Scaling Auctions as Insurance: A Case Study in Infrastructure Procurement

Valentin Bolotnyy^{*} & Shoshana Vasserman^{**}

*Hoover Institution

**Stanford University & NBER

Spring 2022

Motivation: American Infrastructure Investment

- Major responsibility of the public sector
- Approximately 2.4% of GDP annually
 - \$416 billion total (in 2014)
 - \$165 billion on highways/bridges
- Major area of Public-Private Risk-Sharing
 - Construction typically contracted to private firms
 - Small firms are often used (and sometimes advantaged)
 - Increasing interest in long-term private management of public works

Small firms

Construction firms are often "mom and pop"

- Small firms
 - Construction firms are often "mom and pop"

Small firms

- Construction firms are often "mom and pop"
- Public procurement contracts are large relative to earnings
- Construction projects (and especially repairs) are uncertain
 - Additional damage/requirements are often discovered once work has started

Changing conditions generate shocks to costs, work load, etc.

Auction design with risk averse agents is different

- Revenue equivalence does not hold
- $\Rightarrow\,$ First price auctions dominate second price

Auction design with risk averse agents is different

- Revenue equivalence does not hold
- $\Rightarrow\,$ First price auctions dominate second price
- \Rightarrow Auctioneer can gain by paying to reduce risk:
 - Investing in reducing uncertainty
 - Pre-committing to paying for adjustments
 - Setting caps on the amount of risk allowed in a bid

MassDOT Scaling Auctions

Auctions to procure construction + maintenance for Massachusetts bridges

<ロト < 個 ト < 目 ト < 目 ト 三 目 の Q ()</p>

- \$100 million annual budget
- \$3.7 billion backlog
- Scaling auctions: used extensively in infrastructure procurement
 - $\Rightarrow~$ "Bid Express" software used by 39 different state DOTs

Scaling Auctions

- Gov't elicits unit bids for every "item" involved in a project
- Winner is evaluated on the sum of unit bids x DOT quantity estimates
- Winner is paid based on quantities actually used

Uncertainty and Risk Sharing

- Two sources of strategic uncertainty:
 - 1. Chance of winning the auction
 - 2. Chance of bidding "incorrectly" [ex-post]

Uncertainty and Risk Sharing

Two sources of strategic uncertainty:

- 1. Chance of winning the auction
- 2. Chance of bidding "incorrectly" [ex-post]
- $\Rightarrow~$ Scaling auctions partially "insure" bidders against #2
 - DOT underestimates are covered (in principle)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

Bidders can optimize "portfolio" of risks

Presentation Outline

Argue that risk aversion is important for

- 1. (Simple) Empirical Predictions
- 2. Identification/Estimation of the Bidder's Problem
- 3. Market Design

Present a model for equilibrium bidding under uncertainty + risk aversion

- Show evidence + estimates from MassDOT bridge auctions
- Discuss policy recommendations from simulated counterfactuals

A Portfolio Model of Scaling Auction Bidding

A project consists of:

- *Ex-Ante* (Estimated) Quantities: q_1^e, \ldots, q_T^e
- *Ex-Post* (Actual) Quantities: q_1^a, \ldots, q_T^a
- ► Market-Rate Unit Costs: c₁,..., c_T
- Features (project manager ID, project type, etc.): X

A Portfolio Model of Scaling Auction Bidding

A project consists of:

- ▶ DOT Quantity Estimates: q_1^e, \ldots, q_T^e
- Actual Quantities: q_1^a, \ldots, q_T^a
- Market-Rate Unit Costs: c₁,..., c_T
- Features (project manager ID, project type, etc.): X

Bidders:

- (Independent Private) Types
- Identical beliefs about ex-post quantities (no winner's curse)
- Cannot influence ex-post quantities (no moral hazard)

A Portfolio Model of Bidding: 1D Types & CARA Risk Aversion

Risk Aversion:

Bidders are risk averse, w/ private CARA utility:

$$u_i(\pi) = 1 - exp(-\gamma_i\pi)$$

Efficiency Types:

Bidders have private "efficiency" cost types:

 $c_{i,t} = \alpha_i \cdot c_t$ for every t

Information Structure:

Bidders get a public noisy signal of the ex-post quantity of each item:

$$q_t^b = q_t^a + \epsilon_t$$
 where $\epsilon_t \sim \mathcal{N}(0, \sigma_t^2)$

Bidder Profits

Each bidder *i* maximizes her expected utility subject to risk aversion:

$$\mathbb{E}[u(\pi(\mathbf{b}^{i}, \alpha^{i}))] = \underbrace{\left(1 - \mathbb{E}_{q^{a}}\left[\exp\left(-\gamma_{i} \sum_{t=1}^{T} q_{t}^{a} \cdot (b_{t}^{i} - \alpha^{i} c_{t})\right)\right]\right)}_{\text{Expected Utility Upon Winning}} \times \underbrace{\Prb[s^{i} < s^{j} \text{ for all } j \neq i]}_{\text{Derivatives of Winning}}$$

Probability of Winning

where $s^i = \sum_{t=1}^{T} b^i q_t^e$ is the score implied by b^i .

Bidder Profits

Each bidder *i* maximizes her expected utility subject to risk aversion:

$$\mathbb{E}[u(\pi(\mathbf{b}^{i}, \alpha^{i}))] = \underbrace{\left(1 - \mathbb{E}_{\epsilon}\left[\exp\left(-\gamma_{i} \sum_{t=1}^{T} (\boldsymbol{q}_{t}^{b} - \epsilon_{t}) \cdot (\boldsymbol{b}_{t}^{i} - \alpha^{i} c_{t})\right)\right]\right)}_{\text{Expected Utility Upon Winning}} \times \underbrace{\Prbilde{s}^{i} < s^{j} \text{ for all } j \neq i}_{\text{Probability of Winning}}$$

where
$$s^i = \sum_{t=1}^{T} b^i q^e_t$$
 is the score implied by bⁱ.

Equilibrium Bidding

1. Each α^i chooses the optimal score $s(\alpha^i)$ s.t.:

$$rac{\partial \mathbb{E}[u(\pi(ilde{s}, lpha^i))]}{\partial s}|_{ ilde{s}=s(lpha^i)}=0$$

2. For each (α^{i}, s) , bⁱ maximizes the **certainty equivalent** of profits:

$$\max_{\mathbf{b}^{i}} \left[\sum_{t=1}^{T} \underbrace{q_{t}^{b}(b_{t}^{i} - \alpha^{i}c_{t})}_{\text{Expectation of Profits}} - \underbrace{\frac{\gamma_{i}\sigma_{t}^{2}}{2}(b_{t}^{i} - \alpha^{i}c_{t})^{2}}_{\text{Variance of Profits}} \right]$$

s.t.
$$\sum_{t=1}^{T} b_{t}^{i} q_{t}^{e} = s$$

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ = ● ● ●

Model Predictions: Equilibrium Bids

1. Each α^i chooses the optimal score $s(\alpha^i)$ s.t.:

$$\frac{\partial \mathbb{E}[u(\pi(\tilde{s},\alpha^{i}))]}{\partial s}|_{\tilde{s}=s(\alpha^{i})}=0$$

2. For each (α^i, s^i) , bⁱ maximizes the **certainty equivalent** of profits:

$$b_{i,t}^*(s^i) = \alpha^i c_t + \frac{q_t^b}{\gamma_i \sigma_t^2} + \frac{q_t^e}{\sigma_t^2 \sum_{p=1}^T \left[\frac{(q_p^e)^2}{\sigma_p^2}\right]} \left(s^i - \sum_{p=1}^T \left[\alpha^i c_p q_p^e + \frac{q_p^b q_p^e}{\gamma_i \sigma_p^2}\right]\right)$$

• Detailed Assumptions

Model Predictions

• Items w/ higher expected quantities (overruns) $\left(\frac{\mathbb{E}[q_t^a]}{q_t^e}\right) \Rightarrow$ higher markups

