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Motivation: American Infrastructure Investment

I Major responsibility of the public sector

I Approximately 2.4% of GDP annually

I $416 billion total (in 2014)

I $165 billion on highways/bridges

I Major area of Public-Private Risk-Sharing

I Construction typically contracted to private firms

I Small firms are often used (and sometimes advantaged)

I Increasing interest in long-term private management of public works
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I Construction firms are often “mom and pop”
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Uncertainty and Risk Aversion

I Small firms

I Construction firms are often “mom and pop”

I Public procurement contracts are large relative to earnings

I Construction projects (and especially repairs) are uncertain

I Additional damage/requirements are often discovered once work has started

I Changing conditions generate shocks to costs, work load, etc.



Uncertainty and Risk Aversion

Auction design with risk averse agents is different

I Revenue equivalence does not hold

⇒ First price auctions dominate second price

⇒ Auctioneer can gain by paying to reduce risk:

I Investing in reducing uncertainty

I Pre-committing to paying for adjustments

I Setting caps on the amount of risk allowed in a bid
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MassDOT Scaling Auctions

I Auctions to procure construction + maintenance for Massachusetts bridges

I $100 million annual budget

I $3.7 billion backlog

I Scaling auctions: used extensively in infrastructure procurement

⇒ “Bid Express” software used by 39 different state DOTs



Scaling Auctions

I Gov’t elicits unit bids for every “item” involved in a project

I Winner is evaluated on the sum of unit bids x DOT quantity estimates

I Winner is paid based on quantities actually used



Uncertainty and Risk Sharing

I Two sources of strategic uncertainty:

1. Chance of winning the auction

2. Chance of bidding “incorrectly” [ex-post]



Uncertainty and Risk Sharing

I Two sources of strategic uncertainty:

1. Chance of winning the auction

2. Chance of bidding “incorrectly” [ex-post]

⇒ Scaling auctions partially “insure” bidders against #2

I DOT underestimates are covered (in principle)

I Bidders can optimize “portfolio” of risks



Presentation Outline

I Argue that risk aversion is important for

1. (Simple) Empirical Predictions

2. Identification/Estimation of the Bidder’s Problem

3. Market Design

I Present a model for equilibrium bidding under uncertainty + risk aversion

I Show evidence + estimates from MassDOT bridge auctions

I Discuss policy recommendations from simulated counterfactuals



A Portfolio Model of Scaling Auction Bidding

I A project consists of:

I Ex-Ante (Estimated) Quantities: qe1 , . . . , q
e
T

I Ex-Post (Actual) Quantities: qa1, . . . , q
a
T

I Market-Rate Unit Costs: c1, . . . , cT

I Features (project manager ID, project type, etc.): X



A Portfolio Model of Scaling Auction Bidding

I A project consists of:

I DOT Quantity Estimates: qe1 , . . . , q
e
T

I Actual Quantities: qa1, . . . , q
a
T

I Market-Rate Unit Costs: c1, . . . , cT
I Features (project manager ID, project type, etc.): X

I Bidders:

I (Independent Private) Types

I Identical beliefs about ex-post quantities (no winner’s curse)

I Cannot influence ex-post quantities (no moral hazard)



A Portfolio Model of Bidding: 1D Types & CARA Risk Aversion

I Risk Aversion:
I Bidders are risk averse, w/ private CARA utility:

ui (π) = 1− exp(−γiπ)

I Efficiency Types:
I Bidders have private “efficiency” cost types:

ci,t = αi · ct for every t

I Information Structure:
I Bidders get a public noisy signal of the ex-post quantity of each item:

qbt = qat + εt where εt ∼ N (0, σ2
t )



Bidder Profits

Each bidder i maximizes her expected utility subject to risk aversion:

E[u(π(bi , αi ))] =(
1− Eqa

[
exp

(
−γi

T∑
t=1

qat · (bit − αict)

)])
︸ ︷︷ ︸

Expected Utility Upon Winning

×

Prob
{
s i < s j for all j 6= i

}
︸ ︷︷ ︸

Probability of Winning

where s i =
∑T

t=1 b
iqet is the score implied by bi .
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Equilibrium Bidding

1. Each αi chooses the optimal score s(αi ) s.t.:

∂E[u(π(s̃, αi ))]

