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Abstract

We show that, in a broad class of menu cost models, the dynamics of aggregate
inflation in response to arbitrary shocks to aggregate costs are nearly the same as
in Calvo models with suitably chosen Calvo adjustment frequencies. We first prove
that the canonical menu cost model is first-order equivalent to a mixture of two time-
dependent models, which reflect the extensive and intensive margins of price adjust-
ment. We then show numerically that, in any plausible parameterization, this mixture
is well-approximated by a single Calvo model. This close numerical fit carries over to
other standard specifications of menu cost models. Thus, the Phillips curve for a menu
cost model looks like the New Keynesian Phillips curve, but with a higher slope.
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1 Introduction

The nature of nominal rigidities is a central question in monetary economics. In sticky-price mod-
els, monetary policy has aggregate effects because producers’ prices do not immediately respond
to changes in their costs. Motivated by the complex patterns of price changes observed in the
micro data, macroeconomists have been building models with increasing degrees of realism, with
the aim of improving our quantitative understanding of the behavior of aggregate inflation and
the response of economic activity to changes in monetary policy.

Broadly speaking, existing price-setting models fall into two categories. The first category
consists of tractable models in which firms have random opportunities to adjust their prices. In
these “old” time-dependent (TD) models, the probability that a price can adjust is an exogenous
function of the time elapsed since it last adjusted. The leading TD model is the Calvo model,
where this probability is constant (Calvo 1983, Yun 1996).1 In this model, the first-order dynamic
relationship between inflation πt and aggregate real marginal costs m̂ct is given by the well-known
New Keynesian Phillips curve:

πt = κ · m̂ct + βEt [πt+1] (NK-PC)

where 0 < β < 1 is a discount factor and κ > 0 is the slope coefficient, with a higher slope indicat-
ing more flexible prices (see e.g. Woodford 2003b, Galí 2008). This single equation summarizes the
first-order aggregate implications of the Calvo price-setting model. Its simplicity and tractability
have made it ubiquitous in the New Keynesian DSGE literature.

In the past two decades, the increasing availability of administrative micro data underlying na-
tional price indices—as first documented in Bils and Klenow (2004) and Nakamura and Steinsson
(2008)—has laid bare the deficiencies of TD models vis-à-vis the data, and spurred the develop-
ment of a second category of price-setting models.2 These models assume the presence of hetero-
geneous producers that are subject to idiosyncratic productivity shocks and adjust their prices in
a lumpy fashion because of fixed “menu” costs and other features (e.g. Golosov and Lucas 2007,
Klenow and Kryvtsov 2008, Nakamura and Steinsson 2010, and Midrigan 2011).3 In these “new”
state-dependent (SD) models, price changes are endogenous and depend both on the state of the
economy and the state of the firm. Except in certain special cases, SD models must be solved nu-
merically, and their computational complexity makes them difficult to incorporate into broader
DSGE models. In particular, macroeconomists’ understanding of their aggregate implications has
been limited by the lack of an available equivalent to the New Keynesian Phillips curve.4

1Another widely used example of a time-dependent model is Taylor (1979). Sheedy (2010) and Carvalho and
Schwartzman (2015) study these models in more generality.

2In the data, there is little connection between the size of price changes and the duration of price spells, and the
frequency of price changes tends to move with the aggregate inflation rate. Both of these facts are inconsistent with a
Calvo model but consistent with menu cost models; see for instance Klenow and Malin (2010).

3In addition to menu costs, these models consider random free adjustments, infrequent and leptokurtic shocks,
multiple sectors, and/or multi-product firms. In turn, they build on an earlier theoretical literature that studied menu
costs in partial equilibrium, including Barro (1972) and Sheshinski and Weiss (1977).

4Instead, to study aggregate implications of menu cost models, the literature has had to resort to stark general
equilibrium assumptions, such as the combination of one-time permanent money shocks and a utility function for the
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In this paper, we fill this gap. We extend the notion of an aggregate Phillips curve to menu cost
models and establish two major new results. First, the Phillips curve of the canonical menu cost
model is the same as that of a mixture of two TD models—an exact equivalence between SD and TD.
Second, for a wide range of common parameterizations, this Phillips curve is numerically almost
identical to the Calvo Phillips curve (NK-PC), for some κ. This numerical equivalence between SD
and Calvo extends to broader menu cost models beyond the canonical model.

Our starting point is a formalization of the concept of a Phillips curve for a general price-
setting model. Given an MA (∞) process ∑s m̂csεt−s for aggregate real marginal costs, the model
produces an certain MA (∞) process for aggregate inflation ∑s πsεt−s. We call generalized Phillips
curve the first-order mapping between these two sets of MA coefficients, and we represent this
mapping as an infinite-dimensional matrix K, so that (π0, π1, . . .)′ = K · (m̂c0, m̂c1, . . .)′. Just like
the NKPC, this mapping—or “sequence-space Jacobian” (Auclert, Bardóczy, Rognlie and Straub
2021)—characterizes the first-order aggregate implications of the price-setting model. We also
define a similar object, the pass-through matrix Ψ, mapping MA coefficients on aggregate nominal
marginal costs to MA coefficients on the aggregate price level. K and Ψ are related via a simple
one-to-one mapping. We characterize both of these matrices explicitly for TD models, and then
proceed to analyze them for menu cost models.

Our first main result characterizes K and Ψ for the canonical menu cost model. Following
Alvarez, Le Bihan and Lippi (2016), we define this model to feature a quadratic loss function
for producers, a Cobb-Douglas price index, permanent idiosyncratic productivity shocks, and
random opportunities for free adjustments (as in Nakamura and Steinsson 2010). We prove that
the pass-through matrix Ψ of the canonical model is a convex combination of the pass-through
matrices of two TD models. Hence, the first-order aggregate implications of the canonical model
are exactly the same as those of a mixture model in which a fraction of price-setters follow one TD
rule and the remainder follow a different rule. In particular, the canonical model and the mixture
TD model have the same generalized Phillips curve K.

The two TD models in the mixture reflect the two margins of aggregate price adjustment in
the menu cost model: first, adjustment along the extensive margin (movements in Ss adjustment
bands) and second, adjustment along the intensive margin (movements in reset prices). Caballero
and Engel (2007) previously decomposed the impact effect on the price level from a permanent
shock to nominal marginal cost as the sum of an extensive and intensive margin component.
Our result shows how their structural decomposition extends to the entire impulse response of
prices, and to arbitrary shocks to costs. We show that both TD models are characterized by steady-
state moments of the menu cost model and therefore theoretically recoverable from panel data on
prices, and that they are easily obtained numerically, facilitating efficient computation. We also
show that the adjustment hazards of these models, which we call virtual hazards, both eventually
converge to the same constant, but generally do so from different directions: from above for the
extensive margin, and from below for the intensive margin.

representative agent that features linear disutility of labor, and log utilities over consumption and money.
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An antecedent to our exact equivalence result is Gertler and Leahy (2008), which we nest as
a special case. In the menu cost model studied by Gertler and Leahy (2008), firms have either
no shock to their ideal price, or a shock drawn from a uniform distribution with wide support.
This assumption implies that in each period, before the realization of the shock, each firm has
the same probability of adjusting its price. We find that in the equivalent mixture, the extensive
and intensive margin virtual hazards are constant and equal to each other. The model is therefore
exactly equivalent to Calvo.

For menu cost models with a more general distribution of shocks, the Gertler and Leahy (2008)
result no longer applies exactly. Our second main result, however, shows that there is still numer-
ical equivalence between menu cost and Calvo models. This occurs because the virtual hazards
for the two TD models, while individually not constant, move in different directions and roughly
offset each other in practice. This numerical equivalence is highly robust and extends beyond the
canonical menu cost model. In particular, it applies to more complex pricing models, such as two-
product models as in Midrigan (2011), for which our exact equivalence result no longer directly
holds.

Our numerical equivalence result can therefore be viewed as a broad generalization of Gertler
and Leahy (2008): menu cost models in a very large class, and under most reasonable parameteri-
zations, have a generalized Phillips curve that is almost identical to the standard NKPC for some
slope parameter κ. Crucially, as in Gertler and Leahy (2008), the slope κ is distinct from—and
generally higher than—that implied by a Calvo model with the same adjustment frequency.5

Our result is distinct from a previous connection between menu cost and Calvo models uncov-
ered by Alvarez, Le Bihan and Lippi (2016) and further developed in Alvarez, Lippi and Passadore
(2017). These papers derive an elegant sufficient statistic for the cumulative impulse response
(CIR) of the price level (relative to its long-run response) to a permanent shock to aggregate nom-
inal costs in a broad class of pricing models, including menu cost and Calvo models. By contrast,
our result shows equivalence between menu cost and Calvo for the entire impulse response of
prices to any shock to costs.6 The two results are highly complementary: the Alvarez, Le Bihan
and Lippi (2016) sufficient statistic gives the Calvo frequency that equalizes the size of monetary
non-neutrality across menu cost and Calvo models; our results then establish that, for this Calvo
frequency, all impulse responses are numerically close between the two models.

A limitation of the Alvarez, Le Bihan and Lippi (2016) result is that it requires special general
equilibrium assumptions to draw conclusions about the output effects of monetary policy.7 By
contrast, the generalized Phillips curves of menu cost models allow us to solve for the effects
of monetary policy or any other aggregate shock, in any DSGE model, under the assumption of

5Bakhshi, Khan and Rudolf (2007) numerically compare the first-generation menu cost model by Dotsey, King and
Wolman (1999), which does not have idiosyncratic shocks, to a Calvo model.

6See Baley and Blanco (2021) for a different extension of Alvarez, Le Bihan and Lippi (2016), characterizing the
CIR of higher order moments. Our focus on the entire impulse response is shared by Alvarez and Lippi (2022), who
analytically characterize the impulse response to a permanent nominal marginal cost shock in a menu cost model.

7Under these assumptions, listed in footnote 4, the CIR of the price level to a permanent shock to nominal costs
relative to its long run value is directly related to the CIR of output to permanent money shocks.
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menu cost pricing rather than Calvo pricing. We demonstrate this result in the context of two
models: a textbook three-equation New Keynesian model, and the more sophisticated Smets and
Wouters (2007) model. We show that correctly solving these models to first order in aggregate
shocks with small idiosyncratic risk simply amounts to replacing the NKPC with the generalized
Phillips curve of the menu cost model. Implementing this in a standard calibration, we find that
the changes in inflation and output by switching from Calvo to menu cost pricing are negligible.
We conclude that there is no loss of generality, even in the context of DSGE models, in considering
the NKPC as a model of the Phillips curve, provided κ is appropriately chosen.

While it is an extremely useful benchmark, the canonical menu cost model with free adjust-
ment is not capable of matching the rich distributions of price changes observed in micro data
(Alvarez, Lippi and Oskolkov 2022a). To remedy this issue, we extend our exact equivalence
result to the case in which menu costs are randomly distributed according to an arbitrary prob-
ability distribution. We then show how to use this extended result to directly compute the pass-
through matrix and generalized Phillips curve from the empirical distribution of price changes
alone, without any need for model simulation. Applying this technique to Israeli supermarket
data from Bonomo, Carvalho, Kryvtsov, Ribon and Rigato (2022), we again find that the resulting
generalized Phillips curve is very close to that of a Calvo model.

Our results are important for three separate literatures. First, for the literature developing par-
tial equilibrium menu cost models that match rich aspects of the micro data, we show that solving
for the generalized Phillips curve K allows one to embed these models into general equilibrium,
and we provide three practical ways of solving for K: an exact equivalence result, an approximate
equivalence result, and a result that infers K directly from the price change distribution. Second,
for the literature developing DSGE models, we provide a new rationalization of the Calvo Phillips
curve based on menu costs, extending Gertler and Leahy (2008) to a much more general setting.

Finally, for the literature developing price-setting models that can match both micro and macro
data, we provide both optimism and caution. Optimism, because we can now represent menu
cost models using generalized Phillips curves, which can be taken to the macro data. Caution,
because these Phillips curves are so close to the Calvo model that they suffer from the same defi-
ciencies, such as a lack of internal inflation persistence (e.g. Fuhrer and Moore 1995) and extreme
forward-looking behavior (e.g. Del Negro, Giannoni and Patterson). One has to look beyond
menu cost models alone8 to resolve these puzzles: for instance, to multi-sector models with com-
plex input-output linkages (Rubbo 2020, La’O and Tahbaz-Salehi 2022), or to deviations from full-
information rational expectations (Mankiw and Reis 2002, Woodford 2003a, Sims 2003, Nimark
2008, Maćkowiak and Wiederholt 2015, Gabaix 2020, Angeletos and Huo 2021, Afrouzi and Yang
2021).

Our results establish a first-order connection between menu cost and TD models,9 and so
8In particular, our results show that although actual adjustment hazards are increasing in menu cost models, unlike

in TD models (Sheedy 2010) this does not generate inflation persistence. This is because it is the virtual hazards, rather
than the actual hazards, that matter for inflation persistence.

9This connection transcends price-setting applications. For instance, it also applies to investment with fixed costs.
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should not be taken to imply equivalence between menu costs and Calvo beyond first order in
aggregates. When we investigate aggregate non-linearity and aggregate state-dependence, how-
ever, we find a limited quantitative role for either, at least in the canonical menu cost model. Still,
the welfare implications of menu cost and Calvo models may be quite different. We leave an
exploration of this question to future research.

In parallel and independent work, Alvarez, Lippi and Souganidis (2022b) also study the pass-
through matrix Ψ of the canonical menu cost model, focusing on the continuous-time case. Their
paper uses Ψ to analytically characterize the impulse response to a permanent nominal cost shock
under strategic complementarities. We study strategic complementarities in section 5.2, where we
show that, remarkably, they simply scale down the generalized Phillips curve K, just like they
scale down the slope parameter κ in the Calvo NKPC. Together, our papers show the importance
of the pass-through matrix for the general equilibrium analysis of menu cost models.

Layout. The rest of the paper is structured as follows. Section 2 sets up our benchmark time-
dependent and state-dependent models, and introduces the concepts of pass-through matrix and
generalized Phillips curve. Section 3 proves our exact equivalence result and explores its implica-
tions. Section 4 demonstrates our numerical equivalence result. Section 5 shows formally how our
pricing models can be embedded into general equilibrium. Finally, section 6 shows how we can
obtain the generalized Phillips curve from micro data in a richer model with generalized hazard
functions.

2 Old and New Pricing Models

We begin by setting up “old” (time-dependent, TD) and “new” (state-dependent, SD) pricing
models. We write the model assuming perfect foresight with respect to aggregate shocks. We
then solve for first-order impulse responses to these shocks, starting from the steady state without
aggregate shocks. By first-order certainty equivalence, this delivers the impulse responses to the
same shocks in a fully stochastic model.10

10For instance, suppose that in the first-order solution to the model where the primitive innovations to aggregates
are {εt} and aggregate nominal marginal costs follow log MCt = ∑∞

j=0 M̂Cjεt−j, the aggregate price index follows

log Pt = ∑∞
j=0 P̂jεt−j, as in a Wold decomposition. Then, the sequence {P̂j}∞

j=0 is also the first-order impulse response

to a perturbation {M̂Cj}∞
j=0 to the path of marginal costs, assuming perfect foresight and starting from the steady state

with idiosyncratic risk but no aggregate risk. Formally, we solve for this latter concept, but thanks to this equivalence
we can use the concepts interchangeably. (For instance, we simulate data from the stochastic model and run regres-
sions from Galí and Gertler (1999) in section 4.2.) For more discussion of certainty equivalence, see e.g. Simon (1956)
and Fernández-Villaverde, Rubio-Ramírez and Schorfheide (2016). Note that certainty equivalence in our case is only
with respect to aggregate shocks (for which we obtain the first-order perturbation solution) and not with respect to
idiosyncratic shocks (for which we obtain the full nonlinear solution).
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2.1 State-dependent models (menu cost models)

Our benchmark state-dependent (SD) model is a discrete-time menu cost model with random free
adjustments in the spirit of Nakamura and Steinsson (2010)’s “CalvoPlus” model. Like Alvarez,
Le Bihan and Lippi (2016), we consider a quadratic loss function for producers, permanent id-
iosyncratic productivity shocks, and random opportunities for free adjustments. Unlike them, we
work in discrete time and allow for arbitrary distributions for the idiosyncratic shocks. We call the
resulting model the “canonical menu cost model”. In section 5, we justify the quadratic approxi-
mation in the context of a fully-microfounded New Keynesian model with menu-cost pricing.

There is a continuum of firms i ∈ [0, 1], each of which sells a single product in each period
t = 0, 1, 2, . . ., at log price pit in period t. We denote by p∗it + log MCt firm i’s optimal log price
in period t. MCt is the economy-wide level of the nominal marginal cost (for instance, in simple
models, this would be the aggregate nominal wage). p∗it captures the influence of idiosyncratic
shocks on the optimal price, which can stem from idiosyncratic productivity or demand shocks.
We assume that p∗it evolves as a random walk,

p∗it = p∗it−1 + εit (1)

where εit is iid over time and across firms, drawn from a mean-zero distribution with a pdf f that
is symmetric, single-peaked, and continuously differentiable, with f ′(x) < 0 for x > 0 and vice
versa. These assumptions nest the standard case of a normal distribution.

In each period, the firm faces a quadratic loss function proportional to 1
2 (pit − p∗it − log MCt)

2,
and has to pay an extra fixed cost ξit to change its price. The fixed cost is random, ξit ∈ {0, ξ},
iid over time and across firms, with a free adjustment (ξit = 0) materializing with probability
λ ∈ [0, 1].

A common and convenient way to express a firm’s pricing problem in this setting is in terms
of the “price gap”. Here, we define the price gap xit relative to the idiosyncratic optimal price,
xit ≡ pit − p∗it. With this definition, firm i solves the following price-setting problem:

min
{xit}

E0

∞

∑
t=0

βt
[

1
2
(xit − log MCt)

2 + ξit1{xit 6=xit−1−εit}

]
(2)

where the menu cost ξit has to be paid whenever pit 6= pit−1, that is, whenever the price gap xit is
chosen to differ from pit−1 − p∗it = xit−1 − εit.

We define the price level Pt using a Cobb-Douglas aggregator of prices pit; given that p∗it has a
zero cross-sectional average, this is given by:

log Pt =
∫

xitdi (3)

Inflation is given by πt = log Pt − log Pt−1. In section 5, we derive equations (2) and (3) explicitly
as an approximation to a microfounded price-setting model with menu costs.
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As we show formally in appendix B, the solution to problem (2) has a well-known “Ss” pattern,
with the optimal policy taking the form

xit =

xit−1 − εit with prob 1− λ if xit−1 − εit ∈ [xt, xt]

x∗t otherwise

Following the literature, we refer to xt and xt as the lower and upper adjustment bands, and x∗t as the
reset point. The triplet (xt, xt, x∗t ) constitutes the policies of the menu cost model. In general, these
policies vary over time when the sequence of nominal marginal cost log MCt does. In a steady
state log MCt is constant, and we can normalize it to log MC = 0. Then, the three policies (x, x, x∗)
are constant, with a reset price of zero, x∗ = 0, and symmetric Ss bands, x = −x > 0. Price
gaps converge to a stationary distribution. We denote by g(x) the stationary distribution of gaps
xit−1 − εit before adjustment; this convention will be convenient in what follows.

We assume that the economy is in such a steady state at the beginning of t = 0, with a price gap
distribution given by g(x), consistent with log MC = 0. We denote the probability (frequency) of
price adjustment in the steady state by freq. Price resets come both from prices leaving the adjust-
ment bands and from free resets inside the adjustment bands, so freq =

∫ x
−∞ g(x)dx+

∫ ∞
x g(x)dx+

λ
∫ x

x g(x)dx.

2.2 Time-dependent models

For state-dependent models, price setting depends only on the firm’s state; for instance, in the
canonical model, this state is the price gap xit. For time-dependent (TD) models, by contrast,
price setting depends only on the time since last adjustment (e.g. see Whelan, 2007, Sheedy, 2010,
and Carvalho and Schwartzman, 2015). In particular, price setting is governed by an exogenous
“survival function” Φs for s = 0, 1, 2, . . ., which counts the fraction of firms that have not yet
adjusted their price after s periods among a cohort of firms that last adjusted their price at date 0.
Mechanically, Φ0 = 1, and Φs ∈ [0, 1] is weakly decreasing in s.11

Each period t, firms are randomly given opportunities to reset, based on the survival function
Φs and the time since they last adjusted. The optimal reset price gap is then given by

x∗t ≡ arg min
x

E0

∞

∑
s=0

βsΦs
1
2

(
x−

s

∑
r=1

εit+r − log MCt+s

)2

(4)

where x − ∑s
r=1 εit+r is the price gap of firm i at date t + s if it starts with a price gap of x at

date t and does not adjust between t and t + s. Observe that the argmin in (4) is common across
all firms, which is why we write the reset price gap as x∗t , independent of i. Denote by λs ≡
(Φs−1 −Φs) /Φs−1 ∈ [0, 1] the adjustment hazard (or adjustment probability) at horizon s > 0.
When Φs−1 = 0, we set λs = 1. The law of motion of individual price gaps xit can then be

11For proposition 3 we will impose the regularity condition that survival eventually declines exponentially, i.e. that
Φs < C/υs for some constant C and υ > 1.

8



expressed as

xit =

x∗t with probability λs

xit − εit otherwise
where s = time since last adjustment.

The hazards λs can in principle have any shape. When they are constant, λs = λ ∈ [0, 1], we
obtain the standard Calvo model. Accordingly, the survival function of a Calvo model is given by
Φs = (1− λ)s. Another standard TD model is the T-period Taylor (1979) model, which has a stark
form of increasing hazard, with λs = 0 for s < T and λT = 1.

Given xit, the price index and inflation are then constructed as in section 2.1. One object that
will be useful below is the “age” distribution of prices in the steady state. Denote by as the share
of prices that last adjusted s periods ago, that is, the share of prices with age s. This distribution
satisfies as = (1− λs) as−1, which combined with the definition of λs delivers as ∝ Φs. Since

∑∞
s=0 as = 1, we find the share of prices with age s to be

as =
Φs

∑∞
r=0 Φr

2.3 Aggregate dynamics: pass-through matrix

The SD and TD models defined so far have in common that, at the aggregate level, starting from
the steady state distribution of price gaps, they translate a (perfect-foresight) sequence of nominal
marginal costs {MCt} to a sequence of price levels {Pt}, through the aggregation of optimal price-
setting responses of heterogeneous firms to {MCt}. In other words, both types of models describe
a mapping

Pt = Pt ({MCs}) (5)

Implicit in the function Pt is a time-varying distribution of price gaps induced by the {MCt}
sequence. We are interested in the effects of small (first-order) shocks to this sequence. Log-
linearizing (5), and denoting log deviations with a hat, we have

P̂t =
∞

∑
s=0

∂ logPt

∂ log MCs
M̂Cs (6)

Here, the partial derivative ∂ logPt
∂ log MCs

describes the response of the price level at date t with respect
to an anticipated one-time unit-size shock to marginal cost at some potentially different date s.
We collect all the partial derivatives in a single matrix, which we call the pass-through matrix Ψ =

(Ψt,s), with Ψt,s ≡ ∂ logPt
∂ log MCs

. Stacking (6) across t into a vector-valued equation, we obtain

P̂ = Ψ · M̂C (7)

where P̂ ≡
(

P̂0, P̂1, P̂2, . . .
)′ and M̂C ≡

(
M̂C0, M̂C1, . . .

)′
.
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The pass-through matrix Ψ is the first-order representation of any SD or TD pricing model.
Once Ψ is computed, (7) can be used to evaluate the impulse response of the price level P̂ with
respect to an arbitrary (first-order) nominal marginal cost shock M̂C, or alternatively, to map
the coefficients in an MA for marginal costs to those of an MA for prices. For instance, the s-th
column of Ψ corresponds to the dynamic price level response to an anticipated one-time shock to
marginal cost at date s. By linearity, the sum across all columns of Ψ, i.e. ∑∞

s=0 Ψt,s, is the price level
response to a permanent shock to nominal marginal cost, as commonly analyzed in the literature
(e.g. Golosov and Lucas 2007, Alvarez et al. 2016). Long-run neutrality of money implies that
this response limits to 1, limt→∞ ∑∞

s=0 Ψt,s = 1. Flexible prices correspond to the case where Ψ
equals the identity matrix, so that the price level moves one for one with the marginal cost shock,
irrespective of the shape of the shock.

Pass-through matrix for a TD model. For a TD model, Ψ can be evaluated analytically as fol-
lows. The reset price gap x∗t satisfies the first-order condition of the problem in (4),

x∗t =
∑s≥0 βsΦs M̂Ct+s

∑s≥0 βsΦs
(8)

Equation (8) shows that, as in the standard Calvo model (e.g. Galí 2008), the optimal reset price
gap is a weighted average of future nominal marginal cost shocks. The weights are given by a
beta-discounted version of the survival function Φs. We refer to (8) as the policy equation.

From equation (3) and the TD assumption we see that the price level, in turn, is a weighted
average of past reset price gaps, with the age distribution as weights,

P̂t = ∑
s≥0

asx∗t−s =
∑s≥0 Φsx∗t−s

∑s≥0 Φs
(9)

We refer to (9) as the law of motion of the price level. Notice that the weights in the policy equation
(8) are exactly the beta-discounted versions of the weights that appear in the law of motion (9).
This is a key property of TD models to which we will return.