▶ Items with higher variance $(\sigma_t^2) \Rightarrow$ lower (absolute) markups

Generally, bid skewing is a function of:

- Levels of risk aversion (γ)
- Level of risk ($\mathbb{E}[q^a], \sigma^2$)
- Level of competition

🕩 Example

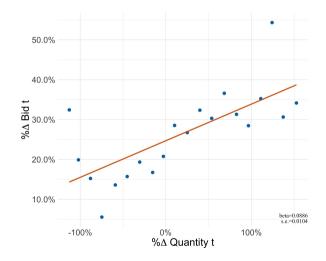
Data and Reduced Form

MassDOT Data

Years: 1998-2016

- ► Type: Highway and Bridge, Construction and Maintenance
- Number of Projects: 440 (bridge only)
- Winning bids, losing bids, and DOT cost estimates
- Types of material, DOT quantity estimates, and amount of each material actually used
- Other information about project managers, general project location, dates of work, etc.

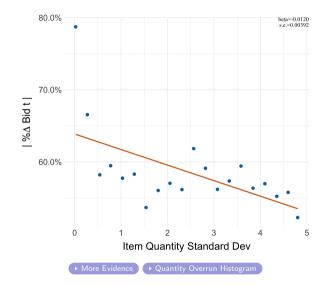
Summary Statistics


Statistic	Mean	St. Dev.	Pctl(25)	Median	Pctl(75)
Project Length (Estimated)	1.53 years	0.89 years	0.88 years	1.48 years	2.01 years
Project Value (DOT Estimate)	\$2.72 million	\$3.89 million	\$981,281	\$1.79 million	\$3.3 million
# Bidders	6.55	3.04	4	6	9
# Types of Items	67.80	36.64	37	67	92
Ex-Post Overruns	-\$26,990	\$1.36 million	-\$208,554	\$15,653	\$275,219
Extra Work Orders	\$298,796	\$295,173	\$78,775	\$195,068	\$431,188

Prediction 1: Items that overrun in quantity more are overbid more:

$$\uparrow rac{q_t^a-q_t^e}{q_t^e} \Rightarrow \ \uparrow rac{b_t-c_t}{c_t}$$

Can Massdot Bidders Predict Over-Runs?


Winning Bidders Over-Bid on Items that Over-Run

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Prediction 2: Items that are more uncertain have lower markups

Absolute Markups Decrease with Item Variance

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How Material is the Risk in Our Setting? (A Structural Estimation)

Structural Model of Bidding (Overview)

- Model of optimal bidding:
 - Bidders observe a noisy signal of each item's quantity
 - **b** Bidders differ by a **private cost-multiplier** $\alpha_{i,n}$
 - Bidders are risk averse w/ a private CARA coeff $\gamma_{i,n}$

Estimate parameters:

- Statistical model for item quantity signals
- Economic model of optimal bidding for
 - (a) Bidders' Cost Types
 - (b) Bidders' CARA Coefficients

Auction design with risk averse agents is different

- Revenue equivalence does not hold
- \Rightarrow First price auctions dominate second price
- \Rightarrow Auctioneer can gain by paying to reduce risk:
 - ► Pre-committing to paying for adjustments ⇒ Lump sum would cost 86.8% more on median
 - Investing in reducing uncertainty
 - Setting caps on the amount of risk allowed in a bid

Auction design with risk averse agents is different

- \Rightarrow Auctioneer can gain by paying to reduce risk:
 - ▶ Pre-committing to paying for adjustments ⇒ Lump sum would cost 86.8% more on median
 - ▶ Investing in reducing uncertainty \Rightarrow Best Case Scenario: save $\approx 12.6\%$ on median

Setting caps on the amount of risk allowed in a bid

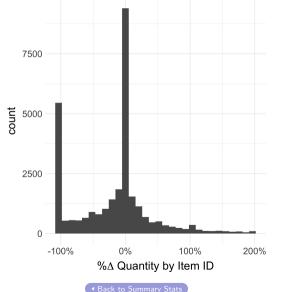
Auction design with risk averse agents is different

- \Rightarrow Auctioneer can gain by paying to reduce risk:
 - ▶ Pre-committing to paying for adjustments ⇒ Lump sum would cost 86.8% more on median
 - Investing in reducing uncertainty \Rightarrow Best Case Scenario: save \approx 12.6% on median
 - Setting caps on the amount of risk allowed in a bid \Rightarrow A minimum bid of 25% the market rate saves \approx 3.2%, reducing the uncertainty premium by a quarter.

