Transport Markets, Port Infrastructure, and World Trade

Giulia Brancaccio, Myrto Kalouptsidi, and Theodore Papageorgiou

NYU, Harvard, Boston College

Wednesday, May 25th, 2022

- Global supply chains
 - have relied on "seamless" transportation services

• Until recently, this vital sector was "invisible" to the untrained eye

2/24

The New Hork Times

PLAY THE CROS

ANALYSIS

In Suez Canal, Stuck Ship Is a Warning About Excessive Globalization

The shutdown of the vital waterway and its impact on trade underscore the world's reliance on global supply chains.

f 🛛 💌 🙉 👭 🏕 🗎 4041

The Ever Given, a container ship operated by a company called Evergreen, blocked all traffic in the Suez Canal when it became wedged there. Khaled Elfiqi/EPA, via Shutterstock

trade shut for a week (10 billion \$ daily)

• pandemic: surging shipping prices and wait times

- This talk:
 - Role of transport markets in trade
 - Role of port infrastructure in trade

Transport Markets

- Is the current situation a "unique" event?
 - extreme yes, unique no
 - transport markets historically volatile and potentially disruptive
 one of several examples

- Is the current situation a "unique" event?
 - extreme yes, unique no
 - transport markets historically volatile and potentially disruptive
 one of several examples
- Why do transport markets have the potential for great disruption?

- Is the current situation a "unique" event?
 - extreme yes, unique no
 - transport markets historically volatile and potentially disruptive
 one of several examples
- Why do transport markets have the potential for great disruption?
- 1. Transport markets highly volatile. Why? (Kalouptsidi, 2014)
 - o volatile demand (macro shocks)

- Is the current situation a "unique" event?
 - extreme yes, unique no
 - transport markets historically volatile and potentially disruptive
 one of several examples
- Why do transport markets have the potential for great disruption?
- 1. Transport markets highly volatile. Why? (Kalouptsidi, 2014)
 - o volatile demand (macro shocks)
 - o sluggish supply:
 - o short-run: cost convexities
 - o and medium/long-run: irreversibilities, time to build

- 2. Trade response to transport costs substantial (Brancaccio, Kalouptsidi and Papageorgiou, 2020)
 - (focus on oceanic shipping 90% of trade)
 - Elasticity of trade with respect to transport costs is high (BKP estimate of 1, Wong (2019) estimate of 3) details

- 2. Trade response to transport costs substantial (Brancaccio, Kalouptsidi and Papageorgiou, 2020)
 - (focus on oceanic shipping 90% of trade)
 - Elasticity of trade with respect to transport costs is high (BKP estimate of 1, Wong (2019) estimate of 3) details
 - Can see this through different experiments
 - e.g. closure of chokepoints chokepoints

Transport Markets and Trade

- 3. Spatial propagation of shocks:
 - Ballasting because of trade imbalances see this
 - lack of containers
 - Network effects
 - e.g. queue in China's ports has ripple effects through reduced supply of ships globally shanghai

 To sum up: transport prices fluctuate wildly, trade actually responds, and spatial propagation patterns arise inherently

Ports

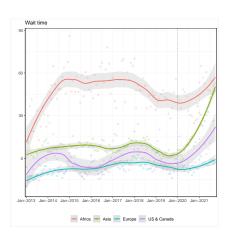
Ports

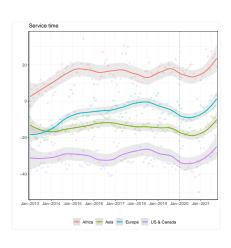
- Port: gateways of international trade
 - pivotal role during recent disruptions
- Determinants and implications of port performance?
 - infrastructure
 - productivity
- Work in progress
 - Data:
 - All port calls (arrival at anchorage, loading start/end, commodity), 2010-2021
 - Port infrastructure (manual collection from Google Earth)

Data Collection: Richards Bay

Spatial Heterogeneity: Richards Bay vs. Rotterdam

Timeseries: Lagos 2009 vs. 2021





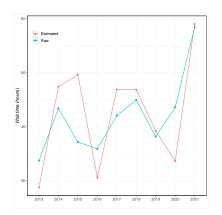
- Key object: time at port
 - actual service time (load/discharge time)
 - plus wait time (congestion)
- On average (median) 118 hours (83 hours)
 - +60% on top of total trip time
 - at \$14K per day, direct cost \$69K (plus ripple effects)
 - massive dispersion over both time and space

BKP

→ Go Back

A Model for Time at Port

• What is time at port of a ship arriving at port j in period t?

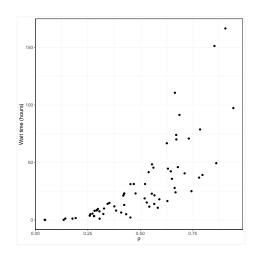

$$\underbrace{T_{jt}}_{\text{service time}} + \underbrace{\frac{Q_{jt}}{K_{jt}}T_{jt}}_{\text{queueing wait time}}$$

where

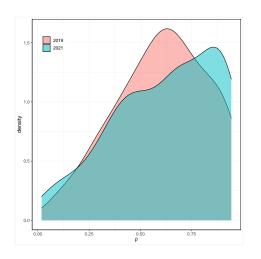
- T_{jt} : service time (driven by *labor, productivity*)
- K_{jt} : number of ships handled at a time (driven by *infrastructure*)
- Q_{jt}: number of ships ahead of ship i (endogenous, also depends on port demand)
- We observe everything
- This model: M/M/K queueing model

A Model for Time at Port

Model fit



• Key statistic to understand queue stability:

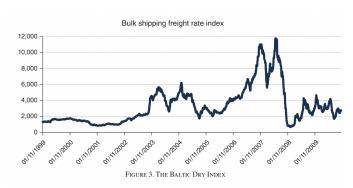

$$\rho_{jt} = \frac{\text{arrival rate}_{jt} \times T_{jt}}{K_{jt}}$$

- ullet ho measures fraction of time each berth is occupied
- ullet as ho
 ightarrow 1, port infrastructure gets overwhelmed and queue explodes

Do US ports have slack before COVID? And after?