Combining the policy equation (8) and the law of motion (9), we obtain the pass-through ma-
trix for a TD model with survival function Φs as:

ΨΦ ≡ 1(
∑s≥0 Φs

) (
∑s≥0 βsΦs

)


Φ0 0 0 · · ·
Φ1 Φ0 0 · · ·
Φ2 Φ1 Φ0 · · ·
...

...
...

. . .




Φ0 βΦ1 β2Φ2 · · ·
0 Φ0 βΦ1 · · ·
0 0 Φ0 · · ·
...

...
...

. . .

 (10)

The matrix on the right in (10) captures the dynamic response of the reset price gap to a change in
marginal costs; the matrix on the left captures the dynamic response of the price level to a change
in the reset price gap.
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Figure 1: Columns s ∈ {0, 10, 20} of TD pass-through matrices.

Note: on the left panel, the Calvo adjustment frequencies are λ ∈ {0.2, 0.3}. On the right panel, the sequence of adjustment hazards is
proportional to 1− e−0.2(t+1), linearly scaled in order to generate the same total adjustment frequencies {0.2, 0.3}.

Figure 1 displays example columns of ΨΦ. The left panel shows the case of a Calvo model,
where Φs = (1− λ)s for two values of λ. The right panel shows a case of increasing adjustment
hazards. The columns of ΨΦ are tent shaped: pass-through to prices is always highest in the
period of the shock itself, even if the shock is anticipated to happen at a later date s > 0. When
the frequency of adjustment is higher, the tent is more spiked, reflecting the fact that firms adjust
less in advance and more in the period of the shock itself.

Using the expression for ΨΦ in (10), we can evaluate the impulse responses of a TD model
to arbitrary marginal cost shocks. Two important special cases are that of a one-time, perfectly
transitory, shock to marginal cost at date t = 0; and that of a permanent shock to marginal cost.
For the one-time shock, we find that the response of the price level P̂t is proportional to Φt; for the
permanent shock P̂t, it is proportional to the cumulative sum of Φt,

one-time shock: P̂t =
Φt(

∑s≥0 Φs
) (

∑s≥0 βsΦs
) permanent shock: P̂t =

∑t
s=0 Φs

∑s≥0 Φs
(11)

Figure 2 displays these two impulse responses for the Calvo model and a model with increasing
hazards. The formulas in (11) allow the survival function Φt of any TD model to be read off from
either impulse response. In particular, the impulse response to a permanent shock delivers exactly
the weights that enter the law of motion (9). We will use this property below.

2.4 Aggregate dynamics: generalized Phillips curve

The pass-through matrix characterizes the response of the price level to nominal marginal cost
shocks. However, a large empirical literature (e.g. Galí and Gertler 1999, Galí, Gertler and López-
Salido 2001, Sbordone 2002) studies the empirical response of inflation to shocks to real marginal
cost, commonly known as the “Phillips curve” relationship. This distinction is also important

11
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Figure 2: Responses to nominal marginal cost shocks.

Note: impulse responses to one-time (left) and permanent (right) increases in nominal marginal costs. Parameter values are the same
as in figure 1 for the 0.3 frequency case.

for general equilibrium models. In simple GE models, such as that in Golosov and Lucas (2007),
the pass-through matrix is sufficient to analyze the price level response to a shock to the money
growth rate. But in richer models, with less restrictive assumptions on preferences and monetary
shocks, a Phillips curve relationship as in (NK-PC) between inflation and real marginal cost is
more useful—since, for instance, real marginal cost is closely tied to the output gap (see section 5).

We generalize this concept of a Phillips curve to a general TD or SD model as follows. Define
real marginal cost as mct ≡ MCt

Pt
. In log-deviations, this corresponds to m̂ct ≡ M̂Ct − P̂t, and in

our stacked vector notation to m̂c ≡ M̂C− P̂. Substituting this equation into (7), we can derive
the price level response to a real marginal cost shock as12

P̂ = Ψ
(
m̂c + P̂

)
= ∑

k≥1
Ψk · m̂c = Ψ (I−Ψ)−1 m̂c (12)

Taking first differences of (12) corresponds to left-multiplying both sides with I− L, where L is the
lag matrix with entries of 1 one below the diagonal. We thus find the stacked inflation response

π = (I− L) P̂ = (I− L)Ψ (I−Ψ)−1︸ ︷︷ ︸
≡K

m̂c (13)

Equation (13) defines the generalized Phillips curve K, or GPC for short.13 This matrix is the linear
map from an arbitrary shock to real marginal cost m̂c to inflation. In that sense, K generalizes the

12Although it is not immediate from (12) that the sum ∑k≥1 Ψk converges to some bounded, finite Ψ(I − Ψ)−1, we
prove in appendix D.3 that it does so (and indeed characterize its asymptotic shape) for any arbitrary mixture of SD
and TD models. Using a different, eigenvalue-based approach, Alvarez et al. (2022b) study the convergence properties
of ∑k≥1 (θΨ)k for various θ’s, where θ indexes strategic complementarity in a model with nominal cost shocks. The case
θ = 1 is relevant for the generalized Phillips curve, since for a fixed shock to real cost, there is strategic complementarity
in nominal price-setting.

13We pick letter K in order to mirror the slope parameter κ in the NKPC.
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Figure 3: Columns s ∈ {0, 10, 20} of time-dependent Phillips curve matrices.

Note: Generalized Phillips curves for the same time-dependent models as in figure 1.

NKPC to pricing models with a general pass-through matrix Ψ. In fact, (13) describes a one-to-one
mapping between the pass-through matrix Ψ and the generalized Phillips curve K.14

Generalized Phillips curve for a TD model. For a general TD model, K can be evaluated nu-
merically using the formula in (13), combined with the TD pass-through matrix (10). In the case
of a Calvo model with Φs = (1− λ)s, there is a particularly convenient analytical expression:

K =


κ βκ β2κ · · ·
0 κ βκ · · ·
0 0 κ · · ·
...

...
...

. . .


where κ = λ(1−β(1−λ))

1−λ . This is the matrix version of the NKPC, which can also be written as
πt = κ ∑s≥0 βsm̂ct+s. Figure 3 plots the columns of K for a Calvo model (left) and for a model
with increasing adjustment hazards (right). The interpretation is analogous to before. Column s
represents the inflation response to a one-time, anticipated, unit-size real marginal cost shock at
date s. For a Calvo model, the inflation response is zero after date s, exactly equal to κ at date s, and
discounted by β in the periods before s. With increasing hazards, there is inertia, with inflation
responding less on impact, and remaining positive after date s. This inertia is due to a “catch-up”
effect for prices that do not adjust when the shock hits, as discussed by Sheedy (2010).

14To obtain Ψ from K, we write Ψ = TK (I + TK)−1 where T = (Tts) with Tts = 1 for t ≥ s and 0 elsewhere.
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Golosov-Lucas (GL) Nakamura-Steinsson (NS)

Menu cost (ξ) 0.0060 0.0513
Prob. of free adj. (λ) 0 0.179
Shock std. (σε) 0.046 0.060
Discount factor (β) 0.99 0.99

Table 1: Calibrated parameter values.

2.5 Calibration

To illustrate our theoretical results, and provide a benchmark for our numerical results, we will
simulate two SD models whose parameterizations are inspired by Golosov and Lucas (2007)
(henceforth GL) and Nakamura and Steinsson (2010) (henceforth NS). For these two models, we
pick the following standard calibration.

We assume that the shock distribution f is normal with variance σ2
ε . For GL, we assume no free

adjustments, λ = 0, and choose ξ and σε to match a quarterly average frequency of price changes
of 23.9% and a median size of price adjustments of 8.5%. This corresponds to the frequency and
adjustment size for the median sector in the US CPI (see Nakamura and Steinsson 2010). For NS,
we keep the same targets, but also choose λ in order to match a share of free adjustments of 75%.
We set the discount factor to β = 0.99. These calibrated parameters are summarized in table 1.15

3 Exact Equivalence between SD and TD Pricing Models

We are now ready to compare the aggregate implications of state- and time-dependent models for
the dynamics of prices and inflation. Since the pass-through matrix encapsulates all the first-order
implications of the pricing models introduced so far, a simple place to start is as follows. Consider
an SD model with a given pass-through matrix Ψ. Can we find a survival function Φs such that
the pass-through matrix ΨΦ of the TD model with survival function Φs is equal to Ψ?

If such a Φs exists, one should be able to recover it from a single impulse response in the SD
model—in particular, the impulse response to a permanent shock to nominal marginal cost. The
black lines in figure 4 show the impulse responses of the price level to such a shock in the GL
and NS models. As expected given its stronger “selection effect”, the GL model shows a faster
convergence of the price level to 1 than the NS model.

The equation for the impulse response to a permanent shock in (11) implies that, if this SD
impulse response is generated by a TD model with survival function Φs, then it should be equal to
∑t

s=0 Φs/∑s≥0 Φs at each t. This gives us a way to read off a candidate Φs from figure 4. Unfortunately,
while this procedure will by construction generate the correct impulse response to permanent
shocks, it generally does not produce the correct impulse responses to any other shock in the SD

15Note that the scaling properties of our model imply that there are only two independent degrees of freedom that
matter for aggregate dynamics. Given λ and ξ/σ2

ε , σε (which we use to target the median price change size) only scales
the Ss bands and shock size, with no first-order effect on aggregate prices (see also Alvarez et al. 2016).

14



0 2 4 6 8 10
Quarters

0

0.38

0.62

1.00
Pr

ic
e

le
ve

l

(a) Golosov-Lucas

0 2 4 6 8 10
Quarters

0

0.36

0.64

1.00

Pr
ic

e
le

ve
l

Total
Extensive margin
Intensive margin

(b) Nakamura-Steinsson

Figure 4: Price level responses to permanent nominal marginal cost shocks.

Note: impulse responses of prices to a permanent nominal marginal cost shocks decomposed into changes in reset points (intensive
margin) and adjustment bounds (extensive margin). Parameter values as in table 1.

model. In other words, no single TD model can match the entire pass-through matrix of an SD
model: in this sense, TD and SD models are truly different.

3.1 Exact equivalence result

To make progress, we now consider the underlying drivers of the SD impulse responses in fig-
ure 4. As in the analysis in Caballero and Engel (2007), the permanent shock shifts up both the
adjustment bands xt, xt, and the reset price gap x∗t . We can thus separate each total impulse re-
sponse into an extensive margin component, driven by the shift in the adjustment bands, and an
intensive margin component, driven by the shift in the reset price gap. Since the shock is evaluated
to first order, this decomposition is additive.

The blue and purple lines in figure 4 show those extensive and intensive margin contributions
for the GL and NS models. On impact, as Caballero and Engel (2007) showed, the contribution
of the intensive margin is the same across the two models, and equal to the calibrated frequency
of price changes (freq). As they also pointed out, the impact contribution of the extensive margin
is large in the GL model, contributing to faster aggregate adjustment than in the NS model. The
figure shows that the extensive margin continues to make a large contribution through the impulse
response of the GL model and ultimately accounts for 62% of its eventual price level response. For
NS, the long-run share of the extensive margin is only 36%.

Consider repeating the TD-matching strategy discussed above, separately for the extensive
and intensive margin impulse responses. For each, we read off a survival function, which we de-
note by Φe and Φi for the extensive and intensive margins. We call these virtual survival functions,
since they are different from the actual survival function of the SD model, as we discuss further
in section 3.3 below. We can also read off the share α of the eventual price level response that is
accounted for by the extensive margin.
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Our main result in this section is that these survival functions are structural: the implied mix-
ture TD model has the same impulse responses to all shocks as the underlying SD model.

Proposition 1. The pass-through matrix Ψ of the canonical menu cost model is a mixture of two time-
dependent (TD) pass-through matrices,

Ψ = αΨΦe
+ (1− α)ΨΦi

(14)

The “virtual” survival functions Φe and Φi and the share α are such that:

• α∑t
s=0 Φe

s/∑s≥0 Φe
s is the impulse response of the price level to a permanent nominal marginal cost shock

when only the Ss band shifts;

• (1− α) ∑t
s=0 Φi

s/∑s≥0 Φi
s is the impulse response of the price level to a permanent nominal marginal cost

shock when only the reset price gap shifts.

Proposition 1 formalizes this TD-matching approach and proves that it works. The pass-
through matrix of an SD model is exactly equal to the linear combination of the pass-through
matrix of the extensive margin (with share α) and the pass-through matrix of the intensive mar-
gin (with share 1− α). This implies that the SD impulse response to any shock, Ψ · M̂C, can be
exactly decomposed into an extensive margin contribution αΨΦe · M̂C and an intensive margin
contribution (1− α)ΨΦi · M̂C, and that both contributions come from TD models. For example,
given equation (11), the impulse response of the SD model to a one-time shock is simply given by

α
Φe

0(
∑s≥0 Φe

s
) (

∑s≥0 βsΦe
s
)Φe

t + (1− α)
Φi

0(
∑s≥0 Φi

s
) (

∑s≥0 βsΦi
s
)Φi

t (15)

Our result thus naturally generalizes the Caballero and Engel (2007) decomposition to arbitrary
shocks and to the entire impulse response.16 Since the pass-through matrix characterizes the entire
behavior of a pricing model, proposition 1 implies more broadly that the SD model is identical to
a mixture TD model, in which a fixed share of firms α follows the TD rule Φe and the remaining
firms follow the TD rule Φi.

Corollary 1. To first order, the aggregate pricing behavior of the canonical menu cost model is identical to
that of a mixture of a time-dependent model with survival function Φe and weight α, and a time-dependent
model with survival function Φi and weight 1− α. In particular, these two models share the same general-
ized Phillips curve.

A useful way to interpret our equivalence result is as one of dimensionality reduction. To see
this, truncate the matrices in (14) to be of size T × T. From (10), we see that, up to a constant, a

16In empirical work it is also common to decompose inflation into an intensive and an extensive margin, e.g. Klenow
and Kryvtsov (2008) and Dedola, Kristøffersen and Züllig (2021). Typical decompositions in this literature relate the
extensive margin to movements in the frequency of price changes. In our model, the overall frequency of price changes
is constant to first order, with the extensive margin term reflecting opposite-sign movements in the frequencies of price
increases and declines.
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T× T truncated TD pass-through matrix ΨΦ only depends on Φ0, . . . , ΦT−1. Thus, (14) effectively
is a reduction from T2 dimensions down to 2T − 1 dimensions.17

Computational benefits of proposition 1. The dimensionality reduction idea highlights the com-
putational benefits of proposition 1. It is typically relatively straightforward to compute the
impulse response of the price level to permanent nominal marginal cost shocks in menu cost
models—making this a popular exercise for papers in the literature (e.g., Golosov and Lucas
2007, Alvarez et al. 2016). It is typically much harder to compute the impulse responses to non-
permanent, e.g. AR(1), shocks, and even harder to embed menu cost models in fully specified
general-equilibrium models without making restrictive assumptions on preferences and mone-
tary shocks.

Proposition 1 suggests a simple way to solve these computational issues, as follows. First,
compute the impulse response to a permanent shock assuming that only the Ss bands adjust, and
then assuming that only the reset price gap adjusts, obtaining Φe, Φi, α as outlined above. Then
compute the right hand side of (14) using the formula in (10) to obtain the pass-through matrix Ψ.
This makes it possible to simulate arbitrary shocks to nominal costs by taking the matrix product
of Ψ and the shock vector. In addition, using (13), we can construct the generalized Phillips curve
K and simulate arbitrary shocks to real marginal cost shocks as well.

Continuous time version of our result. While our result is set in discrete time, a similar result
holds in continuous time. We present it in appendix A.

3.2 Proof of proposition 1

The proof of proposition 1 has several steps. First, we introduce a new object: the expected price
gap Et(x), t periods in the future, for a firm with a price gap of x today. We then study how,
to first order, the aggregate price index is affected by past policy changes (the law of motion),
and these policy changes are determined in response to future marginal cost shocks (the policy
equation). In both cases, we find a central role for Et(x). When we combine the law of motion
and policy equation to obtain the pass-through matrix, we see that this matrix is a weighted sum
of two terms—representing the extensive and intensive margins—each of which has exactly the
same form as in the time-dependent case (10), with survival functions derived from Et(x). We
conclude by identifying these terms with the decomposition (14) in proposition 1.

Expected price gaps. Consider a menu cost model in steady state, with log MCt = 0. Let x be
the price gap of firm i at the end of period 0, after it has had a chance to adjust. For each t ≥ 0, we
define Et(x) ≡ E0 [xit|xi0 = x] as the firm’s expected price gap at the end of period t.18 Clearly,

172T − 2 for Φe
1, . . . , Φe

T−1 and Φi
1, . . . , Φi

T−1 given that Φe
0 = Φi

0 ≡ 1; 1 for the constants multiplying the truncated
matrices in (14).

18These objects also feature in Alvarez et al. (2016) and Alvarez and Lippi (2022), who derive an analytical expression
for them in continuous time (see appendix A).
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Figure 5: Stationary distribution g(x) and expected price gaps Et(x).

Note: stationary distribution of price gaps before adjustments (left) and expected future price gaps given initial position x (right) for
the Nakamura-Steinsson model, calibrated as in table 1.

the identity of firm i is irrelevant for this object, so Et(x) only depends on the price gap x and
the horizon t. Since the model is symmetric in steady state, Et is an odd function for all t, i.e.
Et(−x) = −Et(x), and in particular Et(0) = 0.

Starting with E0(x) = x and applying the law of iterated expectations, Et(x) is given recur-
sively for t > 0 by

Et(x) = (1− λ)
∫ x̄

−x̄
f (x′ − x)Et−1(x′)dx′, (16)

taking expectations over Et−1(x′) using the no-adjustment transition probability from x to x′. (The
contribution from price adjustments to (16) is 0, since Et−1(0) = 0.)

The right panel in figure 5 plots Et(x) as function of x for different horizons t. At longer
horizons t, expected price gaps all converge towards zero. This happens for two reasons: first,
prices are more likely to have adjusted at longer horizons, after which their expected price gaps
are zero; second, the expected price gap conditional on not having adjusted also converges to zero,
due to a selection effect that we explore in more detail in the next section.

The left panel in figure 5 plots the stationary distribution g(x) of price gaps after shocks have
realized, but before firms have adjusted their price. Prices that lie outside the steady state Ss band
[x, x], and a random share λ of prices inside the bands, adjust to 0.

Relationship between expected price gaps and the law of motion. In general, the log price level
at any date t, after adjustment, is given by

log Pt = (1− λ)
∫ xt

xt

xgt(x)dx +

(
λ + (1− λ)

(
1−

∫ xt

xt

gt(x)dx
))

x∗t (17)

where gt(x) is the density of price gaps at date t before adjustments in that period, and the first
and second terms are the contributions from non-adjusters and adjusters, respectively.
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Now suppose that at date t− s, starting from the stationary distribution g(x), there is a one-
time change in policies xt−s, xt−s, and x∗t−s, after which policies all return to the steady state. We
can then rewrite log Pt as

log Pt = (1− λ)
∫ xt−s

xt−s

Es(x)g(x)dx +

(
λ + (1− λ)

(
1−

∫ xt−s

xt−s

g(x)dx
))

Es(x∗t−s) (18)

where we obtain the average value of price gaps x at date t by taking the average over the expected
price gap Es(x) at date t− s.

Totally differentiating (18) around the steady state, we have

d log Pt = (1− λ)Es(x)g(x)(dxt−s + dxt−s) + freq · (Es)′(0)dx∗t−s (19)

where the first term simplifies due to symmetry, the second term simplifies since Es(0) = 0, and
freq = λ + (1− λ)

(
1−

∫ x
−x g(x)dx

)
is the steady-state price adjustment frequency.

Equation (19) gives the first-order response, around the steady state, of log Pt to changes in
policy at any date t− s. We can then sum these contributions from each t− s ≥ 0 to obtain the full
first-order law of motion for prices

d log Pt = (1− λ)g(x)
t

∑
s=0

Es(x)(dxt−s + dxt−s) + freq ·
t

∑
s=0

(Es)′(0)dx∗t−s (20)

Relationship between expected price gaps and the policy equation. Let Vt(x) denote the post-
adjustment value function for a firm at any date t. Given equation (2), this satisfies

Vt(x) ≡ 1
2
(x− log MCt)

2 + β(1− λ)Eε

[
min(Vt+1(x + ε), ξ + min

x∗
Vt+1(x∗))

]
+ βλ min

x∗
Vt+1(x∗)

(21)
To start, suppose that aggregate marginal cost remains at its steady-state level at every date

except s, where there is a shock d log MCs. Differentiating equation (21) around the steady state,
this implies dVs(x) = −x. Further, we show in appendix C.1 that by an envelope argument, the
implied perturbation to the value function dVt(x) for any t < s is

dVt(x) = β(1− λ)
∫ x

x
f (x′ − x)dVt+1(x′)dx (22)

i.e. that it is the discounted change to dVt+1(x′), taking expectations over all x′ where there is no
adjustment under the steady-state policy.19

Given that dVs(x) = E0(x) = −x, and that (22) has exactly the same form as our earlier
recursion (16), except with an additional discount factor β, It follows that

dVt(x) = −βs−tEs−t(x). (23)

19The contribution from resets turns out to be zero because all dVt are odd and satisfy dVt(0) = 0.
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Using similar arguments, we show in appendix C.1 that V ′(x) = ∑∞
u=0 βuEu(x).

At each date t, the optimal adjustment thresholds are given by value-matching conditions
Vt(xt) = Vt(xt) = Vt(x∗t ) + ζ, and the optimal reset point is given by the first-order condition
V ′t (x∗t ) = 0. Totally differentiating around the steady state, we have dxt = − (dVt(x)− dVt(0)) /V ′(x),
dxt = − (dVt(x)− dVt(0)) /V ′(x), and dx∗t = −dV ′t (0)/V ′′(0), which combined with our results
above become dxt = dxt =

βs−tEs−t(x)
∑∞

u=0 βuEu(x)d log MCs and dx∗t = βs−t(Es−t)′(0)
∑∞

u=0 βu(Eu)′(0)d log MCs. Allowing for
shocks at different dates s and summing to get the overall effect, we conclude

dxt = dxt =
∑s≥t βs−tEs−t(x)d log MCs

∑s≥t βs−tEs−t(x)
(24)

dx∗t =
∑s≥t βs−t(Es−t)′(0)d log MCs

∑s≥t βs−t(Es−t)′(0)
(25)

i.e. that both the changes in thresholds dxt, dxt and changes in reset point dx∗t are given by
weighted averages of shocks to future marginal cost.

Writing as mixture of time-dependent models. In vector form, we can write our law of motion
for prices (20), given that dx = dx, as

P̂ = 2(1−λ)g(x)


E0(x) 0 0 · · ·
E1(x) E0(x) 0 · · ·
E2(x) E1(x) E0(x) · · ·

...
...

...
. . .

 dx+ freq ·


E0′(0) 0 0 · · ·
E1′(0) E0′(0) 0 · · ·
E2′(0) E1′(0) E0′(0) · · ·

...
...

...
. . .

 dx∗

where x ≡ (x0, x1, x2, . . .)′, etc. Then, substituting in the vector form of (24)–(25) and rearranging,
this becomes

P̂ =
2(1− λ)g(x)∑s≥0

Es(x)
x(

∑s≥0
Es(x)

x

) (
∑s≥0 βs Es(x)

x

)


E0(x)
x 0 0 · · ·

E1(x)
x

E0(x)
x 0 · · ·

E2(x)
x

E1(x)
x

E0(x)
x · · ·

...
...

...
. . .




E0(x)

x β E1(x)
x β2 E1(x)

x · · ·
0 E0(x)

x β E1(x)
x · · ·

0 0 E0(x)
x · · ·

...
...

...
. . .

 M̂C

+
freq ·∑s≥0 Es′(0)(

∑s≥0 Es′(0)
) (

∑s≥0 βsEs′(0)
)


E0′(0) 0 0 · · ·
E1′(0) E0′(0) 0 · · ·
E2′(0) E1′(0) E0′(0) · · ·

...
...

...
. . .




E0′(0) βE1′(0) β2E2′(0) · · ·
0 E0′(0) βE1′(0) · · ·
0 0 E0′(0) · · ·
...

...
...

. . .

 M̂C

(26)

We see that each term above, aside from the numerators, has exactly the form of the time-dependent
pass-through matrix (10). In particular, just as in the time-dependent case, the rows of the upper
triangular matrices (representing the policy equation that maps marginal cost shocks to policies)
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are the same as the columns of the lower triangular matrices (representing the law of motion that
maps policy shocks to aggregate prices), except with added discounting.20 Hence, if we define the
survival functions Φe

s ≡ Es(x)
x and Φi

s ≡ Es′(0), this pass-through matrix simplifies to just

Ψ = 2(1− λ)g(x)

(
∑
s≥0

Es(x)
x

)
ΨΦe

+ freq

(
∑
s≥0

Es′(0)

)
ΨΦi

, (27)

a weighted sum of the time-dependent pass-through matrices ΨΦe
and ΨΦi

. The first term gives
the response from extensive-margin adjustments to xt and xt, and the second term gives the re-
sponse from intensive-margin adjustments to x∗t .