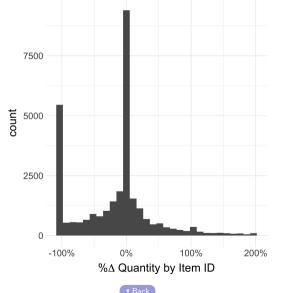
Thank You

Thank You!

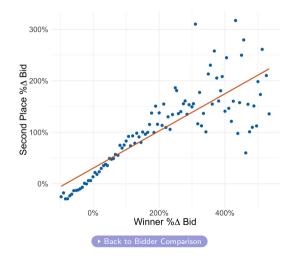
Certainty Equivalents Balance Linear Profits Against Risk Variance


a
$$b_{\text{concrete}} = \$12 \text{ and } b_{\text{cone}} = \$19$$

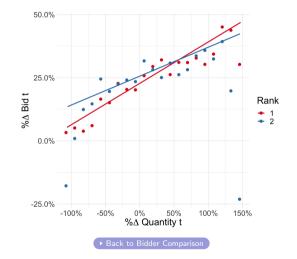
$$\underbrace{12 \times (\$0) + 16 \times (\$1)}_{\text{Expection of Profits}} - \underbrace{\frac{0.05 \times 2}{2} \times (\$0)^2 - \frac{0.05 \times 1}{2} \times (\$1)^2}_{\text{Variance of Profits}} = \$15.98$$
or
b $b_{\text{concrete}} = \$40 \text{ and } b_{\text{cone}} = \5


$$\underbrace{12 \times (\$28) + 16 \times (-\$13)}_{\text{Expection of Profits}} - \underbrace{\frac{0.05 \times 2}{2} \times (\$28)^2 - \frac{0.05 \times 1}{2} \times (-\$13)^2}_{\text{Variance of Profits}} = \$84.58$$

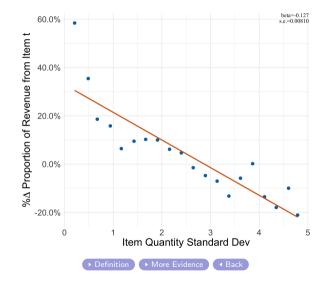
Math for Score = \$1000


Distribution of Quantity Over/Under-Runs

Distribution of Quantity Over/Under-Runs



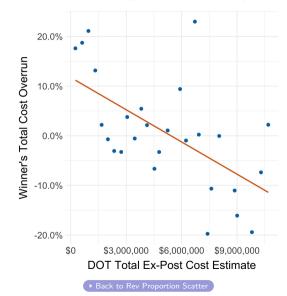
The Top Two Bidders Bid Similarly on Average



◆□ > ◆□ > ◆目 > ◆目 > 三日 のへで

Top Two Bids are Especially Close on Items that Don't Go Unused

The Proportion of Revenue from each Item Decreases with its Variance


Bid Revenue Proportion Definition

$$\%\Delta \text{ Proportion Revenue from } t = \frac{\frac{b_t q_t^a}{\sum\limits_p b_p q_p^a} - \frac{c_t q_t^e}{\sum\limits_p c_t q_p^e}}{\sum\limits_p c_t q_p^e} \times 100$$

<ロト < 部 > < 目 > < 目 > 三日 < の < で</p>

▶ Back to Bin Scatter

Ex-Post Overruns are Lower for Higher Value Projects

Estimating A Model of Quantity Uncertainty

For each item *t* in auction *n*:

- Predict best-fit of ex-post quantity given:
 - ▶ DOT estimate $q_{t,n}^e$
 - ▶ Item-Auction features $X_{t,n}$
- Estimate using Hamiltonian Monte Carlo
- Output:
 - Predicted quantity: $\widehat{q_{t,n}^b}$
 - ▶ Residual variance: $\hat{\sigma}_{t,n}^2$

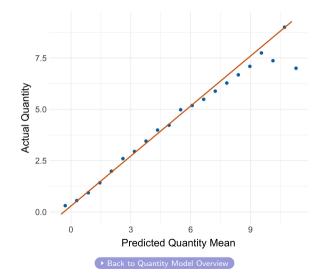
Estimation: Quantity Signal Model

$$q_{t,n}^{a} = \beta_{0,q} q_{t,n}^{e} + \vec{\beta}_{q} X_{t,n} + \eta_{t,n}$$

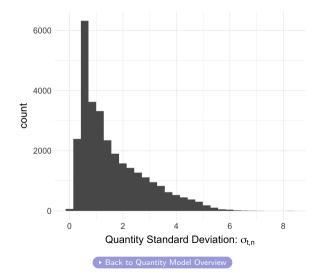
where

$$\eta_{t,n} \sim \mathcal{N}(0, \hat{\sigma}_{t,n}^2)$$

and

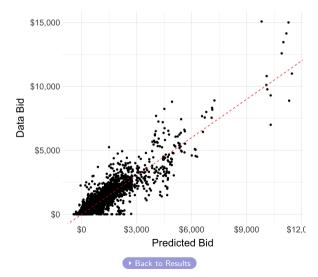

$$\hat{\sigma}_{t,n} = \exp(\beta_{0,\sigma} q_{t,n}^e + \vec{\beta}_{\sigma} X_{t,n}).$$

→ Back to Quantity Model Overview


◆□ > ◆□ > ◆目 > ◆目 > 三日 のへで

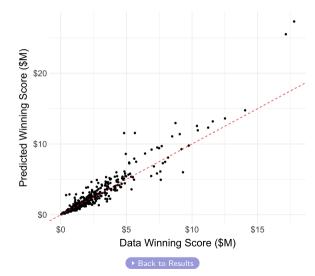
Quantity Signal Model Prediction Fit

Predicted Item Quantities Against Realized Quantities (Bin Scatter)



Quantity Signal Model Residual Standard Deviations

Second Stage Model Fit


Predicted Bids Against Actual Bids

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Equilibrium Model Fit

Predicted Winners' Scores Against Actual Scores

Assumptions

• Bidder *i*'s costs are fully characterized by a 1-D type α^i s.t.

$$c_t^i = \alpha^i c_t^o$$
 for all t .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

- All bidders have the same coefficient of absolute risk aversion γ
- All bidders observe the same vector of quantity signals $\{q_t^b\}_{t=1,...,T}$
- Bidders have common, rational expectations over the distributions of quantity signals + scores
- The number of bidders is commonly known prior to bidding

• Optimal Bid Program

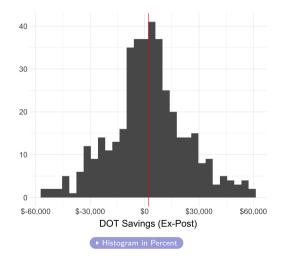
Auction Characterization

Equilibrium Bidding

1. Each α^i chooses the optimal score $s(\alpha^i)$ s.t.:

$$rac{\partial \mathbb{E}[u(\pi(ilde{s}, lpha^i))]}{\partial s}|_{ ilde{s}=s(lpha^i)}=0$$

