THE ECONOMICS OF ELECTRIC VEHICLES

DAVID RAPSON & ERICH MUEHLEGGER

DEPARTMENT OF ECONOMICS

DAVIS ENERGY ECONOMICS PROGRAM

UNIVERSITY OF CALIFORNIA, DAVIS

Transportation is a major/growing source of GHGs (~20%)

Greenhouse gas emissions by sector, World

Greenhouse gas emissions are measured in tonnes of carbon dioxide-equivalents (CO₂e).

Source: CAIT Climate Data Explorer via Climate Watch

 $\hbox{OurWorldInData.org/co2-and-other-greenhouse-gas-emissions} \bullet \hbox{CC BY}$

Electrification vision

We drive mostly gasoline-powered cars (US & worldwide)

~60% of electricity comes from fossil fuels (high GHG)

Source: Our World in Data based on BP Statistical Review of World Energy & Ember (2021) Note: 'Other renewables' includes biomass, waste, geothermal and wave and tidal energy.

Today

- Private economics of EVs
- (Potential) externalities
 - Unpriced global & local pollution
 - Non-appropriable learning by doing
 - Network effects (charging infrastructure)

Concluding remarks

Informs desired incentives and optimal policy

Private savings varies substantially by location

2019 Nissan Leaf vs Nissan Versa

EVs are not "zero-emissions vehicles"

- 2021: Midwest grid 70% fossil fuel generation (30% coal)
- US coal production increased ~10% YoY in 2021Q4

Source: Holland, Mansur, Muller & Yates 2016

Cost savings positively correlated with environmental benefits

• But environmental benefits are negative in most states

Panel (a): Ford Focus Electric vs Ford Focus ICE

Indirect Network Externalities

- If external (likely, to some extent), justifies either
 - Subsidize EV purchases
 - Subsidize EV charging infrastructure

Indirect Network Externalities

- Multiple equilibria?
 - Low EV / low charging infrastructure
 - High EV / high charging infrastructure
- Market failure exists if
 - Hurdle prohibits achieving "high" equilibrium AND if welfare in "high" equilibrium
 exceeds welfare in "low" equilibrium
- Little empirical evidence to inform relative welfare levels
 - "High" equilibrium: higher environmental benefits, also higher costs

EV Purchase Subsidies

There are many.

- \$7,500 federal subsidy (up to \$1.5B per manufacturer)
 - Proposals to renew/replenish
- Many state subsidies
 - E.g. CA: CVRP offers \$1,000 \$7,000 per EV
 - Additional low-income subsidies up to \$9,500 per EV
- Subsidies at this level far exceed environmental benefits (which, again, are negative in many cases)

Subsidizing EVs produces unintended consequences

- Puts more cars on the road
- Fails to reduce driving in gasoline cars
- Promotes driving EVs in areas with coal electricity
 - Driving EVs is typically cheaper per mile in those locations
- If successful, drives down the price of oil
 - Changes incentives in rest of world

EV Charging Infrastructure Subsidies

- Again, in the billions of dollars
- Potentially important for stimulating demand for EVs in MUDs
 - Is this desirable?

A few questions/concerns:

- If EV purchase subsidies are optimal (or excessive), can infrastructure subsidies be justified on network externality grounds?
 - Are there other market failures?
 - Standardization?
- Often directed towards government-determined locations
 - Would the market allocate these more efficiently?
- Sunk costs

Is it more cost-effective to subsidize infrastructure than EVs?

- Extremely challenging to identify empirically
- Best-in-class papers
 - Springel (2021): uses EV incentives as IV for charging station density
 - Li, Tong, Xing & Zhou (2017): use grocery stores and supermarkets as IV
 - Li (WP): uses state-level & ARRA federal subsidies as IVs
- Exclusion assumptions are strong (and untestable)
- Recommendation: deploy infrastructure subsidies in a manner that allows credible ex-post evaluation

Learning by Doing

Key questions

- Does meaningful learning occur in EV (and related) markets?
- Is this learning appropriable by firms?

• Very little evidence in general; no evidence in EV market

Remarks (1): Are EVs and ICEs substitutes?

- (+) Adjust for away-fromhome charging
- (+) Adjust for fuel efficiency

eVMT = 6,700 miles/BEV/yr vs 10,000 miles/gas car/yr

Remarks (1a): Tesla vs range effects

Source: Burlig, Bushnell, Rapson & Wolfram (2021)

Remarks (2): Norway

• 84.2% EV market share in April 2022

Figure 1.2. New passenger cars registered in Norway

2006-2018

- No EV subsidies (aside from HOV lane access, toll exemptions, etc)
- Massive taxes on gasoline cars (\$72k/car in 2018¹)
- 98% renewable electricity (hydro → replicable?)

Source: Data obtained for this report from Norwegian Road Federation.

Concluding remarks

- Aspiration: complete transformation of the transportation economy
 - Replace \$800 billion/year in liquid fuel expenditures with electricity (currently a \$400 billion/year industry)
- Abatement benefits likely to be lower than expected, at least in the short run
- Optimal policies will vary over time and space
- There are several important, unanswered questions
- Benefits to remaining open-minded about alternative abatement pathways

Comments welcome:

David Rapson dsrapson@ucdavis.edu

