is a
guide for retailers that ensures sales comparability between years by dividing a year into months based
on a 4 weeks-5 weeks-4 weeks format. The layout of the calendar lines up holidays and ensures the same
number of Saturdays and Sundays in comparable months across years. The NRF calendar thus ensures the
comparability of the aggregated sales over time.
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of the five groups exhibits a high degree of product turnover. In unreported results, we find

that the turnover rates are lower on a sales-weighted basis, though, suggesting that turnover

is more common among goods with smaller market shares.

Figure 1 presents life-cycle dynamics of product market shares and prices within these

product groups. The illustrated statistics are mean log differences from the product-specific

initial values upon entry. Prices decline steadily after entry, while market shares exhibit a

hump-shaped pattern post-entry. The post-entry patterns of market shares differ consider-

ably across product groups. For example, while memory cards, coffeemakers and headphones

all peak after 3 quarters, headphones decline much more rapidly than memory cards or cof-

feemakers. Magnitudes at the peak are large but also differ by product group. For memory

cards and coffeemakers the peak is about 300 log points relative to the first quarter while

for headphones the peak is about 200 log points.

Taken together, these findings highlight two important features of the data. First, there

is considerable item-level product turnover that is a potentially important source of changing

product quality. Second, post-entry dynamics suggest that it may be important for methods

of quality adjustment to account for time-varying product appeal. Both the hedonic and

demand-based approaches we consider can account for such variation.

2.2 Nielsen Data

We use the Nielsen Retail Scanner data (also referred to as RMS) from the Kilts Center for

Marketing at the University of Chicago Booth School of Business for the period 2006 to 2015.

The data consists of over 2.6 million products identified by the finest level of aggregation–

12-digit universal product codes (UPCs) that uniquely identify specific goods.4 The RMS

data are collected from over 40,000 individual stores from approximately 90 retail chains in

over 370 metropolitan statistical areas (MSAs) in the United States. Total sales in Nielsen

RMS are worth over $200 billion per year and represent 53% of all sales in grocery stores,

4The Nielsen data contain both UPC codes and “UPC version codes.” The unique product identifier
used in the analysis is the combination of the UPC code and the UPC version code.
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55% in drug stores, 32% in mass merchandisers, and 2% in convenience stores.

Nielsen organizes item-level goods into 10 departments, over 100 product groups, and

over 1,000 product modules. A typical department is, for example, dry grocery, which

consists of 41 product groups, such as baby food, coffee, and carbonated beverage. Within

the carbonated beverage product group, there are product modules such as soft drinks and

fountain beverage. The product groups are classified into food and nonfood sectors based

on a concordance provided by the BLS.

The RMS consists of more than 100 billion unique observations at the week-store-UPC

level. We first aggregate the weekly data to the monthly frequency according to the NRF

calendar and then aggregate the monthly data to quarterly. Following procedures used by

Hottman et al. (2016) and Redding and Weinstein (2020), we drop outliers from the monthly

data before aggregating to the data to quarterly frequency. Specifically, we drop observations

with prices above 3 times or below one-third the module-level median for each UPC in a given

month. We also drop product-month observations with quantities sold that are more than

24 times that product’s median quantity sold per month. One feature of barcoded products

is that goods of different sizes and packaging have different barcodes, even if the product

contained in the packaging is the same. To ensure comparability between prices, we follow

Hottman et al. (2016) and normalize UPC prices to the same units (e.g., ounces), utilizing

the size and packaging information provided by Nielsen. Consistent with the literature, we

winsorize monthly price changes at the top and bottom 1% of each product group.

We focus on results for the Nielsen data’s food product groups in the main text because

we estimate that the data’s coverage is more extensive and tracks economywide time trends

more closely for those groups than for the nonfood product groups. Using the Economic

Census data from 2012, we have calculated that the types of retailers that the Nielsen

scanner data tracks have very high coverage of food items (about 90%). Moreover, using a

back-of-the-envelope calculation based on Nielsen’s coverage of different types of retailers,

we estimate that Nielsen scanner data accounts for about 41% of total food sales in the
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U.S. In contrast, the data’s coverage is meaningfully lower for several nonfood categories.

The types of stores Nielsen tracks accounts for about 53% of small appliance sales. However,

Nielsen’s coverage of general merchandise stores is only 32%. Using our back-of-the-envelope

calculation, these figures imply that the Nielsen scanner data accounts for only about 19%

of total small appliance sales in the U.S. Coverage in other categories is substantially lower.

For instance, we estimate that the Nielsen scanner data accounts for only about 5% of total

sales of hardware and tools.

As we discuss in Appendix B, we have also compared patterns of total expenditures for

harmonized categories from Nielsen and Personal Consumption Expenditures data (PCE).

We find evidence suggesting that the Nielsen Retail Scanner data’s coverage of nonfood items

deteriorated during our study period, potentially driven by the ongoing structural shifts in

Retail Trade, especially towards e-commerce. In contrast, we find a close correspondence be-

tween total expenditure trend patterns from Nielsen and the PCE for harmonized categories

of food items. This correspondence holds for individual food groups as well as aggregated

food categories.

3 Conceptual Framework

The goal of any price index is to measure approximately or exactly the change in the cost of

living between two time periods—that is, to calculate how much more or less expensive it is

to achieve the same standard of living as in some base period given current prices. One im-

portant challenge in constructing price indices from item-level data is the substantial pace of

product turnover that we documented in the previous section. Another important challenge

is that consumer preferences over products or valuations of different product characteris-

tics may vary over time. Traditional “matched-model” price indices do not capture quality

change from such product turnover or from changing relative product appeal. In contrast,

the hedonic and demand-based indices we construct from the item-level data potentially in-
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corporate quality change from product turnover and changing product appeal over products

or valuations of product characteristics.

3.1 Traditional Price Indices

Traditional price indices typically can be conceptualized as weighted-average price changes of

some form. Our empirical work in this paper will focus on so-called geometric price indices,

which are weighted averages of log price changes. Specifically the log geometric price index,

ln ΨG
t , is given by:

ln ΨG
t =

∑
k∈Ct-1,t

wkt ln
pkt
pkt-1

,

where wkt is a weight assigned to product k (typically based on the product’s market share)

and the ratio of prices to be aggregated is often called a log price relative. The set Ct-1,t

is the set of all “continuing” or “common” goods that are sold both in period t and in

period t-1. The use of different weights determines the index. The Laspeyres index uses

lagged expenditure shares as weights (wkt = skt-1), the Paasche index uses current expendi-

ture shares (wkt = skt), and the superlative Tornqvist index uses average expenditure shares

(wkt =
skt-1+skt

2
).5 Hence, the Tornqvist lies between the geometric Paasche and geometric

Laspeyres, and Diewert (2021) shows that for price indices at a detailed level of aggrega-

tion (so that the goods are sufficiently close substitutes), the “standard” ordering occurs -

geometric Paasche < Tornqvist < geometric Laspeyres.

Traditional price indices have a theory-free interpretation as weighted-average changes

in product prices. While this statistical interpretation is valuable on its own, there is also

5The Tornqvist is closely related to the Fisher superlative index, which is the geometric mean of the
arithmetic Laspeyres and Paasche indices. A longstanding question in the literature concerned whether the
Sato-Vartia index is superlative, until Barnett and Choi (2008) demonstrated that it is. Like the Torqnvist,
the Sato-Vartia index is also an expenditure-weighted average of log price changes; it differs from the Torn-
qvist by using the logarithmic mean of period t-1 and period t expenditure shares instead of the arithmetic
mean. We generally discuss the Sato-Vartia in the context of the demand-based CES indices because it is
exact for CES preferences under certain assumptions and because of our interest in contrasting it with other
demand-based CES price indices.
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an economic interpretation of these indices dating back to the seminal work of A.A. Konus

(Konüs, 1939; Schultz, 1939). The arithmetic Laspeyres and Paasche indices provide upper

and lower bounds, respectively, on the exact change in the cost of living between two periods

in the absence of product turnover and associated quality change.6 So-called superlative

indices, including the Fisher and Tornqvist, have more desirable theoretical properties: they

are the change in the unit expenditure function (i.e., the exact price index) that is the second-

order approximation for a wide class of utility functions in the absence of product turnover

and taste shocks (Diewert, 1978). We will generally use a superlative index, particularly the

Tornqvist, when comparing traditional indices with hedonic or demand-based indices.

In theory, these traditional price indices require both the price and sales or expenditure

share of each good in either one or both time periods to calculate weighted price changes.

In current practice, however, statistical agencies’ data on sales and expenditure shares is

often limited to disparate sources at higher levels of aggregation and lower frequency. For

instance, BLS uses expenditure shares from the Consumer Expenditure survey, with in-

frequently updated weights, to produce the Consumer Price Index (CPI). This practical

limitation motivates the frequent use of the Laspeyres index in official statistics (e.g. for

the CPI), which is subject to potentially large substitution bias relative to the superlative

indices. High-frequency scanner data connect the prices and quantities sold for each product,

allowing for the construction of superlative price indices using internally consistent price and

quantity data. We explore this advantage in our empirical analysis.7

These traditional price indices are all “matched-model” indices: they calculate price

changes across the goods that were sold both in the base and in the current period. The tra-

ditional indices therefore do not account directly for goods that enter or exit across periods,

which may be an important source of changing product quality.

6In the case of strictly normal goods, the arithmetic Paasche is a lower bound of the equivalent variation,
and the arithmetic Laspeyres is an upper bound to the compensated variation, so we have that Paasche ≤ EV
≤ CV ≤ Laspeyres. Paasche < Laspeyres typically holds in the data, and will be the case when substitution
is, on net, away from goods that have the highest change in price and towards those with the lowest.

7The limitations of the current system are discussed further in Ehrlich et al. (2021).
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3.2 Hedonic Price Indices

In this section, we describe our use of hedonic methods to adjust price indices for quality

changes, especially in the context of product turnover. Hedonic imputation allows a price

index to account for product turnover by using product characteristics and an estimated

hedonic relationship between characteristics and prices to impute the “missing” prices for

entering and exiting products.

The log-level hedonic price model common in the literature takes the form:

ln pkt = ht(Zk) + ηkt, (1)

where Zk is a vector of observable characteristics for good k. The function ht() is often linear

in parameters, and the hedonic equation is estimated with with ordinary or weighted least

squares regression. An important feature of equation (1) is that the hedonic function varies

over time, i.e., the function ht() is estimated separately period-by-period. Underlying the

hedonic approach is the assumption that utility can be specified as a function of the goods’

characteristics. The time-varying estimation allows the hedonic function to capture chang-

ing consumer valuations, markups, or other changing aspects of market structure (Pakes,

2003). Although Pakes (2003) emphasizes that the estimated coefficients are not readily

interpretable as marginal valuations of characteristics, the indices that emerge can be used

as quality-adjusted estimates of changes in the cost of living.

A core limitation of the log-level hedonic estimation approach outlined in equation (1)

is that there are likely to be product characteristics that are relevant to the formation of

prices but that the econometrician cannot observe. Erickson and Pakes (2011) introduce

hedonic methods that can account for such unobserved characteristics. One simple, though

effective, method is to estimate hedonic models of price changes rather than price levels, by

estimating the equation:

∆ ln pkt = Z ′kβt + vkt. (2)
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This log-difference hedonic model estimates the change in hedonic price coefficients directly,

which “differences out” any unobservable item-level characteristics that have a fixed influence

on prices over time. This basic log-difference hedonic model will not account for the influence

of time-varying unobservable characteristics, however.

The most general form of the Erickson and Pakes (2011) approach can account for time-

varying unobservable characteristics, so we will call this approach the “TV approach” for

short. Implementing the TV approach requires two steps. First, we estimate the log-level

hedonic specification in equation (1) for period t-1. Second, we estimate a log-difference

hedonic model, including the lagged residuals from the first stage. The second estimating

equation is then:8

∆ ln pkt = Z ′kβt + κη̂kt-1 + vkt. (3)

Including the initial residuals from equation (1) in equation (3) allows the model to

capture the influence of time-varying valuations of unobservable product characteristics to

the extent that the initial residuals are correlated with price changes. In our analysis, we

consider log-level, log first-difference, and TV approaches.

We also consider the related, but distinct, time dummy method that has been actively

used in the research literature and by the BLS. We follow the recent literature (e.g., Byrne

et al., 2019) using adjacent-period, weighted least squares estimation with Tornqvist market-

share weights. Specifically, we estimate hedonic regression equations pooling observations

from the adjacent periods t-1 and t. Letting T denote the total number of periods in the

data, we thus estimate T − 1 separate pooled two-period regressions of the form:

ln pkτ = αt-1,t + δt + Z ′kγt-1,t + εkτ , τ = {t-1, t}, (4)

8It can be shown that this characterization is equivalent to the time varying unobservables specification
in Erickson and Pakes (2011). In that paper, they describe a closely related multi-step procedure. First,
estimate the log levels hedonics and recover the residual. Second, estimate the log price relative on charac-
teristics. Third, estimate the change in the residuals from the the log levels on the characteristics. Using the
sum of the predictions from the latter two steps, as described in Erickson and Pakes (2011), is equivalent to
using the predictions from equation (3).
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where αt-1,t is the constant, Zk is the vector of characteristics for good k, γt-1,t is a vector of

estimated hedonic coefficients held fixed across periods t-1 and t, and δt is a fixed effect for

period t.9

Exponents of the resulting coefficients δt can be interpreted as the quality-adjusted change

in the price level between periods t-1 and t. Intuitively, the period-t fixed effect δt reflects the

difference in average price of a “generic” good between t− 1 and t because the contributions

of all of the product characteristics have been partialled out. The hedonic time dummy

specification includes goods entering in period t and exiting after period t-1 through its

use of the Tornqvist weights, which are average market shares between the two periods.

Nonetheless, a limitation of the time dummy method relative to the TV approach is that the

former does not account for unobservable product characteristics. Another issue emphasized

by Pakes (2003) and Diewert et al. (2008) is that this method imposes constant coefficients

on characteristics in adjacent periods which is often rejected by the data.

Our implementations of the TV approach and the time dummy method with the NPD

data use standard econometric methods to estimate the hedonic function ht(). This approach

is feasible with the NPD data because of the enormous value-added the NPD group provides

in terms of item-level attributes.