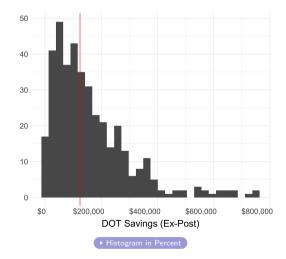
2. For each (α^{i}, s) , bⁱ maximizes the **certainty equivalent** of profits:


$$\max_{b^{i}} \left[\sum_{t=1}^{T} \underbrace{q_{t}^{b}(b_{t}^{i} - \alpha^{i}c_{t})}_{\text{Expectation of Profits}} - \underbrace{\frac{\gamma \sigma_{t}^{2}}{2}(b_{t}^{i} - \alpha^{i}c_{t})^{2}}_{\text{Variance of Profits}} \right]$$
s.t.
$$\sum_{t=1}^{T} b_{t}^{i} q_{t}^{e} = s$$

Certainty Equivalents by Scale for $\widehat{\gamma}=$ 0.046

Prize	Prize for 50-50 to Equal 50%	Certainty Equivalent for 50-50 Bet to Win/Lose Prize Value
1	1	0
10	10.001	-0.002
100	100.115	-0.23
1,000	1,011.771	-22.992
10,000	11,504.674	-2,223.188

Estimation Results


Counterfactual: What if We Eliminate Risk? DOT Savings in Dollars

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

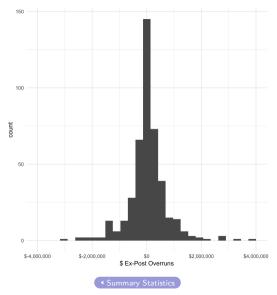
Removing Bidder Mis-Estimation in the Baseline

DOT Savings from Eliminating Risk

Counterfactual: What if We Eliminate Risk?

Baseline					
Statistic	Mean	St. Dev.	25%	Median	75%
Net DOT Savings	\$2,145.37	\$24,704.09	- \$9,354.61	\$2,203.49	\$13,987.89
% DOT Savings	0.70%	4.25%	-1.02%	0.23%	1.60%
Bidder Gains	\$6.64	\$145.87	\$3.76	\$17.61	\$43.35

••


$$q_t^b = q_t^a$$

Statistic	Mean	St. Dev.	25%	Median	75%
Net DOT Savings % DOT Savings	\$172,513.80 13.74%	\$165,129.50 9.05%	\$61,569.34 7.18%	\$125,187.10 11.98%	\$226,318.90 18.25%
Bidder Gains	\$19.16	\$124.55	-\$8.48	\$4.81	\$37.64

Summary Statistics

Statistic	Mean	St. Dev.	Pctl(25)	Median	Pctl(75)
Project Length (Estimated)	1.53 years	0.89 years	0.88 years	1.48 years	2.01 years
Project Value (DOT Estimate)	\$2.72 million	\$3.89 million	\$981,281	\$1.79 million	\$3.3 million
# Bidders	6.55	3.04	4	6	9
# Types of Items	67.80	36.64	37	67	92
Ex-Post Overruns	-\$26,990	\$1.36 million	-\$208,554	\$15,653	\$275,219
Extra Work Orders	\$298,796	\$295,173	\$78,775	\$195,068	\$431,188

Ex-Post Overruns (Data)

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Counterfactual: What if an Additional Bidder Enters?

Statistic	Mean	St. Dev.	25%	Median	75%
Net DOT Savings	\$82,583.25	\$87,568.51	\$22,296.89	\$49,335.35	\$103,379.50
% DOT Savings	8.90%	8.45%	2.06%	5.65%	13.47%
Bidder Certainty Equivalent	\$2,315.80	\$1,524.88	\$1,264.95	\$1,959.42	\$3,135.44

Back to Histogram

A Simple Example

Suppose a project requires only two inputs: concrete and traffic cones

	DOT Estimates q ^e	Bidders Expect q ^b	Noise Var σ^2	$\begin{array}{c} Bidder \ Cost \\ \alpha \times \mathbf{\textit{c}} \end{array}$
Concrete	10	12	2	12
Traffic Cones	20	16	1	18