In response to a permanent shock to marginal cost, it follows directly from (10) that the long-
term response of prices must be one-for-one in time-dependent models, and we also know that it
must be one-for-one in our state-dependent model.21 For (27) be consistent with this, the sum of
the coefficients on ΨΦe

and ΨΦi
must equal 1. Hence defining α ≡ 2(1− λ)g(x)

(
∑s≥0

Es(x)
x

)
, we

can rewrite (27) as just
Ψ = αΨΦe

+ (1− α)ΨΦi
(28)

which is identical to (14) in proposition 1.
Our expressions for Φe, Φi, and α have a sufficient statistic interpretation that may be of in-

dependent interest. In principle, given a law of motion of price gaps observed empirically, one
can compute Et(x), recover Φe

t , Φi
t and α from our formulas, and therefore form the pass-through

matrix from this information alone—without ever needing to solve the full model. We follow a
related approach in section 6.

3.3 Properties of the equivalent time-dependent models

At the heart of the equivalence result in proposition 1 are the virtual survival functions Φe
t , Φi

t.
Here, we study these functions in our calibrated examples and discuss their general properties.

Figure 6 plots Φe
t , Φi

t for the GL and NS models, as well as their associated hazards. Two
facts stand out. First, within each model, the (virtual) extensive and intensive hazards converge
to a common limit. Second, these hazards are noticeably greater in the GL model than in the NS
model. This shows that the GL model is equivalent to a mixture of TD models with shorter-lived
prices, reflecting its lower degree of monetary non-neutrality.

It is tempting to compare these virtual survival and hazard functions to the actual functions
that we would obtain by counting how long prices survive in panel data simulated from the SD
model. Figure 6 plots these actual survival functions and hazards, constructed as the probability

20Also, the first entries in these sequences, E0(x)
x and E0′(0), equal 1, and appendix C.2 proves that they are positive

and decreasing, as required for survival functions.
21It follows immediately from (24)–(25) that a unit permanent increase in marginal cost results in a unit permanent

increase in both adjustment thresholds and the reset point. Just as in the original steady state, price gaps eventually
converge to the new ergodic distribution, identical but translated to the right by these increases.
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(a) Golosov-Lucas survival functions Φt
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(b) Nakamura-Steinsson survival functions Φt
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(c) Golosov-Lucas adjustment hazards λt
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(d) Nakamura-Steinsson adjustment hazards λt

Figure 6: Survival functions and adjustment hazards.

Note: actual and virtual survival functions Φactual
t , Φe

t , Φi
t, as well as weighted average αΦe

t + (1− λ)Φi
t, with corresponding

adjustment hazards λt for the GL and NS models, calibrated as in table 1.

a price that adjusts at date 0 survives until date t without adjusting at any date s ≤ t,

Φactual
t ≡ P (no adj. until t|x0 = 0)

The actual SD hazards in both the GL and NS are increasing (see e.g. Alvarez and Lippi 2014) and
at all times significantly below the hazards of the equivalent TD models. This implies that in both
models, the aggregate price level is much more flexible than one would infer from using Φactual

t in
a time-dependent model. We can prove this formally for the asymptotic hazards.

Proposition 2. In the canonical menu cost model, the adjustment hazards λe
t , λi

t corresponding to Φe
t and

Φi
t converge to the same limit λvirtual

∞ . This limit is strictly above the limit of the actual adjustment hazard
λactual

∞ .

This proposition extends an earlier result by Alvarez and Lippi (2022). Alvarez and Lippi
(2022) showed that the asymptotic hazard of the aggregate price level in response to a permanent
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nominal marginal cost shock is strictly below the asymptotic adjustment hazard of individual
prices. Proposition 2 implies that their result holds in response to any shock, and that it holds
separately for the responses of the extensive and intensive margins.22

Following Alvarez and Lippi (2022), we can attribute the gap between the asymptotic virtual
and actual hazards to a selection effect. Our analytical expressions for the extensive and intensive
margins shed light on selection effects for both margins. Recall that the extensive margin virtual
survival curve is given by Φe

t = Et (x) /x, and that the average price gap after adjustment is zero.
Hence, one way to understand why Φe

t differs so much from the actual survival curve Φactual
t is

through the following decomposition:

Φe
t = Φactual

t × P (no adj. until t|x0 = x)
P (no adj. until t|x0 = 0)

× E [xt|no adj. until t, x0 = x]
x

(29)

The two factors on the right of (29) give the two reasons why Φe
t declines faster than Φactual

t . First,
prices at the boundary x are less likely to survive than prices at the reset point, so the middle term
is strictly below 1. Second, price gaps that do not adjust for t periods are selected: on average,
they have received idiosyncratic shocks that took them closer to the middle of the Ss band, rather
than pushing them outside. Thus, the term on the right in (29) is also below 1.

This discussion highlights the importance of “selection effects” in the extensive margin of price
adjustment, which are well understood in the literature (e.g. Golosov and Lucas 2007). However,
a similar decomposition to (29) shows that there is also a selection effect in the intensive margin
of price adjustment. Indeed, since Φi

t ≡ Et′(0), we have:

Φi
t = Φactual

t × ∂

∂x
E [xt|no adj. until t, x0 = x]

∣∣∣∣
x=0

(30)

The right factor in (30) measures the extent of this intensive margin selection effect. The logic
behind this effect is the same as for the extensive margin: price gaps that do not adjust for t
periods are selected, and tend to be closer to the middle of the Ss band. Hence the marginal effect
of setting a higher price today on the future price gap is attenuated by selection, which compresses
the surviving price gaps.

Indeed, as proposition 2 shows, asymptotically the extensive and intensive selection effects
are equally powerful, leading to the same hazard λvirtual

∞ > λactual
∞ . Initially, however, extensive

margin selection is almost always stronger, because the probability of adjusting starting from x̄ is
much higher than starting from 0. This not only makes the middle factor of (29) below 1, but also
makes the selection effect in the rightmost factor of (29) initially much stronger than in (30). In
practice, this leads to the following general pattern.

Remark 1. The hazards corresponding to Φe
t generally increase over time; the hazards correspond-

22Like Alvarez and Lippi (2022), we establish this by characterizing the eigenvalues and eigenfunctions of the tran-
sition operator without reinjections. In our discrete-time setting with a more general assumption on the distribution of
shocks, we no longer have analytical formulas for these, but we can still show λactual

∞ < λvirtual
∞ by relating them to the

leading eigenvalues for even and odd eigenfunctions.
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ing to Φi
t generally fall over time.

This property holds for all parameterizations of the canonical menu cost model with normal
shocks we study in figure 9, as well as for the leptokurtic shocks discussed in appendix D.4. How-
ever, contrary to proposition 2, here we do not have an analytical result, and indeed we have
found that the property fails for certain pathological distributions of idiosyncratic shocks.23

3.4 Relation to Gertler and Leahy (2008)

Gertler and Leahy (2008) is an important antecedent to our proposition 1. Gertler and Leahy
(2008) gave an example of a menu cost model with a particular distribution of idiosyncratic shocks
that is first-order equivalent to a Calvo model. Here, we re-derive their result in our context by
showing that the two models have the same pass-through matrix, and we discuss the behavior of
the extensive and intensive margin hazards in this case.

The Gertler and Leahy (2008) example is as follows. In the canonical menu cost model, set
the probability of a free adjustment to zero, λ = 0, and assume the following distribution: id-
iosyncratic shocks are zero with probability 1− η, and are otherwise uniformly distributed in an
interval [−M, M]. Assume further that η ∈ (0, 1] and that M > 2x.24

In this model, the expected price gap function Et(x) has a very simple shape. To see why,
consider E1(x). Any price gap x in the Ss interval remains at x with probability 1 − η. With
probability η, the idiosyncratic shock is drawn from the uniform interval, sending x to [x−M, x +
M]. By assumption, this interval includes [x, x]. So either the price gap lands outside the Ss band,
in which case it adjusts to x∗ = 0, or it remains inside the Ss band, in which case it is uniformly
distributed within [x, x], with expectation 0. Thus,

E1(x) = (1− η) x︸ ︷︷ ︸
zero shock

+ η
2x
M
· 0︸ ︷︷ ︸

uniform shock, no adj.

+ η

(
1− 2x

M

)
· 0︸ ︷︷ ︸

uniform shock, adj.

= (1− η) x

Pursuing the same logic for t ≥ 1 shows that Et(x) = (1− η)t x: expected price gaps exponentially
converge to zero at rate η. Using the formulas for Φe

t and Φi
t, we therefore obtain:

Φi
t = Φe

t = (1− η)t and α =
2x
M

(31)

Hence, the virtual survival functions are identical, and with the same constant adjustment hazard
η. Applying Proposition 1, we find that the pass-through matrix of the Gertler and Leahy (2008)
model is identical to that of a Calvo model, with Calvo frequency η.

23A counterexample can be obtained by setting x̄ = 1 and having idiosyncratic shocks distributed according to
f (x) ∝ e−(x/1.5)8

. The extensive and intensive margins of this model are then both non-monotonic.
24Note that this distribution of idiosyncratic shocks does not satisfy the regularity conditions in section 2.1. It has

density f (x) = (1− η)δ(x) + η
2M 1x∈[−M,M], which has a mass point at x = 0, and also does not satisfy strict single-

peakedness, or differentiability at−M and M. The proof of proposition 3 itself goes through, however, since it does not
require conditions on f other than symmetry and continuity at the bands −x̄ and x̄, which are still satisfied here.
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Gertler and Leahy (2008) pointed out that this virtual Calvo frequency is higher than the actual
frequency of price adjustment, freq = η

(
1− 2x

M

)
, delivering less monetary non-neutrality in the

menu cost model than would be inferred from the frequency of price adjustment alone.25 Equation
(31) shows that the gap between the actual and the virtual frequency 2x

M , is equal to the weight on
the extensive margin α. This is intuitive, since this weight is a measure of the importance of
selection.26

The reader may wonder if there are other examples than Gertler and Leahy (2008) in which an
SD model is exactly equivalent to Calvo or to a single TD model. It turns out that the answer is
yes. We give such an example in appendix C.4.

4 Numerical Equivalence between SD and Calvo Pricing Models

The Gertler and Leahy (2008) model is an important but special example in which the extensive
and intensive margin hazards are exactly constant and the menu cost model is exactly equivalent
to a Calvo model. This is not true more generally: instead, in typical calibrations of the canonical
menu cost model, extensive margin hazards are declining, and intensive margin hazards are in-
creasing towards their common asymptotic value. Figure 6 illustrates this fact in the case of our
benchmark GL and NS calibrations.

The figure also shows, however, that the hazard rate implied by the average virtual survival
function αΦe

t + (1− α)Φi
t, plotted in the dotted black line, is, in fact, approximately constant in

these examples. This suggests that these models may still effectively be close to a Calvo model.
In this section, we show that this is true across a wide range of parameterizations of the canon-

ical menu cost model: the pass-through and Phillips curve matrices are numerically very close to
those of a Calvo model. Moreover, this numerical equivalence result extends to broader menu cost
models beyond the canonical model.

4.1 Distance between pricing models

We start by defining a notion of distance between pass-through or Phillips curve matrices, which
will allow us to make quantitative statements about how “numerically close” two models are. For
two Jacobian matrices J, J′, we define their relative distance as:

dist
(
J, J′
)
=
‖J− J′‖
‖J‖ (32)

25A special property of the Gertler-Leahy model is that, before the realization of the shock, all firms face the same
probability of price adjustment, equal to freq. But because of the selection effect after the shock has hit, the equivalent
Calvo model features a higher frequency of price change, equal to η.

26In this example, the weight on the extensive margin α is exactly equal to the gap between the virtual and the actual
asymptotic hazard. In simulations of more general models we have found the two metrics to still be correlated. In these
cases, the latter provides a more useful measure of selection that the former, since it directly relates to the difference
between actual and measured adjustment probability.
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where ‖ · ‖ is the operator norm induced by the standard L2 norm in RN.
To see why this notion of distance is natural and useful, consider first the comparison be-

tween the generalized Phillips curves of two Calvo models with slope parameters κ, κ′, that is,
J = KCalvo(κ), J′ = KCalvo(κ′). The denominator in (32) captures the average slope of the Phillips
curve: how much of an inflation response a unit-standard-deviation real marginal cost shock can
generate. For a Calvo model, we have27

‖KCalvo(κ)‖ = sup
m̂c: ‖m̂c‖=1

‖KCalvo(κ) · m̂c‖ = κ

1− β
(33)

The numerator in (32) captures the worst-case standard deviation of the differential inflation re-
sponse across the two models,

‖KCalvo(κ)−KCalvo(κ′)‖ = sup
m̂c: ‖m̂c‖=1

‖KCalvo(κ) · m̂c−KCalvo(κ′) · m̂c‖

One can evaluate this norm similarly to (33), finding ‖KCalvo(κ)−KCalvo(κ′)‖ = |κ−κ′|
1−β . This then

gives us the distance of the two Calvo models

dist
(

KCalvo(κ), KCalvo(κ′)
)
=
|κ − κ′|

κ

Intuitively, our measure of distance in (32) captures the relative difference in Phillips curve slopes.
In the following, we apply (32) to compute the distance between the generalized Phillips curve
J = K of a menu cost model and the generalized Phillips curve of a Calvo model, J′ = KCalvo(κ).

In principle, the distance measure (32) can also be used to compare pass-through matrices.
Since pass-through matrices and generalized Phillips curves are related by the one-to-one map-
ping in (13), the distance measures end up being very similar. However, the distance between
Phillips curve matrices has a more intuitive natural interpretation in terms of relative slopes, so
we take it as our benchmark measure. We consider alternative distance measures in robustness
checks.

4.2 Numerical equivalence result

The blue lines in figure 7 show the columns of the pass-through and Phillips curve matrices of
the GL and NS models. As expected, the GL pass-through matrix is more spiked around the date
of the anticipated nominal marginal cost shock than the NS pass-through matrix, indicating that
the GL model is closer to flexible prices (see our discussion in section 2.3). Accordingly, the GL
generalized Phillips curve has much larger columns than the NS generalized Phillips curve: the

27To get this result, consider an AR(1) shock to real marginal cost with persistence ρ ∈ (0, 1). Then, we have that
(1− βρ) sd (π) = κsd (m̂c). Thus, ‖π‖/‖m̂c‖ = κ

1−βρ which is maximized for ρ → 1, giving κ
1−β . To see that this is

indeed the supremum, notice that by applying the triangle inequality to the NKPC, we have ‖π‖ ≤ κ‖m̂c‖ + β‖π‖
and thus ‖π‖/‖m̂c‖ ≤ κ

1−β .
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(a) Golosov-Lucas pass-through matrix
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(b) Nakamura-Steinsson pass-through matrix
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(c) Golosov-Lucas generalized Phillips curve
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(d) Nakamura-Steinsson generalized Phillips curve

Figure 7: Approximating menu cost Phillips curves with Calvo models.

Note: columns s ∈ {0, 10, 20} of the pass-through and Phillips curve matrices for the GL and NS models, calibrated as in table 1, as
well as the best-fitting Calvo approximations, obtained using the distance measure (32) applied to Phillips curve matrices.

same sized real marginal cost shock increases inflation by more than three times as much in GL
relative to NS.

The red dashed lines in figure 7 show the best Calvo approximations obtained by minimizing
the distance measure (32) for each of the two models. The fit is very close. The only visible
deviations arise in early periods for the NS model, and in both models in periods around the date
of the real marginal cost shock. The best fitting Calvo models for GL and NS have hazards λ of
0.707 and 0.487. Given β = 0.99, this implies Calvo slopes κ of 1.709 and 0.468.

Remark 2. The GL and NS models are numerically equivalent to Calvo.

The fact that a Calvo model can fit the aggregate pricing behavior of SD models so well is
surprising. For instance, it is well known that menu cost models have upward sloping adjustment
hazards (see for instance Alvarez and Lippi 2014, and the green line in figure 6). It is also well
known that, in a time dependent model, upward sloping adjustment hazards imply an inertial
Phillips curve (see Sheedy, 2010, and figures 1-3, panel b). Combining these results, it would be
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natural to expect SD models to also feature inflation inertia. Yet they do not: a real marginal cost
shock in the SD models in figure 7 neither causes a slow build-up in inflation initially, nor causes
a slow reduction in inflation after the time of the shock.

The reason for this lack of inertia is the difference between virtual and actual hazards. As
figure 6 shows, in both the GL and the NS models, actual hazards increase, but average virtual
hazards do not. In other words, the selection effect undoes the inertia in the Phillips curve that
one would expect from actual hazards.

Relationship to earlier equivalence results. Several papers have previously explored the differ-
ence between SD and Calvo models. Our numerical equivalence result significantly extends these
earlier findings. Alvarez et al. (2016) and Alvarez et al. (2017) characterize the cumulative impulse
response (CIR) of one minus the price level (which is output in their model) to a unit-sized per-
manent shock to nominal costs in menu cost vs Calvo models, expressing those in terms of the
kurtosis of the stationary distribution of price changes. Alvarez and Lippi (2022) characterize the
entire impulse response of the price level to permanent shocks to nominal costs by finding the
eigenvalues and eigenfunctions of the relevant dynamical system.

By contrast, our numerical equivalence result establishes that the entire impulse response to ar-
bitrary nominal or real marginal cost shocks is well approximated by a Calvo model. This extension
to all shocks is important, since it shows that the two price-setting models are effectively the same
without restrictive assumptions on preferences or on the nature of aggregate shocks. We illustrate
this result in figure 8 for various processes for nominal and real marginal cost shocks. The close
match across responses follows directly from the fact that both the pass-through and Phillips curve
matrices are sufficient statistics for the aggregate pricing behavior of a state-dependent model. If
a Calvo matches these matrices well, it matches the entire aggregate behavior of the SD model,
including impulse responses to all shocks.

An interesting observation from figure 8 is that the Calvo approximation works somewhat less
well for the NS model than for the GL model, in spite of the higher prevalence of free adjustments.
The reason is as follows. While both models are calibrated to have the same frequency of price
changes, in the GL model these adjustments are entirely triggered by price gaps leaving the inac-
tion region. This leads to faster mixing of price gaps, and hence faster convergence of the intensive
and extensive margin hazards relative to the NS model, as is clear from figure 6. In turn, this faster
convergence makes GL more and NS less “Calvo-like”.

Estimating the NKPC on data from the menu cost model. The numerical equivalence between
SD and Calvo models has a simple implication: menu cost models are well described by the
NKPC, for a model-specific slope parameter κ. This suggests an alternative distance metric: one
can simulate data from an SD model, estimate (NK-PC) on the simulated data, and use the R2

from the regression as a measure of fit. Implementing this procedure in the GL and NS models
using an AR(1) process for real marginal cost with quarterly persistence 0.8 delivers R2 = 1.000
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(a) Golosov-Lucas nominal shocks.
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(b) Nakamura-Steinsson nominal shocks.
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(c) Golosov-Lucas real shocks
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(d) Nakamura-Steinsson real shocks

Figure 8: Price level responses to AR(1) marginal cost shocks.

Note: impulse responses to AR(1) marginal cost shocks for GL and NS models, calibrated as in table 1, as well as the best-fitting
Calvo approximations, obtained using the distance measure (32). Shock persistence values are {0.3, 0.6, 1} for nominal shocks (top)
and {0.3, 0.6, 0.8} for real shocks (bottom).

(GL) and R2 = 0.998 (NS), also suggesting a tight match overall. Going beyond this procedure,
we also estimate a hybrid Phillips curve, as in Galí and Gertler (1999). This delivers an estimated
term on lagged inflation that is very close to 0, confirming the fact that menu cost models cannot
generate inflation inertia. Details are provided in appendix D.1.

4.3 Robustness to parameterization of the canonical menu cost model

The GL and NS models are only two parametrizations of the canonical menu cost model. Here,
we systematically explore the two-dimensional parameter space of this model within the class of
normal idiosyncratic shocks.28

Figure 9(a) plots the relative distance (32) between the generalized Phillips curve and its best
Calvo fit, as we vary both the duration (defined as 1

freq − 1) and the share of free price adjustments.

28In appendix D.4 we consider an extension with leptokurtic shocks.
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Figure 9: General parameter values.

Note: the left panel shows the distance between the state-dependent Phillips curve and the best-fitting Calvo approximation,
measured with distance (32). The right panel shows the duration of the Calvo minimizer, as well as the one implied by the ALL
result, that is, dCalvo = 1

6 KurMC (1 + dMC)− 1
2 for the value of KurMC in the simulation of the menu cost model under the duration

dMC and share of free adjustment under consideration. . The vertical dotted lines show the empirical duration that we target in our
baseline calibration.

The dotted vertical line indicates the empirical duration in our baseline GL and NS calibration;
recall that our GL calibration has no free adjustments and our NS calibration has a share of free
adjustments of 75%.

At smaller durations, we find a smaller distance, indicating a closer match between the SD and
Calvo models. This is intuitive as tighter Ss bands not only increase frequency, but also increase
the speed of mixing of price gaps, leading the intensive and extensive margin hazards to converge
more quickly. This brings the model closer to Calvo. Less intuitively, but in line with our discus-
sion of the worse Calvo fit of the NS model relative to GL, a greater share of free adjustments can
increase the distance to Calvo. The distance only falls to zero for adjustment shares very close to
100% (not shown).29

4.4 Why do Calvo and menu cost models have such close aggregate predictions?

In the beginning of section 4, we observed that the average virtual survival function αΦe
t +(1− α)Φi

t

was close to a Calvo survival function ΦCalvo
t = (1− λ)t, and conjectured that as a result, aggre-

gate behavior might be close to Calvo as well. We then verified this conjecture numerically. In this
section, we elaborate on the reasons for this close numerical fit.

In particular, we show in appendix D.2 that if we write the virtual survival functions as Φe
t =

ΦCalvo
t + ηe

t and Φi
t = ΦCalvo

t + ηi
t, then to a first-order approximation in the ηs, the gap between

29The general pattern in figure 9(a) is similar to that of appendix figure C.1, which shows that the second odd eigen-
value is larger relative to the leading odd eigenvalue when duration is higher and there are more free adjustments. A
smaller gap between the leading and second eigenvalues generally means that it takes longer for the leading eigenvalue
to dominate and for the survival function to become Calvo-like, making Calvo a worse approximation overall. (This
reverses once the eigenvalues are so close that the survival function is always nearly Calvo.)
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Figure 10: Decomposing the generalized Phillips curve into intensive and extensive margin

Note: Generalized Phillips curves for intensive and extensive pass-through matrices in GL and NS models, calibrated as in table 1.

the actual pass-through matrix and the Calvo pass-through matrix scales with αΦe
t + (1− α)Φi

t −
ΦCalvo

t . In other words, if the virtual survival functions are not individually too far from Calvo, and
their average is close to Calvo, then the pass-through matrix (and consequently the generalized
Phillips curve via (13)) will be close to Calvo as well.

In figure 6, particularly for the GL model, these conditions are satisfied, explaining why Calvo
is such a good approximation: the extensive and intensive survivals are not far from Calvo, and
their mixture is even closer. By proposition 2 and remark 1, we expect this to be true quite gen-
erally: the two hazard rates always converge to the same constant, and prior to convergence they
deviate in offsetting directions.

It is important that the deviations from Calvo in the extensive and intensive survival func-
tions offset each other when averaged, since individually these deviations are larger. In figure 10,
we separately plot the generalized Phillips curves corresponding to the intensive and extensive
margin time-dependent models. We see that the two margins separately produce fairly different
GPCs, deviating from the New Keynesian Phillips curve by far more than in figure 6. In particu-
lar, there is persistence in the extensive margin and anti-persistence in the intensive margin. This
difference is most pronounced for the NS model.

4.5 Forward-lookingness in the generalized Phillips curve

Although the generalized Phillips curves in figure 10 are distinct from the NKPC, one similarity is
striking: as we go backwards in time from the quarter of the shock, both of these margins appear
to be decaying at the same rate β as the Calvo Phillips curve. As the following proposition shows,
this turns out to be a general result for both time-dependent and menu cost models.

Proposition 3. Let K = (Kt,s) be the generalized Phillips curve of an arbitrary convex combination of TD
or canonical menu cost pass-through matrices. Then, the columns of K converge to a two-sided sequence
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{k j} around the diagonal, i.e. Ks+j,s → k j as s→ ∞, for each j ∈ Z. Going backward, this sequence decays
at rate β asymptotically, i.e.

lim
j→∞

k−j

βj = C

for some constant C.

This proposition shows that the extreme “forward-lookingness” of the NKPC, with future
shocks discounted at rate β irrespective of the horizon—which plays an major role in the for-
ward guidance puzzle (Del Negro et al., 2013)—is present in all price-setting models we have
introduced in this paper.

4.6 Which Calvo frequency fits best?

So far, we have recovered the Calvo model that most closely approximates a given menu cost
model by simulating the latter. Here, we show that it is possible to completely side-step the need
for simulation, and instead use a result by Alvarez et al. (2016) to directly recover the slope κ.