The product descriptions in the Nielsen data provided by the Kilts Center for Marketing

at the University of Chicago are generally not coded to be human-intelligible. For instance,

two product descriptions for soft drinks are ZR DT LN/LM CF NBP CT and NATURAL R CL NB

12P, while a product description for toilet paper is DR W 1P 308S TT 6PK. A human analyst

could decipher portions of these descriptions: DT means “diet,” 12P means twelve pack, 1P

means one ply, 308S means 308 sheets, etc. It would not be feasible for human analysts to

encode such data at scale, however, and simple dictionaries would be fooled (e.g., the P-suffix

9We specify the hedonic regression equation (4) using the same vector of characteristics Zk in each pair
of adjacent periods. Occasionally, new features are introduced to the data. In pairs of adjacent periods
entirely prior to the introduction of a new characteristic, it will be omitted from the regression because of
collinearity with the intercept term. In pairs of adjacent periods in which the new feature is absent during
period t−1 and present during period t, the feature will be included in the estimated regression. Symmetric
arguments apply for characteristics that exit.
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means “pack” for soft drinks and “ply” for toilet paper).

An additional challenge in the Nielsen data is its sheer scale. The Retail Scanner data

contains more than 100 product groups and over 1,000 product modules. It would be difficult

for human analysts to specify sensible hedonic regression equations for so many product

groups. It would be even more difficult to update those regression equations over time as

product mixes and characteristics change.

To address these challenges, we have implemented deep neural networks to predict prod-

uct prices and price changes from the product descriptions in the Nielsen Kilts Center data.

Our approach parallels the TV approach of Erickson and Pakes (2011), in that it first pre-

dicts price levels and then, to capture time-varying unobservable effects, uses the prediction

error in a second-stage neural net predicting price changes. We provide more details of

our approach in the appendix and in a companion paper (Cafarella et al., 2021) that fo-

cuses on the machine learning methodology. In related work, Bajari et al. (2021) use an

advanced machine learning approach that includes encoding image data as inputs into price

predictions.10

To make our alternative hedonic approaches as comparable as possible, we use weighted

estimation methods in all cases. We follow the recent time dummy literature by using

Tornqvist expenditure weights, so that the time dummy method yields a quality-adjusted

Tornqvist price index. We apply quantity-share weights for the estimation of the hedonic

pricing functions in the hedonic imputation approaches using both econometric and ML

methods. This approach follows Bajari et al. (2021), who also use quantity-share weights

in their implementation of hedonic price indices using item-level transactions data. Using

quantity-share weights focuses the hedonic estimation procedure on accurately mapping the

relationship between prices and characteristics for the market basket of goods purchased

by the consumer.11 Note that we use the expenditure-share weights in the construction of

10Bajari et al. (2021) provides novel methodology for encoding images via machine learning but do not
incorporate the TV approach to constructing hedonic price indices.

11See for example the discussion in De Haan (2008). We provide further discussion of the motivation
for using weighted results in the appendix. We also show that the first-difference methods we focus on are
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the price indices themselves; the quantity-share weights are used only in estimation of the

hedonic relationships in equations (1)–(3) and their machine-learning analogues.

We focus on full-imputation versions of the hedonic imputation indices, which use pre-

dicted prices for all observations, including for common goods. In other words, we use the

predicted price relatives of continuing goods for the missing price relatives for entering and

exiting goods.12 Pakes (2003) shows that this form of hedonic imputation index provides a

bound to the exact change in the cost of living under a weaker set of assumptions than those

commonly used in the literature. The key assumption is that consumers have preferences

over the characteristics embodied in goods, rather than over the goods themselves. Indeed,

full-imputation indices can be interpreted as characteristic price indices (Hill and Melser,

2006; De Haan, 2008).13 Using full-imputation indices also facilitates comparison with the

time dummy method, as highlighted by De Haan (2008) and Diewert et al. (2008).14 In

addition, Erickson and Pakes (2011) observe that single- and double-imputation indices are

subject to a form of selection bias, because they treat the hedonic estimation residuals for

continuing, entering, and exiting goods in an asymmetric manner.15 Full-imputation indices

have also been used in Benkard and Bajari (2005), Diewert et al. (2008) and Bajari et al.

largely robust to using weighted or unweighted specifications. In unreported results, we have explored using
expenditure weights and have also found similar results.

12For the implementation of the TV approach, we assume the lagged residual for an entering good in the
period prior to entry is zero. Erickson and Pakes (2011) do not face this issue because they consider only
hedonic Laspeyres indices, which account for exiting goods but not entering goods. As a robustness check, we
consider the difference between the traditional and hedonic Laspeyres using the TV method below. We find
the differences are similar to the analogous differences using the Tornqvist indices. The Laspeyres indices
have other limitations, but they are not sensitive to this assumption about the residual prior to product
entry. In addition, in unreported results we find very similar results if we replace the residual for entering
goods based on a first-stage level regression using a current period residual.

13For example, Hill and Melser (2006) show that the full-imputation hedonic Tornqvist index estimated
with a semi-log model has a dual representation as the Fisher index in characteristics space.

14De Haan (2008) argues that, in the absence of unobserved characteristics, these indices are “strikingly
similar.” Diewert et al. (2008) note the similarities and also derive the conditions under which they are
identical. They note the full imputation approach is more flexible and in practice yields different results than
the time dummy method. Neither of these papers highlights the importance of unobserved characteristics,
as in Erickson and Pakes (2011). Incorporating the TV approach developed by Erickson and Pakes (2011)
to address unobserved characteristics in the full-imputation indices produces additional advantages over the
time dummy method. For these reasons, we favor the full-imputation TV approach of Erickson and Pakes
(2011) in our hedonic indices.

15See footnote 3 of Erickson and Pakes (2011).
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(2021). Our implementation of hedonic indices builds on and integrates the insights of this

literature.

The use of the relationship between price relatives for continuing goods to impute the

price relatives for entering and exiting goods is justified by the argument that this impu-

tation relies on the relationship between price relatives and characteristics. Importantly,

characteristics turnover is distinct from product turnover. New characteristics arguably dif-

fuse slowly through the entry of new goods and characteristics disappear from the available

bundle slowly through product exit. Relatedly, new goods often have more of an important

characteristic (e.g., size and speed of memory cards in one of the product groups studied

below), while exiting goods often have less of those characteristics, so that product turnover

involves upgrading of existing characteristics rather than the entry and exit of characteristics

themselves.

3.3 Demand-Based Price Indices

In this section, we describe our use of exact cost-of-living indices for Constant Elasticity of

Substitution (CES) demand systems. The CES utility function yields a tractable demand

system with several computable price indexes that correspond exactly to the theoretical unit

cost function faced by a representative consumer in the presence of product turnover and

time-varying product appeal. We explore the Sato-Vartia index (Sato, 1976; Vartia, 1976),

the Feenstra-Adjusted Sato-Vartia index (Feenstra, 1995), which we will call the “Feenstra

index,” and the CES Unified Price Index of Redding and Weinstein (2020), which we will

call the “CUPI.” We focus on CES demand systems as this structure has been developed

to provide tractable, implementable price indices that can account for quality change and

product turnover.

We start with the CUPI, as it nests the other two indices as special cases. Redding and
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Weinstein characterize the CES unit expenditure function as:

Pt =

[∑
k∈Ωt

(
pkt
ϕkt

)1−σ
] 1

1−σ

, (5)

where σ > 1 is the consumer’s elasticity of substitution between products and Ωt is the

set of products sold in period t. ϕkt is a product-level appeal parameter that varies over

time. Redding and Weinstein (2020) emphasize that including time-varying product appeal

is essential to make the CES system consistent with the observed micro variation in prices

and quantities. They specify a normalization on the changes in the appeal shocks so that

there is no change in geometric average tastes at the product group level for common goods.

This assumption, combined with their assumption, which we also maintain, that consumers

have Cobb-Douglas preferences across product groups, guarantees that product-level appeal

shocks do not spill across product groups.

Consumers’ optimally chosen expenditure shares in this system are given as:

skt ≡
pktckt∑
l pltclt

=
(pkt/ϕkt)

1−σ∑
l∈Ωt

(plt/ϕlt)
1−σ =

(pkt/ϕkt)
1−σ

P 1−σ
t

, (6)

where ckt is the quantity of good k purchased in period t.

Redding and Weinstein (2020) derive the exact-price index in this setting (the CUPI) as:

ΨCUPI
t−1,t =

(
λt,t−1

λt−1,t

) 1
σ−1 P̃ ∗t

P̃ ∗t−1

(
S̃∗t
S̃∗t−1

) 1
σ−1

. (7)

The first term in the CUPI is the Feenstra (1994) adjustment factor for product turnover,

with elements defined as:

λt,t−1 =

∑
k∈Ct pktckt∑
k∈Ωt

pktckt
, λt−1,t =

∑
k∈Ct pkt−1ckt−1∑
k∈Ωt−1

pkt−1ckt−1

, (8)

where Ct is the set of common goods (what Redding and Weinstein (2020) denote as “com-
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mon varieties”).16 Denoting the sales-weighted product entry and exit rates as ERt-1,t

and XRt-1,t, the log Feenstra adjustment term can be approximated as: ln
(
λt,t-1
λt-1,t

) 1
σ−1 ≈

1
σ−1

(XRt-1,t − ERt-1,t). The Feenstra term thus indicates a downward adjustment to tra-

ditional matched price indices when the sales share of entering products is higher than the

sales share of exiting products; it collapses to one in the absence of product turnover.17

The second term in the CUPI is the traditional Jevons index, defined over the set of

common goods. We follow Redding and Weinstein (2020) in denoting the geometric mean

of a variable x as x̃ and denoting the geometric mean over the set of common goods with

an asterisk, so P̃ ∗t denotes the geometric mean of prices across common goods in period t

and P̃ ∗t-1 represents the same object in period t-1.18 The ratio of the two is the Jevons index,

which is an unweighted index.

We refer to the third term in the CUPI as the “S∗ ratio,” with elements defined as the

unweighted geometric average expenditure shares on common varieties in periods t-1 and t:

S̃∗t =

(∏
k∈Ct

skt

) 1
NCt

, S̃∗t-1 =

(∏
k∈Ct

skt-1

) 1
NCt

, (10)

where we have denoted the number of common goods (i.e., products sold both in period

t and in period t-1) as NCt . This third term is novel to the CUPI and reflects, amongst

other things, changes in dispersion of product appeal shocks for common goods over time.

We discuss the factors underlying the contribution of the S∗ ratio both conceptually and in

practice below.

16The simplest definition of this set is products that were sold in both periods t-1 and t, but it is possible
to re-define the set so that only goods that are sold in quantities above a threshold or which are sold in the
market for a suitably long duration are included in this set, as in Redding and Weinstein (2020).

17We use the actual Feenstra term and not the approximation in our implementation.
18Using the notation in equation (10), we would write:

P̃ ∗t =

(∏
k∈Ct

pkt

) 1
NCt

, P̃ ∗t-1 =

(∏
k∈Ct

skt-1

) 1
NCt

. (9)
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It is instructive to consider the log version of the CUPI, which is given by:

ln ΦCUPI
t−1,t =

1

σ − 1
ln

(
λt,t−1

λt−1,t

)
+

1

NCt

∑
k∈Ct

ln

(
p∗kt
p∗kt−1

)
+

1

σ − 1

1

NCt

∑
k∈Ct

ln

(
s∗kt
s∗kt−1

)
. (11)

Equation (11) clarifies that two of the CUPI’s three terms (the Jevons index and the S∗

ratio) are unweighted geometric means. As discussed below, this property is important for

the CUPI’s empirical implementation.

In the absence of time-varying product appeal, the CUPI collapses to the Feenstra (1994)

index:

ΦFeenstra
t-1,t =

(
λt,t−1

λt-1,t

) 1
σ−1 (

ΦSV
t-1,t
)
, (12)

where ΦSV
t-1,t is the Sato-Vartia price index defined over common varieties. With no product

turnover, the Feenstra index further collapses to the Sato-Vartia index (Sato, 1976; Vartia,

1976), defined as:

ln
(
ΦSV
t-1,t
)

=
∑
k∈Ct

ωkt ln

(
pkt
pkt-1

)
, ωkt =

skt − skt-1
ln(skt)− ln(skt-1)

/(∑
k∈Ct

skt − skt-1
ln(skt)− ln(skt-1)

)
.

(13)

Each of these price indexes exactly recovers the change in the consumer’s cost of living

under different assumptions. The Sato-Vartia price index is exact if there is no product

turnover and no time variation in product appeal.19 The Feenstra-adjusted Sato-Vartia

index is exact in the presence of product turnover but the absence of time-varying product

appeal. The CUPI is exact under the more general conditions of product turnover and

time variation in product appeal. We find these generalizations of the Sato-Vartia index are

empirically relevant.

Although the CUPI is the most general of CES exact price indices that we consider,

its inclusion of two unweighted geometric mean terms contrasts with the Sato-Vartia and

Feenstra indices, which include only expenditure-weighted terms. The CUPI’s unweighted

19Feenstra and Reinsdorf (2007) show Sato-Vartia is unbiased in expectation with randomness in tastes
under restricted conditions. Appendix C.1 contains a further related discussion of this topic.
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terms are sensitive to products with very small expenditure shares. The CUPI can therefore

feature large measured price changes from what would appear to be economically minor

products.

Redding and Weinstein (2020) adjust their empirical implementation of the CUPI by

applying what we call a “common goods rule,” which defines the set of goods over which

the Jevons index and S∗ ratio terms are calculated.20 The goods excluded from the set

of common goods are reallocated to the product turnover component (Feenstra adjustment

factor), which is expenditure weighted. A common goods rule of this sort can be motivated

by the argument that it takes time for goods to enter and exit the market. Consistent with

this argument, Redding and Weinstein (2020) restrict the set of common goods in their

empirical CUPI to those that are sold for a sufficiently long duration both prior to period t-1

and subsequent to period t. They measure annual CUPI inflation from the fourth quarter

of one year to the fourth quarter of the next year. Defining those quarters as periods t-1

and t, they define common goods as those sold in both of those quarters as well as in the 3

quarters prior to t-1 and the 3 quarters subsequent to t. In addition, they require the good

be sold for at least 6 years total (although not necessarily consecutively). A limitation of this

particular duration-based common goods rule is that it requires forward-looking information

to implement, and thus it is not feasible to implement in real time. We find that we can

mimic Redding and Weinstein’s results using a purely backward-looking rule that can be

implemented in real time.