Only the Total Score Matters for Winning

- The winning contractor has the lowest total bid
- Contractor's probability of winning is the same if she bids:

a
$$12*10 \text{ tons} + 19*20 \text{ cones} = 500$$

or

b 40*10 tons + 5*20 cones = 500

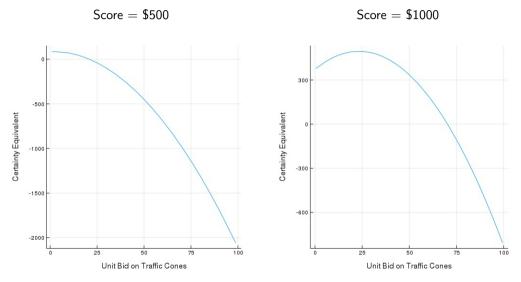
Unit Bids (at a Score) Determine Profits

The winning contractor has the lowest total bid

Contractor's probability of winning is the same if she bids:

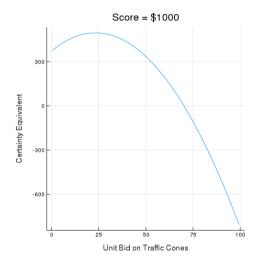
```
a 12*10 \text{ tons} + 19*20 \text{ cones} = 500
```

or b \$40*10 tons + \$5*20 cones = \$500


Contractor's expected utility upon winning is different:

a
$$CE(\$12, \$19) = \$15.98$$

or


b CE(\$40, \$5) = \$84.58

The Utility-Maximizing Bid Spread Depends on the Score

シック・目前・日本・日本・日本・日本

The Extent of Total Skewing Depends on the Competitive Score

シック・目前・4回・4回・4回・

Equilibrium Bidding

1. Each α^i chooses the optimal score $s(\alpha^i)$ s.t.:

$$\frac{\partial \mathbb{E}[u(\pi(\tilde{s}, \alpha^{i}))]}{\partial s}|_{\tilde{s}=s(\alpha^{i})} = 0$$

2. For each (α^i, s) , bⁱ maximizes the **certainty equivalent** of profits:

$$\max_{b^{i}} \left[\sum_{t=1}^{T} \underbrace{q_{t}^{b}(b_{t}^{i} - \alpha^{i}c_{t})}_{\text{Expectation of Profits}} - \underbrace{\frac{\gamma \sigma_{t}^{2}}{2}(b_{t}^{i} - \alpha^{i}c_{t})^{2}}_{\text{Variance of Profits}} \right]$$
s.t.
$$\sum_{t=1}^{T} b_{t}^{i} q_{t}^{e} = s$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ Ξ · • ○ •

Certainty Equivalents Balance Linear Profits Against Risk Variance

a
$$b_{\text{concrete}} = \$98$$
 and $b_{\text{cone}} = \$1$

$$\underbrace{12 \times (\$86) + 16 \times (-\$17)}_{\text{Expection of Profits} = \$760} - \underbrace{\frac{0.05 \times 2}{2} \times (\$86)^2 - \frac{0.05 \times 1}{2} \times (-\$17)^2}_{\text{Variance of Profits} = -\$377} = \$383$$

◆□ > ◆□ > ◆目 > ◆目 > ●□ = ●○ <

Certainty Equivalents Balance Linear Profits Against Risk Variance Score = \$1000

a
$$b_{\text{concrete}} = \$98$$
 and $b_{\text{cone}} = \$1$

$$\underbrace{12 \times (\$86) + 16 \times (-\$17)}_{\text{Expection of Profits} = \$760} - \underbrace{\underbrace{\frac{0.05 \times 2}{2} \times (\$86)^2 - \frac{0.05 \times 1}{2} \times (-\$17)^2}_{\text{Variance of Profits} = -\$377} = \$383$$

or

b
$$b_{ ext{concrete}} = \$50$$
 and $b_{ ext{cone}} = \$25$

$$\underbrace{\frac{12 \times (\$38) + 16 \times (\$7)}{\text{Expection of Profits} = \$658}}_{\text{Expection of Profits}} - \underbrace{\frac{0.05 \times 2}{2} \times (\$38)^2 - \frac{0.05 \times 1}{2} \times (\$7)^2}_{\text{Variance of Profits} = -\$73} = \$495$$

▶ Math for Score = \$500 ▲ Back