Figure 9(b) shows the Calvo duration that provides the best fit to each model across the pa-
rameter space of the canonical menu cost model. From any Calvo duration d, we can back out
the equivalent Calvo frequency freq = 1/(1 + d), and therefore the slope κ using the standard
formula,

κ =
freq (1− β (1− freq))

1− freq
=

1− β d
1+d

d
(34)

Observe that the relation between menu cost duration and Calvo duration in figure 9(b) is close
to linear. This is an instance of the Alvarez et al. (2016) result. Alvarez et al. (2016) showed that,
in continuous time, the cumulative impulse response of the price level to a permanent nominal
cost shock depends only on the ratio of the kurtosis of price changes to the frequency. Because the
Calvo model provides a close approximation to the menu cost model, it must approximately have
the same CIR, and therefore the same ratio of kurtosis to frequency,

KurCalvo

freqCalvo '
KurMC

freqMC (35)

In continuous time, KurCalvo is equal to 6, and KurMC is a constant less than 6 that depends only
on the share of free adjustments, and is equal to 1 in the Golosov-Lucas case. Hence, (35) implies a
linear relationship between Calvo and menu cost duration, with a slope equal to 1

6 under zero free
adjustments and increasing as the share of free adjustment rises. These properties are all apparent
in figure 9(b). The dashed lines provide a numerical approximation based on the simulated values
of KurCalvo and KurMC in the discrete-time model (where these values are no longer independent
of frequency) and show that this formula provides an excellent quantitative fit.30

30In the discrete-time Calvo model, we have KurCalvo = 3
(

2− freqCalvo
)

, while in the discrete-time menu cost

model there is no analytical expression and KurMC must be simulated numerically.
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In conclusion, equations (34) and (35), combined with the relationship between Calvo kurto-
sis and frequency, allow us to obtain a Phillips curve based entirely on the ratio of kurtosis to
frequency in the menu cost model.31 In the limit as β→ 1, this becomes:

κ ' 4(
1
3

KurMC

freqMC

)2
− 1

(36)

The quantitative implications of (36) are worth stressing. In the data, the frequency of price
changes is usually found to be around 0.2 and 0.3 at the quarterly frequency, and the kurtosis
of price changes is typically thought to be between 3 and 4. Implementing (36) with these val-
ues delivers κ ∈ [0.1; 0.4]. By contrast, our menu cost models generate kurtosis of 1.3 for GL and
2.3 for NS at our calibrated frequency of 0.239. Applying (36), we obtain a κ of 1.75 for GL and
0.53 for NS, close to the values delivered by the best-fitting Calvo model. These values are high
compared to the κ = 0.08 implied by a Calvo model with this frequency of price change, and also
high compared to typical direct estimates of κ from macro data. We return to this point in the
conclusion.

4.7 Additional robustness exercises and extensions

In appendix D.4, we show that the numerical equivalence result between the canonical model and
Calvo appears to be quite robust by considering several extensions to our analysis.

First, we consider first-order shocks in alternative menu cost models. This includes mod-
els with (a) leptokurtic shocks, (b) two products as in Midrigan (2011), and (c) steady state in-
flation.32 The first-order aggregate behavior of these models remains to close that of a suitably
parametrized Calvo model. We also consider the multi-sector menu cost model of Nakamura and
Steinsson (2010), and show that its aggregate behavior is closely approximated by a multi-sector
Calvo model.

One interesting prediction of our model with steady state inflation is that the slope of the
Phillips curve should depend on the level of steady state inflation. We show in figure D.3 that the
slope increases in steady state inflation for both the GL and NS model.

Second, we consider nonlinear shocks in the canonical menu cost model. In figure D.7 we
show that the responses to large shocks to nominal marginal cost are still well approximated by
the Calvo model. Figure D.8 shows that the same is true for real marginal cost shocks. This figure
also explores aggregate state-dependence, that is, whether large past shocks can influence the
impulse responses to additional shocks later on. We find limited evidence of such effects in the
context of our calibrations of the canonical menu cost model.

31This corresponds to the value of κ when 1
freqCalvo = 1

6
KurMC

freqMC + 1
2 .

32For the model with leptokurtic shocks, our exact equivalence result in proposition 1 still applies. For the model
with steady state inflation, a version of proposition 1 applies that allows for three time-dependent models. See the
proof of proposition 4 for the idea behind this result.
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In the next section, we turn to another, important extension of our baseline model: One that al-
lows for a non-quadratic firm objective function and embeds the model into a general equilibrium
setting.

5 General Equilibrium

So far, we have set up both state- and time-dependent models assuming a quadratic objective and
linear aggregation. In the analytical menu cost literature, this is sometimes taken as a primitive
environment for convenience, and is usually viewed as the correct approximation to a deeper
microfounded price-setting problem (e.g. Alvarez and Lippi 2014). We have also studied the
generalized Phillips curve as solution to a particular fixed point, solving for inflation as a function
of real marginal cost in (13), by analogy to the New Keynesian Phillips curve.

In this section, we justify the use of both the quadratic approximation and the generalized
Phillips curve in the context of fully microfounded general equilibrium DSGE models with menu
cost price-setting.33 We show that the first-order perturbation solution of this model is, as idiosyn-
cratic risk becomes small, exactly the same as that of the same model with the generalized Phillips
curve K replacing the entire price-setting model. We formally show this first in the context of the
standard New Keynesian model, with and without strategic complementarity, and then discuss
how the result extends to a more complex DSGE model.34

5.1 Textbook New Keynesian model with menu costs

Our model is set in discrete time. We closely follow Galí (2008) in terms of model structure and
notation, except for the price-setting behavior of the firm. We continue to write the model under
perfect foresight over aggregate variables, and to denote log-deviations from the steady state with
a hat.

Households. The model is populated by a representative household maximizing the utility func-
tion

∞

∑
t=0

βt

[
C1−σ

t
1− σ

− b
N1−ϕ

t
1 + ϕ

]
over paths of consumption and hours {Ct, Nt} subject to the flow budget constraint

PtCt + Bt ≤ (1 + it−1) Bt−1 + WtNt + PtΠt

33Earlier examples of DSGE models with menu cost pricing are Dotsey et al. (1999) and Costain and Nakov (2011).
34As pointed out by Fernández-Villaverde (2010), GE menu cost models are hard to simulate: “The bad news is, of

course, that handling a state-dependent pricing model is rather challenging (we have to track a non-trivial distribution
of prices), which limits our ability to estimate it. Being able to write, solve, and estimate DSGE models with better
pricing mechanisms is, therefore, a first order of business.”
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and a standard No-Ponzi condition limT→∞ BT ≥ 0. The first-order conditions of this problem are
given by the usual expressions

C−σ
t =

Pt

Pt+1
(1 + it)C−σ

t+1 and bNϕ
t =

Wt

Pt
C−σ

t (37)

Consumption Ct is an index bundling many varieties i,

Ct ≡
(∫ 1

0

(
Cit

Ait

) ζ−1
ζ

di

) ζ
ζ−1

(38)

where ζ > 1 is the elasticity of substitution between varieties; and Ait are idiosyncratic preference
shifters. We define aggregate output to be equal to consumption, Yt = Ct. Demand for variety i
and the aggregate price index are then given by

Yit = A1−ζ
it

(
Pit

Pt

)−ζ

Yt and Pt =

(∫ 1

0
(AitPit)

1−ζ di
) 1

1−ζ

(39)

where Pit denotes the price of variety i.

Firms. There is a continuum of monopolistically competitive firms. Firm i produces quantity Yit

of variety i with linear production function Yit = AitNit from hours Nit. Importantly, variety i’s
preference shifter Ait is also firm i’s productivity shock. log Ait evolves according to a random
walk,

log Ait = log Ait−1 + σεεit

where εit has density f̄ satisfying the same restrictions as in section 2. Firm i’s real profits at date
t are given by

Πit =
Pit

Pt
Yit −

Wt

Pt
Nit =

(
Pit

Pt
− Wt

Pt

1
Ait

)
· A1−ζ

it

(
Pit

Pt

)−ζ

Yt (40)

The firm’s statically optimal price, which we denote by P∗itWt (separating into idiosyncratic P∗t
times the aggregate Wt), is therefore given by the usual constant markup rule

P∗itWt ≡
ζ

ζ − 1
Wt

Ait
(41)

Substituting out Ait from (40) using (41), we can express profits as

Πit =

(
ζ

ζ − 1
Wt

Pt

)1−ζ

Yt ·
((

Pit

P∗itWt

)1−ζ

− ζ − 1
ζ

(
Pit

P∗itWt

)−ζ
)

(42)

As in section 2, we define firm i’s idiosyncratic price gap as

xit = log Pit − log P∗it
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With this notation, profits can be written entirely as a function of the price gap and aggregate
variables,35

Πit =

(
ζ

ζ − 1
Wt

Pt

)1−ζ

Yt ·
(

e(1−ζ)(xit−log Wt) − ζ − 1
ζ

e−ζ(xit−log Wt)

)
≡

(
ζ

ζ − 1
Wt

Pt

)1−ζ

Yt · F (xit − log Wt) (43)

where we have introduced the function F(x) ≡ e(1−ζ)x − ζ−1
ζ e−ζx. F has a local maximum at 0,

that is, F′(0) = 0 and F′′(0) < 0. We can also express the price level Pt from (39) in terms of price
gaps,

Pt =
ζ

ζ − 1

(∫ 1

0
e(1−ζ)xit di

) 1
1−ζ

(44)

Inflation is still defined as πt = Pt/Pt−1 − 1.
As in section 2, we assume that firms have to pay a random menu cost ξ̄it ∈ {0, ξ̄} when

changing their prices, where as before, the probability of a free adjustment, ξ̄it = 0, is parametrized
by λ ∈ [0, 1), and ξ̄ > 0. Following Golosov and Lucas (2007) and Nakamura and Steinsson (2010),
we assume the menu cost are stated in units of labor required to change prices. Moreover, we scale
the menu cost by σ2

ε , so that the model is well behaved in the limit of small σε. Given this, firm i’s
profit maximization problem reads

min
{xit}

E0

∞

∑
t=0

βtC−σ
t

[(
ζ

ζ − 1
Wt

Pt

)1−ζ

Yt · F (xit − log Wt) + σ2
ε ξ̄it

Wt

Pt
1{xit 6=xit−1−σεεit}

]
(45)

where βtC−σ
t is the representative agent’s stochastic discount factor up to a multiplicative constant.

The aggregate amount of labor required for menu costs is given by

Ξt ≡
∫ 1

0
σ2

ε ξ̄it1{xit 6=xit−1−σεεit}di (46)

Aggregate profits Πt ≡
∫ 1

0 Πitdi are paid directly to the representative agent. With the help of (44),
aggregate labor demand by firms can be written as

Nd
t ≡ Yt∆t + Ξt (47)

where ∆t ≡
(∫ 1

0 e(1−ζ)xit di
) ζ

1−ζ ∫ 1
0 e−ζxit di ≥ 1 captures the productivity loss due to price disper-

sion.

Monetary policy rule. We assume the central bank operates a standard Taylor rule, it = ρ +

φπt + υt where ρ = β−1 − 1 is the discount rate, φ > 1, and υt is a monetary policy shock.

35Without introducing Ait as simultaneous preference and technology shocks, this would not be feasible.
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Market clearing and equilibrium. The goods market clearing condition is simply given by
Ct = Yt. Labor market clearing is given by Nt = Nd

t . Asset market clearing is given by Bt = 0.
A competitive equilibrium is an allocation {Ct, Nt, Nd

t , Yt, Bt, Ξt, Yit, Nit, Πt} together with prices
{Pt, Pit, Wt, πt, it} such that the representative agent maximizes utility, the central bank follows its
rule, and all firms maximize the present discounted value of their profits.

Steady state with no aggregate shocks. A steady-state equilibrium with no aggregate shocks
(νt ≡ 0) is characterized by a set of constant aggregates {Nss, Yss, Ξss, Pss, Wss, iss, ∆ss}. It follows
from the monetary policy rule and steady-state Euler equation (37) that steady-state inflation must
be zero and β(1 + iss) = 1. We resolve indeterminacy of steady-state prices and wages with the
normalization Wss = 1.36

In the case with no idiosyncratic shocks or menu costs (σε = 0), then all price gaps are zero,
and we also have ∆ss = 1, Ξss = 0, Pss =

ζ
ζ−1 , Yss = Nss, and bNϕ

ss =
ζ

ζ−1Y−σ
ss . In appendix E, we

show that all steady-state aggregates converge to these σε = 0 levels as we take the limit σε → 0.

First-order response to aggregate shocks around steady state. Following a vast literature (see,
in particular, Reiter 2009), we are interested in the first-order perturbation solution in aggregates
around the steady state described above. In particular, we consider an arbitrary bounded pertur-
bation {dνt}∞

t=0 to the intercept of the Taylor rule from date 0 onward, assuming that the economy
begins in the steady state, and we solve for the implied perturbations to endogenous variables,
e.g. {dYt}, {dπt}, and {dit}.

In appendix E.1, we describe the equations that characterize this solution in the sequence
space. We note that this solution depends on the σε that scales idiosyncratic risk. The following
proposition, however, shows that in the limit of small idiosyncratic risk, the impulse responses of
Ŷt ≡ dYt/Yss, π̂t ≡ dπt, ît ≡ di/(1 + iss), and ν̂t ≡ dνt satisfy a simple analog to the standard
three-equation New Keynesian model.37

Proposition 4. As σε → 0, the equations characterizing {Ŷt, π̂t, ît, ν̂t} converge to

Ŷt = Ŷt+1 −
1
σ
(ît − π̂t+1) (48)

π̂ = (ϕ + σ)K · Ŷ (49)

ît = φπ̂t + ν̂t (50)

where K is the generalized Phillips curve implied by the canonical menu cost model in section 2.1, given the
same share of free adjustments λ, idiosyncratic innovations to x/σε distributed as f̄ , and a ratio of menu

cost to idiosyncratic risk ξ
σ2

ε
=
(

ζ−1
ζ

)1−ζ (Wss
Pss

)ζ
1

Yss

2ξ̄
F′′(0) .

36The remaining equations characterizing the steady state are the labor-consumption FOC bNϕ
ss = Wss

Pss
Y−σ

ss , labor
demand plus market clearing Nss = Yss∆ss + Ξss, and three equations for Pss, ∆ss, and Ξss from the price-setting
problem.

37Here, the ss subscripts refer to the steady state with no idiosyncratic or aggregate risk.
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Figure 11: Impulse responses for the standard New Keynesian model with state-dependent pricing.

Note: both pricing blocks were calibrated as in table 1. The approximating Calvo models are constructed in section (4). The other
dynamics are given by equations (48) — (50).

Relative to the standard three-equation New Keynesian model, the only change in (48)–(50)
is that the New Keynesian Phillips curve, which in this context is π̂t = (ϕ + σ)κŶt + βπ̂t+1, has
been replaced by the generalized Phillips curve (49). In short, for small enough idiosyncratic risk,
the entire pricing side of the model can be summarized by (49) for the purpose of characterizing
first-order aggregate impulse responses.

Intuitively, why does proposition 4 hold? In most respects, our model is identical to the stan-
dard New Keynesian framework, leading to the same intertemporal Euler equation, and real
marginal cost m̂ct = (ϕ + σ)Ŷt. The key difference is that Calvo pricing is replaced by a more
complex menu cost model, which leads to several complications. For instance, for σε > 0, both
price dispersion and aggregate menu costs are time-varying and enter into the log-linearized ag-
gregate equations; also, first-order changes in the real wage Wt/Pt and level of production Yt enter
into the firm decision problem and affect aggregate pricing. All these terms, however, vanish from
the first-order aggregate system as σε goes to zero. The only aggregate relationship that remains is
between aggregate wages and aggregate prices, just as in the canonical model. Moreover, for small
σε, the firm profit objective (43) becomes quadratic and price aggregation (44) becomes linear, both
as in the canonical model, leading to the same generalized Phillips curve K.

Figure 11 implements (48)–(50), plotting the response of the model to an AR(1) monetary policy
shock υ with magnitude 0.25 on impact and persistence 0.5. The calibration used is the same as
that in Galí (2008): σ = 1, ϕ = 5, φ = 1.5, ρ = 0.01. As expected, the NS model predicts an output
response that is about three times as large as the one predicted by GL. Both impulse responses
are closely matched when (49) is replaced by the New Keynesian Phillips curve for the best-fitting
Calvo approximation found in section 4.

In appendix E.4, we show that (48)–(50) continue to provide an excellent approximation to
the fully nonlinear case even when σε is set to match our original calibration, which targets the
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average size of price changes.

5.2 Strategic complementarities

Both output responses in figure 11 are relatively modest. As pointed out in the literature, this
partly reflects the lack of strategic complementarities.

Following Nakamura and Steinsson (2010), we now introduce strategic complementarities to
the model by assuming roundabout production of a particular type.38 We modify firm i’s produc-
tion function to be Yit = AitN

χ
it X1−χ

it , where Xit is the amount of an intermediate input used by
firm i. The intermediate input itself is produced from the same CES (38) aggregate as consump-
tion. Observe that 1− χ measures the extent of strategic complementarity in price-setting, since it
makes firms’ marginal cost more dependent on their competitors’ prices.

In appendix E.5, we show the following.

Proposition 5. In the strategic complementarity model, proposition 4 continues to apply unchanged, except
that the generalized Phillips curve (49) is now replaced by

π = (ϕ + σ) χK · Ŷ (51)

This generalizes an existing result from the Calvo literature that strategic complementarities
scale down the slope parameter κ in the New Keynesian Phillips curve—exactly the same as one
would obtain with less frequent price adjustment. Similarly, proposition 5 shows that in the menu
cost model, strategic complementarity scales down the generalized Phillips curve K by χ. Since
we have found that K is close to the Calvo NKPC, this amounts to scaling down κ, as in the
standard result.

While the proof of proposition 5 requires the same formal σε → 0 limit as in proposition 4,
the basic logic only requires the concepts from section 2. With strategic complementarity, prices
are given by P̂ = Ψ(χM̂C + (1− χ)P̂), which can be rewritten in terms of real marginal cost as
P̂ = Ψ

(
χm̂c + P̂

)
, where M̂C and m̂c are shocks to the marginal cost of labor. This is identical to

(12), except with m̂c scaled down by χ. Hence the mapping K from m̂c and π derived in (13) is
also scaled down by χ.

This result complements parallel work by Alvarez et al. (2022b), who characterize, in con-
tinuous time, the impulse response of prices P̂ in models with strategic complementarity with
respect to permanent nominal marginal cost shocks M̂C. Because this impulse response satisfies
P̂ = χ ∑k≥0

(
(1− χ)k Ψk+1

)
M̂C, no simple scaling result comparable to (51) is attainable. Instead,

their characterization exploits the fact that Ψ is self-adjoint and compact in a well-chosen norm.

38Alternative forms of strategic complementarities considered in the menu-cost literature include kinked demand
curves (Klenow and Willis 2016) and oligopolistic competition (Mongey 2021). These “micro” strategic complemen-
tarities act differently from the “macro” strategic complementarity we consider here because they also narrow the Ss
bands for given idiosyncratic shocks and menu costs. With an appropriate recalibration of the steady state, these can
provide alternative microfoundations for our χ. Under a Calvo assumption, Gopinath and Itskhoki (2011) derive the
implications of kinked demand curves for the aggregate Phillips curve, and Wang and Werning (2022) derive the more
complex effects of oligopolistic competition.
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Figure 12: Impulse response to monetary shock for Smets-Wouters model with state-dependent pricing.

Note: both pricing blocks were calibrated as in table 1. The approximating Calvo models are constructed in section (4). The other
dynamics are those in Smets and Wouters (2007).

5.3 Smets-Wouters model with menu costs

The logic behind proposition 4 continues to apply to a broader set of DSGE models: in the limit
of small idiosyncratic shocks, the model with menu costs is equivalent to the model with Calvo
pricing, but with the NKPC replaced by the generalized Phillips curve (49). To illustrate this re-
sult, figure 12 simulates a Smets and Wouters (2007) model with menu cost pricing. In this model,
all equations and parameters are those from Smets and Wouters (2007) (estimated parameters are
equal to their posterior means), with the exception of the price Phillips curve, which we replace
by the generalized Phillips curve K of either the GL or the NS model, as well as by the respective
approximating Calvo models. Now, the output responses to a monetary shock are more com-
parable across GL and NS, reflecting the presence of wage rigidities as an additional source of
nominal rigidity. However, replacing the menu-cost model with its approximating Calvo model
still provides an extremely close fit.

6 Obtaining the Generalized Phillips Curve from Micro Data

Our results so far have focused on the canonical menu cost model, with a two-point distribution
of menu costs {0, ξ}. While this is a workhorse model in the literature, it has difficulty matching
the empirical distribution of price changes. Instead, the data appears to call for a model with a
generalized hazard function, as implied by a more general distribution of menu costs (Alvarez et
al., 2022a).39

In this section, we extend our analysis to this case. We generalize our exact equivalence result
to generalized hazards, and show that the pass-through matrix and GPC of the model can be

39See Berger and Vavra (2018), Caballero and Engel (1993), Gagnon, López-Salido and Vincent (2013), Luo and Villar
(2021) for papers that estimate the empirical hazard function.

40



computed directly from the data without the need to resort to model simulation. This makes
the empirical distribution of price changes, together with the overall frequency of adjustment, a
sufficient statistic for the first-order relationship between real marginal cost and inflation.

Allowing for a general distribution of menu costs. As in section 2.1, we consider a continuum
of firms, each solving the cost minimization problem (2). Now, however, we assume that ξit is iid
drawn from a general distribution with continuous cdf H(·). The main implication of this change
is that the law of motion is now no longer described by Ss bands [xt, xt] and a reset price gap x∗t ;
instead, there is a state-dependent generalized hazard function Λt(x) ∈ [0, 1] that captures the
adjustment probability for a given price gap x at time t. The law of motion of price gaps is then
given by

xit =

x∗t with probability Λt(xit−1 − εit)

xit−1 − εit otherwise, with εit ∼ N (0, σ2
ε )

(52)

Note that here we assume that εit is drawn from a normal distribution with variance σ2
ε , as in our

calibrations of the canonical menu cost model in section 2.5.
In the steady state, Λ(x) is symmetric and x∗ = 0. We continue to denote the stationary

distribution of price gaps before adjustment by g(x). The steady state distribution of price changes
has the density ∆p 7→ Λ(−∆p)g(−∆p). We continue to denote the frequency of adjustment by
freq =

∫
Λ(x)g(x)dx, and expected price gaps by Et(x) ≡ E [xit|xi0 = x].

Generalizing proposition 1. In the exact equivalence result of section 3, only two TD models
were necessary to describe the aggregate pricing behavior of the menu cost model. This is because
there were only two margins of adjustment of policies in response to shocks: Ss bands could shift
in parallel (the extensive margin), and the reset gap could shift (the intensive margin).

In the extended model, the entire hazard function shifts in response to shocks. Intuitively,
there are more margins of adjustment, one for each level of the price gap x. Proposition 1 then has
the following generalization.

Proposition 6. The pass-through matrix of a generalized hazard model can be written as

Ψ = freq ·
∞

∑
t=0

Et′(0) ·ΨΦi
+
∫

Λ′(x)g(x) ·
(

∞

∑
t=0

Et(x)

)
·ΨΦe(x)dx (53)

where Φi
t = Et′(0) as before; and Φe

t(x) = Et(x)/x.

Here, the extensive margin in (53) depends on an entire integral of TD pass-through matrices
with different survival functions Φe

t(x). However, as we demonstrate next, all objects in (53) can
be directly extracted from data on price changes, without any model simulation. In other words,
the result in proposition 6 lets us compute the pass-through matrix, and thus also the generalized
Phillips curve, based on the distribution as price changes as a sufficient statistic.
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Figure 13: Backing out the generalized Phillips curve from price change data alone.

Backing out generalized hazard and stationary distribution. To back out the objects in (53)
from price change data, we proceed as follows. The frequency freq on the right hand side of (53)
is readily observable. Conservation of variance implies that σ2

ε = freq ·Var (∆p). Next, we guess a
symmetric generalized hazard function Λ(x). Given σ2

ε and Λ(x), we compute the stationary dis-
tribution g(x) and compare the observed density of price changes ∆p with the theoretical density,
equal to Λ(−∆p)g(−∆p). We iterate this procedure until we find a suitable generalized hazard
function Λ(x). Finally, we note that the expected price gap function Et(x) can be directly com-
puted based on the recovered Λ(x) and σ2

ε . This gives us everything needed to evaluate the right
hand side of (53), without any model simulation.

Example from Israel. We show how this approach works for data on supermarket prices from Is-
rael. The top row in figure 13 shows the observed distribution of daily standardized price changes
in the data (red) as well as the fitted curve. The hazard function is U shaped. The pass-through
matrix and generalized Phillips curve are both well approximated by Calvo models, just as we
had found for the canonical menu cost model.
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7 Conclusion

In the past two decades, the growing availability of micro data on prices has spurred the devel-
opment of a large literature that models price-setting decisions in presence of idiosyncratic shocks
and menu costs. In this paper, we show that these new models have the same first-order aggre-
gate implications as older time-dependent models, provided that the hazard rates of price adjust-
ment are suitably chosen. We provide sufficient statistic formulas to recover these virtual hazard
rates—and therefore the generalized Phillips Curve of the menu cost model—either directly from
price change data, or from simulations of the steady-state of the menu cost model.