The need to consider common goods rules and more generally the calculation of terms

involving unweighted geometric means is due to the CUPI’s incorporation of the relative

product appeal shocks. As Redding and Weinstein (2020) emphasize, a core motivation for

including these shocks is that they enable the reconciliation of micro variation in prices and

expenditure shares with price index measurement. It is instructive to explore the bias from

neglecting such relative product appeal shocks in terms of mean inflation rates.

20That is, the goods included in the set Ct.
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We argue in Appendix C.1 that independently and identically distributed relative product

appeal shocks alone are not sufficient to generate an expected bias in the Sato-Vartia index’s

measure of inflation. Rather, the index’s expected bias in terms of measured inflation arises

either from systematic variation in the dispersion of relative product appeal shocks or the

correlation between appeal shocks and prices. Specifically, we find that in the absence of

product turnover, the Sato-Vartia is upward-biased if there is rising product appeal dispersion

or an increasingly positive correlation between product appeal shocks and prices over time;

the Sato-Vartia index is downward-biased in the opposite cases. The practical relevance of

these conceptual considerations is an empirical question. As we will see, the S∗ ratio is

empirically relevant, but its effect may reflect unresolved specification issues for the CGR or

other issues.

4 Results

In this section, we present and discuss the traditional, hedonic, and demand-based exact

price indices we have calculated in the item-level data. We focus first on our results from the

NPD data, because the richness of the data permits more exploration of alternative methods.

4.1 NPD Results

4.1.1 Hedonics

We consider a wide variety of hedonic specifications, with details reported in Appendix A.1.

In the main text, we focus on the Erickson and Pakes (2011) method, using fixed unob-

servables (first-difference specification) and using first differences along with time-varying

unobservables (the TV approach). We find that the average quarterly R-squared for log

price changes is the highest using the TV approach (see Table D.1) for each product group,

with values ranging from 0.13 for memory cards to 0.47 for headphones and boys’ jeans. The

first-difference approach without time-varying unobservables has an average R-squared rang-
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ing from 0.09 for memory cards to 0.43 for headphones and boys’ jeans, which is higher than

the other alternatives considered but lower than the TV approach. A noteworthy pattern in

Table D.1 is the large gap between the average R-squared values for log price changes and

for log price levels, the latter of which range from 0.62 to 0.72. Predicting price changes is

inherently a much more difficult task than predicting price levels, because price levels reflect

cross-sectional differences in product characteristics, while price changes reflect changes in

the mapping between prices and characteristics over time.

Figure 2 presents the results for alternative hedonic price indices for the five NPD product

groups and compares these indices to the traditional Tornqvist index. As noted, for hedonics

we focus on the Hedonic Tornqvist using fixed unobservables, and the Hedonic Tornqvist

with time varying unobservables (the TV approach). For purposes of comparison we also

include the Hedonic Time Dummy results. The values displayed in the figure are annual

percent changes in the 4th quarter of each year from chained cumulative quarterly indices.21

All of the price indices track each other closely, but there are systematic differences in the

patterns. For all product groups, the TV approach yields the lowest rate of price inflation

compared to the traditional Tornqvist, the time dummy based index, or the first-difference

based index. The gap between the traditional Tornqvist and the TV approach indices varies

considerably across product groups, with the largest average differences for memory cards

(-2.9 percentage points annually) and headphones (-2.5) and smaller differences for coffee

makers (-0.70), boys’ jeans (-1.30), and occupational footwear (-0.42).

The time dummy method does not yield systematic quality-adjustment differences rela-

tive to the traditional Tornqvist index. The time dummy method suggests a notable quality

adjustment for coffee makers, but for other products the difference is modest or is positive

rather than negative. Our finding of limited quality adjustment the time dummy method

is broadly consistent with the discussion in Erickson and Pakes (2011). As they emphasize,

traditional hedonic approaches cannot account for the changing valuations of unobservable

21We explore the potential role of chain drift below.

22



product characteristics, and in particular, how those changing valuations interact with prod-

uct turnover. For example, if entering goods have desirable unobserved characteristics and

correspondingly high prices, then the time dummy method may erroneously suggest a higher

index value relative to the traditional Tornqvist.22 Additional limitations of the time dummy

approach have been highlighted by Pakes (2003) and Diewert et al. (2008).23

The findings in Figure 2 also do not exhibit a systematic relationship between the Torn-

qvist and the hedonic Tornqvist accounting for fixed unobservable characteristics (i.e., using

a log first-difference hedonic model). Given that we find a systematically lower hedonic Torn-

qvist when accounting for time-varying unobservable characteristics, the somewhat erratic

pattern of the first-difference specification with fixed unobservables suggests it important to

permit time-varying valuations of in order to systematically adjust for unobservable product

characteristics.

Figure 3 provides further evidence on the efficacy of the TV approach by displaying

results with key observable characteristics left out of the hedonic estimation. Specifically,

for memory cards the memory size is omitted, and for the other product groups, the large

brand dummy variables are omitted. Omitting these informative characteristics from the

estimation equation has a minimal effect on the resulting price indices. Appendix Figure

D.2 presents additional analyses showing that omitting those characteristics has a much

larger effect on the hedonic indices using a log-level estimation approach.

Our results are broadly consistent with the findings in Erickson and Pakes (2011). They

present examples (e.g., for televisions) in which standard log-level hedonic estimation sug-

gests higher rates of inflation than traditional matched models. However, with the same data,

22For headphones, the traditional Tornqvist is notably lower in 2016 compared to the Hedonic Tornqvist
using the time dummy method. This is a year when the share-weighted average price per item increases
substantially. This pattern is consistent with entering goods having higher prices than existing goods.
The time dummy method still yields a negative price change in that year, but not as negative as the
standard Tornqvist. The hedonic Tornqvist TV method yields a more negative price index than the standard
Tornqvist.

23Pakes (2003) raises questions about the bound implied by the time dummy method. Diewert et al.
(2008) highlight that the time dummy method requires more restrictive assumptions than the other hedonic
approaches.
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they find their methodologies to account for unobservable product characteristics (both using

fixed valuation of unobservables and time-varying unobservables) yield systematically lower

estimated inflation than the traditional Tornqvist index. They also conduct a test of their

methodology similar to the one we present in Figure 3. They also find their time-varying

unobservables methodology is robust to leaving out important characteristics but standard

(e.g., level hedonic estimations) specifications are not robust to this exercise.

4.1.2 CES Demand-Based Price Indices

We turn now to CES demand-based price indices. For the Feenstra (1994) price index and

the CUPI, implementation requires estimates of the elasticities of substitution. Our baseline

approach is to estimate a single elasticity for each of the NPD product groups. We employ

the method used by Feenstra (1994) and Redding and Weinstein (2020) for this purpose.24

Table 2 reports the estimated elasticities, which range from about 5.2 to 7.8, consistent with

the literature. The table also reports estimates from nested specifications, which we discuss

below.

Figure 4 plots the Sato-Vartia, Feenstra, and CES unified (CUPI) price indices, as well as

the components of the latter two indices. The baseline CUPI is calculated without a common

goods rule and without any nesting within product groups. The Feenstra index comprises

the “Lambda Ratio” (Feenstra adjustment term) and the Sato-Vartia index, while the CUPI

includes the identical Lambda Ratio, the “P ∗ ratio” (or Jevons index), and the S∗ ratio.

The Lambda Ratio and S∗ ratio components in the figure are scaled by 1
σ̂−1

so that the

CUPI is the sum of the three components; see equation (7). We find that the CUPI shows

low inflation relative to the Feenstra index and quite low inflation in absolute terms. In all

goods but occupational footwear, the CUPI produces an estimate of 30%–40% declines in

the price level annually, and it is often 10%–30% below the Feenstra Index.

24This method double-differences the demand and supply curves sweeping out time and product group
effects. The double-differenced demand and supply shocks are assumed to be uncorrelated but heteroksedastic
across products. This yields a GMM specification for estimation.
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The large differences between the Feenstra index and the CUPI in these product groups

arise from two sources. The first source is the difference between P ∗ ratio (Jevons index)

and the Sato-Vartia index. The Sato-Vartia is a weighted average log price change among

common goods, and the P ∗ ratio is an unweighted average. In boys’ jeans, for instance,

the CUPI P ∗ ratio is far below the Sato-Vartia. The difference between the weighted and

unweighted log price ratios for common goods suggests there are a large number of low-share

goods experiencing price declines that are driving down the CUPI. The second source is the

introduction of the S∗ ratio in the CUPI, intended to account for changing consumer tastes.

Almost everywhere, the S∗ ratio contributes a large downward shift to the CUPI. It is also

an unweighted geometric mean that is sensitive to low-share goods.

The CUPI’s sensitivity to low-share goods led Redding and Weinstein (2020) to introduce

a common goods rule (hereafter often denoted a CGR) to the index. The logic, as discussed

above, is that it takes some time for goods to break into the market as well to exit from

the market. A limitation of the forward-looking duration-based approach for the CGR in

Redding and Weinstein (2020) is that it cannot be implemented in real time. Their approach

requires information about goods’ future presence in or absence from the marketplace. We

implement a related but distinct methodology that can be implemented in real time using

only current and backward looking information available in quarter t. For our NPD analysis,

we specify a market share threshold for goods present in periods t and t-1 to be considered

as common goods for the Jevons and the S∗ ratio terms of the CUPI.25 Goods below this

threshold are excluded from the set of common goods, but they still enter the CUPI through

their inclusion in the Feenstra adjustment term (Lambda ratio). For our main NPD analysis,

we consider alternative market share percentile thresholds.26

Figure 5 illustrates the CUPI’s sensitivity to the CGR for different market share thresh-

25The details of the procedure are as follows. Compute the Xth percentile of the expenditure shares
within product groups in both period t-1 and period t. A common good must exceed the Xth percentile in
both periods.

26As we discuss below, in our analysis of the Nielsen data (which is a longer panel), we consider further
alternative approaches to define common goods. In our analysis of chain drift below, we also consider the
impact of CGR implemented over a longer horizon for our NPD analysis.
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olds. Specifically, we consider market share thresholds for continuing goods in t and t-1 of

the 10th percentile, the 30th percentile and the 50th percentile. We depict the CUPI for

these different CGR rules alongside the Feenstra index and the CUPI without a common

goods rule. Implementing the restriction on the set of “common goods” by market share

raises the CUPI by cutting off the low end of the market share distribution from relative

comparisons and shifting it to the entry/exit adjustment term (the Lambda ratio). In that

sense, applying a stricter CGR moves the CUPI closer to the Feenstra-adjusted Sato-Vartia

index, which combines a traditional matched model index with an adjustment for entry

and exit. The resulting price indices generally shift up as successively stricter definitions of

common goods are imposed. For some product groups, such as memory cards, the CUPI

using the CGR at the 30th or 50th percentile yields patterns in the ballpark of the Feenstra

index. For products groups such as headphones and boys’ jeans, however, the CUPI shows

noticeably lower inflation than the Feenstra index even using with a 50th-percentile CGR

threshold (i.e., excluding half of products from the set of common goods).

These findings have a number of important implications. First, the CUPI is sensitive

to the specific definition of the CGR, in a manner that varies across product groups. A

50th-percentile threshold for the market share of goods present in t and t-1 implies that an

entering good does not count as a common good until it reaches the top half of the market

share distribution. Similarly, a good that is on its way to exit and that falls below the 50th

percentile of market share is put into the entry/exit group (and becomes part of the Feenstra

adjustment term). Many factors may underlie these patterns. For instance, in boys’ jeans,

the seasonal product turnover cycle in apparel is arguably at work. Late in any apparel

product turnover cycle, bargain racks are often available with low prices but limited supply.

We are sympathetic to the view that some form of CGR is a sensible and necessary

component of empirically implementing the CUPI. The primary inference we draw from our

own analysis and the literature to date is that the CUPI is sensitive to the specification of

the CGR, and more research is necessary on best empirical practice in implementing the
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index. Further research into the dynamic process of the entry and exit of goods should be

a part of such research. Our analysis in Figure 1 is a step in that direction. We think it is

likely that process varies by product group, consistent with our results showing the CUPI’s

differential sensitivity to various CGRs across product groups. Further research, motivated

by theory, is necessary to provide guidance about product-group specific common goods

rules. We provide further analysis and discussion of these points below.

Martin (2020) notes that the S∗ ratio can reflect not only shifting preferences, but also

any model misspecification, including a nested preference structure. The CUPI’s assumed

CES preference structure imposes an equal elasticity of substitution within product groups,

and violations of this assumption could lead to biased measures of inflation. Furthermore,

the CUPI is more vulnerable to this issue than the other CES price indices we consider.27

We explore this issue by exploiting the detailed product attributes in the data to define

a nested product substitution structure using two methods. First, we define nests within

product groups with a heuristic-based approach. With this method, we assign products to

subgroups based on a set of key variables that we as analysts hypothesize define market

strata. As this procedure is labor-intensive and relies on our subjective judgments regarding

strata, we also construct alternative subgroups by allocating products to groups based on

the decile of their predicted price from a log-level hedonic model. Intuitively, in the first

approach, we implicitly assume that substitutability is constant within market strata (for

example, drip coffee makers versus espresso machines), while in the second approach we

assume that price tiers (for example, low-end versus high-end coffee makers) define the

substitution structure.

The nested approach requires estimation of elasticities of substitution for products within

the same nest and across nests. We follow the approach of Hottman et al. (2016) to estimate

27More precisely, Martin (2020) shows that the CUPI is not consistent in aggregation. Vartia (1976)
defines consistency in aggregation as the equality of a single-stage or two-stage index number. In the single-
stage of an index number, all goods are included in a single aggregation. In a two-stage construction, the
index is computed for a number of subgroups, and the subgroups are aggregated using the same index number
formula. Diewert (1978) shows that the Sato-Vartia index, which is also exact for CES preferences under
stricter assumptions, is consistent in aggregation.
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within- and between-nest elasticities for each product group. The within-group estimation

uses a modified Feenstra (1994) estimator that double-differences market shares and prices

with respect to time and a time-varying nest-level mean.28 The between-nest estimator of the

elasticity of substitution uses an instrumental variable (IV) approach building on Hottman

et al. (2016).29

Table 2 reports the estimated elasticities for the nested specifications. The results are

broadly similar across the two nested approaches. As expected, the within-nest elasticities

are estimated to be larger than the between-nest elasticities.