∂s
|s̃=s(αi ) = 0

2. For each (αi , s), bi maximizes the certainty equivalent of profits:

max
bi

 T∑
t=1

qbt (bit − αict)︸ ︷︷ ︸
Expectation of Profits

− γiσ
2
t

2
(bit − αict)

2︸ ︷︷ ︸
Variance of Profits



s.t.
T∑
t=1

bitq
e
t = s



Model Predictions: Equilibrium Bids

1. Each αi chooses the optimal score s(αi ) s.t.:

∂E[u(π(s̃, αi ))]

∂s
|s̃=s(αi ) = 0

2. For each (αi , s i ), bi maximizes the certainty equivalent of profits:

b∗i ,t(s
i ) = αict +

qbt
γiσ

2
t

+
qet

σ2
t

T∑
p=1

[
(qep)2

σ2
p

]
s i −

T∑
p=1

[
αicpq

e
p +

qbpq
e
p

γiσ2
p

]
Detailed Assumptions



Model Predictions

I Items w/ higher expected quantities (overruns)
(
E[qat ]
qet

)
⇒ higher markups

I Items with higher variance (σ2
t ) ⇒ lower (absolute) markups

I Generally, bid skewing is a function of:

I Levels of risk aversion (γ)

I Level of risk (E[qa], σ2)

I Level of competition

Example



Data and Reduced Form



MassDOT Data

I Years: 1998-2016

I Type: Highway and Bridge, Construction and Maintenance

I Number of Projects: 440 (bridge only)

I Winning bids, losing bids, and DOT cost estimates

I Types of material, DOT quantity estimates, and amount of each material actually
used

I Other information about project managers, general project location, dates of
work, etc.



Summary Statistics

Statistic Mean St. Dev. Pctl(25) Median Pctl(75)

Project Length (Estimated) 1.53 years 0.89 years 0.88 years 1.48 years 2.01 years

Project Value (DOT Estimate) $2.72 million $3.89 million $981,281 $1.79 million $3.3 million

# Bidders 6.55 3.04 4 6 9

# Types of Items 67.80 36.64 37 67 92
Ex-Post Overruns −$26,990 $1.36 million −$208,554 $15,653 $275,219
Extra Work Orders $298,796 $295,173 $78,775 $195,068 $431,188



Prediction 1: Items that overrun in quantity more are overbid more:

↑ qat − qet
qet

⇒ ↑ bt − ct
ct



Can Massdot Bidders Predict Over-Runs?
Winning Bidders Over-Bid on Items that Over-Run



Prediction 2: Items that are more uncertain have lower markups



Absolute Markups Decrease with Item Variance

More Evidence Quantity Overrun Histogram



How Material is the Risk in Our Setting?
(A Structural Estimation)



Structural Model of Bidding (Overview)

I Model of optimal bidding:

I Bidders observe a noisy signal of each item’s quantity

I Bidders differ by a private cost-multiplier αi,n

I Bidders are risk averse w/ a private CARA coeff γi,n

I Estimate parameters:

I Statistical model for item quantity signals

I Economic model of optimal bidding for

(a) Bidders’ Cost Types
(b) Bidders’ CARA Coefficients



Uncertainty and Risk Aversion

Auction design with risk averse agents is different

I Revenue equivalence does not hold

⇒ First price auctions dominate second price

⇒ Auctioneer can gain by paying to reduce risk:

I Pre-committing to paying for adjustments ⇒ Lump sum would cost 86.8% more
on median

I Investing in reducing uncertainty

I Setting caps on the amount of risk allowed in a bid
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Uncertainty and Risk Aversion

Auction design with risk averse agents is different

⇒ Auctioneer can gain by paying to reduce risk:

I Pre-committing to paying for adjustments ⇒ Lump sum would cost 86.8% more on
median

I Investing in reducing uncertainty ⇒ Best Case Scenario: save ≈ 12.6% on median

I Setting caps on the amount of risk allowed in a bid ⇒ A minimum bid of 25%
the market rate saves ≈ 3.2%, reducing the uncertainty premium by a quarter.



Thank You

Thank You!