We find that the generalized Phillips curve of these menu-cost models is very close to the Calvo
Phillips curve, but with a higher slope. In our benchmark calibrations of the Golosov-Lucas and
the Nakamura-Steinsson models, the slopes are κ = 1.71 and κ = 0.47, compared to a slope of
κ = 0.08 in the Calvo model with the same frequency of price adjustment. By contrast, estimates
based on macro data suggests that the slope of the aggregate Phillips curve may be even below
this Calvo slope. For instance, Hazell, Herreño, Nakamura and Steinsson (2022) recently estimated
κ = 0.0031, and pointed out that typical values in the macro literature are all below 0.05.40

We showed that strategic complementarities can, in principle, reconcile the micro and macro
estimates: in our roundabout production model, they simply scale the generalized Phillips curve.
It remains an open question, however, whether empirically plausible complementarities can lower
the Phillips curve slope enough to match the recent macro estimates.

Simple strategic complementarities, however, cannot solve two broader issues with the New
Keynesian Phillips curve: the lack of intrinsic inflation persistence (e.g. Fuhrer and Moore 1995,
Galí et al. 2001), and the extreme forward-lookingness at the heart of the forward guidance puzzle
(e.g. Del Negro et al. 2013). Multi-sector models with complex input-output linkages, or devi-
ations from full information rational expectations, could be fruitfully combined with menu cost
models to continue matching micro data on price changes while solving these broader issues that
arise when confronting the generalized Phillips curve with the macro data.

On the theoretical side, our work also leaves open questions. First, comparing the second-
order implications of menu cost vs Calvo models would shed light on their relative implica-
tions for optimal monetary policy. Finally, the equivalence between state-dependent and time-
dependent models may also find applications in other fields where fixed costs are an important
component of decisions, such as those of adjusting capital (e.g. Khan and Thomas 2008) or pur-
chasing a durable good (e.g. Berger and Vavra 2015).

40These numbers converts their Table III estimates by assuming that the elasticity of real marginal cost to unemploy-
ment is 2, as follows from a calibration of the textbook New Keynesian model in section 5.1 with ϕ + σ = 2.
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Appendix for “New Pricing Models, Same Old Phillips

Curves”

A Continuous-Time Version of Our Results

In this appendix, we extend our equivalence result between time- and state-dependent pricing
models to a continuous time setting. We start by setting up a random menu cost model in contin-
uous time, based on Alvarez et al. (2016) and Alvarez et al. (2022b), then move to time-dependent
models, and finish by exploring the connection between both.

A.1 A random menu cost model

There is a continuum of firms, indexed by i ∈ [0, 1], each one selling a single product, whose
at price at instant t is denoted pit. Each firm has a static optimal price that is the sum of an
idiosyncratic term p∗it and a common nominal marginal cost component MC(t). The idiosyncratic
component is assumed to follow an i.i.d. Brownian motion without drift:

dp∗it = −σdWit, (54)

where Wit is a standard Wiener process. As in our discrete time setting, we work in a perfect-
foresight environment, in which at t = 0 a path for MC(t) is announced. Prior to t = 0, the
economy is at steady state.

Firms may adjust their prices either by paying a fixed menu cost ξ or by receiving a random
free adjustment opportunity, which arrives at a Poisson rate λ ∈ [0, ∞). At any given instant, firms
face economic losses for not charging their optimal prices. As in the discrete time case, define the
price gap xit = pit − p∗it. Losses are then given by 1

2 (xit −MC(t))2.
In the absence of price adjustments, xit follows the Brownian motion

dxit = σdWit.

Moreover, it is well known that the presence of a fixed menu cost generates an optimal policy that
takes the form of an inaction region a reset point. Since the common shock MC(t) evolves over
time, the optimal policy is also time-varying, with the inaction interval taking the form (x(t), x(t))
and the reset point denoted x∗(t).

We can state the firm problem recursively in terms of the state variable x, as follows. There is a
value function V(t, x), which obeys the following Hamilton-Jacobi-Bellman (HJB) equation inside
the inaction region:

ρV(t, x) =
1
2
(x−MC(t))2 +

σ2

2
∂xxV(t, x)+λ (V(t, x∗(t))−V(t, x))+ ∂tV(t, x), for x ∈ (x(t), x(t)),

(55)
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where ρ is the discount rate. At the boundaries of the inaction region, we have the following value
matching and smooth pasting conditions, which, together with the optimality condition for the
reset point x∗(t), complete the recursive characterization of the problem:

V(t, x(t)) = V(t, x(t)) = V(t, x∗(t)) + ξ,

∂xV(t, x(t)) = ∂xV(t, x(t)) = ∂xV(t, x∗(t)) = 0.

Given the optimal policies in response to the shock MC(t), the next step is to compute the
distribution of price gaps. Let g(t, x) be the probability density function of price gaps at time t. It
evolves according to a Kolmogorov forward equation:

∂tg(t, x) =
σ2

2
∂xxg(t, x), (56)

equipped with the following conditions:

g(t, x(t)) = g(t, x(t)) = 0,

g(t, x) continuous at x∗(t),

x(t)∫
x(t)

g(t, x) dx = 1.

This equation is solved forward, with the initial condition at t = 0 being steady state distribution.
As in the discrete time case, deviations of the price level to its steady state values, in logs, are given
by

p(t) =
∫

x g(t, x) dx. (57)

By first applying the HJB equation (55), followed by the KFE (56), one can compute the price level
response to any nominal marginal cost shock.

A.2 Time-dependent models

As in discrete time, price setting in a time-dependent model is governed by a survival function
Φ(s). Prices are randomly selected to adjust depending only on the time elapsed since the last
adjustment, and Φ(s) is the probability that a price remains fixed for a time interval of length ≥ s.
This immediately implies Φ(0) = 1. Again, each firm has a price gap xit = pit − p∗it, with p∗it
evolving as in (54). Upon adjustment, firms choose a reset gap that solves

x∗(t) = arg max
x

1
2

Et

∞∫
t

e−ρ(s−t)Φ(s− t) (x + p∗it − p∗is −MC(s))2 ds,
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which is given by

x∗(t) =
1∫ ∞

0 e−ρsΦ(s) ds

∞∫
0

e−ρsΦ(s)MC(t + s) ds. (58)

One can compute the log of the aggregate price level from past pricing decisions as

p(t) =
1∫ ∞

0 Φ(s) ds

∞∫
0

Φ(s) x∗(t− s)ds. (59)

There is a clear analogy between the above expressions and their discrete time counterparts from
section 2.

A.3 The pass-through operator

Both classes of models above generate a mapping from the aggregate marginal cost path MC(t)
to the price level p(t), which we denote

p(t) = P(t; {MC(s)}).

This can be linearized around MC(t) = 0 to obtain the first-order impulse response

p(t) =
∞∫

0

Ψ(t, s)MC(s) ds. (60)

We call the operator on the right hand side of (60) the pass-through operator. Similarly to the
discrete time case, for time-dependent models it is given by the composition of the operators in
(58) and (59).

Before proceeding to the exact equivalence result in continuous time, it is necessary to gener-
alize the notion of a survival function. From the definition of a survival function, it is clear that
Φ(0) = 1. Expressions (58) and (59), however, still define mathematically consistent mappings
when Φ(s) 6= 1 and even in cases where Φ(s) → ∞ as s → 0, as long as this function has a finite
integral on [0, ∞).41 When working with time-dependent pass-through operators, we allow for
this possibility and refer to Φ as a generalized survival function.

A.4 Exact equivalence in continuous time

Consider a random menu cost model in steady state. Given the symmetry of the problem, the
inaction region can be written as (−x, x) and the reset point is x∗ = 0. Let xt be the price gap of a

41Of course, it must still satisfy the other required properties of a survival function: it must be non-increasing, con-
verge to zero as s→ ∞, and start at a positive (but not necessarily finite) Φ(0) > 0.
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firm that follows this optimal policy and define

E(t, x) = E [xt|x0 = 0] .

Exactly as in discrete time, the pass-through operator of the state-dependent model Ψ can be
written as

Ψ = αΨΦe
+ (1− α)ΨΦi

.

The intensive margin pass-through operator ΨΦi
is associated with the following generalized

survival function:
Φi(t) = ∂xE(t, 0),

while extensive margin component arises from the generalized survival function

Φe(t) = ∂xE(t, x).

As we explain in more detail below, even though we call Φi a generalized survival function, it
satisfies Φi(0) < ∞ and could therefore be normalized to become a proper survival function. On
the other hand, we have Φe(0) = ∞, and so we must interpret the extensive margin component in
the generalized sense. The weight α is given by

α = f ×
∞∫

0

∂xE(t, 0) dt,

where f is the flow of price adjustments, i.e.,

f = lim
∆t→0

fraction of prices that change in (t, t + ∆t)
∆t

.

The advantage of the continuous time approach is that it is possible to solve for E(t, x) explic-
itly. First, it satisfies the Kolmogorov backward equation:

∂E
∂t

(t, x) =
σ2

2
∂2E
∂x2 (t, x)− λE(t, x), (61)

E(t, x) = E(t, x) = 0 for t > 0,

E(0, x) = x.

Alvarez and Lippi (2022) provide a closed-form solution to this equation, which we reproduce
here. Define

ηj = −
[

λ +
σ2

2

(
jπ
2x

)2
]

,

ϕj(x) =
1√
x

sin
(

x + x
2x

jπ
)

,
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for j = 1, 2, 3, . . . . These are the eigenvalues and corresponding eigenfunctions of the operator on
the right hand side of (61). Moreover, let

bj =
4x3/2

jπ
,

which are the coefficients one obtains from projecting the function f (x) = x onto the eigenfunc-
tions above.

Having defined these objects, we can express E(t, x) as

E(t, x) = ∑
j even

eλjtbj ϕj(x).

Only even terms appear in the above summation because the function f (x) = x is odd, and is
therefore orthogonal to the eigenfunctions with odd indices, which are even functions.

From the previous result, we can compute Φi(t) as

∂xE(t, 0) = 2 ∑
j even

(−1)j/2eηjt

and Φe(t) as
∂xE(t, x) = 2 ∑

j even
eηjt.

Note that it immediately follows that Φe(0) = ∞. We can also compute the associated adjustment
hazards, defined as

λe(t) = − ∂

∂t
log Φe(t) = −∑j even ηjeηjt

∑j even eηjt
,

λi(t) = − ∂

∂t
log Φi(t) = −∑j even(−1)j/2ηjeηjt

∑j even(−1)j/2eηjt
.

From the expressions above, it follows immediately that

lim
t→∞

λe(t) = lim
t→∞

λi(t) = −λ2,

echoing our analogous result for the discrete time case (proposition 2). Figure A.1 shows E(t, x),
the generalized survival functions, and the corresponding adjustment hazards for illustrative pa-
rameter values. Notice that the extensive margin adjustment hazard λe(t) must also be interpreted
in a generalized sense, since limt→0 λe(t) = ∞.42

42We conjecture that λe(t) can also be interpreted as the arrival hazard of a point process with countably many points
but infinite average density.
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Figure A.1: Expected price gaps and generalized survival functions and hazards.

Note: illustrative calibration with parameter values σ = 0.05, λ = 0.1, and the menu cost is such that x = 0.1.
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B Appendix to Section 2

B.1 Characterizing steady-state policy and distribution

We can rewrite the steady-state version of (2) recursively with the Bellman equation

Vn(x) ≡ 1
2

x2 + β(1− λ)E

[
min(Vn−1(x + ε), ξ + min

x∗
Vn−1(x∗))

]
+ βλ min

x∗
Vn−1(x∗) (62)

whose fixed point is the value function V(x) given a post-adjustment price gap of x (not including
any costs already paid to adjust).

Reducing to bounded V on an interval [−M, M]. First, we observe that any value function V
should satisfy V(x) ≥ 1

2 x2 . Second, we have V(0) ≤ β
1−β (1− λ)ξ, where the right is the value

from the feasible policy of always adjusting to stay at x = 0.
It follows that for sufficiently large x (i.e. |x| ≥ M for some M), V(x) must be strictly greater

than ξ +V(0). Hence, for these x the pricesetter strictly prefers to adjust, and we have min(V(x), ξ +

minx∗ V(x∗)) = minx∗ V(x∗). It is therefore not necessary to keep track of V outside [−M, M]

to evaluate (62) inside [−M, M], or to obtain the optimal policy anywhere. Hence, when ana-
lyzing (62), we restrict ourselves to [−M, M]. Further, we note that the value function satisfies
V(x) ≤ 1

2 M2 + β
1−β (1− λ)ξ for all x ∈ [−M, M], so that we can restrict our attention to bounded

V.
From now on, our restriction to [−M, M] will be implicit. We will assume that M is picked to

be large enough that, for all parameters we consider, the firm always adjusts for |x| ≥ m, for some
m < M.

Characterizing value function steps. Suppose that Vn−1(x) is nonnegative, symmetric around
0, continuously differentiable, and satisfies (Vn−1)′(x) > 0 for x > 0. Suppose also that it satisfies
Vn−1(x) ≥ 1

2 x2 and Vn−1(0) ≤ β
1−β (1− λ)ξ.

It follows that the minimum will be at x∗ = 0, and also that there will be some 0 < x̄ < M43

such that Vn−1(x) < ξ + Vn−1(0) for all x > x̄, and symmetrically for x < −x̄. This allows us to
replace (62) by the more specific

Vn(x) =
1
2

x2 + β(1− λ)
∫ x̄

−x̄
f (x′ − x)Vn−1(x′)dx′

+ β(1− λ)(Vn−1(0) + ξ)

(
1−

∫ x̄

−x̄
f (x′ − x)dx′

)
+ βλVn−1(0) (63)

where x̄ is implicitly determined by the equation Vn−1(x̄) = ξ + Vn−1(0). It follows directly from
(63) and the symmetry of f that Vn will also be nonnegative, symmetric around 0, and satisfy

43 x̄ < M follows from the choice of M above, while 0 < x̄ follows from the continuity of Vn−1(x), since for x close
enough to 0, Vn−1(x) gets arbitrarily close to Vn−1(0) and therefore below ξ + Vn−1(0).
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Vn(x) ≥ 1
2 x2 and Vn(0) ≤ β

1−β (1− λ)ξ. All that remains is investigate the derivative.
Substituting u = x′ − x, (63) can be rewritten as

Vn(x) =
1
2

x2 + β(1− λ)
∫ x̄−x

−x̄−x
f (u)Vn−1(x + u)du

+ β(1− λ)(Vn−1(0) + ξ)

(
1−

∫ x̄−x

−x̄−x
f (u)du

)
+ βλVn−1(0)

Now, differentiating with respect to x using Leibniz’s rule, we find

(Vn)′(x) = x + β(1− λ)

(
− f (x̄− x)Vn−1(x̄) + f (−x̄− x)Vn−1(−x̄) +

∫ x̄−x

−x̄−x
(Vn−1)′(x + u)du

)
− β(1− λ)(ξ + Vn−1(0))

(
− f (x̄− x)Vn−1(x̄) + f (−x̄− x)Vn−1(−x̄)

)
= x + β(1− λ)

∫ x̄

−x̄
f (x′ − x)(Vn−1)′(x′)dx′ (64)

where the cancellation follows from Vn−1(x̄) = Vn−1(−x̄) = ξ + Vn−1(0). It follows that Vn is
continuously differentiable.

Now, note that using the symmetry of f , we can rewrite (64) as

(Vn)′(x) = x + β(1− λ)
∫ x̄

0
( f (x′ − x)− f (−x′ − x))(Vn−1)′(x′)dx′ (65)

The single-peakedness of f implies that f (x′ − x)− f (−x′ − x) > 0 for all x, x′ > 0, so (Vn)′(x) >
0 for x > 0 follows from (Vn−1)′(x′) > 0 for x′ > 0.

Explicitly constructing V through value function iteration and obtaining properties of the op-
timal policy. Write V0(x) ≡ 1

2 x2, which satisfies all hypotheses put on Vn−1 in the previous
discussion, and construct the series {Vn} recursively. By induction, each Vn must be nonnega-
tive, symmetric around 0, continuously differentiable, satisfy (Vn)′(x) > 0 for x > 0, and satisfy
Vn(x) ≥ 1

2 x2 and Vn(0) ≤ β
1−β (1− λ)ξ.

Now, by standard arguments, the right side of (62) is a contraction (in the sup norm) of modu-
lus β. Hence the Vn converge uniformly to some fixed point V. This V must be nonnegative, sym-
metric around 0, weakly increasing for x > 0, and satisfy V(x) ≥ 1

2 x2 and V(0) ≤ β
1−β (1− λ)ξ.

Following the same logic as before, the set of points x ≥ 0 for which V(x) = ξ + V(0) must a
closed subset of (0, M). Let the minimum of this set be x̄; then (63) holds with this x̄.

Now, directly differentiating (63), the continuous differentiability of V follows from that of f .
Hence (65) holds as a fixed point for V as well.

V is weakly increasing and must increase by at least ξ from V(0) to V(x̄), so we have V ′(x) ≥ 0
everywhere with x > 0 and V ′(x) > 0 for some subset of x > 0 of positive measure. It then follows
from (65) that since f (x′ − x)− f (−x′ − x) > 0 for all x, x′ > 0, we have V ′(x) > 0 for all x > 0
(and similarly V ′(x) < 0 for x < 0 and V ′(0) = 0).
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This implies that there is a unique x̄ satisfying V(x̄) = ξ + V(0). Hence, we have derived
an optimal Ss policy, where there is no adjustment when x is in the interval [−x̄, x̄], and always
adjustment to 0 outside of this interval.

Finally, we note that differentiating (64) around the fixed point, we get

V ′′(x) = x + β(1− λ)
∫ x̄

0
( f ′(−x′ − x)− f ′(x′ − x))V ′(x′)dx′ (66)

so that the continuous differentiability of V ′ follows from that of f . For the special case x = 0, we
note that by assumption f ′(−x′) = − f ′(x′) > 0 for all x′ > 0, so that the integral in (66) is positive
and V ′′(0) > 0.

Steady-state distribution. We have shown above that in the steady-state version of the pricing
problem, firms follow an Ss policy with adjustment to 0 whenever the price gap is outside the
interval [−x̄, x̄] (or there is a free adjustment with probability λ).

This implies a law of motion T for the density g prior to adjustment given by

(T g)(x′) =
∫ ∞

−∞
p(x, x′)g(x)dx (67)

where the transition density p(x, x′) from x to x′, satisfying
∫

p(x, x′)dx′ = 1, is given by

p(x, x′) ≡

 f (x′ − x) |x| ≤ x̄

f (x′) |x| > x̄
(68)

Defining υ(x′) ≡ min|x|≤x̄ f (x′− x), we note that by our assumptions on f that υ(x′) > 0 for all x′.
Defining h(x′) ≡ min( f (x′), υ(x′)), we have p(x, x′) ≥ h(x′) > 0 for all x, x′, and we can rewrite
(67) for any density g with integral 1 as

(T π)(x′) = h(x′) +
∫ ∞

−∞

(
p(x, x′)− h(x′)

)
g(x)dx

where p(x, x′)− h(x′) ≥ 0. It follows that for any two densities g1 and g2 that we have

∫ ∞

−∞
|(T (g1 − g2))(x′)|dx′ =

∫ ∞

−∞

∣∣∣∣∫ ∞

−∞

(
p(x, x′)− h(x′)

)
(g1(x)− g2(x))dx

∣∣∣∣ dx′

≤
∫ ∞

−∞

∫ ∞

−∞

(
p(x, x′)− h(x′)

)
|g1(x)− g2(x)|dxdx′

=

(∫ ∞

−∞
|g1(x)− g2(x)|

(∫ ∞

−∞

(
p(x, x′)− h(x′)

)
dx′
)

dx
)

=

(
1−

∫ ∞

−∞
h(x′)dx′

) ∫ ∞

−∞
|g1(x)− g2(x)|dx
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so that, defining ‖g‖ ≡
∫ ∞
−∞ |g(x)|dx to be the L1 norm andH ≡

∫ ∞
−∞ h(x′)dx′ > 0, we have

‖T (π1 − π2)‖ ≤ (1−H)‖π1 − π2‖ (69)

implying that T is a contraction on densities in the L1 norm with modulus 1−H.
It follows that there is a unique stationary density g that is a fixed point of the contraction T ,

and that we will reach this density by starting with any g0 ∈ L1 and repeatedly iterating. Since T
with symmetric f preserves symmetry around 0, it follows that the stationary g must be symmetric
as well (since we can start with symmetric g0 and iterate). It also follows from (67)–(68) and the
continuous differentiability of f that g is continuously differentiable.

B.2 Envelope result and contraction

In this section, we obtain some useful further technical results for the canonical menu cost model.
In particular, we show that the backward mapping on V is differentiable, and indeed a contraction
in a certain norm that regulates both the level and derivative of V. Hence, iterating backward in
response to any sequence of first-order aggregate cost shocks, we retain Ss policies (x, x̄, x∗), which
are differentiable with respect to the shocks.

To start, consider the space of value functions V on [−M, M] that are bounded and have
bounded first derivative, endowed with the norm

‖V‖ ≡ sup
x
|V(x)|+ ζ sup

x
|V ′(x)| (70)

for some ζ > 0. Note that this space is complete (a Banach space).44 Note also that in this norm, in
a neighborhood around the steady-state V derived in the previous section, the adjustment policy
will still be Ss. Indeed, if we write the mapping T : (V+, c) → V from V+ in this space and a cost
scalar c to V also in this space45, given locally by the Bellman equation

V(x) =
1
2
(x− c)2 + min

x∗,x,x̄

[
β(1− λ)

∫ x̄

x
f (x′ − x)V+(x′)dx′

+β(1− λ)(V+(x∗) + ξ)

(
1−

∫ x̄

x
f (x′ − x)dx′

)
+ βλV+(x∗)

]
(71)

then the optimum is still characterized by the value matching conditions V+(x̄) + ζ = V+(0) and
V+(x) + ζ = V+(0) and the first-order condition V ′+(x∗) = 0; and from the implicit theorem,
these optima are differentiable with respect to V+ in this norm around the steady state, with dx̄ =

44To see this, start by noting that for any Cauchy sequence {Vn} in this norm, {Vn} and {V′n} will also be Cauchy
sequences in the ordinary sup norm, and therefore both individually converge to some limits. Then, the only remaining
question to determine whether {Vn} converges in our norm is whether the limit of V′n equals the derivative of the limit
of Vn; this, in turn, is a standard result in real analysis when there is uniform convergence (see e.g. Rudin (1976),
Theorem 7.17).

45Boundedness of V follows immediately from the Bellman equation, and of of V′ follows from differentiating as in
(64).
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−dV+(x̄)/V ′+(x̄), dx = −dV+(−x̄)/V ′+(−x̄), and dx∗ = −dV ′+(0)/V ′′+(0).
Since the policy is differentiable with respect to V+, we have a simple envelope result (obtain-

able simply by differentiating (71)), where in response to a perturbation dV+, (71) becomes

dV(x) = β(1− λ)
∫ x̄

−x̄
f (x′ − x)dV+(x′)dx′ + β(1− λ)

(
1−

∫ x̄

x
f (x′ − x)dx′

)
dV+(0) + βλdV+(0)

(72)
Note that this is a bounded map from dV+ to dV in our normed space. First, it is immediate from
(72) that supx |dV(x)| ≤ β supx |dV+(x)|.

Second, if we differentiate (72), we obtain

dV ′(x) = β(1− λ)
∫ x̄

−x̄
f (x′ − x)dV ′+(x′)dx′ − β(1− λ) f (x̄− x) (dV+(x̄)− dV+(0))

+ β(1− λ) f (−x̄− x) (dV+(−x̄)− dV+(0))

and hence

sup
x
|dV ′(x)| ≤ β(1− λ) sup

x
|dV ′+(x)|+ β(1− λ)

(
sup

x
f (x̄− x) + f (−x̄− x)

)
4 sup

x
|dV+(x)|

and if we define the weight ζ in our norm (70) to be ζ ≡ (1−β)/2
4β(1−λ)(supx f (x̄−x)+ f (−x̄−x)) , this reduces

to just

sup
x
|dV ′(x)| ≤ β(1− λ) sup

x
|dV ′+(x)|+ 1− β

2
ζ−1 sup

x
|dV+(x)|

and we have

‖V‖ = sup
x
|dV(x)|+ ζ sup

x
|dV ′(x)|

≤ β sup
x
|dV+(x)|+ β(1− λ)ζ sup

x
|dV ′+(x)|+ 1− β

2
sup

x
|dV+(x)|

<
1 + β

2

(
sup

x
|dV+(x)|+ ζ sup

x
|dV ′+(x)|

)
=

1 + β

2
‖V+‖

and we conclude that the derivative mapping dV+ to dV is a contraction with modulus 1+β
2 in our

norm.

C Appendix to Section 3

C.1 Envelope results for proof of proposition 1

Starting around the steady state, if there is a contemporaneous shock dc where c ≡ log MC, then
clearly dV(x)

dc = −x from (71). Then, letting Vn(x) denote the value function with n periods of
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anticipation of this shock, so that dV0(x) = −xd log MC, (72) gives the recursion from dVn−1 to
dVn. Further, this recursion preserves the property that dVn(0) = 0 always, and hence simplifies
to just

dVn(x) = β(1− λ)
∫ x̄

−x̄
f (x′ − x)dVn−1(x′)dx′ (73)

which is equivalent to our envelope result (22).
Observing that (73) is exactly the recursion that defines En(x) given the same base case (times

−1) of E0(x) = x, but with an extra β added on each iteration, we conclude that

dVn(x)
dc

= −βnEn(x) (74)

and also
dV ′n(x)

dc
= −βn(En)′(x)

Furthermore, the recursion (73) is the same as the recursion (64) obeyed by the steady-state V ′(x),
except that the latter adds x on every iteration (rather than just the base case). Since we have
shown that (64) is a contraction with the norm (70), it follows that the steady state obeys both

V ′(x) =
∞

∑
n=0

βnEn(x) ≡ F(x)

and

V ′′(x) =
∞

∑
n=0

βn(En)′(x) ≡ F′(x)

which both converge uniformly.