In principle, these within-nest vs. between-nest elasticity estimates could produce sig-

nificantly different results for the Feenstra index and the CUPI, but in our application the

differences are modest. Figure 6 plots nested versions of the CUPI using our two nesting

strategies alongside un-nested versions of the CUPI and Feenstra index. Both versions of

the CUPI are implemented using a 30th-percentile CGR, applied at the within-nest level

in the nested version.30 The alternative nesting approaches yield similar results, with the

nested CUPI tending to show slightly less deflation than the un-nested (or “flat”) CUPI.

In unreported results, we find that the relationship between the nested and flat CUPIs is

robust to using alternative CGR cutoffs.

28The identifying assumption of the Feenstra (1994) estimator is that supply and demand shocks are
orthogonal when sales growth and price growth are differenced with respect to a time-varying mean. The
(Hottman et al., 2016) assumption is arguably more natural, as differencing with respect to a within-nest
mean more plausibly identifies orthogonal supply and demand shocks.

29We follow Hottman et al. (2016) by specifying the between-group relationship between the nest-level
price index and expenditure share. The former is endogenous, and Hottman et al. (2016) overcome this by
using variation in the nest-level price index caused by changes in within-nest expenditure share dispersion.
We innovate on the procedure of Hottman et al. (2016) by using the S∗ ratio (i.e., changes in common
goods expenditure share dispersion) from the within-nest CUPI as the instrument, which removes changes
in expenditure-share dispersion induced by product turnover. The identifying assumption is that within-nest
demand shocks are uncorrelated with between-nest demand shocks. This innovation integrates the insights
of Hottman et al. (2016) with those of Redding and Weinstein (2020).

30Nests are weighted by the number of products to adjust for differential product group sizes.
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4.1.3 Comparing Traditional, Hedonic, and Exact Price Indices

Figure 7 presents the main traditional, hedonic, and demand-based price indices that we

have considered for all five product groups. Because the CUPI indices are outliers for some

groups, Figure 8 displays price indices without the CUPIs but with the addition of the

Laspeyres index. Price indices in these product groups all follow a roughly similar pattern of

relative orders: the Laspeyres index is the highest, the Tornqvist, Sato-Vartia, and Feenstra

are in the next group, the hedonic Tornqvist using the TV method is systematically lower,

and the CUPI (both baseline and nested by product characteristics) is the lowest, espe-

cially for headphones and boys’ jeans. The Feenstra index is systematically lower than the

Sato-Vartia index, consistent with the quality adjustment for product turnover lowering the

estimated rate of inflation. The substantial gap between the CUPI and the Feenstra index

in headphones and boys’ jeans is especially striking given our imposition of a 30th-percentile

CGR.

The substantial gap between the Laspeyres and Tornqvist indices for most product groups

highlights the advantages of using item-level scanner data, which permits construction of a

superlative price index with internally consistent prices and expenditure shares in adjacent

periods. The gap between the Laspeyres and the Tornqvist indices varies over time, con-

sistent with the Laspeyres index exhibiting a time-varying substitution bias. Thus, using

scanner data can produce substantial improvements in price measurement even without per-

forming quality adjustment.

Figures 9 and D.3 in Appendix D present plots of chained price index levels calculated

by chaining the quarterly price indices underlying Figures 7 and 8. Figures 9 and D.3 thus

provide perspective on the cumulative effects of the differences between the various indices.

Table 3 reports the chained index levels in 2018:4, reflecting the cumulative price changes

since 2014:4, when all indices are normalized to one. The traditional Laspeyres is substan-

tially higher than the traditional Tornqvist except for headphones where they are essentially

the same. The hedonic Laspeyres or Tornqvist using the TV approach yields systematically
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larger cumulative declines in prices than the traditional Laspeyres or Tornqvist. The range

of differences between the traditional and hedonic indices varies across product groups, with

larger differences for memory cards and headphones. The Feenstra index yields systemati-

cally larger cumulative declines than the Sato-Vartia index, but the differences are smaller

than the differences between the traditional and hedonic Tornqvist indices. The CUPI (with

a 30th percentile CGR) yields substantially larger cumulative price declines for headphones

and boys’ jeans, while for memory cards and coffee makers, the CUPI yields similar declines

to the hedonic Tornqvist. For occupational footwear, the cumulative declines from the CUPI

are larger than from the other indices, but the gap is relatively modest.

Taking stock of the results from the NPD data, the most robust methodology yielding

systematic quality adjustment is the hedonic Tornqvist using the TV method. The Feenstra

index is also a useful point of comparison given its systematic relationship with the Sato-

Vartia index. The CUPI is the most general demand-based index, but is sensitive to the

specification of the CGR. More research is needed to provide guidance about how to specify

the CGR on a product group specific basis.

4.2 Nielsen Results

We restrict our analysis of results for the Nielsen scanner data to the food product groups in

the main text. Our empirical implementation in the Nielsen data largely follows our strategy

in the NPD data for the CES exact price indices. The Feenstra index and the CUPI require

estimates of elasticities of substitution within product groups. As in the NPD data, we use

the Feenstra (1994) procedure to estimate those elasticities. The estimated elasticities for

the 50+ product groups in food display considerable variation. The median elasticity is

about 6, the 10th percentile is about 4, and the 90th percentile is 12. These patterns are

similar to those reported in Redding and Weinstein (2020).

For the hedonic TV approach, we combine the insights of the Erickson and Pakes (2011)

with the machine learning approach summarized, which Appendix B.3 describes in more
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detail.31 The machine learning approach allows us to exploit the Neilsen scanner data’s

unstructured information on item-level attributes. We find that the hedonic TV approach

using machine learning yields a median R-squared for price relatives across product group-

quarters of about 0.50 within-sample and about 0.20 out-of-sample.

We again explore alternative CGRs to calculate the CUPI. The Nielsen data provides

a longer panel than the NPD data, which allows the exploration of alternative CGRs that

depend on the duration of goods’ time in the market to date. We implement a modified ap-

proach to defining the CGR rule in the Nielsen data as follows. We first compute percentiles

of the pooled sales distribution within a narrow product group for pooled sales in periods

t-1 and t. Common goods are defined as goods sold in both periods, and which have sales in

period t above the Xth percentile of this pooled sales distribution. This alternative approach

to defining the CGR allows us to consider longer duration-based alternatives.32

Figure 10 shows the results for the aggregated food categories of the CUPI and its

components using various CGRs defined by different sales-based percentiles. The S∗ ratio is

especially sensitive to the CGR in the Nielsen data. Recall that the S∗ ratio is an unweighted

geometric mean, which is sensitive to small market shares. The S∗ ratio’s sensitivity to

alternative CGR thresholds leads directly to sensitivity in the CUPI. The baseline CUPI

without a CGR percentile threshold has average quarterly price inflation about 10 percentage

points below the Feenstra. Using a 50th percentile for the CGR yields a price index that is

much closer to the Feenstra index.

We consider alternative specifications of the CGR using market thresholds using per-

centiles of sales pooled over over current and prior 4 quarters. In addition and critically,

a common good is defined in this context if it is present in periods t and t − 4. Using a

duration component to the CGR puts more weight on goods present for the longer horizon,

yielding greater comparability with the duration-based CGR used by Redding and Weinstein

31Our companion paper, Cafarella et al. (2021) provides a full description.
32In unreported results, we have found that the Nielsen results using the identical CGR used in the NPD

data yields very similar results to those reported here using a two-quarter horizon.
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(2020).33 Appendix B.2 shows that using this longer horizon approach for computing sales

percentiles, a CGR with a 10th-percentile sales threshold yields results comparable to a CGR

with a sales threshold between the 25th and 50th percentiles using a two quarter horizon.34

Figure 11 presents a full set of price indices for the Nielsen scanner food product groups,

in change and level forms.35 The panels of the figure include the BLS CPI, computed for

the same Nielsen product groups.36 We find that the CPI and the traditional Laspeyres

index track each other closely in Nielsen’s food product groups, with a discrepancy arises

towards the end of the sample period. The Tornqvist and Sato-Vartia indices are lower than

the Laspeyres, and the quality-adjusted indices (Feenstra, hedonic Tornqvist using the TV

approach, and CUPI) are even lower.

The cumulative level implications highlight that the hedonic Tornqvist is about 4 per-

centage points lower in 2015 than the traditional Tornqvist, and the Feenstra index is about

5 percentage points lower than the Sato-Vartia. These substantial cumulative differences

for the food product groups suggest that quality improvement via product turnover has not

been limited to products where technological progress is most visible. Using a 25th-percentile

CGR, the CUPI is more than 40 percentage points lower than the Feenstra index in 2015;

using a 50th percentile CGR reduces the difference to 20 percentage points. Alternatively,

using the longer t−4 to t horizon described above, the 10th-percentile CGR yields a difference

of about 25 percentage points.37

33An advantage of this alternative duration-based CGR for the purposes of producing real-time statistics
is that it does not require forward-looking information.

34Appendix B.2 also explores the use of the Nielsen Consumer Panel and CGR sales-based percentile
rules. Using the Consumer Panel enables us to more readily compare our results to those in Redding and
Weinstein (2020).

35For all indices, we aggregate across product groups using a Tornqvist aggregator with Divisia-style
product group market share weights.

36We thank the BLS for producing these calculations.
37Results for the nonfood product groups, described in Appendix B.1, show substantially greater de-

partures between the BLS CPI and the Nielsen Laspeyres consistent with our concerns about the Nielsen
scanner data’s representativeness for the nonfood product groups. The CUPI for nonfood is very low. With
a 30th-percentile CGR, the CUPI price level (indexed to 2006) is almost 70 percentage points lower in 2015
compared to the Feenstra (the difference shrinks slightly to 40 percentage points with a 50th-percentile
CGR). These results may arise partly from the limited coverage of nonfood items in the Nielsen scanner
data.
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We consider the patterns in the Nielsen data to be broadly similar to the patterns in

the NPD data. Quality adjustment, either via hedonic approaches or the Feenstra product

turnover adjustment, imparts a substantial downward adjustment on price indices. The

CUPI suggests an even larger quality adjustment, but we note again its sensitivity to the

CGR. This sensitivity manifests across alternative approaches to defining the CGR thresholds

for common goods.

4.3 Chain Drift

A potential challenge to using transactions data to compute price indices is chain drift. This

issue is particularly problematic with high-frequency indices computed from local (or even

single-store) transactions data (e.g., De Haan and Van Der Grient, 2011). Our analysis uses

national data at a quarterly frequency, which mitigates this issue. However, given our focus

on comparing alternative approaches for computing price indices, in this section we consider

whether GEKS-type indices (Gini, 1931; Eltetö and Köves, 1964; Sculz, 1964) preserve the

implications of our core findings.

We follow Bajari et al. (2021) by computing a GEKS-type index (which we denote

“GEKS-lite”) based on the geometric mean of the chained quarterly indices for each year

for the 4th quarter with the year-over-year (YoY) price indices for the 4th quarter.38 Table

4 reports chained and GEKS-lite indices for the five NPD product groups and alternative

indices. Results reported are average annual indices. More often than not, the GEKS-lite

price change index is less negative than the chained price index for traditional price indices,

but the differences are not large. For the hedonic indices, the GEKS-lite indices are actually

more negative in three out of the five product groups. For the demand-based indices, the

GEKS-lite indices are also typically less negative, but again these differences are modest

quantitatively. The GEKS-lite CUPI is substantially less negative, but this difference also

38Given that we are including hedonic indices, the computational burden of implementing price indices
over all possible horizons would be substantial.
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reflects the effects of applying a commons good rule over a longer horizon.39

From our perspective, the key result of this analysis is that applying the GEKS-lite

procedure does not change the rank ordering of the various indices we have considered. The

Laspeyres yields higher inflation than Tornqvist, which in turn is higher than the hedonic

Tornqvist. Likewise, the Sato-Vartia yields higher inflation than the Feenstra, which in turn

is higher than the CUPI.

Table 5 reports analogous chained and GEKS-lite indices for the aggregated food indices,

which we generate following the same procedure as in prior sections.40 The table reports

average annual indices for both specifications. The results for Nielsen’s food product groups

show that we obtain similar, albeit slightly higher rates of average inflation using the GEKS-

lite compared to the chained indices. This pattern is especially noticeable for the CUPI, but

this result again reflects the effects of applying the CGR over a longer horizon. Importantly,

the rank ordering and the quantitative differences across alternative indices are preserved

using the GEKS-lite based indices. Focusing on the GEKS-lite indices, inflation for Food is

higher using Laspeyres than Tornqvist, higher using Sato-Vartia than Feenstra, and higher

using Feenstra than the CUPI.41

5 Taking Stock

Item-level transactions data with prices, quantities, and attributes offer considerable advan-

tages for computing quality-adjusted price indices compared to the traditional methods the

BLS currently uses to compute price indices. The current system draws on disparate data

sources for price quotes and expenditure shares among continuing goods. Even traditional

39The longer horizon affects the CGR because for the year-over-year measure the good must not only be
above the Xth percentile in the appropriate samples but also be present in quarters t and t− 4, as opposed
to quarters t and t− 1.

40That is, we compute the indices at the product group level and then use Divisia weights to aggregate
to the food level.

41We do not report the hedonic indices using the GEKS-lite procedure for Nielsen’s food product groups
because of the large computational burden that would be required to apply our machine learning procedure
to additional comparison periods.
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matched model price indices constructed from item-level data possess several advantages

relative to the current system: the expenditure shares from the item-level data are internally

consistent with the price data, and they are also available in real time. The data therefore

permit the construction of superlative price indices such as the Tornqvist in real time. We

find that the Tornqvist index measures systematically lower inflation than the Laspeyres,

with the gap varying over time.

If the item-level data contain information on product attributes, as they commonly do,

hedonic methods can also be applied at scale in real time. We have found that the most

robust approach for implementing hedonics at scale is to use the time-varying unobservables

approach from Erickson and Pakes (2011). Our results provide ample support for their ar-

gument that it is important to correct for the reevaluation of the unmeasured characteristics

of continuing, entering, and exiting goods.

Demand-based indices offer a useful alternative for comparison to hedonic indices. These

indices are exact under certain sets of assumptions, and in the most general case (the CUPI),

they can account both for quality change via product turnover and for time-varying product

appeal for continuing goods. Redding and Weinstein (2020) argue that not taking into

account the latter issues can bias cost-of-living price indices.