Certainty Equivalents Balance Linear Profits Against Risk Variance

a bconcrete = $12 and bcone = $19

12× ($0) + 16× ($1)︸ ︷︷ ︸
Expection of Profits

− 0.05× 2

2
× ($0)2 − 0.05× 1

2
× ($1)2︸ ︷︷ ︸

Variance of Profits

= $15.98

or

b bconcrete = $40 and bcone = $5

12× ($28) + 16× (−$13)︸ ︷︷ ︸
Expection of Profits

− 0.05× 2

2
× ($28)2 − 0.05× 1

2
× (−$13)2︸ ︷︷ ︸

Variance of Profits

= $84.58

Math for Score = $1000



Distribution of Quantity Over/Under-Runs

Back to Summary Stats



Distribution of Quantity Over/Under-Runs

Back



The Top Two Bidders Bid Similarly on Average

Back to Bidder Comparison



Top Two Bids are Especially Close on Items that Don’t Go Unused

Back to Bidder Comparison



The Proportion of Revenue from each Item Decreases with its Variance

Definition More Evidence Back



Bid Revenue Proportion Definition

%∆ Proportion Revenue from t =

btqat∑
p
bpqap
− ctqet∑

p
ctqep

ctqet∑
p
ctqep

× 100

Back to Bin Scatter



Ex-Post Overruns are Lower for Higher Value Projects

Back to Rev Proportion Scatter



Estimating A Model of Quantity Uncertainty

For each item t in auction n:

I Predict best-fit of ex-post quantity given:
I DOT estimate qet,n
I Item-Auction features Xt,n

I Estimate using Hamiltonian Monte Carlo

I Output:

I Predicted quantity: q̂bt,n
I Residual variance: σ̂2

t,n

Back Details Model Fit



Estimation: Quantity Signal Model

qat,n = β0,qq
e
t,n + ~βqXt,n + ηt,n

where

ηt,n ∼ N (0, σ̂2
t,n)

and

σ̂t,n = exp(β0,σq
e
t,n + ~βσXt,n).

Back to Quantity Model Overview



Quantity Signal Model Prediction Fit
Predicted Item Quantities Against Realized Quantities (Bin Scatter)

Back to Quantity Model Overview



Quantity Signal Model Residual Standard Deviations

Back to Quantity Model Overview



Second Stage Model Fit
Predicted Bids Against Actual Bids

Back to Results



Equilibrium Model Fit
Predicted Winners’ Scores Against Actual Scores

Back to Results



Assumptions

I Bidder i ’s costs are fully characterized by a 1-D type αi s.t.

c it = αicot for all t.

I All bidders have the same coefficient of absolute risk aversion γ

I All bidders observe the same vector of quantity signals {qbt }t=1,...,T

I Bidders have common, rational expectations over the distributions of quantity
signals + scores

I The number of bidders is commonly known prior to bidding

Optimal Bid Program Auction Characterization



Equilibrium Bidding

1. Each αi chooses the optimal score s(αi ) s.t.:

∂E[u(π(s̃, αi ))]

∂s
|s̃=s(αi ) = 0

2. For each (αi , s), bi maximizes the certainty equivalent of profits:

max
bi

 T∑
t=1

qbt (bit − αict)︸ ︷︷ ︸
Expectation of Profits

− γσ
2
t

2
(bit − αict)

2︸ ︷︷ ︸
Variance of Profits



s.t.
T∑
t=1

bitq
e
t = s

Auction Characterization



Certainty Equivalents by Scale for γ̂ = 0.046

Prize
Prize for 50-50
to Equal 50%

Certainty Equivalent for
50-50 Bet to Win/Lose Prize Value

1 1 0
10 10.001 -0.002

100 100.115 -0.23
1,000 1,011.771 -22.992

10,000 11,504.674 -2,223.188

Estimation Results



Counterfactual: What if We Eliminate Risk?
DOT Savings in Dollars

Histogram in Percent



Removing Bidder Mis-Estimation in the Baseline
DOT Savings from Eliminating Risk

Histogram in Percent



Counterfactual: What if We Eliminate Risk?