System stability 2019

- Disclaimer: very preliminary
- What is the role of port infrastructure in COVID disruptions?
- Compute
 - What is the increase in infrastructure required to avoid the 2021 increase in wait times in the US?
 - On average, 6%


 - Benchmark: a new port cost a few billion USD

Conclusion

• Comments most welcome, thanks!!

Appendix

Commodity Boom 2006

Notes: Daily index based on weighted average of rates on 20 representative bulk routes. Compiled by the Baltic Exchange. 1/11/1999 = 1,334.

from Kalouptsidi 2014 Go Back

Trade Elasticity

• Do shipping prices have an impact on trade flows?

$$\underbrace{\log\left(Q_t^{i \to j}\right)}_{\text{trade flows}} = \beta_0 + \beta_1 \underbrace{\log\left(\tau_t^{i \to j}\right)}_{\text{trade costs}} + \epsilon_t^{i \to j}$$

- Idea: attractiveness of destination j affects the price to ship to j
- Instrument: (raw materials) tariffs on j's export
 - ullet increase tariffs o fewer opportunities at j o higher price $au_t^{i o j}$
- \bullet E.g. $\tau_t^{i \to j}$ from Indonesia to China instrumented w/ tariffs on Chinese exports

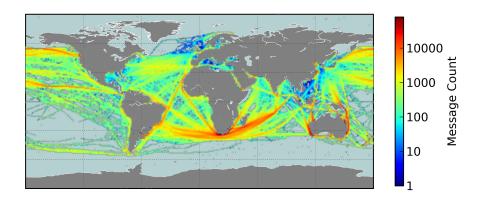
Trade Elasticity

	$\Delta \log \left(\tau_t^{i \to j}\right)$	$\Delta \log (Q_t^{i \rightarrow j})$	
	$\Delta \log (\tau_t)$	$\Delta \log (Q_t^{-\epsilon})$	
First Stage		IV	
$\Delta \log \left(\tau_t^{i \to j}\right)$		-1.02**	
, ,		(0.425)	
$\Delta \log \left(t \operatorname{ariff}_{t}^{j \to (1)} \right)$	0.070*		
-(, ,	(0.040)		
$\Delta \log \left(t \operatorname{ariff}_{t}^{j \to (2)} \right)$	0.135**		
-(.)	(0.027)		
$\Delta \log \left(t \operatorname{ariff}_{t}^{(1) \to i} \right)$	0.152		
	(0.096)		
$\Delta \log \left(tariff_t^{(2) \to i} \right)$	-0.034		
	(0.082)		
$\Delta \log \left(t \operatorname{ariff}_{t}^{i \to j} \right)$	0.123**	-0.326**	
(/	(0.058)	(0.109)	
Constant	-0.225**	-2.173**	
	(0.021)	(0.647)	
	GDP of i and j	GDP of i and j	
Controls	tariff on i's import (non-commod.)	tariff on i's import (non-commod.	
(changes of)	tariff on j 's export (non-commod.)	tariff on j 's export (non-commod.	
Observations	470	470	
\mathbb{R}^2	0.143	-	
F-stat instrument	7.04		
Note;		*p<0.1; **p<0.0	

Chokepoints

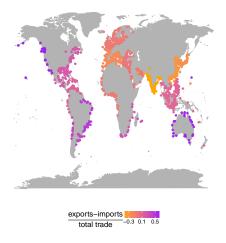
	Change in Exports	Max	Min	Most Affected	Change in Welfare
Suez	-3.51%	4.14%	-25.95%	Middle East	-5.25%
Panama	-3.23%	1.31%	-28.16%	Northeast America	-3.28%
Gibraltar	-6.37%	2.57%	-44.73%	Mediterranean	-5.03%

from Brancaccio, Kalouptsidi and Papageorgiou 2020 Go Back



Container Box Shortage

- "The problem isn't that there aren't enough shipping containers in the world; it's that the containers are in the wrong spots."
- This is inherent in the nature of transport markets (BKP, 2020) Go Back


Vessel Movements: Message Count in 10 Days

▶ one ship's path

Trade Imbalances

Most countries are either large net importers or large net exporters

Trade Imbalances

Most countries are either large net importers or large net exporters

• 42% of ships currently in transit are without cargo (ballast)

▶ most popular ballast routes → Go Back

Congestion during COVID

M/M/K

- M/M/K queueing model:
 - ullet M: arrival rates exponentially distributed with mean arrival rate λ
 - ullet M: service rates exponentially distributed with mean service rate μ
 - K: number of servers (leads to M/M/1 with service rate $K\mu$)
- Expected time in the system:

$$\underbrace{\frac{1}{\mu}}_{\text{expected service time}} + \underbrace{\frac{C\left(K,\lambda/\mu\right)}{K\mu - \lambda}}_{\text{expected gueueing time}}$$

where $C(K, \lambda/\mu)$ the prob of entering queue ("Erlang's C formula")