The limitation of the CES demand-based approaches we have considered is their sen-

sitivity to the strong assumptions imposed by their underlying models, which may omit

empirically important market imperfections. A central assumption of these approaches is

the existence of a unified national market where all goods are available. In Figure D.4 in

Appendix D, we pool the Nielsen item-level data for food product groups at the weekly fre-

quency from 2006–15. We then compute the market penetration of items in the pooled data

both on an unweighted basis (i.e., all items get the same weight) and on a sales-weighted

basis.42

On an unweighted basis, the distribution is very skewed to the left, with most item-

42Market penetration is defined as the share of Nielsen metro areas in which the item-level week is observed
to have positive sales.
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level week observations having very low market penetration. Almost all of the unweighted

distribution has less than a 20 percent market penetration. In unreported results, we find

that the mass of the unweighted distribution with the lowest market penetration reflects

entering and exiting goods. Even on a sales-weighted basis, only 15 percent of sales are

for items with a truly national market, although much of the mass of the distribution has

market penetration of over 80 percent of metro areas.

We believe the failure of the national market assumption is likely to have a much larger

effect on the CUPI than on the other price indices we have considered. Superlative price

indices such as the Tornqvist and Sato-Vartia are approximately consistent in aggregation

(Diewert, 1978), so the failure of the national market assumption is less troubling for those

indices; a similar argument applies to the hedonic Tornqvist index.The Feenstra index gen-

eralizes the Sato-Vartia index with an expenditure-weighted term to correct for product

turnover, so it also contains only expenditure-weighted terms. In contrast, the CUPI con-

tains multiple unweighted terms, which mean that goods with small expenditure shares can

have an outsize effect on the index.

To provide more perspective on the pros and cons of the CES demand-based price indices

given these issues, in Appendix C, we examine the behavior of these CES indices indices

analytically and in simulations under various assumptions about market structure. A few

key results emerge from our examination.

First, we present an analytical argument in Appendix C.1 that the presence of time-

varying product appeal does not, on its own, produce a bias in the Sato-Vartia and Feenstra

indices. We show that, although the force that Redding and Weinstein (2020) argue will tend

to impart an upward bias to those indices does exist, if appeal shocks are independently and

identically distributed (i.i.d.) over time, there is a symmetrical and offsetting force that

will impart a downward bias. We present simulation evidence to support our analysis in

Appendix C.2. The simulations show that, although time-varying product appeal does not

produce an average bias in the Sato-Vartia index in the presence of i.i.d. product appeal
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shocks, the Sato-Vartia is noisier than the CUPI in the presence of appeal shocks.

The simulation results also show that, when product appeal is becoming more (less)

dispersed over time, the Sato-Vartia index will be biased upwards (downward), but the

CUPI will remain unbiased. This bias will also apply to the Feenstra index. Thus, one

possible explanation for the CUPI to measure uniformly lower inflation than the Sato-Vartia

and Feenstra indices is that product appeal dispersion is rising over time. However, this

finding on the CUPI is so ubiquitous that we suspect other forces are at work. Indeed, the

CUPI becomes less of an outlier when a common goods rule is applied, and the motivation

for such a rule stems largely the time it takes for goods to enter and exit the market. Such

seasoning effects are outside the scope of the derivation of the CES. In our simulations,

we explore environments that mimic the need for a common goods rule. We show that if

goods enter in local markets instead of national markets, but prices are measured assuming a

unified national market, then the CUPI will deviate from the true expenditure function. The

CUPI will be downward biased if entering goods into local markets are of improving quality,

and a common goods rule will help alleviate the bias. Relatedly but distinctly, we find that

if exiting goods are not widely available (i.e., are rationed or subject to stockouts), then

the CUPI will be downward biased, and a common goods rule will alleviate the bias. While

these simulations provide promising intuitive justifications underlying a common goods rule,

they highlight that the needed common goods rule will depend on product-group specific

dynamics (e.g., the rate of increase of quality of entering goods, the extent of rationing) that

are not easily observable.

Based both on our empirical findings and this numerical simulation analysis, we believe

that the demand-based indices that incorporate quality adjustment (specifically the Feenstra

and the CUPI) provide useful benchmarks that should be used for purposes of comparison

with indices such as the hedonic Tornqvist using the TV approach. However, the national

CES market assumption is too strong, especially for current implementations of the CUPI.43

43Relatedly, the representative household assumption is too strong. Heterogeneity across consumers is
of interest for a variety of reasons, including quantifying differences in changes in the cost of living across
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Future research could presumably make progress by developing a framework to distinguish

between national and local goods and aggregate indices from local nests as appropriate.

Likewise, progress could be made in better understanding the dynamics of product avail-

ability in the first periods after entry and before exit, so that common goods rules could

be disciplined by the nature of this process. Developing more structure for the dynamics of

product entry and exit should also provide guidance about any needed modifications in the

Feenstra adjustment and S? ratio terms in the CUPI in a richer dynamic environment. We

think these topics should be high priorities for future research.

6 Concluding Remarks

Using item-level transactions data with price, quantity, and attribute information enables

the production of quality-adjustment price indices at scale. This paper employs such an

approach to present evidence that traditional matched-model methods overstate the rate of

inflation and understate the rates of real expenditure and real output growth substantially.

We find that these patterns are pervasive, that is, not limited to goods such as electronics

where technological progress is most visible.

We have explored and evaluated two alternative approaches for quality adjustment at

scale with item-level transactions data, hedonic methods and demand-based methods. For

hedonics, we have found that it is critically important to use the methodology developed by

Erickson and Pakes (2011) that takes into account time-varying changes in the valuation of

unobservable characteristics of continuing, entering, and exiting goods. Using this method-

ology, we have found that traditional matched model indices overstate the rate of inflation

for a wide range of goods.

We have focused on CES frameworks for demand-based indices, building in particular on

the path-breaking work of Redding and Weinstein (2020). The CES unified price index they

develop incorporates quality change from product turnover (consistent with Feenstra, 1994)

different groups.
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but also time-varying product appeal for continuing goods. A challenge in implementing the

CUPI is that, contrary to the sales patterns in the item-level data, it assumes a national

market for each CES-based nest of goods. Current implementations of the CUPI address

these limitations by imposing common goods rules. While this approach is promising, our

results indicate that the construction and suitability of common goods rules that vary by

product group is an open area requiring further research.

This paper is a step in demonstrating that using item-level transactions data at scale can

lead to a re-engineering of key national indicators. The current paper shows the promise for

price measurement. A next step is to explore the promise of using the improved price index

measurement with internally consistent measures of sales to improve measurement of real

output growth. This topic is a high priority for future research.
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Table 1: Rates of Product Turnover: NPD Data

Entry Rate Exit Rate

All Initial All Final

Memory Cards 5.8% 3.0% 6.0% 3.3%

Coffee Makers 5.7% 3.4% 4.5% 2.1%

Headphones 6.4% 3.8% 5.5% 2.9%

Boys’ Jeans 11.5% 8.3% 7.8% 4.3%

Occupational Footwear 13.5% 9.1% 10.6% 5.5%

Average quarterly rates of product turnover. Entry/exit rates are computed as the number of
entering/exiting goods as a percentage of common goods in the previous period. “Initial” entries are those
for which the product was never observed in the data prior to the quarter. “All” entries include entries in

which the product was previously observed prior to a spell of absence and the re-entered the data (i.e.,
“re-entries”). “Final” exits are those for which the product was never again observed in the data after the
quarter. “All” exits include exits for which the product is subsequently observed after a temporary spell of

absence (i.e., “temporary exits”). Transition quarter between data vintages excluded. Data come from
NPD Group.
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Table 2: Estimated Elasticities of Substitution: NPD Data

Product Estimator Groups Elasticity of Substitution

Within Across

Headphones

Feenstra - 7.634 (0.748)

HRW plus Manual 8.609 (0.544) 7.704 (0.491)

HRW plus Hedonic 9.537 (0.969) 8.958 (0.423)

Memory Cards

Feenstra - 5.623 (0.484)

HRW plus Manual 6.31 (0.675) 4.534 (0.298)

HRW plus Hedonic 6.621 (0.657) 5.25 (0.586)

Coffeemakers

Feenstra - 5.183 (1.289)

HRW plus Manual 5.495 (0.791) 3.42 (0.63)

HRW plus Hedonic 5.345 (0.99) 5.306 (0.374)

Occupational Footwear

Feenstra - 7.31 (0.533)

HRW plus Manual 5.545 (0.509) 3.057 (0.493)

HRW plus Hedonic 6.199 (0.548) 4.135 (0.769)

Boy’s Jeans

Feenstra - 7.861 (0.565)

HRW plus Manual 7.439 (1.5) 3.234 (0.734)

HRW plus Hedonic 8.156 (1.82) 3.418 (0.657)

Estimated elasticities of substitution for CES and nested CES models. Standard errors in parentheses.
Data come from NPD Group. “HRW Plus” is a modified nested CES estimation procedure from Hottman

et al. (2016) that is robust to product entry and exit in the estimation of the between-group elasticity.
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Table 3: Alternative Price Indices, Levels in 2018q4 Relative to 2014q4: NPD Data

Memory Cards Coffeemakers Headphones Boys’ Jeans Occupational Footwear

Laspeyres 0.539 0.749 0.605 0.773 0.887

Hed. Laspeyres,TV 0.414 0.683 0.494 0.709 0.859

Tornqvist 0.467 0.688 0.607 0.726 0.872

Hed. Tornqvist,TV 0.406 0.667 0.541 0.687 0.856

Sato-Vartia 0.481 0.706 0.602 0.773 0.879

Feenstra 0.469 0.685 0.582 0.749 0.857

CUPI, CGR 30p 0.389 0.625 0.332 0.181 0.777

CUPI-N, CGR 30p 0.367 0.640 0.349 0.173 0.780

Notes: Values are cumulative changes in 2018:4 relative to the 2014 price level, with 2014 price level set to
1. CUPI-N is nested CUPI using characteristics approach. Data come from the NPD Group.
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Table 4: Alternative Price Change Indices, Chained (C) vs GEKS-Lite (GL), NPD Data

Memory Cards Coffeemakers Headphones Boys’ Jeans Occupational Footwear

Laspeyres (C) -10.09 -5.44 -4.00 -4.80 -2.15

Laspeyres (GL) -10.48 -4.94 -7.98 -4.86 -1.78

Tornqvist(C) -16.90 -8.86 -11.58 -7.63 -3.35

Tornqvist(GL) -15.67 -6.67 -11.55 -5.57 -2.33

Hed.Tornqvist,TV(C) -19.83 -9.56 -14.13 -8.93 -3.77

Hed.Tornqvist,TV(GL) -21.64 -9.95 -15.64 -7.60 -3.33

Sato-Vartia(C) -16.24 -8.24 -11.75 -6.20 -3.14

Sato-Vartia(GL) -14.57 -6.38 -11.34 -4.13 -2.10

Feenstra(C) -16.78 -8.92 -12.47 -6.92 -3.76

Feenstra(GL) -16.61 -9.46 -13.10 -5.52 -3.80

CUPI,CGR 30p(C) -20.64 -11.05 -24.08 -34.74 -6.08

CUPI,CGR 30p(GL) -20.14 -9.43 -22.56 -26.99 -5.25

Notes: Chained values are averages of cumulative quarterly rates for year. GEKS-lite is the average of the
geometric mean of the chained values and the YoY price indices for q4 for each year. Data come from the

NPD Group.

Table 5: Alternative Price Change Indices, Chained vs GEKS-Lite, Nielsen, Food

Index Chained GEKS-Lite

Laspeyres .014 .014

Tornqvist .005 .009

Sato-Vartia .007 .010

Feenstra .003 .005

CUPI -.034 -.020

Notes: Chained values are averages of cumulative quarterly rates for year. GEKS-lite is the average of the
geometric mean of the chained values and the YoY price indices for q4 for each year. Laspeyres is the geo

Laspeyres. CUPI uses 25th percentile CGR. Data come from Nielsen.
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Figure 1: Product Lifecycle Dynamics
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Entry occurs in period 0. All series are smoothed with a quartic spline. Data comes from the NPD Group.
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Figure 2: Hedonic Specifications: Fixed vs. Time-Varying Unobserved Characteristics
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hedonic models of log change in price using WLS and average quantity-share weights. The time-varying
unobservables model adds lagged hedonic level residuals to the log-difference specification. Data comes from
the NPD Group.
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Figure 3: Hedonic Specifications: Test of Time-Varying Unobservable Specification
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Figure 4: Components of Feenstra and UPI
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Figure 5: CUPI: Common Goods Market Share Rules
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Figure 6: Nested CUPI: Characteristics- and P-Hat- Based Nests
% Changes, Annual
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Figure 7: Comparison of Main Price Index Specifications
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Figure 8: Main Price Index Specifications, Without CUPI
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adjacent periods. Data comes from the NPD Group.
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Figure 9: Main Price Index Specifications: Cumulative Price Level Changes
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55



Figure 10: Sensitivity of CUPI to CGR, Nielsen Food

Notes: Values are annual changes from cumulative chained quarterly indices. Figures use Nielsen Retail
Scanner data for food product groups.
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Figure 11: Main Price Index Specifications: Price Changes and Levels, Nielsen food

Notes: Price changes are are annual changes from cumulative chained quarterly indices. Price levels reflect
cumulative changes relative to the 2006 price level, with 2006 price level set to 1. Figures use Nielsen Retail
Scanner data for food product groups.
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Appendix

A Hedonic Imputation Indices

A.1 Hedonic Estimation: Levels vs. Difference and Weighted vs.
Unweighted Results

We estimate hedonic models in both log-levels and log-differences. We also consider weighted
and unweighted approaches. Figure D.1 presents results from these alternative estimation
approaches for the five product groups we have explored in the NPD data. The log-level
specifications, whether weighted or unweighted, yield more erratic patterns than the log-
difference specifications. The log first-difference results are similar whether weighted or
unweighted. Importantly, the log first-difference specification in this figure controls only for
time-invariant unobservable characteristics. Our preferred TV approach, which we illustrate
in Figure 7 of the main text, also controls for time-varying valuations of unobservable product
characteristics.