C.2 Proof that virtual survival is positive and decreasing

For the time-dependent models characterized in proposition 1 to be standard time-dependent
models, their survival functions (which we call virtual survival functions) must be nonnegative
and nonincreasing. Here, we will show that given our assumptions, they are indeed strictly posi-
tive and decreasing.

First, we introduce an operator that will be useful both here and in the proof of proposition 2
in the next subsection. Define T : L2([−x̄, x̄])→ L2([−x̄, x̄]) by

(Tg)(x) = (1− λ)
∫ x̄

−x̄
f (x′ − x)g(x′)dx′ (75)

given free adjustment rate λ and shock density f , and some policy bands x̄. Recall the conditions
we assumed in section 2.1 on the density f : differentiable, symmetric around 0, and single-peaked
at 0, with f ′(x) < 0 for x > 0 and vice versa (implying that f (x) > 0 everywhere).46

46These assumptions are essential for our result, and it is possible to break the result when they are violated. To take
a simple example that retains symmetry but breaks single-peakedness, suppose that f (x) = 1

2 δ(x− 2x̄) + 1
2 δ(x + 2x̄),
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We note that T can be used to define expectation functions, since the recursion (2.1) is equiva-
lent to En = TEn−1. It can also be used to iterate on the density of price gaps, dropping readjusters:
given an end-of-period density φn−1 yesterday, the end-of-period density of non-readjusting firms
is φn = Tφn−1 today.

Properties of the operator T. We can obtain from (75) several properties of T. Of these, a) through
c) will be needed for this proof, while d) and e) will be used to characterize eigenvalues in the next
section.

a) T is a Hilbert-Schmidt integral operator on L2([−x̄, x̄]) with symmetric kernel k(x, x′) =

f (x′ − x), and therefore is self-adjoint. Since the kernel is continuous, Tg is continuous for
any g.

b) T maps even g to even g, and odd g to odd g.

c) For any odd g where g(x) ≥ 0 for all x ≥ 0, and where g(x) > 0 for some positive-
measure subset, Tg(x) > 0 for all x > 0. To see this, for any x > 0 exploit oddness to
write (Tg)(x) =

∫ x̄
0 ( f (x′ − x)− f (−x′ − x)) g(x′)dx′ > 0, where the inequality follows be-

cause single-peakedness implies f (x′ − x)− f (−x′ − x) > 0 for all x, x′ > 0, and g is strictly
positive on some subset of [0, x̄] of positive measure.

d) Eigenfunctions ψ of T with nonzero eigenvalues are continuously differentiable. If (ψ, µ) be
any eigenfunction-eigenvalue pair with µ 6= 0, note that ψ = µ−1Tψ, and so ψ must be C0

by a). Applying ψ = µ−1Tψ and (75) again shows that it is C1.

e) Eigenvalues of T must have magnitude strictly less than 1. To see this, let (ψ, µ) be any
eigenfunction-eigenvalue pair with µ 6= 0. From property d), ψ is continuous and attains
its maximum on [−x̄, x̄] at some x∗. Then we observe that |λ||ψ(x∗)| = |(Tψ)(x∗)| ≤
|ψ(x∗)|

∫ x̄
−x̄ f (x′ − x∗)dx′ < |ψ(x∗)|, and hence |λ| < 1.

Characterizing the expectation functions. We note that E0(x) = x is odd and satisfies E0(x) > 0
for all x > 0. Hence, applying b) and c) above, it follows recursively that TnE0 = En is odd and
satisfies En(x) > 0 for all x > 0. It also follows from a) that En is continuous.

where δ is a Dirac delta. Here, without adjustment, x either declines by 2x̄ or increases by 2x̄. Hence, starting at x̄,
there is a 1

2 chance of declining to −x̄ and not adjusting, and a 1
2 chance of increasing to 3x̄ and adjusting back to 0.

Iterating forward, we see that En(x̄) = (− 1
2 )

n x̄, implying a virtual survival function that is both sometimes negative
and nonmonotonic.
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We observe that E1(x) < x for all 0 < x ≤ x̄:

E1(x) =
∫ x̄

−x̄
f (x′ − x)x′dx′

=
∫ x+(x̄−x)

x−(x̄−x)
f (x′ − x)x′dx′ +

∫ x−(x̄−x)

−x̄
f (x′ − x)x′dx′

= x
∫ x+(x̄−x)

x−(x̄−x)
f (x′ − x)dx′ +

∫ x−(x̄−x)

−x̄
f (x′ − x)x′dx′

≤ x
∫ x̄

−x̄
f (x′ − x)dx′ < x

Here, the equality in the third line follows from the symmetry of f , and the first inequality in the
fourth line follows from x′ ≤ x on the interval [−x̄, x− (x̄− x)].

Now, for n ≥ 1 define φn
x(x′) to be the density of price gaps assuming that the price gap n

periods ago was x, dropping all firms that have adjusted prices. This can be defined recursively
using the base case φ1

x(x′) = f (x′ − x) and φn
x = Tφn−1

x . We observe that (φ1
x − φ1

−x)(x′) = f (x′ −
x)− f (x′+ x) is an odd function by symmetry of f , and that it also satisfies (φ1

x − φ1
−x)(x′) > 0 for

all x′ > 0 by single-peakedness of f . Hence, like above with En, it follows recursively from b) and
c) that for all n, φn

x − φn
−x is odd and satisfies (φn

x − φn
−x)(x′) > 0 for all x′. Symmetry also implies

that φn
−x(x′) = φn

x(−x′).
Next, we note that we can write any En either directly as the mean of x′ given φn

x(x′)

En(x) =
∫ x̄

−x̄
φn

x(x′)x′dx′ =
∫ x̄

0
(φn

x(x′)− φn
−x(x′))x′dx′ (76)

or as the mean of the one-period-ahead expectation E1(x′) given φn−1
x (x′)

En(x) =
∫ x̄

−x̄
φn−1

x (x′)E1(x′)dx′ =
∫ x̄

0
(φn−1

x (x′)− φn−1
−x (x′))E1(x′)dx′ (77)

We can then combine (76), (77), and our result that E1(x′) < x′ for 0 < x′ < x̄ write for any
0 < x ≤ x̄:

En(x) =
∫ x̄

0
(φn−1

x (x′)− φn−1
−x (x′))E1(x′)dx′

<
∫ x̄

0
(φn−1

x (x′)− φn−1
−x (x′))x′dx′

= En−1(x) (78)

Since extensive margin virtual survival is proportional to En(x̄), (78) combined with our earlier
result that En(x) was positive for x > 0 implies that extensive margin virtual survival is strictly
positive and strictly declining, as desired.

Intensive margin virtual survival is (En)′(0). Differentiating En(x) =
∫ x̄
−x̄ f (x′− x)En−1(x′)dx′
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around x = 0, we obtain

(En)′(0) = −
∫ x̄

−x̄
f ′(x′)En−1(x′)dx′

= 2
∫ x̄

0
(− f ′(x′))En−1(x′)dx′ (79)

We observe that (79) integrates En−1(x′) with weights − f ′(x′) that do not depend on n and are
strictly positive on the interval 0 < x′ ≤ x̄. We know from above that for 0 < x′ ≤ x̄, both
En−1(x′) > 0 and En(x′) < En−1(x′). It follows that (En)′(0) is strictly positive for all n and
strictly declining in n, as desired.

C.3 Proof of proposition 2

Applying the spectral theorem. Since T is self-adjoint and (like all Hilbert-Schmidt integral
operators) compact from property a), we can apply the spectral theorem for separable infinite-
dimensional Hilbert spaces, which states that L2([−x̄, x̄]) has a countably infinite orthonormal
basis {ψn} of eigenfunctions of T, with corresponding real eigenvalues {µn}, where the only ac-
cumulation point of µn is 0.

Indeed, since by property b), T preserves evenness and oddness, we can also define it on the
even and odd subspaces of L2([−x̄, x̄]), and then apply the spectral theorem separately on each
subspace, to get separate orthonormal bases for the even subspace and the odd subspace. Since
the sum of the even and odd subspaces is the entire function space, these bases combine to form
an orthonormal basis for all of L2([−x̄, x̄]). Hence, we can further refine our statement in the first
paragraph, and conclude that all eigenfunctions ψn in the orthonormal basis are either even or
odd.

Extensive and intensive margin survival curves. Using the above, we project E0 onto the basis
of eigenfunctions

E0 = ∑
n
〈E0, ψn〉ψn (80)

where 〈·, ·〉 is the usual inner product on L2. Note that 〈E0, ψn〉 will be zero for all even ψn, and
only nonzero for some odd ψn.

Applying T to (80) gives
Es(x) = ∑

n
〈E0, ψn〉µs

nψn(x) (81)

which now holds pointwise for any s > 0.47

Define µ̄ to be the eigenvalue µn of maximum magnitude such that 〈E0, ψn〉 is nonzero, and

47Normally this projection could differ on a set of measure 0, but from properties 1 and 3 we know that E1 = TE0

is continuous and also that ψn is continuous for any µn 6= 0, and continuous functions cannot differ on a set of only
measure 0.
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define ψ̄ to be the projection of E0 onto the corresponding eigenspace, i.e.

ψ̄(x) ≡ ∑
{n:µn=µ̄}

〈E0, ψn〉ψn(x)

where we note that ψ̄(x) is odd. Then it follows from (81) that

lim
s→∞

Es(x)
µ̄s = ψ̄(x) (82)

Since E0(x) = x > 0 for all x > 0, repeatedly applying property c) it must also be true that
Es(x) > 0 for all x > 0. Taking the limit (82), we must have ψ̄(x) ≥ 0 for all x > 0 and also
µ̄ > 0. Further, given that ψ̄ is continuous and by construction is not identically zero, we must
have ψ̄(x) > 0 for some subset of [0, x̄] of positive measure, and so (Tψ̄)(x) = λψ̄(x) > 0 for all
x > 0. We conclude that ψ̄(x) > 0 for all x > 0.

Using this result, we can also write

µψ̄′(0) = (Tψ̄)′(0) = −
∫ x̄

−x̄
φ′(x′)ψ̄(x′)dx′

= −2
∫ x̄

0
φ′(x′)ψ̄(x′)dx′ > 0

and we conclude that ψ̄′(0) > 0 as well.
The intensive and extensive margin “virtual survival” curves are given by Φi

t ≡ (Et)′(0) and
Φe

t ≡ Et(x̄)/x̄, which using (82) and the preceding results have the limits

lim
s→∞

Φi
t

µ̄s = ψ̄′(0) > 0

lim
s→∞

Φe
t

µ̄s =
ψ̄(x̄)

x̄
> 0

It follows that both Φi
t and Φe

t asymptotically decay at the rate µ̄, and that their asymptotic hazards
are both 1− µ̄.

The asymptotic hazard of virtual survival is strictly greater than that of actual survival. The
subset of weakly positive functions is a total cone in L2([−x̄, x̄]), and from property c), applying
T to any of these functions that is nonzero gives a function that is strictly positive everywhere
and therefore in the interior of the cone. In other words, T is strongly positive with respect to
this cone, and we can apply a standard extension of the Krein-Rutman theorem48 to conclude that
the eigenvalue µ̂ of T with largest magnitude is simple, strictly positive, and has a corresponding
eigenfunction ψ̂ that is strictly positive. Since ψ̂ is strictly positive, we note that it must be even
rather than odd.

48See Theorem 19.3 in Deimling (1985).
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Figure C.1: Ratio of second to first odd eigenvalues of the transition operator across the parameter space of
the menu cost model.

Now, let the probability of survival s periods from now starting at some point x be Φactual
s (x),

where Φactual
0 (x) ≡ 1 and Φactual

s = TsΦactual
0 . We know that

Φactual
s (x) = ∑

n
〈Φactual

0 , ψn〉µs
nψn(x)

and note that since ψ̂ is strictly positive, 〈Φactual
0 , ψ̂〉 > 0, so that taking the limit as s→ ∞ we have

lim
s→∞

Φactual
s (x)

µ̂s = 〈Φactual
0 , ψ̂〉ψ̂(x)

so that the asymptotic hazard rate of actual survival is 1− µ̂.
Since µ̂ is the (simple) dominant eigenvalue and corresponds to an even eigenfunction, it must

be strictly larger than µ̄, which was associated with odd eigenfunctions. Hence the asymptotic
hazard of actual survival, 1− µ̂, is less than that of virtual survival, 1− µ̄.

C.4 State-dependent models that are exactly equivalent to Calvo

Here, we revisit the question of whether there are more SD models that are exactly equivalent to
Calvo models, in the spirit of Gertler and Leahy (2008).

To investigate this, we look for densities f (ε) of the idiosyncratic shock εit that generate
Et(x) = φtx for some φ ∈ [0, 1) and for all x ∈ [x, x]. This is sufficient, but not necessary for
Calvo, since Calvo only requires that Et′(0) = φt = Et(x)/x. Moreover, notice Et(x) = φtx fol-
lows from E1(x) = φx by induction since if Et(x) = φtx holds, then it is also the case that

Et+1(x) =
∫ x

x
f (x′ − x)Et(x′)dx′ =

∫ x

x
f (x′ − x)φtx′dx′ = φtE1(x) = φt+1x
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So which densities f (ε) guarantee that E1(x) = φx? It needs to be the case that

φx =
∫ x

x
f (x′ − x)x′dx′

for any x ∈ [x, x]. Taking derivatives and integrating by parts, this implies

φ + f (x− x)x− f (x− x)x = F(x− x)− F(x− x) (83)

where we denote the cdf of f by F. Taking derivatives one more time, we find

− f ′(x− x)x + f ′(x− x)x = − f (x− x) + f (x− x)

Using x = −x and the fact that f is symmetric and f ′ is anti-symmetric, we find

f (x− x)− f ′(x− x)x = f (x + x)− f ′(x + x)x (84)

This equation has to hold for any x ∈ [0, x].
Observe that without loss, we can normalize x to 1. Why? Because if and only if we find a

density f̂ (ε) for which (84) holds with x = 1, then f (ε) ≡ f̂ (ε/x) satisfies (84) with any other
x > 0. With x = 1, (84) is

f (1− x)− f ′(1− x) = f (1 + x)− f ′(1 + x) (85)

Now, let us define the following function: g(ε) ≡ e−ε f (ε) for ε ∈ [0, 2]. Its derivative is equal to

g′(ε) = −e−ε
(

f (ε)− f ′(ε)
)

which is convenient since terms involving f − f ′ are exactly what appears in (85). In particular,
we can write

g′(1 + x) = −e−(1+x) ( f (1 + x)− f ′(1 + x)
)

g′(1− x) = −e−(1−x) ( f (1− x)− f ′(1− x)
)

so that (85) can be rewritten as
g′(1− x) = e2xg′(1 + x) (86)

Any positive differentiable g, defined on [0, 2] that satisfies (86) gives us a density f (ε) = eεg(ε)
(up to scale) of an SD model that is exactly equivalent to Calvo.

A simple example. We guess g′(1 + x) = −be−c(1+x) for some constants c ∈ (0, 1] and b > 0.
Then, by (86) it has to be that

g′(1− x) = −be−c+(2−c)x
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Integrating g′, we therefore find

g(ε) =

a + b
2−c e2−2c−(2−c)ε ε ≤ 1

a + b
2−c e−c − b

c (e
−c − e−cε) ε > 1

where for simplicity of this example we set the constant a = 0. Multiplying with eε gives the
density f for ε ≥ 0 (and symmetrically for ε ≤ 0)

f (ε) =

 b
2−c e2−2c−(1−c)ε ε ≤ 1

b
2−c e−c+ε − b

c (e
−c − e−cε) eε ε > 1

Using this expression, we see that f has positive support on [−y, y], where y = 1− 1
c log 2−2c

2−c .
To normalize f , we can choose b such that 2

∫ y
0 f (y)dy = 1. This gives a closed form expression

for b. And with that, we can compute the Calvo hazard 1− φ, where φ follows from (83)

φ = 2
b

2− c
1

1− c
e2−2c

[
1− (2− c) e−(1−c)

]
where we simply used (83) with x = 0 (any value of x works).

D Appendix to Section 4

D.1 NKPC regressions with simulated data

In this section, we use simulated data from our two baseline SD models – Golosov-Lucas and
Nakamura-Steinsson – to run the standard NKPC regression below:

πt = βEtπt+1 + γπt−1 + κm̂ct + ut (87)

The simulation procedure works as follows. We first posit a stochastic process for the real marginal
cost m̂ct. Then, using the generalized Phillips curve (13), it is straightforward to jointly simulate
paths for m̂ct, inflation πt, lagged inflation πt−1, and inflation expectations Etπt+1. We then use
these simulated paths to estimate equation (87) via ordinary least squares. We simulate a sample
of size 10,000.

We assume that m̂ct is given by the sum of an AR(1) process with persistence 0.8 and an i.i.d.
shock term, both with the same unconditional variance.49 For each SD model, we analyze four
different specifications of (87). First, we fix β and κ at the values suggested by approximating the
generalized Phillips curve K, as in the main text, and compute only the R2 of the fit. Then, we fix
β = 0.99 and γ = 0, and estimate only the slope κ. In the third specification, we fix γ = 0 and
estimate β and κ. Finally, in the last specification we impose no parameter restrictions.

49In a Calvo model, having only an AR(1) component generates perfect multicollinearity between Etπt and m̂ct. This
problem extends to our SD models, hence the need for the i.i.d. term.
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Golosov-Lucas Nakamura-Steinsson

K approx.
β = 0.99

γ = 0 Unrestricted K approx.
β = 0.99

γ = 0 Unrestricted
γ = 0 γ = 0

κ 1.709 1.743 1.762 1.763 0.468 0.454 0.472 0.472
β 0.99 0.99 0.979 0.981 0.99 0.99 0.949 0.935
γ 0 0 0 -0.002 0 0 0 0.014
R2 1.000 1.000 1.000 1.000 0.998 0.998 0.999 0.999

Table D.1: Regression results with simulated data.

Table D.1 shows results. Standard errors of parameter estimates are negligible, and therefore
omitted. There are several interesting features in these results. First, the estimated values of κ

are close to the ones suggested by approximating the whole generalized Phillips curve, which is
not surprising. Second, the estimated forward coefficient β may differ from the value 0.99 used in
simulations, and the backward coefficient may slightly differ from zero when unrestricted. Finally,
all regressions have very high R2. It is not surprising, however, that the K approximation does not
generate the highest R2. This approximation maximizes the minimum R2 of an NKPC regression
among all possible finite-variance m̂ct stochastic processes, which is not necessarily attained for
a process similar to the one we use in this simulation exercise. Nevertheless, these simulations
provide a concrete example of the extremely good fit of the Calvo approximation for SD models.

D.2 Approximate equivalence to Calvo when the average survival function is expo-
nential

Define L({as}), for any sequence {as}, to be the lower triangular Toeplitz matrix with first col-
umn {as}, and similarly define U ({as}) to be the upper triangular Toeplitz matrix with first row
{as}. In this notation the definition (10) of pass-through matrix for a TD model, for instance, is
(∑s Φs)

−1 (∑s βsΦs)
−1 L({Φs})U ({βsΦs}).

The equivalence result (14) can be written in this notation as

Ψ = α
L({Φe

s})U ({Φe
s})

(∑s Φe
s) (∑s βsΦe

s)
+ (1− α)

L({Φi
s})U ({Φi

s})
(∑s Φi

s) (∑s βsΦi
s)

(88)

Now, suppose that Φe
s = ΦCalvo

s + ηe
s and Φi

s = ΦCalvo
s + ηi

s, with ηe
s and ηi

s small and ΦCalvo
s ≡

(1− λ)s, i.e. that both the extensive and intensive margin virtual survival functions are close to
exponential (Calvo). Then to first order in the ηs, (88) can be approximated as

Ψ ≈
(

1− ∑s αηe
s + (1− α)ηi

s

∑s ΦCalvo
s

− ∑s βs(αηe
s + (1− α)ηi

s)

∑s βsΦCalvo
s

)
ΨCalvo

+
L({αηe

s + (1− α)ηi
s})U ({ΦCalvo

s }) + L({ΦCalvo
s })U ({αηe

s + (1− α)ηi
s})

(∑s ΦCalvo
s ) (∑s βsΦCalvo

s )
(89)
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where ΨCalvo is the Calvo pass-through matrix associated with ΦCalvo
s .

Note that in (89), the ηe
s and ηi

s only appear together in the form αηe
s + (1− α)ηi

s, which equals
the discrepancy between the average survival function of the mixture and the Calvo survival func-
tion:

αηe
s + (1− α)ηi

s = αΦe
s + (1− α)Φi

s −ΦCalvo
s (90)

If the average survival function equals the Calvo exponential survival function, then to first order
in the ηs the pass-through matrix of the menu cost model is the same as Calvo.

More generally, to first order in the ηs, the discrepancy between the menu cost pass-through
matrix and the Calvo pass-through matrix is of the same magnitude as the gap between the av-
erage survival function of the mixture and the Calvo exponential survival function. If this gap
is small (and the ηs are not too big), then the two pass-through matrices should be close, which
carries over to the generalized Phillips curve.

D.3 Proof of proposition 3 and of the convergence of ∑k Ψk

Here, we prove that ∑k Ψk converges, as claimed in footnote 12, and establish proposition 3. Since,
in proposition 1, we prove the equivalence of an SD model to a mixture of TD models, we can
restrict our attention to an arbitrary mixture of (finitely many) TD models. For simplicity, we will
start by proving these results for a single TD model, and then show in Step 4 of the proof how the
argument extends to a mixture.

For a TD model with survival function Φs, let us interpret the pass-through matrix Ψ defined
in (10), whose columns sum to weakly less than 1, as the transpose of a Markov transition matrix
P on the state space of nonnegative integers. In this interpretation, we use the generalized notion
of denumerable Markov chain from Kemeny, Snell and Knapp (1976), where the sum of transition
probabilities from a state can be less than 1, corresponding to the termination of the chain. (We
will use notation and ideas from Kemeny et al. (1976) as well.)

Given Ψ defined in (10), we can write P = Ψ′ as

P = AB

where

A =
1

∑s≥0 βsΦs


Φ0 0 0 · · ·

βΦ1 Φ0 0 · · ·
β2Φ2 βΦ1 Φ0 · · ·

...
...

...
. . .


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and

B =
1

∑s≥0 Φs


Φ0 Φ1 Φ2 · · ·
0 Φ0 Φ1 · · ·
0 0 Φ0 · · ·
...

...
...

. . .


The sum Ψ + Ψ2 + . . . is then the transpose of the object N̄ ≡ P + P2 + . . ., where N̄ij gives the
expected number of visits to state j after being in state i today.

Although N̄ is positive, it is not necessarily finite. Our strategy to characterize N̄ will be to
construct an alternative “shift-invariant” Markov chain with simpler structure and weakly higher
transition probabilities, and show that its expected number of visits N̄SI is finite, implying that
N̄ ≤ N̄SI is as well. We will then show that asymptotically, the gap between N̄ and N̄SI falls to
zero, and so that the asymptotic properties of N̄SI extend to N̄.

To do so, let us first extend P, A, and B to cover the state space of all integers, filling in all other
transition probabilities with zeros. (This does not alter N̄ij when i and j are both nonnegative.) We
then construct the shift-invariant Markov chain PSI on the integers50 with matrix

PSI = ASI BSI

where ASI and BSI are each defined on all integers i, j ∈ Z such that

ASI
i,j =


βi−jΦi−j

∑s≥0 βsΦs
i ≥ j

0 i < j

and

BSI
i,j =

0 i > j
Φj−i

∑s≥0 Φs
i ≤ j

Note that both ASI and BSI agree with A and B within the nonnegative integers, but whereas the
only nonzero entries in A and B are from the nonnegative integers to themselves, ASI and BSI both
have other positive entries. Hence ASI ≥ A, BSI ≥ B, and PSI ≥ P, implying that N̄SI ≥ N̄ as
well.

Also note that both ASI and BSI , and therefore PSI , are shift-invariant: all entries along a diag-
onal are the same, and the probability PSI

i,i+j of moving to the right by j only depends on j. Denote
this common probability by ψj. Similarly, define aj ≡ Ai,i−j and bj ≡ Bi,i+j.

50To interpret (abandoning our Markov chain language for a minute and returning to the original meaning of the
pass-through matrix): recall that Ps,s+j = Ψs+j,s gives the amount by which prices will increase at date s + j, given a
first-order increase in nominal marginal cost at date s that firms learned at date 0. PSI

s,s+j is the same, except that all
changes in cost are perfectly anticipated going back to date −∞.
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Step 1: characterizing the z-transform ψ(z) of PSI . Defining the z-transforms a(z) ≡ ∑∞
j=0 ajz−j,

b(z) ≡ ∑∞
j=0 bjzj, ψ(z) ≡ ∑∞

j=−∞ ψjzj, and Φ(z) ≡ ∑∞
j=0 Φjzj, we can write

ψ(z) = a(z)b(z) =
Φ(βz−1)Φ(z)

Φ(β)Φ(1)
(91)

where we use the fact that the product of two infinite shift-invariant matrices is given by convo-
lution of their coefficients, and that this convolution becomes multiplication when applying the
z-transform.

