The Development of Agricultural Drainage in the United States 1850-1969

Eric C. Edwards (@NCWaterEcon) Walter N. Thurman

North Carolina State University

NBER Summer Institute Development of the American Economy July 12, 2022

Motivation: The Corn Belt

Corn for Grain 2018 Production by County for Selected States JSE

Motivation: The Drainage Belt

This Paper

- What was the impact of agricultural drainage on farmland and farmland value in the eastern U.S.?
 - Key physical problems faced (e.g. soils, engineering, technology)
 - Role of institutional factors (e.g. coordination, land ownership, district /legislation)

Construct measure of "need" for drainage using soil drainage index and use drainage law passage as treatment in a diff-in-diff framework

 Drainage problem faced on Coastal Plain raised transaction costs relative to Upper Midwest

What is Agricultural Drainage

- Water in root zone reduces yields or kills crops
- Flat topography leads to water logging
- Ditches and drain tile provide pathway for water
- Usually 4-6 feet deep parallels on field
- Larger drains and ditches as outlets

Drainage and Swamp Land Acts

- First tile drainage in US: 1835
- A series of Swamp Land Acts turned surplus swamp lands over to states for reclamation
- Huge swaths of land granted to states (65*M* acres by early 1910s)
- Initial efforts by state governments to drain were unsuccessful
- Some large farms experiment with drainage

Year	State	Acres		
1849	Louisiana	9,493,456		
1850	Alabama	441,289		
	Arkansas	7,686,575		
	California	2,192,875		
	Florida	20,325,013		
	Illinois	1,460,184		
	Indiana	1,259,231		
	lowa	1,196,392		
	Michigan	5,680,310		
	Mississippi	3,347,860		
	Missouri	3,432,481		
	Ohio	26,372		
	Wisconsin	3,360,786		
1860	Minnesota	4,706,503		
	Oregon	286,108		
TOTAL		84,895,415		
Source: Fretw				

Drain Tile: Benefits and Costs

- Prior to 1880, unimproved wetland in Upper Midwest sold for \$7 (\$2-\$12)
- Various estimates of cost of tiling range from \$20-\$35 per acre
- After 1880 unimproved land price increases to around \$25/acre (\$15-\$40)
- Drained land sold for \$60-\$70 per acre
- Implies some change in market expectations

$$1335 + $35 = $60$$

The Drainage Coordination Problem

- Common law and legislation defined rights to drain among neighboring farms
- A system of integrated outlet channels was often a prerequisite to success
- Voluntary provision is hindered by collective action issues (Olson, 1989)
- Ostrom (1990) provides guidance to the settings where local groups can successfully cooperate in managing natural resource problems:
 - Rights to organize locally recognized by the central or local government
 - Decisions nested in local organizations
- Bretsen and Hill (2006) for irrigation districts and Edwards (2016) for groundwater districts show the success of state laws empowering local management
- Special districts: landowners retains rights to operate as economic factors dictate, while ceding one property right "stick" to a local elected body

The Drainage Coordination Problem

In order to secure the necessary cooperation for efficient work...some legal method of compulsion has been found necessary, and drainage statutes have been enacted by many of the States...when it comes to deciding what lands shall be embraced in the project, where the ditches shall be located, how the work shall be done, and particularly, what each individual landowner shall pay, differences of opinion are sure to arise. To overcome this diversified sentiment and enable the owners of swamp and overflowed lands to reclaim the same in an efficient and equitable manner, drainage laws have been found necessary.

1907 report to the U.S. Senate on the status of *Swamp and Overflowed Lands in the United States* (Wright, 1907)

Drainage District Legislation

Drainage Districts: Upper Midwest

Blue Earth County, MN

- ▶ 92 districts form 1898-1952
- Around 100,000 acres
- ▶ 320-7,202 acres per district
- Average 1,161 acres and about 20 farms per district

Story County, IA

- 95 districts by 1920
- ▶ 60% of county in a district
- 2,080 acres and about 20 farms per district

Drainage Districts: Coastal Plain

Cypress Creek, AR

- ▶ 285,000 acres
- Several decades of litigation

Ross Drain District, AR

▶ 40,000 acres

North Carolina

- 81 districts total by 1920
- ▶ 543,000 acres drained \rightarrow 6,700 acres per district
- Acreage drained had increased to 5.4M acres by 1985
- Number of districts had decreased to $53 \rightarrow 100,000$ acres per district