The log-level specifications are sensitive to omitted unobservable characteristics. To il-
lustrate this point clearly, Figure D.2 presents an enhanced version of Figure 3 that shows
the sensitivity of the levels specification to intentionally omitted key observable characteris-
tics. Unlike the TV approach, the log-levels specification is very sensitive to omitting these
observable characteristics.

We report goodness of fit statistics for the alternative specifications in Table D.1. As
expected, the log-level estimation models account for a large share of variation in product
price levels, as measured by R2. This high explanatory power reflects the fraction of the
cross-sectional variation in prices accounted for by the observable characteristics. Those
same models account for a small fraction of the variation in price relatives. The EP methods
(EP1 is first differences and EP2 is the TV approach) yield much higher R2s for the price
relatives, especially for the weighted specifications.

In the main text, we focus on weighted hedonic specifications. As we have noted, the
time dummy method inherently calls for a weighted specification, as the estimation weights
determine the type of price index produced. The hedonic imputation specifications we con-
sider also use weighted specifications in the hedonic estimation procedure. Using weights
promotes consistency with the the time dummy results. Moreover, in the context of item-
level transactions data, there are additional reasons to prefer weighted estimation of hedonic
models as in Bajari et al. (2021). First, item-level data is generally inclusive of products with
a wide range of availability. The objective is to obtain the quarter-by-quarter mapping be-
tween prices and characteristics. With scanner data, the sample will typically include goods
that are not widely geographically available or that few consumers actually purchase, partly
because they have recently entered or are about to exit the marketplace. These low-quantity
goods will have an outsized influence on unweighted hedonic estimates, and may therefore
lead to hedonic price indices that do not reflect the environment faced by the representative
consumer. Intuitively, weighted regression coefficients should be interpreted as the implicit
prices of characteristics that consumers actually purchased (see Silver (2003) and Diewert
(2002) for motivation of using weighted hedonic specifications along these lines).
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We use quantity-share weights in our hedonic specifications, but we have found broadly
similar results using market-share weights. De Haan (2008) advocates for quantity weights to
be used in estimation. He notes that in the context of scanner data in particular, we do not
observe prices but average unit values. Given that consumers purchase items from different
stores, at different times during the aggregated periods over which average unit values are
calculated, and perhaps with different bargaining power, it is likely that these unit values
are likely to be measured with heteroskedastic errors across different items. Importantly, the
variance of unit values is inversely proportional to the square root of the number of units
sold, rather than the total value sold. Quantity weights are also frequently used in the trade
literature, which similarly often depends on unit values of imports or exports (e.g., Broda
and Weinstein, 2006).

We use quantity weights in the results presented in Figure D.1. For single-period log-level
estimation, we use contemporaneous quantity shares. Intuitively, this specification only uses
information from the current period to produce hedonic estimates. For estimation of the
specifications proposed by Erickson and Pakes (2011), in which the dependent variable is
the change in log prices, we use weights that are the average of the quantity shares in the
previous and current periods. The results using the EP method presented in the main text
take the same approach.

B Using the Nielsen Data

B.1 Comparisons of the Nielsen Data to Official Statistics

In this section, we compare patterns of sales and prices for the Nielsen Scanner and Consumer
Panel with official statistics. For the latter, we use Personal Consumption Expenditures
(PCE) data from the Bureau of Economic Analysis for nominal sales comparisons. We have
constructed a concordance between Nielsen and PCE categories at a detailed level (e.g.,
Bakery) and for broader categories–Food and Nonfood. For prices, we thank the BLS for
preparing CPI indices for the broader categories of food and nonfood in a harmonized fashion.

Figure D.5 presents comparisons of nominal expenditures for the broad food and nonfood
categories. For food, we find nominal sales for the Nielsen Scanner data tracks the PCE
closely. The Nielsen Consumer Panel tracks the PCE reasonably well through 2012, but it
rises less rapidly than either the Nielsen Scanner or PCE thereafter. For nonfood, both the
Scanner and Consumer Panel exhibit less of an increase over time than the PCE.44

These patterns are consistent with the discussion in the main text that the Nielsen data’s
coverage of nonfood items has deteriorated over time. Figure D.6 provides more guidance
on this point by showing for detailed categories the Scanner data the ratio of the growth in
nominal sales for the Nielsen Scanner for the period 2008:1 to 2015:4 relative to the growth
in nominal sales for the PCE over the same period. The upper panel shows results for food
categories and the lower panel for nonfood categories.45 The categories from left to right

44For our analysis of the Retail Scanner we use the NRF calendar, while for the Consumer Panel we use
the regular calendar. This difference is not important for the patterns reported in this and the next sections.
The NRF calendar is especially relevant at the monthly frequency.

45The categories are more aggregated than Nielsen product groups. They reflect a concordance provided
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in each panel are ranked by expenditure shares. Many of the food product categories have
ratios close to one. In contrast, the nonfood categories have ratios that are much more
variable and also typically below one.46

Figure D.7 presents the relationship between the BLS CPI and corresponding Laspeyres
indices from the Nielsen Scanner and Consumer Panel data sets. We show both arithmetic
and geometric Laspeyres. The CPI is a two stage index with a geometric unweighted index
at the MSA level and arithmetic Laspeyres to the national level. For food, both the Nielsen
Scanner and Consumer Panel Laspeyres indices are highly correlated with the CPI. In terms
of inflation levels, however, the Nielsen Scanner more closely matches the CPI (especially
for the arithmetic Laspeyres using the Scanner data). The correlations between Laspeyres
indices for the nonfood product groups and the CPI are much weaker than for food (0.53
and 0.67 for the Scanner and Consumer Panel data sets, respectively, using the arithmetic
Laspeyres). The average inflation level is closer to the CPI in the Scanner data than in the
Consumer Panel.

We interpret these results as providing justification for our focus on food results using the
Nielsen Scanner data in the main text. The results also support the view that the Nielsen
Scanner data tracks the official statistics as well as, if not more closely than, the Nielsen
Consumer Panel.

B.2 Common Goods Rules – Consumer Panel and Retail Scanner

This section presents sensitivity results to alternative common good rule approaches for both
the Nielsen Scanner and Nielsen Consumer Panel data sets. Using the scanner data, Figure
D.8 compares the results of imposing common goods rules using the 2-quarter horizon, as in
the main text (i.e., using percentiles from sales pooled over the current and prior periods),
vs. a 5-quarter horizon (i.e., computing percentiles for sales pooled over quarters t and
t − 4).47 These alternative CGRs impose different duration-based restrictions on products
to be included in the set of common goods. The 2-quarter horizon CGR requires goods to
be present in periods t and t-1, while the 5-quarter horizon requires goods to be present
in periods t and t − 4. The figure shows that the 5-quarter CGR using a 10th-percentile
share threshold leads the CUPI to measure inflation between what is measured using 25th
and 50th percentile thresholds using the 2-quarter horizon. The longer-horizon CGR puts
additional weight on the goods that have been present in the marketplace for a longer time,
which moves our approach in the direction of the duration-based CGR approach of Redding
and Weinstein (2020).

Figure D.9 shows the sensitivity of the CUPI to different CGRs using the Nielsen Con-
sumer Panel for food. Here, we focus on 5-quarter horizon CGRs. While the results differ
quantitatively, the same general pattern holds as in the Nielsen Scanner data, with the CUPI
increasing in the percentile of the CGR.

to us by BLS between PCE categories and Nielsen product modules.
46The results presented by detailed category are for the Nielsen Scanner data, which is the primary focus

of our analysis. In unreported results, we find similar patterns for the Nielsen Consumer Panel data.
47In many of the figures of this appendix, we include the arithmetic Laspeyres as this facilitates comparison

with Redding and Weinstein (2020). The prior section shows arithmetic and geometric Laspeyres yield similar
patterns.
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To facilitate comparison of our results to Redding and Weinstein (2020), who report
pooled results for food and nonfood product groups, Figure D.10 shows various price indices
calculated using all product groups in the Nielsen Consumer Panel data. The results are
broadly consistent with Redding and Weinstein (2020). However, importantly our analysis
focuses on chained quarterly annual indices while Redding and Weinstein (2020) focus on
year-over-year indices for fourth quarters of each year. In Figure D.11, we show we can
closely mimic their results for the CUPI using a market share common goods rule at the 5th
percentile if we calculate a Y-o-Y price index instead of the chained quarterly price indices
that have been the focus of this paper. As we have noted in the preceding discussion, the
use of a Y-o-Y index imparts a duration-based component to the CGR in addition to the
expenditure share-based thresholds.48

Figure D.12 shows related indices, using the Nielsen Scanner data, pooling all product
groups, and using various CGRs based on sales percentiles computed over the 5-quarter hori-
zon.49 These results are therefore suggestive of the results applying the empirical approach in
Redding and Weinstein (2020) to the Scanner data would produce. The CUPI with no CGR
suggests deflation of 10 percent or more per year. Even the CUPI with a 25th-percentile
cutoff rule shows persistent deflation in the Retail Scanner data; imposing a 50th-percentile
CGR brings the CUPI closer in line with the Laspeyres index. The series labeled “CUPI, RW
CP” shows results from applying the market share threshold in the 5th-percentile CGR from
the Consumer Panel to the Scanner Panel data, rather than calculating a percentile-based
threshold directly from the Scanner Panel data. Using the Consumer Panel share threshold
for the CGR produces results similar to using the 50th-percentile CGR calculated directly
in the Scanner Panel data.

The lower inflation rates the CUPI measures in the Nielsen Retail Scanner data relative to
the Consumer Panel data highlight the scanner data’s large number of very low-market share
products. This long tail disproportionately impacts the CUPI. In contrast, the Laypeyres
and Feenstra indices are much more consistent between the Nielsen Consumer Panel and
Nielsen Retail Scanner data.

Figure D.13 displays for the nonfood product groups the analogous plots to Figure 11,
which displays results for food product groups. For comparability purposes to the those in
the main text, the CGR rules in this figure are based on sales percentiles over the 2-quarter
horizon.50

The main message from this analysis is that the CUPI is very sensitive to the specification
of the CGR, both in the Nielsen Consumer Panel and in the Nielsen Scanner data. This
sensitivity applies both to the market share threshold used and to the horizon over which
the threshold is computed. Using the longer horizon market share threshold moves the

48We note that we do not impose a CGR in computing the other price indices shown in Figure D.10. In
contrast, Redding and Weinstein (2020) apply the same common goods rule for all of the price indices they
display. In unreported analysis, we have found that the Sato-Vartia and Feenstra are not very sensitive to
the CGR. This inference is also evident in Figure 10 that shows that is sensitive to the CGR for Nielsen
Food data. Because our objective is to compare demand-based indices with the hedonic indices, we aim to
treat entry and exit symmetrically across these indices.

49Figure D.12 also displays the Bureau of Labor Statistics’ Consumer Price Index for all of the product
groups included in the Nielsen data as a point of reference.

50To be consistent with the results for food reported in the main text, Laspeyres is geometric in this
figure.
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CGR towards the Redding and Weinstein (2020) duration-based approach. It is worth
reiterating that any duration based approach has greater data requirements for practical
implementation.

B.3 Machine Learning and Hedonics

This appendix summarizes our procedure for incorporating machine learning into hedonic
estimation. Our companion paper, Cafarella et al. (2021), provides further details.

Using machine learning (ML) methods to estimate hedonic price indices requires making
several practical choices regarding the architecture of the ML system used for prediction
and the conversion of those predictions into price indices. As discussed in the main text of
this paper, our preferred approach to constructing hedonic price indices is the “time-varying
unobservables” hedonic imputation approach of Erickson and Pakes (2011). The core of this
method is to estimate price levels for each product in each period in a first step. In a second
step, this approach estimates price changes, using the hedonic residual (or prediction error)
from the first step as a predictor. This methodology allows the hedonic predictions partially
to capture unobserved product characteristics’ influence on price changes.

In many ways, the “TV” approach of Erickson and Pakes (2011) can incorporate ML
methods quite naturally. The key innovation is to use ML methods rather than standard
regression techniques to estimate the hedonic functions for log price levels and changes in
equations (1) and (3). Another important difference from the more standard econometric
procedures we employ in the NPD data is that the Nielsen data available from the Kilts
Center does not include pre-coded item-level product attributes. Attribute information is
limited to short, non-standard text descriptions. We use deep neural networks to predict
product prices and price changes from these product descriptions.

Several features of our methodology merit particular discussion. First, to convert text-
based product descriptions into numerical characteristic representations, we use a hybrid
feature encoding architecture that allows the system to incorporate “pre-trained” word em-
beddings (numerical representations) trained from an external corpus of text as well as
specifically trained or “text-tailored” embeddings trained specifically on the product de-
scriptions in the Nielsen Kilts Retail Scanner Data set. Second, our architecture does not
predict prices or price changes directly, but rather predicts a set of probabilities that the
price or price change lies in each of a set of price or price-change bins that partition the
observed range. Third, the ML system minimizes the weighted cross-entropy loss function
for the products’ true price and price change distributions in the hedonic estimation.51 Both
steps are weighted using products’ unit sales (quantities) shares in a product-group quarter.
Fourth, because of the noise in the estimated probabilities, it may not be optimal to calcu-
late price predictions as the simple probability-weighted expected price. We use a receiver
operating characteristic (ROC) curve procedure to determine the optimal number of bins to
include in the price prediction.

Cafarella et al. (2021) explores the ML procedure’s performance as measured by the
prediction “near accuracy” across every product group-quarter. We define the model’s near

51In this application, the cross-entropy loss objective function is equivalent to maximizing the likelihood
of assigning the highest probability to the correct bin.
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accuracy as the proportion of products for which it assigns the highest probability to the
correct or an adjacent bin. The median in-sample near accuracy for food price change bins
is well above 80%. The out-of-sample near accuracy for the median product group-quarter
is nearly 60% for the food product groups. In other words, the median-performing model
predicts the the correct bin or an adjacent bin more than 80% of the time. We view these
model performances as remarkable: in the median product group-quarter, the system is able
to closely predict a product’s price change over half the time based on the short, nonstandard
product descriptions.

C Examining the Behavior of the Exact CES Price In-

dices with Time-Varying Product Appeal

In this appendix, we examine analytically and via simulation evidence whether time-varying
product appeal shocks generate an expected bias in the Sato-Vartia index relative to the
consumer’s exact price index under CES preferences. We begin in section C.1 by examining
the mathematical source of the taste shock bias highlighted by Redding and Weinstein (2020).
We conclude that the presence of time-varying product appeal on its own will not generate
an expected bias in the Sato-Vartia index. On the other hand, time trends in the dispersion
of product appeal shocks do introduce an expected bias.