We recall that by our regularity assumption on TD models (see footnote 11), Φ(z) has a radius
of convergence of at least υ > 1. Hence Φ(βz−1) is analytic for |z| > βυ−1, and ψ(z) is analytic on
the annulus βυ−1 < |z| < υ.

Note also that ψ(z) is strictly convex on (βυ−1, υ), since its Laurent expansion has all positive
coefficients (being the product of Φ(βz−1)/Φ(β) and Φ(z)/Φ(1)). It also satisfies ψ(β) = ψ(1) =
1, and it follows that ψ(z) < 1 for all z ∈ (β, 1), and that β and 1 are simple zeros of ψ(z) − 1
because ψ′(β) and ψ′(1) are nonzero (strictly negative and positive, respectively). Further, for all
non-real z such that β ≤ |z| ≤ 1, we must have ψ(z) 6= 1, since ψ(z) being real for z complex
implies that the triangle inequality holds strictly51, |ψ(z)| < ψ(|z|) ≤ 1.

Next, we argue that there is some γ > 1 such that on the annulus βγ−1 < |z| < γ, z = β

and z = 1 are the only zeros of ψ(z)− 1. We have already shown this for β ≤ |z| ≤ 1. Suppose
to the contrary that there is no such γ, and that there exist zeros for |z| > 1 arbitrarily close to
1 or |z| < β arbitrarily close to β. These zeros z must have limit points on the circles |z| = 1 or
|z| = β, respectively, both of which are impossible since ψ is analytic and not identically zero on
the annulus βυ−1 < |z| < υ.

We conclude that ψ(z)− 1 is analytic and has two simple zeros on some annulus βγ−1 < |z| <
γ, with the zeros at z = β and z = 1.

Step 2: characterizing N̄SI and its first difference. Since the product of shift-invariant matrices
on the integers is given by convolution, and this convolution becomes multiplication when ap-
plying the z-transform, it follows that the probability of moving to the right by j after n periods,
[(P̄SI)n]s,s+j, is equal to the jth coefficient of ψ(z)n.

We know from above that ψ(z) has two simple zeros at β and 1 and is strictly less than 1 in the
annulus β < |z| < 1. Hence, picking any zl , zh satisfying β < zl < zh < 1, we have |ψ(z)| ≤ M < 1
for zl ≤ |z| ≤ zh. On this closed annulus, ψ(z) + ψ(z)2 + . . . therefore converges uniformly
to ψ(z)

1−ψ(z) . Hence, the expected number of future visits [N̄SI ]s,s+j ≡ [P̄SI + (P̄SI)2 + . . .]s,s+j, to
a state j to the right of the current one, is given by the jth coefficient of the Laurent series of
n̄(z) ≡ ψ(z)

1−ψ(z) = ∑∞
j=−∞ n̄jzj in this region. It follows that N̄SI is finite, and hence N̄ ≤ N̄SI is as

well. In particular, this proves the claim in footnote 12 that ∑k Ψk converges.
51More explicitly: if π(z) = 1 and z is complex, then π(z) = |Reπ(z)| ≤ ∑∞

j=−∞ πj|Rezj| < ∑∞
j=−∞ πj|z|j = π(|z|),

where the final strict inequality holds because we know that, for instance, π1 > 0 (which follows from Φ1 > 0), and for
that term π1|Rez| < π1|z| whenever z is not real.
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Suppose that we are interested in the first difference of the entries of N̄SI , i.e. [N̄SI ]s,s+j −
[N̄SI ]s,s+j−1. This equals n̄j − n̄j−1, which will be the jth coefficient of the Laurent series

k(z) ≡ (1− z)n̄(z) = (1− z)
ψ(z)

1− ψ(z)
=

∞

∑
j=−∞

k jzj

Since ψ(z)
1−ψ(z) has a simple pole at z = 1 (corresponding to the simple zero of 1−π(z)), multiplying

by (1− z) removes this pole, and k(z) is therefore meromorphic on the annulus βγ−1 < |z| < γ,
with the only singularity being a simple pole at z = β.

It immediately follows that lim supj→∞ |k j|1/j ≤ γ−1 < 1, i.e. that asymptotically as j→ ∞ the
coefficients k j are bounded above by some decaying exponential function. (Since the coefficients
n̄j are the cumulative sums of k j, this has the useful additional implication that n̄j are bounded as
j→ ∞ as well.) Similarly, it follows that lim supj→−∞ |k j|1/j = β.

Now consider multiplying k(z) by (β− z), to get

(β− z)k(z) ≡
∞

∑
j=−∞

(βk j − k j−1)zj (92)

This removes the simple pole at z = β, and hence (92) is analytic on the annulus βγ−1 < |z| < γ.
It follows that lim supj→−∞ |βk j− k j−1|1/j = βγ−1, so that there exists some M > 0 and n < 0 such
that |βk j − k j−1| < Mβ−jγj for all j < n. Extending this inequality, we note that

|k j − β−lk j−l | ≤ |k j − β−1k j−1|+ . . . + |β−l+1k j−l+1 − β−lk j−l |
≤ β−1Mβ−jγj + . . . + β−l Mβ−j+l−1γj−l

= β−j−1γj M
(

1 + β−1γ1 + . . . + βlγ−l
)

< β−j−1γj M
1− β−1γ

and hence that
lim

j→−∞
sup
l≥0
|βjk j − βj−lk j−l | ≤ lim

j→−∞
β−1γj M

1− β−1γ
= 0 (93)

i.e. that {βjk j} is a Cauchy sequence as j→ −∞. It therefore converges to some limit limj→−∞ βjk j =

c. The (weaker) statement that limj→−∞
k j−1

k j
= β also immediately follows.

Step 3: using this to characterize the generalized Phillips curve K. Above, we have already
characterized N̄SI and its first difference (in rows). Our goal is now to prove that asymptotically,
N̄SI and N̄ coincide, in the sense that for any j,

lim
i→∞

[N̄SI − N̄]i,i+j = 0 (94)
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To prove this, first we derive an expression for N̄SI − N̄, writing

(I − P)PSI − P(I − PSI) = PSI − P

PSI(I − PSI)−1 − P(I − P)−1 = (I − P)−1(PSI − P)(I − PSI)−1

N̄SI − N̄ = N(PSI − P)NSI (95)

where in the last line we use N̄ = P + P2 + . . . = P(I − P)−1, N ≡ I + N̄ = (I − P)−1, and so on.
Let us first characterize the matrix in the middle on the right of (95), PSI − P. We recall that

PSI = ASI BSI and P = AB, and note that actually also P = ABSI , since BSI and B coincide for
transition probabilities from the nonnegative integers, and A has zero transition probability to
negative integers. Hence PSI = (ASI − A)BSI .

We next observe that

∑
j
(PSI

ij − Pij) = ∑
j
(ASI

ij − Aij) =
∑∞

r=i+1 βrΦr

∑∞
r=0 βrΦr

(96)

where the first equality follows because BSI is stochastic and preserves row sums, and the second
equality follows directly from the definitions of ASI and A. We observe that for some sufficiently
large C and all i ≥ 0, (96) is bounded above by Cβi.

From our earlier characterization, we know that N̄SI and therefore NSI = I + N̄SI has all
entries bounded above by some M. It follows that all entries in the ith row of (PSI − P)NSI are
bounded by MCβi. Using (95), we conclude that

lim
i→∞

[N̄SI − N̄]i,i+j = lim
i→∞

[N(PSI − P)NSI ]i,i+j

≤ lim
i→∞

[NSI(PSI − P)NSI ]i,i+j

≤ lim
i→∞

∞

∑
k=0

NSI
i,k MCβk

= MC
∞

∑
k=0

βk lim
i→∞

NSI
i,k = 0

which, since N̄SI ≥ N̄, implies that limi→∞[N̄SI − N̄]i,i+j = 0. It follows that

lim
i→∞

(N̄SI
i,i+j − N̄SI

i,i+j−1)− (N̄i,i+j − N̄i,i+j−1) = 0

as well. Since the generalized Phillips curve K = (I− L)(Ψ + Ψ2 + . . .) is the transpose of N̄i,i+j−
N̄i,i+j−1, it follows that its columns asymptotically approach the same two-sided sequence around
the diagonal as in the rows of N̄SI

i,i+j − N̄SI
i,i+j−1, which we already characterized in the previous

step as the sequence {k j}.
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Step 4: extending to a mixture of multiple time-dependent models. Suppose we have a mixture
of multiple time-dependent models ` = 1, . . . , n, each with its own survival function Φ` and pass-
through matrix Ψ`, with weights c` summing to 1. This mixture will have pass-through matrix
Ψ = c1Ψ1 + . . . + cnΨn.

Like before, let us interpret the transpose of each pass-through matrix as a Markov transition
matrix P`, and then let us define P = c1P1 + . . . + cnPn, which is the transpose of Ψ. We will now
go through all steps of the previous proof with this P.52

First, we can construct PSI,` as before for each `, and combine to obtain PSI = c1PSI,1 + . . . +
cnPSI,n, which is still shift-invariant. We then obtain the same characterization of the z-transform
ψ(z) of PSI as before. In particular, since ψ(z) is a mixture of the underlying `, it is still analytic
in some annulus βυ−1 < |z| < υ for υ > 1 (where we can take the minimum υ` across all `) and
remains convex on (βυ−1, υ) with simple zeros at β and 1. It follows from our arguments in step
1 that ψ(z)− 1 is analytic, strictly smaller than 1 for β < |z| < 1, and has two simple zeros z = β

and z = 1 on some annulus βγ−1 < |z| < γ. Given these properties of ψ(z), step 2 is unchanged.
For step 3, the identity (95) remains unchanged, and we can use the argument from (96) to

show that for each `, PSI,` − P` is bounded above by C`βi for some constant C`. Taking C ≡
max` C`, it follows that PSI − P is bounded above by Cβi, and the rest of the proof goes through
as before, concluding our argument.

D.4 Robustness of the numerical equivalence result

This appendix provides robustness exercises for the numerical equivalence result from section 4.
We show that the approximate numerical equivalence holds for several extensions of the baseline
menu cost model used in the main text.

First, we introduce steady state inflation. This can be done by adding a drift term µ > 0 to the
law of motion for the static optimal price (1), which becomes:

p∗it = p∗it−1 + µ + εit.

Since the time unit is one quarter, the drift µ corresponds to an annual inflation rate of 4µ. Fig-
ure D.1 shows pass-through and Phillips curve matrices for both Golosov-Lucas and Nakamura-
Steinsson models with annual inflation rate of 2%, while figure D.2 does the analogous exercise for
a 5% annual inflation rate. The state-dependent pass-through matrices are still indistinguishable
from the corresponding Calvo approximations. For the Phillips curve matrices, it is visible that
the Calvo approximation is slightly better for lower inflation, although the fit is still very good for
moderate inflation levels.

Finally, Figure D.3 shows the best-fitting κ when we calibrate the baseline GL and NS models,
and then vary the level of trend inflation µ. The figures show that the slope modestly increases

52Note that P corresponds to a Markov chain where steps are taken according to a random draw from P1, . . . , Pn,
according to the weights c1, . . . , cn.
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(c) Golosov-Lucas generalized Phillips curve
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Figure D.1: Menu cost models and Calvo approximations with 2% annual steady state inflation.

Note: columns s ∈ {0, 10, 20} of the pass-through and Phillips curve matrices for the GL and NS models, calibrated to match the
same empirical moments as in the main text, as well as the best-fitting Calvo approximations.
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(c) Golosov-Lucas generalized Phillips curve
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Figure D.2: Menu cost models and Calvo approximations with 5% annual steady state inflation.

Note: columns s ∈ {0, 10, 20} of the pass-through and Phillips curve matrices for the GL and NS models, calibrated to match the
same empirical moments as in the main text, as well as the best-fitting Calvo approximations.
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Figure D.3: Best-fitting Calvo Phillips curve slope for various levels of trend inflation µ

with trend inflation, consistent with the fact that trend inflation increases the steady-state fre-
quency of price adjustment (see, e.g., Alvarez, Beraja, Gonzalez-Rozada and Neumeyer 2019).

Now we return to the model with no trend inflation, and instead introduce infrequent shocks,
as in Midrigan (2011). More specifically we assume that idiosyncratic shocks follow

εit =

0 with probability 1− p

N(0, σ2
ε ) with probability p

.

This effectively increases the kurtosis of the (unconditional) shock distribution, so this feature is
often referred to in the literature as leptokurtic shocks.53 Figure D.4 shows results. Similarly to the
trend inflation case, the pass-through matrices of the menu cost models are still indistinguishable
from their Calvo approximations. The fit of the generalized Phillips curve slightly deteriorates,
but is still very good.

The next extension we explore is a multi-product model, as in Midrigan (2011) and Alvarez
and Lippi (2014). We revert to our baseline model, without trend inflation or leptokurtic shocks,
and now assume each firm sells two distinct products. The state variable of the firm optimization
problem is now a pair of price gaps (xit,1, xit,2), each one evolving independently as a random
walk without drift, although both are subject to the same aggregate marginal cost shock. The loss
function is now given by

1
2
(xit,1 − log MCt)

2 +
1
2
(xit,2 − log MCt)

2 .

Importantly, firms face economies of scope in price adjustments – there is a single menu cost whose
payment allows the firm to adjust the prices of both its products. Otherwise, aggregate dynamics
would be the same as in a single-product model. Figure D.5 shows results for this case. Again, the

53An alternative approach in Karadi and Reiff (2019) assumes a mixture of two normal distributions.
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(c) Golosov-Lucas generalized Phillips curve
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Figure D.4: Menu cost models and Calvo approximations with infrequent shocks (p = 0.5).

Note: columns s ∈ {0, 10, 20} of the pass-through and Phillips curve matrices for the GL and NS models, calibrated to match the
same empirical moments as in the main text, as well as the best-fitting Calvo approximations.
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Figure D.5: Multi-product model and Calvo approximations.

Note: columns s ∈ {0, 10, 20} of the pass-through and Phillips curve matrices for the multi-product model, calibrated to match the
moments in table 1, as well as the best-fitting Calvo approximation.

Calvo approximation is very precise.
The next extension we analyze is a multi-sector economy. Consider an economy composed of

N economic sectors, each one characterized by its own parameter values, i.e., potentially different
menu costs, probabilities of free adjustments, and volatility of idiosyncratic shocks. Each sector,
indexed by j ∈ {1, . . . , N}, has weight ωj in the price index, in such a way that the log aggregate
price level is

pt =
N

∑
j=1

ωj pjt,

where pjt is the sectoral price level of sector j. From the above equation, it follows that the pass-
through matrix of the multi-sector economy Ψ is given by the same weighted average of the sec-
toral pass-through matrices Ψj:

Ψ =
J

∑
j=0

ωjΨj.

Once we have this pass-through matrix, we can apply the same transformation 13 to obtain the
generalized Phillips curve. Consequently, if each Ψk can be well approximated by a Calvo model,
then the multi-sector state-dependent economy will be close to a multi-sector Calvo one.

Following the approach outlined above, we calibrate a 14-sector menu cost economy using
the same moments as Nakamura and Steinsson (2010), reproduced in table D.2. For each sector,
we find the best-fitting Calvo model and compute the corresponding aggregate pass-through and
Phillips curve matrices. Figure D.6 shows results. For both our main specifications – with and
without free adjustments –, the two models are again almost identical.

Finally, we study how well the Calvo approximation fares in comparison to large, nonlinear
marginal cost shocks in state-dependent models. State-dependent models are well-known for fea-
turing nonlinearities: a large aggregate shock may endogenously trigger many price adjustments,
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Figure D.6: Multi-sector menu cost models and Calvo approximations.

Note: columns s ∈ {0, 10, 20} of the pass-through and Phillips curve matrices for the multi-sector GL and NS models, calibrated to
match the moments in table D.2, as well as the best-fitting Calvo approximations.
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Sector Weight (%) Frequency (%) Abs. size (%)

Vehicle fuel, used cars 7.7 91.6 4.9
Utilities 5.3 49.4 6.4
Travel 5.5 43.7 18.4

Unprocessed food 5.9 25.4 15.9
Transport goods 8.3 21.3 8.9

Services (1) 7.7 21.7 4.0
Processed food, other goods 13.7 11.9 11.4

Services (2) 7.5 8.4 6.7
Household furnishings 5.0 6.5 10.1

Services (3) 7.8 6.2 8.8
Rec. goods 3.6 6.1 10.2
Services (4) 7.6 4.9 8.1

Apparel 6.5 3.6 12.4
Services (5) 7.9 2.9 13.5

Table D.2: Sectoral pricing moments.

Note: this table reproduces the data from Nakamura and Steinsson (2010), and shows CPI weights, monthly frequency and mean
absolute size of price changes for each sector. Services are sorted into five groups according to entry-level adjustment frequency in
the CPI. See Nakamura and Steinsson (2010) for more details. For our calibration, we convert monthly frequencies fmonthly into
quarterly frequencies fquarterly = 1− (1− fmonthly)

3.

increasing the flexibility of the aggregate price level in response to it. In order to assess this effect,
we compute the nonlinear price responses to nominal marginal cost shocks of the form

MCt = MC0ρt

for MC0 ∈ {2.5%, 5%}. We compare the price responses to the best-fitting linear Calvo approx-
imation.54 Results are shown in figure D.7. For shocks of initial size 2.5%, nonlinearities are
negligible and the Calvo approximation again provides almost identical impulse responses. For a
large shock of initial size 5%, we start to see some discrepancies for the Golosov-Lucas model, in
which the extensive margin of adjustment is stronger. For the Nakamura-Steinsson model, on the
other hand, the Calvo model still provides indistinguishable responses.

Figure D.8 examines the extent of aggregate nonlinearity in the generalized Phillips curve for
our two main calibrations of the canonical menu cost model. We conduct two exercises. In the top
graphs, panels (a) and (b), starting from the steady state, we consider a large AR(1) shock to real
marginal cost that increases annual inflation on impact by 5% (quarterly by 1.25%). We compare
the resulting nonlinear impulse reponse in the menu cost model to the linear impulse response
in the same model, and to the linear impulse response of the approximating Calvo model from
section 4. We find that the three impulse responses all closely match, with the nonlinear menu
cost slightly above the linear in the first period and very close thereafter.

54For simplicity, we study only shocks to nominal marginal costs, as shocks to real marginal costs require solving a
fixed point problem.
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(a) Golosov-Lucas, 2.5% nominal shocks.
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(b) Nakamura-Steinsson, 2.5% nominal shocks.
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(c) Golosov-Lucas, 5% nominal shocks.
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(d) Nakamura-Steinsson, 5% nominal shocks.

Figure D.7: Price level responses to AR(1) nonlinear nominal marginal cost shocks.

Note: nonlinear impulse responses to AR(1) marginal cost shocks for GL and NS models, calibrated as in table 1, as well as linear
responses for the best-fitting Calvo approximations. Shock persistence values are {0.3, 0.6, 1}.
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(a) Golosov-Lucas, nonlinear real shock.
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(b) Nakamura-Steinsson, nonlinear real shock.
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(c) Golosov-Lucas, sequential nonlinear real shocks.
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(d) Nakamura-Steinsson, sequential nonlinear real
shocks.

Figure D.8: Aggregate nonlinearity of the generalized Phillips curve

Note: linear and nonlinear impulse responses to AR(1) real marginal cost shocks for multi-sector GL and NS models, calibrated as in

table 1, as well as linear responses for the best-fitting Calvo approximations. The shock persistence is 0.8 and the size is determined so

as to generate a 5% annualized increase in inflation in the Calvo model. In panels (c) and (d), this shock comes after an identically-sized

shock at date −5.

In the bottom graphs, panels (c) and (d), we perform a similar exercise, but assuming that the
shock at date 0 comes on top of a same-sized shock at date −5, so that the initial distribution of
price gaps is away from the steady state coming into date 0. Again, we find limited departure
between this nonlinear impulse response and the linear impulse responses, although the initial
gap between nonlinear and linear menu cost is now slightly larger in the NS model, indicating
only mild state dependence.
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E Appendix to Section 5

E.1 The log-linearized system for non-infinitesimal σε > 0

We begin by collecting all the equilibrium conditions of the model. There are 9 conditions for 9
unknown sequences, {wt, Wt, Pt, Yt, Nt, ∆t, Ξt, it, πt}. The conditions are:

• Optimal pricing behavior of firms: Price setters solve (45) for given {Wt, wt, Yt},

min
{xit}

E0

∞

∑
t=0

βtY−σ
t

[(
ζ

ζ − 1
wt

)1−ζ

Yt · F (xit − log Wt) + σ2
ε ξitwt1{xit 6=xit−1−σεεit}

]
(97a)

From the optimal price gaps xit we can then compute the path of the price level, as in (44),

Pt =
ζ

ζ − 1

(∫ 1

0
e(1−ζ)xit di

) 1
1−ζ

as well as price dispersion

∆t ≡
(∫ 1

0
e(1−ζ)xit di

) ζ
1−ζ
∫ 1

0
e−ζxit di ≥ 1

and the aggregate amount of labor used for menu cost, as in (46),

Ξt ≡
∫ 1

0
σ2

ε ξit1{xit 6=xit−1−σεεit}di

Together, we can summarize the pricing behavior as three sequence-space functions,

Pt = Pt ({Ws, ws, Ys}) , ∆t = Dt ({Ws, ws, Ys}) , Ξt = Xt ({Ws, ws, Ys}) (97b)

• Labor demand: Labor needs to be consistent with optimal labor demand by firms, (47),

Nt = Yt∆t + Ξt (97c)

• Labor supply: Labor needs to be consistent with optimal labor supply by households, (37)

bNϕ
t = wtY−σ

t (97d)

where we already substituted out consumption using goods market clearing Ct = Yt.

• Monetary policy rule: The nominal interest rate follows the Taylor rule

it = iss + φπt + νt (97e)
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• Euler equation: Output follows the household’s Euler equation (37)

Y−σ
t =

Pt

Pt+1
(1 + it)Y−σ

t+1 (97f)

• Real wage: The real wage is defined as

wt = Wt/Pt (97g)

• Inflation: Inflation is given by
πt = Pt/Pt−1 − 1 (97h)

We log-linearize equations (97b)–(97h) around a deterministic steady state in which νt = νss =

0. We find
P̂ = JP,WŴ + JP,YŶ + JP,wŵ

∆̂ = J∆,WŴ + J∆,YŶ + J∆,wŵ

Ξ̂ = JΞ,WŴ + JΞ,YŶ + JΞ,wŵ

N̂t =
Yss∆ss

Yss∆ss + Ξss

(
Ŷt + ∆̂t

)
+

Ξss

Yss∆ss + Ξss
Ξ̂t

ϕN̂t = ŵt − σŶt

ît = φπ̂t + ν̂t

Ŷt = Ŷt+1 −
1
σ
(ît − π̂t+1)

ŵt = Ŵt − P̂t

π̂t = P̂t − P̂t−1

Here, we denote by JP,X the Jacobian of {Pt}with respect to sequence {Xs}, and similarly for J∆,X

and JΞ,X.

E.2 Characterizing firm Jacobians in general case

The Jacobians J in the previous section are no longer given by an exact equivalence result of the
simple form (26). Here, instead, we retrace the steps of proposition 1 to more generally char-
acterize the Jacobian of an arbitrary aggregate outcome to an arbitrary shock, in the menu cost
model where the period loss function is some arbitrary F(·)—including, for instance, the case of
non-infinitesimal σε > 0.

Law of motion for arbitrary aggregate. Suppose that we have some aggregate outcome Y(gend)

where gend is the end-of-period density over x (and is an ordinary smooth density plus a Dirac
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delta at x∗). The examples that will ultimately be relevant to us are the price level P(gend) =

ζ
ζ−1

(∫
e(1−ζ)xgend(x)dx

) 1
1−ζ

, the price dispersion index ∆(gend) =
(∫

e(1−ζ)xgend(x)dx
) ζ

1−ζ ∫ e−ζxgend(x)dx,

and the total number of adjusters ADJ(gend) =
∫

1x=0gend(x)dx (which determines menu costs
paid Ξ).55

Now, define EY,0(x) to be the gradient of Y with respect to gend around the steady state, and
EY,t(x) recursively as the expectation of EY,t−1(x) given the steady-state policies. Following the
proof of proposition 1, suppose that at date t− s, there is a one-time change in policies xt−s, xt−s,
and x∗t−s. Then we have

dYt = (EY,s(x)− EY,s(x∗))gend(x)dxt−s − (EY,s(x)− EY,s(x∗))gend(x)dxt−s + freq · (EY,s)′(x∗)dx∗t−s

Combining across all periods, and noting that gend(x) = (1− λ)g(x) at all points inside the ad-
justment bands (except that gend also has a Dirac delta at x∗), we have the law of motion

dYt = (1− λ)g(x)
t

∑
s=0

(EY,s(x)− EY,s(x∗))dxt−s

− (1− λ)g(x)
t

∑
s=0

(EY,s(x)− EY,s(x∗))dxt−s + freq ·
t

∑
s=0

(EY,s)′(x∗)dx∗t−s (98)

Policy function for arbitrary input. Now suppose that the flow payoff function, excluding the
menu cost, is given by some arbitrary F(x, Z), where Z is any time-varying aggregate input. We
define EZ,0(x) to be the derivative of F(x, Z) with respect to Z around the aggregate steady state,
and EZ,t(x) recursively given EZ,t−1(x). Similarly, we define EF,0(x) to be the derivative of F(x, Z)
with respect to x around the aggregate steady state, and EF,t(x) recursively.