Poorly Drained Soils

Soils Drained by 1969

Two Types of Drainage

Atlantic Coastal Plain

Midwest Glaciated Prairie

Drainage Categories

Drainage Outcomes

Variables

- Outcome variables: Improved acres and value per acre
- Soil drainage index (DI) ordinal measure of long-term soil wetness (0-99); DI of around 60 are termed "somewhat poorly drained"
- Drained acres available in 1920, 1930, 1969
- Soil Productivity Index (PI) ordinal measure of soil quality for crop production (0-19)
- Year of first drainage district legislation collect by authors; legislation should provide for local petition, election, eminent domain, and taxation

Drainage and Productivity

Measures of Poorly Drained Soil

Drainage Index and Observed Drainage

Conditional Summary Statistics

	Drainage Index $<$ 60		Drainage Index > 60		
Variable	Pre	Post	Pre	Post	
Total Value in Farms (2020\$ millions)	118.92	273.98	76.46	414.74	
	(165.59)	(254.58)	(117.49)	(398.31)	
Pct. of County Improved	0.27	0.39	0.18	0.49	
	(0.20)	(0.24)	(0.20)	(0.28)	
Total Farms	1,538	1,854	1,116	2,048	
	(1, 317)	(1, 151)	(1, 210)	(1, 349)	
Total Acres in Farms	193,255	283,391	151,427	273,265	
	(135,533)	(185, 360)	(130,312)	(165, 209)	
Per Acre Farm Value	862.95	1,300.12	461.47	1,540.88	
	(3,393.03)	(9,162.02)	(556.02)	(2,334.91)	
Median Drainage Index	43.84 72.4		.47		
	(6.	(6.24) (7.83)		83)	
Median Productivity Index	8.09		10.16		
	(3.93)		(3.42)		

Notes: Summary statistics conditional on treatment status: high drainage counties DI > 60 and pre/post drainage district laws. All values are the mean value of all the counties in that treatment status for the variable described on the left and for all years in that status. Standard deviations are reported in parentheses.

Drainage Quartile Residuals: Percentage Improved

Drainage Quartile Residuals: Ag Land Value per Acre

Empirical Strategy

The typical approach for recovering difference-in-difference estimates of average treatment effects (ATT) would be to use a two-way fixed effects estimator (TWFE) of the form:

$$Y_{ist} = \beta_{TWFE} PostLaw_{st} imes HighDI_i + \lambda_i + \tau_t + \varepsilon_{ist}$$

- Y_{ist} is the outcome for county *i* in state *s* in year *t*
- λ_i and τ_t are county and year FE
- PostLaw d- state as passed a drainage law
- and HighDI county is designated as having a high DI, respectively.
- Identification: Comparison group is counties within a state that become treated, but which differ in their need for drainage
- de Chaisemartin and d'Haultfoeuille (2020) and Callaway and Sant'Anna (2020) both propose alternative DiD estimators that are robust to heterogeneous treatment effects across time and/or cohorts

Diff-in-Diff with TWFE and Heterogeneous Treatment

- β_{TWFE} potentially provides biased estimates of the ATT when states are treated at different times and there is substantial heterogeneity in the treatment effects over time or between states
- β_{TWFE} is a weighted average of all comparisons of "switchers" to "non-switchers":
 - 1. switchers to never-treated counties
 - 2. early switchers to non-yet-treated counties
 - 3. late switchers to already-treated counties
- The third comparison can lead to negative weights

Treatment: Drainage District Legislation

State	Year	State	Year
Michigan	1869	Kentucky	1912
Ohio	1859	Arkansas	1904
lowa	1884	Louisiana	1907
Illinois	1879	South Carolina	1912
Missouri	1899	Virginia	1906
Nebraska	1881	Georgia	1911
Minnesota	1887	Florida	1907
Indiana	1863	North Carolina	1909
Wisconsin	1899	Mississippi	1906
South Dakota	1907	Texas	1905
North Dakota	1895	Tennessee	1909
Kansas	1879	Oklahoma	1908
New York	1909		