A natural question that arises from that conclusion is why the CUPI measures consis-
tently lower inflation than the Sato-Vartia and Feenstra indices. In section C.2, we present
simulation evidence showing that geographical segmentation of entering goods and limited
availability of existing goods can cause the CUPI to measure significantly lower inflation
than is implied by the consumer’s unit expenditure function. A common goods rule helps
alleviate such biases. We believe these simulations point the way toward future research on
the implementation of the CUPI.

C.1 Analytical Characterization of the Taste Shock Bias

We consider a representative consumer with CES preferences. For simplicity, in this sub-
section we examine a market with no product turnover, and we assume the consumer has
non-nested preferences over the set of available products. Let N denote the number of prod-
ucts present in each period and Pt denote the unit expenditure function in period t. Redding
and Weinstein (2020) show that, in the presence of product appeal shocks, the change in the
log Sato-Vartia price index equals the change in the log unit expenditure function plus an
additional term:

ln ΦSV
t = ln

Pt
Pt-1

+

[∑
k

ωkt ln

(
ϕkt
ϕkt-1

)]
, (C.1)

where ωkt are the Sato-Vartia weights defined by:

ωkt =

skt−skt-1
ln(skt)−ln(skt-1)∑
k

skt−skt-1
ln(skt)−ln(skt-1)

.
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Redding and Weinstein (2020) label the term in the square brackets of equation (C.1) the
“taste shock bias,” as it represents the difference between the Sato-Vartia index and the true
change in the cost of living index. It is easy to see that when product appeal is constant
over time, so that ϕkt = ϕkt-1 for every product k, the taste shock bias term will be zero and
the Sato-Vartia index will exactly recover the true change in the cost of living. Redding and
Weinstein (2020) argue that when product appeal is time varying, however, the taste shock
bias term will be positive in expectation, so that the Sato-Vartia index will tend to overstate
the true rate of inflation.

The expected taste shock bias can be written as:

E
[
ln ΦSV

t − ln
Pt
Pt-1

]
= NE

[
ωkt ln

(
ϕkt
ϕkt−1

)]
= NCov

[
ωkt, ln

(
ϕkt
ϕkt-1

)]
+NE

[
ln

(
ϕkt
ϕkt-1

)]
. (C.2)

The second term in equation (C.2) will be zero due to the normalization. Redding and
Weinstein (2020) note, however, that the Sato-Vartia weights ωkt are an increasing function
of the appeal parameters ϕkt:

∂ωkt
∂φkt

=
∂ωkt
∂skt

∂skt
∂φkt

> 0 =⇒ Cov

[
ωkt, ln

(
ϕkt
ϕkt-1

)]
> 0 (C.3)

Other factors equal, consumers will devote a greater share of expenditure to goods that
experience favorable appeal shocks. In isolation, that tendency would lead the Sato-Vartia
taste-shock bias in equation (C.2) to be positive. As Redding and Weinstein (2020) argue
in their abstract:

In the presence of relative taste shocks, the Sato-Vartia price index is upward
biased because an increase in the relative consumer taste for a variety lowers
its taste-adjusted price and raises its expenditure share. By failing to allow
for this association, the Sato-Vartia index underweights drops in taste-adjusted
prices and overweights increases in taste-adjusted prices, leading to what we call
a “taste-shock bias.”

We believe that this intuition, while correct on its own, is also incomplete: there is a
symmetrical and offsetting tendency for appeal shocks to induce a downward bias in the Sato-
Vartia index when the appeal parameters ϕk are independently and identically distributed
across periods t-1 and t. The offsetting bias comes from the fact that the Sato-Vartia weights
ωkt are also an increasing function of the previous period’s appeal parameters ϕkt-1, which

enter the second term in the covariance, ln
(

ϕkt
ϕkt-1

)
, in the opposite direction from the current

period’s appeal parameters:

∂ωkt
∂ϕkt-1

=
∂ωkt
∂skt-1

∂skt-1
∂ϕkt-1

> 0 =⇒ Cov

[
ωkt, ln

(
ϕkt
ϕkt-1

)]
< 0 (C.4)

This offsetting tendency would lead the Sato-Vartia taste-shock bias to be negative in isola-
tion. The upward and downward biases will offset each other in expectation when the appeal
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parameters are identically distributed across periods t-1 and t, so the Sato-Vartia index will
not exhibit a generic taste-shock bias under those assumptions.

Nonetheless, if the assumption of idiosyncratically and identically distributed appeal
parameters does not hold precisely, for instance, because the dispersion of product appeal
changes over time, the Sato-Vartia price index may exhibit a taste-shock bias. In particular,
as noted by Redding and Weinstein (2020), increasing dispersion in product appeal will
induce an upward bias in the Sato-Vartia index.

C.2 Simulation Evidence on the Behavior of the CES Exact Price
Indices

C.2.1 Simulation Model Environment

We base our simulations on the general equilibrium environment of Hottman et al. (2016).52

A set of firms, indexed by f , each produces multiple products, indexed by u. Consumers
have nested preferences, with preferences over the total output of each firm in the upper-level
nest and preferences over the individual products supplied by each firm in the lower-level
nests.

The bottom-level CES consumption index over the products supplied by firm f , CF
ft, is

given by:

CF
ft =

∑
u∈ΩUft

(ϕutCut)
σU−1

σU

 σU

σU−1

(C.5)

where Cut represents the quantity consumed of product u in period t, ϕut is a product-level
appeal shifter for product u, ΩU

ft is the set of products supplied by firm f in period t, and
σU is the elasticity of substitution among the products supplied by a firm.

The consumer’s utility from consuming the output supplied by all firms, Ut, is given by:

Ut =

∑
f∈ΩFt

(
ϕftC

F
ft

)σF−1

σF

 σF

σF−1

(C.6)

where CF
ft is the firm-level consumption aggregate defined in equation C.5, ϕft is a firm-level

appeal shifter for firm f , ΩF
t is the set of firms supplying products in the marketplace in

period t, and σF is the elasticity of substitution across firm-level consumption aggregates.
It is necessary to provide a normalization for the product-level and firm-level appeal

shifters ϕut and ϕft. We follow Redding and Weinstein (2020) in assuming that both product-
level and firm-level appeal shifters for continuing products have an average log change of
zero in every period. That normalization allows for the possibility that entering or exiting
products have higher or lower average appeal levels than continuing products.

52Hottman et al. (2016) consider consumers with Cobb-Douglas preferences over a number of different
product groups and constant elasticity of substitution (CES) preferences within each product group. For
simplicity, we restrict our attention to consumers with preferences over products within a single group.
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The supply side of the market is populated by a set of firms that produce output using a
composite input factor that serves as the economy’s numeraire good. Firms’ cost functions
are assumed to be additively separable across products supplied. The total variable cost of
producing Y U

ut units of product u at time t, Aut, is given by:

Aut
(
Y U
ut

)
= aut

(
Y U
ut

)1+δ
(C.7)

where aut is a marginal cost shifter of producing product u at time t, and δ is the elasticity of
marginal costs with respect to output. We assume that product entry and exit is exogenous
in our simulations.

Firms choose prices under Bertrand competition. Each firm’s decisions affect other firms’
decisions only through their effects on the economywide price index. In equilibrium, firms
choose product prices to maximize profits and consumers choose quantities demanded of
each product. We will generally assume that the market clears so that Cut = Y U

ut for every
product u and time t. Certain simulations will feature market imperfections that prevent
this market-clearing condition.

Hottman et al. (2016) derive analytical formulas for consumers’ product demands, firms’
pricing rules, and firm-level and aggregate price indices in this environment, and provide
computer code to solve for the market-clearing general equilibrium numerically. They also
characterize the economics of the market environment in depth. We build our numerical
simulations on the code provided by Hottman et al. (2016), so our environment will parallel
theirs except for the differences that we highlight to explore the behavior of the CES exact
price indices in various market environments.

Each simulation contains 50 firms and lasts for 40 periods.53 Unless otherwise noted,
each firm sells 50 products in each period. 100 Monte Carlo simulations were run for each
set of model parameters considered. To abstract from issues of within-firm vs. between-firm
substitution, we set the elasticity of substitution between a firm’s individual products σU

equal to the elasticity of substitution across firms’ composite output σF .54 We choose a value
of 5 for both elasticities, between the values of σU and σF in Hottman et al. (2016) of 7 and
4, respectively. We set the elasticity of marginal costs with respect to quantity supplied δ to
0.15, consistent with the Monte Carlo simulations in Hottman et al. (2016).

Each period, the log product appeal shifters are drawn from normal distributions with
product-specific means and variances. The product-specific means are drawn from a standard
normal distribution, and the product-specific variances are drawn from a uniform distribu-
tion between one and two. Product-specific means and variances are constant over time,
unless otherwise noted. Each period, the log firm appeal shifters are drawn from normal
distributions with zero means and firm-specific variances. The firm-specific variances are
drawn from a uniform distribution between one and two, and are constant over time. Fi-
nally, the log marginal cost shifters are drawn each period from normal distributions with

53We initialize all stationary variables by drawing from their steady-state distributions, so the simulations
do not include a burn-in period.

54Hottman et al. (2016) found evidence of such differences and we find related evidence of differences in
elasticities within and across nests. We found in section 4.1.2 this did not matter much for the properties
of the CUPI. More work is needed in this area, but we do not explore this issue in our simulation analysis .
Relatedly, an interesting and open question is how much the CUPI is sensitive to any biases in the estimation
of the elasticities. We leave that question for future work.
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zero means and product-specific variances. The product-specific variances are drawn from a
uniform distribution between one and two, and are constant over time. The product appeal
shifters, firm appeal shifters, and marginal cost shifters are mutually independent.

The econometrician is assumed to be able to observe the elasticities of substitution σU

and σF exactly without estimation in constructing the price indices. The CES exact price
indices are calculated without considering nesting of preferences among products and firms,
with the exception of the unit expenditure function, which is calculated according to the
consumer’s exact preference structure.

C.2.2 Simulation Evidence

We consider five sets of simulations in this section. In each set of simulations, we vary one
key parameter and run 100 Monte Carlo simulations as described in the previous section for
each value of the key parameter we consider in the set of simulations. The figures display
inflation as measured by the unit expenditure function and various CES price indices; the
lines represent the average realization of measured inflation using each price index, while
the shaded regions represent 95-percent asymptotic confidence intervals. The first three sets
of simulations consider frictionless markets in which the assumptions underlying the CUPI
hold exactly, so it coincides identically with the unit expenditure function in those exercises.
The fourth and fifth sets of simulations introduce market imperfections that drive a wedge
between the CUPI and the unit expenditure function.

Trends in Marginal Costs

Figure D.14 explores the behavior of the Sato-Vartia index and CUPI in the environment
of Hottman et al. (2016) when there is a trend in the marginal cost shifter aut. On the
left-hand side of the graph, marginal costs are falling at a rate of 5 log points per period;
in the middle of the graph, marginal costs have no trend; and on the right-hand side of
the graph, marginal costs are rising at a rate of 5 log points per period. These trends in
marginal costs drive non-zero average inflation. In this frictionless environment, the CUPI
exactly replicates the unit expenditure function. The Sato-Vartia index is substantially
less precise than the CUPI, as seen in its wider 95-percent simulation bands for estimated
inflation. The Sato-Vartia index is noisier than the CUPI because it does not account for
changes in product appeal; despite the normalization that average appeal levels are steady
over time in these simulations, appeal shocks may affect the consumer’s cost of living in any
particular simulation. Generally speaking, if goods with large expenditure shares experience
positive appeal shocks on average, the cost of living will fall, but if they experience negative
appeal shocks on average, the cost of living will rise. Consistent with the logic in Section
C.1, however, the Sato-Vartia index does not display an average bias relative to the unit
expenditure function.

Trends in Variance of Product Appeal

Figure D.15 explores the behavior of the Sato-Vartia index and CUPI when there is a trend
in the variance of the product appeal parameters ϕut. The horizontal axis of the graph
shows different growth rates for the variance of appeal; on the left-hand side of the graph,
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appeal is becoming more compressed over time, while on the right-hand side of the graph,
appeal is becoming more dispersed over time. The unit expenditure function shows that
the consumer’s cost of living is falling over time when the variance of product appeal is
rising, and conversely the cost of living is rising when the variance of product appeal is
falling over time. This pattern is consistent with the logic in Redding and Weinstein (2020)
that increasing dispersion in product appeal is valuable to consumers when products are
substitutes, because it provides greater opportunities for substitution to preferred varieties.
In contrast to the results in Figure D.14, the Sato-Vartia index does exhibit an average bias
in the presence of time trends in the variance of product appeal, which is especially evident
in the right-hand portion of the figure where the variance is growing over time. This figure
helps illustrate the potential benefits of using the CUPI.

Product Upgrading and Downgrading via Turnover

Figure D.16 displays results from simulations featuring product entry and exit. For simplic-
ity, we assume that products are present in the market place for a deterministic number of
periods (set to five in these simulations) after which they exit. Equal numbers of products
enter and exit the market in every period.

The key feature of the simulations is that the average appeal parameter ϕut for entering
products can differ from the average for continuing products.55 The horizontal axis of the
graph shows different trends in the average appeal of entering products. On the left-hand
side of the graph, entering products are less appealing on average than existing products,
while on the right-hand side of the graph, entering products are more appealing.

Figure D.16 shows inflation as measured by the Sato-Vartia index, the CUPI, and the
Feenstra index, which is equal to the Sato-Vartia index in the absence of product entry and
exit. The CUPI again tracks the true unit expenditure function exactly, showing inflation
from product downgrading and deflation from product upgrading. The Sato-Vartia index
captures these effects directionally, because product turnover affects the prices of continuing
products via competition. Because it considers only continuing products, however, the Sato-
Vartia index quantitatively understates product turnover’s effects on the cost of living. The
Feenstra index augments the Sato-Vartia index with an adjustment term that captures the
effects of product turnover directly. Figure D.16 shows that it is unbiased on average relative
to the true unit expenditure function, despite the presence of relative appeal shocks in the
simulations. Echoing the results of Figure D.14, the Sato-Vartia index and the Feenstra
index are noisier than the CUPI because they do not account for the effect of product
appeal shocks. This figure helps make the case for using an index such as the Feenstra or
CUPI to incorporate product turnover that yields quality change.