Baseline

Statistic Mean St. Dev. 25% Median 75%

Net DOT Savings $2,145.37 $24,704.09 − $9,354.61 $2,203.49 $13,987.89
% DOT Savings 0.70% 4.25% −1.02% 0.23% 1.60%
Bidder Gains $6.64 $145.87 $3.76 $17.61 $43.35

qb
t = qa

t

Statistic Mean St. Dev. 25% Median 75%

Net DOT Savings $172,513.80 $165,129.50 $61,569.34 $125,187.10 $226,318.90
% DOT Savings 13.74% 9.05% 7.18% 11.98% 18.25%
Bidder Gains $19.16 $124.55 −$8.48 $4.81 $37.64

Back



Summary Statistics

Statistic Mean St. Dev. Pctl(25) Median Pctl(75)

Project Length (Estimated) 1.53 years 0.89 years 0.88 years 1.48 years 2.01 years
Project Value (DOT Estimate) $2.72 million $3.89 million $981,281 $1.79 million $3.3 million
# Bidders 6.55 3.04 4 6 9
# Types of Items 67.80 36.64 37 67 92
Ex-Post Overruns −$26,990 $1.36 million −$208,554 $15,653 $275,219
Extra Work Orders $298,796 $295,173 $78,775 $195,068 $431,188



Ex-Post Overruns (Data)

Summary Statistics



Counterfactual: What if an Additional Bidder Enters?

Statistic Mean St. Dev. 25% Median 75%

Net DOT Savings $82,583.25 $87,568.51 $22,296.89 $49,335.35 $103,379.50
% DOT Savings 8.90% 8.45% 2.06% 5.65% 13.47%
Bidder Certainty Equivalent $2,315.80 $1,524.88 $1,264.95 $1,959.42 $3,135.44

Back to Histogram



A Simple Example

I Suppose a project requires only two inputs: concrete and traffic cones

DOT Estimates Bidders Expect Noise Var Bidder Cost
qe qb σ2 α× c

Concrete 10 12 2 12

Traffic Cones 20 16 1 18



Only the Total Score Matters for Winning

I The winning contractor has the lowest total bid

I Contractor’s probability of winning is the same if she bids:

a $12*10 tons + $19*20 cones = $500

or

b $40*10 tons + $5*20 cones = $500



Unit Bids (at a Score) Determine Profits

I The winning contractor has the lowest total bid

I Contractor’s probability of winning is the same if she bids:

a $12*10 tons + $19*20 cones = $500

or

b $40*10 tons + $5*20 cones = $500

I Contractor’s expected utility upon winning is different:

a CE($12, $19) = $15.98

or

b CE($40, $5) = $84.58



The Utility-Maximizing Bid Spread Depends on the Score

Score = $500 Score = $1000



The Extent of Total Skewing Depends on the Competitive Score



Equilibrium Bidding

1. Each αi chooses the optimal score s(αi ) s.t.:

∂E[u(π(s̃, αi ))]

∂s
|s̃=s(αi ) = 0

2. For each (αi , s), bi maximizes the certainty equivalent of profits:

max
bi

 T∑
t=1

qbt (bit − αict)︸ ︷︷ ︸
Expectation of Profits

− γσ
2
t

2
(bit − αict)

2︸ ︷︷ ︸
Variance of Profits



s.t.
T∑
t=1

bitq
e
t = s



Certainty Equivalents Balance Linear Profits Against Risk Variance

a bconcrete = $98 and bcone = $1

12× ($86) + 16× (−$17)︸ ︷︷ ︸
Expection of Profits = $760

− 0.05× 2

2
× ($86)2 − 0.05× 1

2
× (−$17)2︸ ︷︷ ︸

Variance of Profits = -$377

= $383



Certainty Equivalents Balance Linear Profits Against Risk Variance
Score = $1000

a bconcrete = $98 and bcone = $1

12× ($86) + 16× (−$17)︸ ︷︷ ︸
Expection of Profits = $760

− 0.05× 2

2
× ($86)2 − 0.05× 1

2
× (−$17)2︸ ︷︷ ︸

Variance of Profits = -$377

= $383

or

b bconcrete = $50 and bcone = $25

12× ($38) + 16× ($7)︸ ︷︷ ︸
Expection of Profits = $658

− 0.05× 2

2
× ($38)2 − 0.05× 1

2
× ($7)2︸ ︷︷ ︸

Variance of Profits = -$73

= $495

Math for Score = $500 Back
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