Table: Year of Drainage District Legislation

Event Studies: Midwest Tile

Failed Drainage: Wisconsin

- Beginning around 1900 Wisconsin marsh lands were organized into drainage districts
- Followed by several decades the successful efforts in lowa and Illinois
- By the 1930s, drained lands largely reverted to public ownership and became recreational havens

Event Studies: Coastal Plain

Failed Drainage: North Carolina

- Lake Mattamuskeet: largest lake in NC near coast
- Partial draining of the lake took place as early as 1837
- Private investors fully drained the lake in 1916 by dredging 130 miles of canals and building water control dams and a large coal-fired pumping station
- Firm failed due in part to low commodity prices and pumping station abandoned.
- Twice more between 1916 and 1926, the lake was drained but then abandoned and allowed to refill
- Sold to the federal government in 1934 to become wildlife refuge.

Estimates of Ag Development after Drainage District Laws

	(1)	(2)	(3)	(4)	(5)	(6)
	All States in Sample		Midwest Tile		Coastal Plain	
	Pct. Impr.	\$/ac (log)	Pct. Impr.	\$/ac (log)	Pct. Impr.	\$/ac (log)
Panel A:						
	de Chaisemartin & D'Haultfoeuille (2020)					
Post Drainage District Law	0.049***	0.081***	0.066***	0.106***	0.02	0.058
	(0.012)	(0.036)	(0.007)	(0.048)	(0.015)	(0.091)
Panel B:						
	Callaway & Sant'Anna (2020)					
Post Drainage District Law	0.043*	0.109**	0.043	0.092	0.040**	0.142
	(0.022)	(0.051)	(0.032)	(0.066)	(0.016)	(0.091)
Panel C:						
	Two-Way Fixed Effects					
Post Drainage District Law	0.055***	0.134***	0.070***	0.125**	0.032*	0.132
	(0.012)	(0.040)	(0.015)	(0.042)	(0.016)	(0.129)
Number of Counties	1788	1788	1122	1122	666	666
R^2 (TWFE)	0.926	0.909	0.914	0.912	0.895	0.925
Notes: Standard errors are	clustered by	county and	reported in	narentheses.	statistical	significance

Notes: Standard errors are clustered by county and reported in parentheses; statistical significance is indicated by *(p < 0.1), **(p < 0.05), **(p < 0.01).

Results Summary

- Drainage has two effects:
 - Brings more land is swampy counties into production
 - Increases productivity of land
- The coefficient estimates are fairly consistent and robust for improved acres for the Midwest Tile group
 - A poorly drained county (DI>60) will see a 4.3 to 7.0 percentage point increase in the area of the county with improved agricultural land
 - 9.6-13.3% increase in land value per acre
- Coastal Plain coefficient magnitudes are lower for improved acres and generally not statistically significant
- Back of envelope calculation:
 - Average high-DI county has 151,427 acres improved, which increases by 4.3-5.5pp
 - The average per acre land value in a high-DI county was \$461 pre-treatment, which increases 8.4-14.3%
 - ► The total increase in value due was \$7.3-13M per high-DI county
 - There are 503 counties in the high-DI category, suggesting that drainage added \$3.67-6.54B

Thank you!

References

- Bretsen, S. N. and P. J. Hill (2006). Irrigation institutions in the american west. UCLA J. Envtl. L. & Pol'y 25, 283.
- Callaway, B. and P. H. Sant'Anna (2020). Difference-in-differences with multiple time periods. *Journal of Econometrics*.
- de Chaisemartin, C. and X. d'Haultfoeuille (2020). Two-way fixed effects estimators with heterogeneous treatment effects. American Economic Review 110(9), 2964–96.
 Edwards, E. C. (2016). What lies beneath? aquifer heterogeneity and the economics of groundwater management. Journal of the Association of Environmental and Resource Economists 3(2), 453–491.
- Fretwell, J. D. (1996). *National water summary on wetland resources*, Volume 2425. US Government Printing Office.
- Olson, M. (1989). Collective action. In *The invisible hand*, pp. 61–69. Springer.
 Ostrom, E. (1990). *Governing the commons: The evolution of institutions for collective action*. Cambridge university press.
- Wright, J. O. (1907). *Swamp and overflowed lands in the United States*, Volume 76. US Government Printing Office.