Segmented Markets

Figure D.17 displays results from a set of simulations in which the market is segmented
into five distinct submarkets. Consumers have nested CES preferences over the products
consumed in each submarket and firms compete within each submarket as described in

55Recall that the normalization on product appeal in Redding and Weinstein (2020) applies only to
continuing products, so product upgrading or downgrading does not violate the normalization.
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Section C.2.1. Consumers have Cobb-Douglas preferences over their consumption across the
various submarkets. One of the markets is “large,” and has a weight of 0.8 in the consumer’s
aggregate utility function, while the other four markets are “small,” and have weights of 0.05
each. Product entry and exit within each market otherwise proceeds as in the previous set
of simulations.

The simulations present price indices measured assuming that the econometrician is un-
aware of the market segmentation and measures prices assuming a unified marketplace. The
assumptions are meant to mimic the pattern documented in Figure D.4, which shows that al-
though most sales are concentrated among products sold in nearly all metro areas nationally,
on a UPC basis, most products are sold in relatively few areas.

As in Figure D.16, the horizontal axis of Figure D.17 shows different trends in the average
appeal parameter ϕut of entering products. Only the small markets feature a trend in
the average appeal of entering products; there is no trend in the large market. Figure
D.16 displays inflation as measured by five price indices in addition to the unit expenditure
function: the Sato-Vartia; the Feenstra; the CUPI with no common goods rule, which we
have called the “theoretical CUPI”; the CUPI implemented with a 40th-percentile common
goods rule; and the CUPI implemented with an 80th-percentile common goods rule.

Figure D.17 conveys a few key messages. First, the theoretical CUPI is significantly
biased in the presence of product upgrading or downgrading in the small markets. The in-
tuition for this bias is that the P ? and S? ratio terms in the CUPI are unweighted geometric
means. The theoretical CUPI therefore assigns the price movements in the small markets,
driven by product turnover, equal importance to the price movements in the large market.
Although that equal weighting scheme would be theoretically justified in a unified market-
place under CES preferences with appeal shocks, it implicitly overweights the small markets
in the segmented market environment. The second key message is that the Sato-Vartia and
Feenstra indices fare better in these simulations than the theoretical CUPI because all of
their components are expenditure-share weighted. The third key message is that a common
goods rule (CGR) can help reduce the bias in the theoretical CUPI by reallocating products
from the unweighted geometric mean terms to the lambda ratio term, which is weighted.

Figure D.17 thus provides a theoretical justification for the use of a CGR in Redding and
Weinstein (2020) and our own empirical work. We interpret this segmented markets case as
broadly capturing the intuition for a CGR given that goods may first enter local markets.
While this exercise helps justify a CGR, it highlights that choosing the appropriate CGR will
depend on the pace of product upgrading and degree of market segmentation. In addition,
in practice entering goods can transition to becoming national goods, and that process will
influence the nature of the CGR. Put differently, although this exercise provides theoretical
motivation for a CGR, it does not provide precise guidance as to the nature of the appropriate
CGR.

Partial Stock-outs (Rationing) Prior to Exit

Figure D.18 examines the behavior of the CES exact price indices when there are partial
product stock-outs in the period prior to exit. The simulations feature a stylized version of
stock-outs, or a “clearance rack,” in which product sales are rationed in the period before
they exit the marketplace. Product entry and exit within each market otherwise proceeds
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as in the previous two sets of simulations.
The horizontal axis of the figure shows various shares of rationing prior to exit. On the

left-hand side of the figure, consumers are only able to purchase 10 percent of their desired
(unconstrained) product demands; on the right-hand side of the figure, there is no rationing.
We assume that firms do not adjust stocked-out products’ prices to clear the market, but
instead price all products as they would in the flexible price equilibrium. We assume that
consumers optimally reallocate their demands toward the unconstrained products in response
to the rationing.56

The unit expenditure function in Figure D.18 shows an approximately constant cost of
living in the presence of stock-outs. Although the simulations feature product turnover, they
do not feature any trend in average appeal of entering products. As the figure shows, though,
stock-outs introduce a substantial bias to the CUPI and the Feenstra index. The intuition
for the bias is subtle. Rationing lowers expenditure shares on goods just prior to their exit
from the marketplace, with the expenditure reallocated to unconstrained goods. Rationing
therefore raises the dispersion of expenditure shares on continuing goods relative to the un-
rationed case, leading to a negative log S? ratio.57 Likewise, the Feenstra adjustment to
the Sato-Vartia index is negative because new goods enter the market un-rationed, allowing
consumers to buy whatever quantities they please; prior to exit, quantities are constrained
below consumers’ desired levels. The expenditure share on exiting products is therefore lower
than the expenditure share on entering products, producing a negative adjustment to both
the Feenstra index and the CUPI.

The key messages from Figure D.18 are similar to those from Figure D.17. The theoretical
CUPI is significantly biased in the presence of this market friction, while the Sato-Vartia
index is approximately unbiased. Imposing a CGR helps move the CUPI closer to the true
unit expenditure function. Again, though, the simulations do not provide guidance on the
empirically appropriate CGR. Estimates of the extent and nature of rationing are needed to
yield guidance for the appropriate CGR.

56The assumption that consumers have homothetic CES preferences makes it straightforward to calculate
their re-optimized demands in the presence of rationing; consumers reallocate their expenditure to each of
the non-rationed goods in proportion to their unconstrained demands had there been no rationing. The unit
expenditure function under rationing can then be computed as the ratio of indirect utilities provided by a
unit of expenditure between periods.

57The entry of the unconstrained goods does not affect this calculation, because the expenditure shares
in the CUPI’s consumer valuation adjustment term are calculated over continuing goods only.
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Figure D.1: Alternative Hedonic Estimation Strategies
NPD Data, Annual % Changes
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Notes: Values are annual changes from cumulative chained quarterly indices. Data comes from the NPD
Group.
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Figure D.2: Test of Time-Varying Unobservable Hedonic Specification, First-Differences and
Levels Estimation
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Notes: Values are log differences on an annual basis, aggregated from chained quarterly indices. Data comes
from the NPD Group.
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Figure D.3: Main Price Index Specifications: Cumulative Price Level Changes, No CUPI
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Notes: Values are cumulative changes relative to the 2014 price level, with 2014 price level set to 1. The
hedonic time-varying unobservables model is estimated over log price differences using WLS and with weights
that are average quantity-shares in adjacent periods. Data comes from the NPD Group.
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Figure D.4: Sales-weighted and Unweighted Distributions of Market Penetration of Items in
Nielsen Data, Food

Notes: All UPC items at a weekly frequency are used from 2006-2015. Unweighted shows the market
penetration at the metro area of the unweighted pooled distribution. Sales-weighted shows the equivalent
using sales weights. Figure uses Nielsen Retail Scanner data for food product groups.
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Figure D.5: PCE vs Nielsen Sales for Scanner and Consumer Panel, Food and Nonfood

(a) Food

(b) Nonfood

Notes: Figures uses Nielsen Scanner and Consumer Panel data for Food and Nonfood (aggregated)

product groups. PCE is personal consumption expenditures (nominal) from BEA. All series indexed to

1 in 2008:q1.
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Figure D.6: PCE vs Nielsen Sales for Scanner, By Category within Food and Nonfood

(a) Food

(b) Nonfood

Notes: Figures uses Nielsen Scanner and Consumer Panel data for Food and Nonfood (aggregated)

product groups. PCE is personal consumption expenditures (nominal) from BEA. All series indexed to

1 in 2008:q1.
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Figure D.7: BLS CPI vs Nielsen Laspeyres, Food and Nonfood

(a) Food

(b) Nonfood

Notes: Figures uses Nielsen Scanner and Consumer Panel data for Food and Nonfood (aggregated)

product groups. BLS CPI computed by BLS staff.
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Figure D.8: Common Goods Rules–2-quarter vs 5-quarter Horizons

Notes: Figure uses Nielsen Scanner data for food. The 2q CUPI computes CGR percentile thresholds using
sales pooled over a two quarter horizon (t and t − 1). The 5q CUPI computes CGR percentile thresholds
using sales pooled over a 5 quarter horizon (current and prior 4 quarters). Laspeyres is arithmetic.
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Figure D.9: Common Goods Rules – Nielsen Consumer Panel

Notes: Figure uses Nielsen Consumer Panel data for food. The 5q CUPI computes CGR percentile thresholds
using sales pooled over a five quarter horizon (t and t − 1). (current and prior 4 quarters). Laspeyres is
arithmetic.
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Figure D.10: Common Goods Rules – Nielsen Consumer Panel

Notes: Figure uses Nielsen Consumer Panel data for food and nonfood product groups. The series “CUPI
CGR RW” uses a 5th-percentile sales cutoff for the common goods rule. Percentile computed from sales
pooled over 5 quarter horizon (current and prior 4 quarters). Laspeyres is arithmetic.

81



Figure D.11: Replication of Redding and Weinstein (2020) with Nielsen Consumer Panel

Notes: Figure uses Nielsen Consumer Panel for food and nonfood product groups. The indices are YoY for
Q4. The series RW(2020) uses the same CGR duration rule as in Redding and Weinstein (2020). The series
5p(5q) use percentiles based on sales pooled over 5 quarter horizon (current and prior 4 quarters.
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Figure D.12: Common Goods Rules – Nielsen Scanner Panel

Notes: Figure uses Nielsen Retail Scanner data for food and nonfood product groups. The “CUPI, 25p” and
“CUPI, 50p” series use 25th- and 50th-percentile cutoffs for the common goods rule, respectively. The series
“CUPI, RW CP” uses the CGR 5th percentile threshold from the consumer Panel data for the common goods
rule. Percentiles based on sales pooled over 5 quarter horizon (current and prior 4 quarters). Laspeyres is
arithmetic.
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Figure D.13: Main Price Index Specifications: Price Changes and Levels, Nielsen Nonfood

Notes: Price changes are are annual changes from cumulative chained quarterly indices. Price levels reflect
cumulative changes relative to the 2006 price level, with 2006 price level set to 1. Figure uses Nielsen Retail
Scanner data for nonfood product groups. Laspeyres is geometric.
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Figure D.14: Simulated CES Exact Price Indices with Trends in Cost Shifters

Notes: The figure displays inflation as measured by various CES exact price indices from Monte Carlo simulations of the general equilibrium
environment of Hottman et al. (2016). See Section C.2 for simulation details. The horizontal axis displays different average growth rates for the
products’ marginal cost shifters. The vertical axis displays the average log inflation rate across simulation periods; solid lines represent simple
averages across simulations and shaded regions represent 95-percent asymptotic confidence intervals. The CUPI coincides exactly with the unit
expenditure function in these simulations.
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Figure D.15: Simulated CES Exact Price Indices with Trends in Dispersion of Product Appeal

Notes: The figure displays inflation as measured by various CES exact price indices from Monte Carlo simulations of the general equilibrium
environment of Hottman et al. (2016). See Section C.2 for simulation details. The horizontal axis displays different average growth rates for the
variance of the product appeal parameters. The vertical axis displays the average log inflation rate across simulation periods; solid lines represent
simple averages across simulations and shaded regions represent 95-percent asymptotic confidence intervals. The CUPI coincides exactly with the
unit expenditure function in these simulations.
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Figure D.16: Simulated CES Exact Price Indices with Product Turnover

Notes: The figure displays inflation as measured by various CES exact price indices from Monte Carlo simulations of the general equilibrium
environment of Hottman et al. (2016). The simulations feature product turnover, with equal numbers of products entering and exiting the market
each period. Each product spends five periods in the market. See Section C.2 for simulation details. The horizontal axis displays different average
growth rates for the product appeal parameters of entering products. The vertical axis displays the average log inflation rate across simulation
periods; solid lines represent simple averages across simulations and shaded regions represent 95-percent asymptotic confidence intervals. The CUPI
coincides exactly with the unit expenditure function in these simulations.
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Figure D.17: Simulated CES Exact Price Indices with Segmented Markets

Notes: The figure displays inflation as measured by various CES exact price indices from Monte Carlo simulations of the general equilibrium
environment of Hottman et al. (2016). The simulations feature segmented markets, with one large “national” market and four small “local” markets.
See Section C.2 for simulation details. The horizontal axis displays different average growth rates for the product appeal parameters of entering
products in the small markets. The vertical axis displays the average log inflation rate across simulation periods; solid lines represent simple
averages across simulations and shaded regions represent 95-percent asymptotic confidence intervals.
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Figure D.18: Simulated CES Exact Price Indices with Partial Stock-outs prior to Exit

Notes: The figure displays inflation as measured by various CES exact price indices from Monte Carlo simulations of the general equilibrium
environment of Hottman et al. (2016). The simulations feature partial stock-outs in the period prior to products’ exit. See Section C.2 for
simulation details. The horizontal axis displays the share of the desired quantities available for purchase in the period prior to exit. The vertical axis
displays the average log inflation rate across simulation periods; solid lines represent simple averages across simulations and shaded regions represent
95-percent asymptotic confidence intervals.
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Table D.1: Hedonic Models: Goodness of Fit

R2 for: Log Price Level Log Price Relative

Model: Log-Level Log-Level EP1 EP2

Coffee Makers 0.69 0.62 0.09 0.05 0.14 0.20 0.22

Headphones 0.20 0.89 0.04 0.24 0.11 0.43 0.47

Memory Cards 0.65 0.71 0.02 0.05 0.03 0.09 0.13

Work/Occ Footwear 0.58 0.73 0.08 0.10 0.21 0.37 0.39

Boy’s Jeans 0.34 0.72 0.08 0.22 0.13 0.43 0.47

Weighted: n y n y n y y

Average quarterly R2 for hedonic regression models. For cases where the outcome variable (price level or
price relative) does not match the LHS variable from the hedonic model, we report the R2 from a

regression of transformed predicted values from the hedonic model on actual values. For example, the
price-relative R2 for the log-level model is the R2 from a regression of price relatives constructed from a
log-level hedonic model on actual price relatives. Weights used in regressions are consistent in hedonic

estimation and construction of R2 measures. For the log-level model, weights are the quantity shares in the
current period. For the log-difference and time-varying unobservables model, weights are the average

quantity shares in the current and lagged periods. The time-varying unobservable model includes lagged
residuals from a log-level hedonic regression.
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