Now, following the proof, we suppose there is a shock dZ at date s. Then we have dVs(x) =

EZ,0(x)dZ, and by the same envelope argument, dVt(x) = βs−tEZ,s−t(x)dZ. We also have V ′(x) =

∑∞
u=0 βuEF,u(x), using the same envelope argument as in appendix C.1.

Similarly, if there is a shock dξ at date s, we have a change in total value at time s of EADJ,0(x)dξ,
where x is the end-of-period choice, and analogously to above we have dVt(x) = βs−tEADJ,s−t(x)dξ

for all t < s.
At each date t, the optimal adjustment thresholds are given by value-matching conditions

Vt(xt) = Vt(x∗t ) + ξt

Vt(xt) = Vt(x∗t ) + ξt

Totally differentiating these around the steady state and using V ′(x∗) = 0, we have dxt = −(dVt(x)−
dVt(x∗)− dξt)/V ′(x) and dxt = −(dVt(x)− dVt(x∗)− dξt)/V ′(x), which combined with the re-

55There are in principle firms who ended up at x = 0 not because they adjusted, but by chance pre-adjustment, but
this is measure zero and does not affect the total number of adjusters.
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sults above gives the following analogs to (23):

dxt = −
∑s≥t βs−t ((EZ,s−t(x)− EZ,s−t(x∗))dZs + (EADJ,s−t(x)− EADJ,s−t(x∗))dξs

)
∑s≥t βs−tEF,s−t(x)

(99)

dxt = −
∑s≥t βs−t ((EZ,s−t(x)− EZ,s−t(x∗))dZs + (EADJ,s−t(x)− EADJ,s−t(x∗))dξs

)
∑s≥t βs−tEF,s−t(x)

(100)

Similarly, the optimal reset point is given by the first-order condition V ′t (x∗t ) = 0. Totally differen-
tiating gives dx∗t = −dVt(x∗)/V ′′(x∗), which gives the following analog to (24):

dx∗t = −∑s≥t βs−t(EZ,s−t)′(x∗)dZs

∑s≥t βs−t(EF,s−t)′(x∗)
(101)

Substituting (99)–(101) into (98), we have that the Jacobian of Y with respect to Z is:

− (1− λ)g(x)
∑∞

t=0 βtEF,t(x)


EY,0(x)− EY,0(x∗) 0 · · ·
EY,1(x)− EY,1(x∗) EY,0(x)− EY,0(x∗) · · ·

...
...

. . .




EZ,0(x)− EZ,0(x∗) β(EZ,1(x)− EZ,1(x∗)) · · ·
0 EZ,0(x)− EZ,0(x∗) · · ·
...

...
. . .



− (1− λ)g(x)
∑∞

t=0 βtEF,t(x)


EY,0(x)− EY,0(x∗) 0 · · ·
EY,1(x)− EY,1(x∗) EY,0(x)− EY,0(x∗) · · ·

...
...

. . .




EZ,0(x)− EZ,0(x∗) β(EZ,1(x)− EZ,1(x∗)) · · ·
0 EZ,0(x)− EZ,0(x∗) · · ·
...

...
. . .



− freq
∑∞

t=0 βtEF,t′(x∗)


EY,0′(x∗) 0 · · ·
EY,1′(x∗) EY,0′(x∗) · · ·

...
...

. . .




EZ,0′(x∗) βEZ,1′(x∗) · · ·
0 EZ,0′(x∗) · · ·
...

...
. . .


(102)

The Jacobian of Y with respect to ξ is identical, but with EZ replaced by EADJ .
Compared to equation (26) in the main text, we note that the products of lower and upper

triangular matrices in (102) no longer have the same symmetry: in general, the sequences EY,s(·)
and EZ,s(·) need not be the same. Each product can be interpreted as corresponding to the pass-
through matrix of a “pseudo-time-dependent” model, where agents assume a different survival
function when choosing their policies than the survival function that actually governs prices. Since
the symmetry between lower and upper adjustment bands is broken in the general case, there are
also now three products rather than two—so that the most general form of the equivalence result
away from the canonical case is that the menu cost model is equivalent to a mixture of three
pseudo-time-dependent models.
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E.3 Proof of proposition 4

E.3.1 Step 1: Convergence of steady state in limit σε → 0

Take (97a) and, using the fact that the firm’s profit maximization is invariant to an affine transfor-
mation, rewrite as

min
{xit}

E0

∞

∑
t=0

βtY−σ
t

[(
ζ

ζ − 1
wt

)1−ζ

Yt ·
F (xit − log Wt)− F(0)

σ2
ε

+ ξitwt1{xit 6=xit−1−σεεit}

]

and then define x̂it ≡ (xit − log Wss)/σε and Ŵt ≡ (log Wt − log Wss)/σε, so that we get

min
{x̂it}

E0

∞

∑
t=0

βtY−σ
t

[(
ζ

ζ − 1
wt

)1−ζ

Yt ·
F
(
σε(x̂it − Ŵt)

)
− F(0)

σ2
ε

+ ξitwt1{x̂it 6=x̂it−1−εit}

]

Now define F (x̂; σε) ≡ F(σε x̂)−F(0)
σ2

ε
, so that this is just

min
{x̂it}

E0

∞

∑
t=0

βtY−σ
t

[(
ζ

ζ − 1
wt

)1−ζ

Yt · F (x̂it − Ŵt; σε) + ξitwt1{x̂it 6=x̂it−1−εit}

]
(103)

Here, note that the only place that σε enters is as a parameter to this F function. Further, in the
limit as σε → 0, it is very easy to show that F (x̂; σε)→ 1

2 F′′(0)x̂2.
Explicitly, since F has a Taylor series representation around 0 and also has derivative F′(0) = 0,

we can write

lim
σε→0
F (x̂; σε) = lim

σε→0

F (σε x̂)− F(0)
σ2

ε

= lim
σε→0

1
2 F′′(0)σ2

ε x̂2

σ2
ε

=
1
2

F′′(0)x̂2

Note that we also get this convergence in the first derivative of F , i.e.

lim
σε→0
F ′(x̂; σε) = lim

σε→0

σεF′ (σε x̂)− σεF′(0)
σ2

ε

= lim
σε→0

σεF′′(0)σε x̂
σ2

ε

= F′′(0)x̂

Convergence to same steady state as quadratic objective. At the steady state, dividing both

sides by F′′(0)Y1−σ
(

ζ
ζ−1 w

)1−ζ
, (103) becomes

min
{x̂it}

E0

∞

∑
t=0

βt

F (x̂it − ŵ; σε)

F′′(0)
+ ξit

(
ζ

ζ−1

)ζ−1
wζ

F′′(0)Y
1{x̂it 6=x̂it−1−εit}

 (104)

which is identical to the original steady-state optimization problem 2 with the menu cost scaled

by ( ζ
ζ−1 )

ζ−1
wζ

F′′(0)Y , except that we have F (x̂it−ŵ;σε)
F′′(0) rather than the quadratic objective 1

2 x̂2. Hence we can
rewrite the recursion (62) for the value function in this case, and we will denote the value function
by V(x̂; σε).
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By appendix B.2, if we use the norm ‖ · ‖ defined in (70), which is a linear combination of

the sup norms on V and V ′, V(x̂; σε) is differentiable in σε around σε = 0, with ‖dV‖ ≤ ‖ dF
F′′(0) ‖

1− 1+β
2

where we recall that backward iteration on V is a contraction with modulus 1+β
2 in this norm.56

Analogously to appendix B.2, this differentiablity implies differentiability of the policies x, x, and
x∗ in σε, so that these all converge to their values under the quadratic objective as σ→ 0. Further,
since by appendix B.1, forward iteration on beginning-of-period densities g is a contraction, and
the one-period-ahead density is differentiable with respect to the policies, the steady-state density
g also converges to the same as under the quadratic objective.

Aggregate price level, price dispersion, menu costs. We have verified that x̂ approaches the
same policies and distribution as σε → 0. Now we also verify that all aggregate consequences are

the same. In particular, we note that the aggregate price level ζ
ζ−1

(∫
e(1−ζ)σε x̂i di

) 1
1−ζ

approaches

ζ
ζ−1 as σε → 0, price dispersion

(∫
e(1−ζ)σε x̂i di

) ζ
1−ζ ∫ e−ζσε x̂i di approaches 1 as σε → 0, and the

total resources devoted to menu costs approach 0 as σε → 0 (since the fraction of adjustments per
period approaches a constant, but menu costs scale with σ2

ε ).

E.3.2 Step 2: The log-linearized system in the limit σε → 0

Now, we consider the system from appendix E.1 and focus on the three equations for the firm
block, P̂ = JP,WŴ + JP,YŶ + JP,wŵ, ∆̂ = J∆,WŴ + J∆,YŶ + J∆,wŵ, Ξ̂ = JΞ,WŴ + JΞ,YŶ + JΞ,wŵ,
which are the only equations directly affected by σε. We will show that all the Jacobians in these
equations converge to zero as σε → 0, except for JP,W , which converges to the canonical model’s
pass-through matrix Ψ given the appropriately rescaled menu cost.

First, rewrite (103) as

min
{x̂it}

E0

∞

∑
t=0

βt

Ỹ1−σ
t w̃1−ζ

t · F (x̂it − Ŵt; σε)

F′′(0)
+ Ỹ−σ

t w̃

(
ζ

ζ−1

)ζ−1
wζ

F′′(0)Y
ξit1{x̂it 6=x̂it−1−εit}


where here we denote proportional deviations from steady state by tildes, e.g. Ỹt ≡ Yt/Y. At
steady state, this is the same as (104), which we showed is identical to the original model in steady

state, with the menu cost scaled by ( ζ
ζ−1 )

ζ−1
wζ

F′′(0)Y . Let us redefine ξ to incorporate this scaling (i.e. to

56If desired, we can compute dF in response to dσε as follows. The derivative ofF (x̂; σε) =
F(σε x̂)−F(0)

σ2
ε

with respect to

σε around σε = 0, using F (x̂; 0) = 1
2 F′′(0)x̂2 for the limit, is limσε→0

F(σε x̂)−F(0)−σ2
ε

1
2 F′′(0)x̂2

σ3
ε

, which applying L’Hopital’s

rule once equals limσε→0
x̂F′(σε x̂)−σε F′′(0)x̂2

3σ2
ε

, applying it again equals limσε→0
x̂2(F′′(σε x̂)−F′′(0))

6σε
, and a third time equals

limσε→0
x̂3 F′′′(σε x̂)

6 = x̂3 F′′′(0)
6 , so that dF (x̂;σε)

dσε

∣∣∣
σε=0

= x̂3 F′′′(0)
6 .
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be ( ζ
ζ−1 )

ζ−1
wζ

F′′(0)Y times the original ξ), so that the above becomes just

min
{x̂it}

E0

∞

∑
t=0

βt

[
Ỹ1−σ

t w̃1−ζ
t · F (x̂it − Ŵt; σε)

F′′(0)
+ Ỹ−σ

t w̃tξit1{x̂it 6=x̂it−1−εit}

]
(105)

For any given σε, the first-order system in aggregates includes sequence-space Jacobians for three
outcomes (the log aggregate price level log Pt, price dispersion ∆t, and menu costs incurred Ξt)
and three shocks (log nominal wages σεŴt, output Ỹt, and wages w̃t), all of which are given by
(102).

We will argue, however, than in the σε → 0 limit, only one of these sequence-space Jacobians
remains nonzero: that for the log aggregate price level with respect to log wages. First, any change

in price dispersion
(∫

e(1−ζ)σε x̂i di
) ζ

1−ζ ∫ e−ζσε x̂i di ≈ 1 + σεζ
∫

x̂idi − σεζ
∫

x̂idi = 1 is zero to first

order in σε, and menu costs paid, which scale with σ2
ε , are trivially zero to first order in σε. The

EY,s(·) for these two outputs in (102) therefore scales with σ2
ε in the limit. For the log aggregate

price level, on the other hand, we have log( ζ
ζ−1 ) +

1
1−ζ log

(∫
e(1−ζ)σε x̂i di

)
≈ log( ζ

ζ−1 ) + σε

∫
x̂idi,

with a nonzero term that is first order in σε, corresponding to simple linear aggregation of price
gaps. The Elog P,s(·) for this output in (102) converges to σε times the standard Es(·) in the limit.

Meanwhile, for shocks to Ỹt and w̃t, the EZ,s(·) in (102) converge to some finite functions as
σε → 0.57 For these, (102) is zero for all outcome variables, whose EY,s(·) went to zero as σε → 0.
For the shock to log nominal wages σεŴt, on the other hand, we have EσεŴt,s(·) = σ−1

ε EŴt,s(·)
scaling with σ−1

ε in the limit. For this shock, (102) goes to zero in the limit when the outcomes are
price dispersion or menu costs (whose EY,s(·) scaled with σ2

ε ), but to a finite nonzero value when
the outcome is log prices (whose EY,s(·) scaled with σε, which is cancelled out by the σ−1

ε ).
We conclude that, indeed, only one sequence-space Jacobian is nonzero in the limit σε → 0:

that of log aggregate prices with respect to log nominal wages. Further, canceling the σε and
σ−1

ε factors, the outcome variable is simple linear aggregation of price gaps and has a expectation
function of Es(·); meanwhile, the shock perturbs the loss function F (x̂it−Ŵt;σε)

F′′(0) , which we have
showed converges both in levels and first derivative to 1

2 (x̂ − Ŵ)2—a quadratic function whose
derivative with respect to Ŵ is unitary and also leads to an expectation function of Es(·). At
this point, the Jacobian (102) in the limit becomes identical (using symmetry and rearranging) to
pass-through matrix of log marginal costs to log prices in the canonical model, as desired.

E.3.3 Step 3: Simplifying the system in the limit

Given the results in the previous subsection, the log-linearized system can be written as

P̂ = Ψ
(
ŵ + P̂

)
ŵ = (σ + ϕ)Ŷ

57It turns out that these are zero due to the symmetry of the solution as σε → 0, but we do not need this for our result.
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Figure E.1: Impulse responses with large idiosyncratic shocks.

Note: both pricing models are calibrated to match the same moments as in section 2.5.

π̂ = (I− L) P̂

ît = φπ̂t + ν̂t

Ŷt = Ŷt+1 −
1
σ
(ît − π̂t+1)

where we note that with σε → 0, the steady state price dispersion is ∆ss = 1 and steady state menu
cost labor demand is Ξss = 0. We can solve out the first equation for the price level in terms of the
real wage

P̂ = Ψ (I−Ψ)−1 ŵ

Combining this with the expressions for the real wage and inflation, we find

π̂ = (ϕ + σ) (I− L)Ψ (I−Ψ)−1 Ŷ = (ϕ + σ)K · Ŷ

where K is exactly the Generalized Phillips curve of the canonical model from section 2. Together
with the Taylor rule and the Euler equation, this is the three equation system in proposition 4.

E.4 Impulse responses with large vs small σε

Figure E.1 evaluates how well the σε → 0 limit described in Proposition 4 approximates the origi-
nal nonlinear model with σε > 0. The dashed-dark blue line labelled “large idiosyncratic shocks”
shows the linear impulse response in the model with large idiosyncratic shocks, whose solution
is described in section E.1. The solid-light blue line labelled “small idiosyncratic shocks” shows
the approximation to that impulse response in the σε → 0 limit described in proposition 4. The
dashed red line shows the effects in the best-fitting Calvo model to this latter model. We cali-
brate the model with large idiosyncratic shocks to hit the same targets as in our calibration from
section 2.5. The effects from non-zero price dispersion and aggregate menu costs, as well as the
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nonlinearities in the objective function and price aggregation, are not important quantitatively.

E.5 Proof of proposition 5

In the model with strategic complementarities, firm i now produces gross output Qit of variety i
from hours Nit and intermediate Xit using the production function

Qit =
Ait

χχ (1− χ)1−χ
Nχ

it X1−χ
it

where Xit is produced using the same aggregate as consumption, and has therefore the same price

Pt =
(∫ 1

0 (AitPit)
1−ζ di

) 1
1−ζ

.
Firm i’s static profits at date t excluding menu costs are then

Πit =
Pit

Pt
Qit −

MCit

Pt
·Qit

where MCit · Qit is the nominal cost for firm i of producing gross output Qit at date t, with the
marginal (and unit) cost MCit given by

MCit =
1

Ait
Wχ

t P1−χ
t︸ ︷︷ ︸

≡MCt

where MCt is the aggregate component of marginal cost. Factor demands are given by

Nit = χ
1

Ait

MCt

Wt
Qit

Xit = (1− χ)
1

Ait

MCt

Pt
Qit

Xjit = A1−ζ
jt

(
Pjt

Pt

)−ζ

Xit

where Xjit denotes firm i’s demand for firm j’s input at time t. Aggregating across intermediate
and final good demand, total demand for firm i’s output is given by

Qit = A1−ζ
it

(
Pit

Pt

)−ζ

Ct +
∫

Xjtdi︸ ︷︷ ︸
≡Qt


where Qt is total gross output.

Hence, the static profits of firm i, excluding menu costs, are given by

Πit =

(
Pit

Pt
− 1

Ait

MCt

Pt

)
·Qit =

(
Pit

Pt
− 1

Ait

MCt

Pt

)
· A1−ζ

it

(
Pit

Pt

)−ζ

Qt
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and its statically optimal price is

Pit =
ζ

ζ − 1
MCt

Ait
≡ P∗it ·MCt

As in section 5.1, we can rewrite Πit using Pit as

Πit =

(
ζ

ζ − 1
MCt

Pt

)1−ζ

Qt ·
((

Pit

Pit

)1−ζ

− ζ − 1
ζ

(
Pit

Pit

)−ζ
)

=

(
ζ

ζ − 1
MCt

Pt

)1−ζ

Qt · F
(

log
(

Pit

Pit

))
=

(
ζ

ζ − 1
MCt

Pt

)1−ζ

Qt · F (xit − log MCt)

where we have again defined the idiosyncratic price gap as

xit ≡ log Pit − log P∗it = log Pit − log Pit + log MCt

Assuming that the menu cost is still stated in units of labor, and continuing to write Yt = Ct for
GDP, the complete dynamic problem of the firm is therefore now

min
{xit}

E0

∞

∑
t=0

βtC−σ
t

[(
ζ

ζ − 1
MCt

Pt

)1−ζ

Qt · F (xit − log MCt) + σ2
ε ξit

Wt

Pt
1{xit 6=xit−1−σεεit}

]

with the aggregate amount of labor required for menu costs still given by (46), and labor market
clearing now given by

Nt = χ
MCt

Wt
∆tQt + Ξt (106)

with the same equations for Ξt and ∆t as in section 5.1.
Equilibrium is characterized by the same unknown sequences {wt, Wt, Pt, Yt, Nt, ∆t, Ξt, it, πt}

as before, plus the 4 unknown sequences {Qt, MCt, mct, Xt}. These unknown some the same 9
equations (97b)–(97g), except that (97b) is replaced by a new set of functions

Pt = Pt ({MCs, mcs, Ys, Qs}) , ∆t = Dt ({MCs, mcs, Ys, Qs}) , Ξt = Xt ({MCs, mcs, Ys, Qs})

93



and that (97c) is replaced by (106), as well as the 4 additional equations:

MCt = Wχ
t P1−χ

t

Qt = Yt + Xt

Xt = (1− χ)
MCt

Pt
∆tQt

mct =
MCt

Pt

The proof proceeds as in section E.3. In the limit with σε → 0, these new equations log-linearize
as

m̂ct = M̂Ct − P̂t = χ
(
Ŵt − P̂t

)
= χŵt

Q̂t = χŶt + (1− χ) X̂t

X̂t = m̂ct + Q̂t

N̂t = m̂ct − ŵt + Q̂t

ϕN̂t = ŵt − σŶt

It can be verified that these equations simplify to

N̂t = Ŷt

Q̂t = Ŷt + (1− χ) ŵt

X̂t = Ŷt + ŵt

ŵt = (σ + ϕ) Ŷt (107)

m̂ct = χŵt (108)

Hence, the relationship between real wages and output is (107) is the same as before, but move-
ment in real marginal cost is scaled down by χ per (108). The equations characterizing equilibrium
are therefore now

P̂ = Ψ
(
m̂c + P̂

)
m̂c = χ(σ + ϕ)Ŷ

π̂ = (I− L) P̂

ît = φπ̂t + ν̂t

Ŷt = Ŷt+1 −
1
σ
(ît − π̂t+1)

This delivers proposition 5.
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F Appendix to Section 6

F.1 Proof of proposition 6

We now assume that the menu cost ξit is drawn from an arbitrary distribution with differentiable
c.d.fH(·). In period t, a firm with price gap x adjusts its price with probability

Λt(x) = P (ξit ≤ Vt(x)−Vt(x∗t )) = H (Vt(x)−Vt(x∗t )) . (109)

Now expected price gaps evolve according to

Et+1(x) =
∞∫
−∞

(
1−Λ(x′)

)
f (x′ − x)Et(x′)dx′

and the steady state adjustment frequency is given by

freq =

∞∫
−∞

Λ(x)g(x)dx,

where g(x) is the steady state distribution of price gaps.
We first characterize the extensive margin price level response dPe

t generated by a change in
adjustment probabilities {dΛs(x)}∞

s=0. Similarly to the first part of equation (20), we have

dPe
t = −

t

∑
s=0

∞∫
−∞

[dΛt−s(x)g(x)Es(x)] dx. (110)

Intuitively, a perturbation in adjustment probabilities dΛt−s(x) generates an additional mass of
price changes dΛt−s(x)g(x), which then changes the price level at date t by −dΛt−s(x)g(x)Es(x).
The intensive margin response dPi

t is still given by the second part of equation (20)
The next step is to characterize the responses of optimal policies Λt(x) and x∗t to aggregate

marginal cost shocks. First, notice that the reset point dynamics is still given by (25). Now differ-
entiate (109) with respect to x and evaluate it at steady state to obtain

Λ′(x) = −h (V(0)−V(x))V ′(x),

where h = H′. By totally differentiating (109), also around steady state, one gets

dΛt(x) = h (V(0)−V(x))
(
V ′(0)dx∗t + dVt(0)− dVt(x)

)
= −Λ′(x)

dVt(0)− dVt(x)
V ′(x)

,

where the second line uses V ′(0) = 0. One can still obtain V ′(x) = ∑∞
u=0 βuEu(x) and dVt(x) from
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equation 23. Using the definition Φe
t(x) = Et(x)/x, we have

− dΛt(x)
Λ′(x)

=
∑∞

s=t βs−tΦe
t−s(x)d log MCs

∑∞
s=t βs−tΦe

t−s(x)
. (111)

This implies that −dΛt(x)/Λ′(x) responds to future marginal costs according to weights βtΦe
t(x),

just like the reset point of a TD model in (8).
Now rewrite (110) as

dPe
t =

t

∑
s=0

∞∫
−∞

Λ′(x)g(x)

(
∞

∑
τ=0

Eτ(x)

)
∑t

s=0 Φe
s(x)

(
− dΛt−s(x)

Λ′(x)

)
∑∞

τ=0 Φe
τ(x)

 dx.

This shows that dPe responds to changes in past policies −dΛt(x)/Λ′(x) with weights Φe
t(x),

as the price level of a TD model responds to changes in past pricing decisions in (9). It fol-
lows from this that the extensive margin dynamics of the price level is equivalent to the sum
of a continuum of TD models, one for each point x, with survival function Φe

t(x) and weight
Λ′(x)g(x) (∑∞

τ=0 Eτ(x)). Proposition 6 then follows from dP̂t = dPe
t + dPi

t .

F.2 Details on the measurement

Here we describe the dataset used in section 6, as well as the numerical procedure for recovering
the adjustment hazards Λ(x). We use data from Bonomo et al. (2022). A law enacted in 2014
requires large food retailers in Israel to post online information on the prices of all their products
on a daily basis, which the Bank of Israel then collects. The only empirical object we use is the
price-change distribution in figure 13, which is computed using data on the top 5% stores in terms
of number of observations, totaling 506.1 million daily observations. The size of each price change
is standardized by the within-store standard deviation of price changes in order to filter out store
heterogeneity. This does not affect the pass-through matrix, which is scale-invariant.

In order to recover the adjustment hazards Λ(x) from the data, we first need to specify a
functional form for it. We postulate

log
(

Λ(x)
1−Λ(x)

)
= p(x)− sφσ(x). (112)

In the expression above, p(x) is a polynomial of degree 2, φσ(·) is the p.d.f. of a normal distribution
with standard deviation σ, and s is a scaling factor. The scaled normal p.d.f. generates the drop
in adjustment hazards close to x = 0, visible in figure 13, necessary for matching the price-change
distribution. Given Λ(x), one can compute the stationary distribution of price gaps f (x), which
can then be used to compute the resulting distribution of price changes. We then choose the
coefficients of p(x), along with the parameters s and σ, in order to minimize the sum of squared
errors between empirical and model-implied price-change distributions. Having computed Λ(x)
and f (x), we then follow the steps outlined in section F.1 to compute the pass-through matrix.
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