
Vaccine Supply Chain Resilience and International Cooperation

Chad Bown Peterson Institute

Christopher Snyder Dartmouth College

Robert Staiger Dartmouth College

Introduction

Motivation

- Enormous global harm from Covid-19 pandemic each month
- Social value from accelerating delivery of effective vaccines in pandemic
- Scale of vaccine capacity
- At-risk capacity investment
- Public vs. private incentives
- Sense that supply chains, international issues important, but little formal analysis

Background facts

- Extensive outsourcing of inputs but limiting offshoring
- Widespread complaints about input shortages
- Operation Warp Speed at-risk funding, Defense Production Act supply-chain contracts
- Concerns about export restrictions (India vs. US, UK threat vs. EU)

• Theoretical analysis

- Build simple, easily extensible model
- Study optimal public incentives offered to pharma firms investing in vaccine capacity
- See how answers change if vaccines and inputs offshored

Calibrations

• Determine which identified distortions are large, if any

Main Findings

• Conditions for government subsidy of at-risk investment

- High disease harm relative to production cost
- Long capacity lag
- High likelihood of success
- Low contractual frictions (social cost of public funds, variance of private information)

Offshoring exacerbates distortions

- o Government internalizes less of foreign firm profit
- Lower-power incentives to restrain information rents leaking to foreign suppliers
- Export restriction threatens to hold up subsidy
- Potentially enormous direct losses from vaccine supply being cut off

International cooperation

- Ban export restrictions
- o Encourage capacity subsidies internalizing externality on foreign firms
- Distortions may be bad enough to deter otherwise efficient offshoring, hiding distortions because domestic subsidies are conditionally efficient
- As model sets aside issues of cross-border transmission of disease to focus on international pecuniary externalities, this is a job for the WTO, not the WHO

Domestic consumers

- Continuum, mass normalized to 1
- Suffer harm from viral outbreak

• Firm

- Monopoly vaccine producer
- Upstream establishment *U* produces vaccine input
- Downstream establishment *D* produces final vaccine

Domestic government

- \circ Procures vaccine from *D* on behalf of citizens
- Internalizes surplus of domestic, not foreign, consumers and producers
- Faces frictions: social cost of public funds, asymmetric information

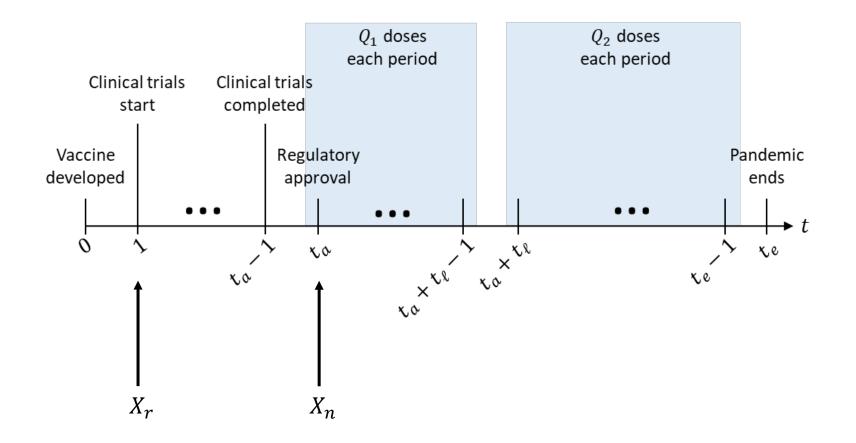
• Foreign country

- \circ May house U and/or D in variants of model with offshoring
- May implement export restrictions to keep key supplies for own consumers

Disease epidemiology

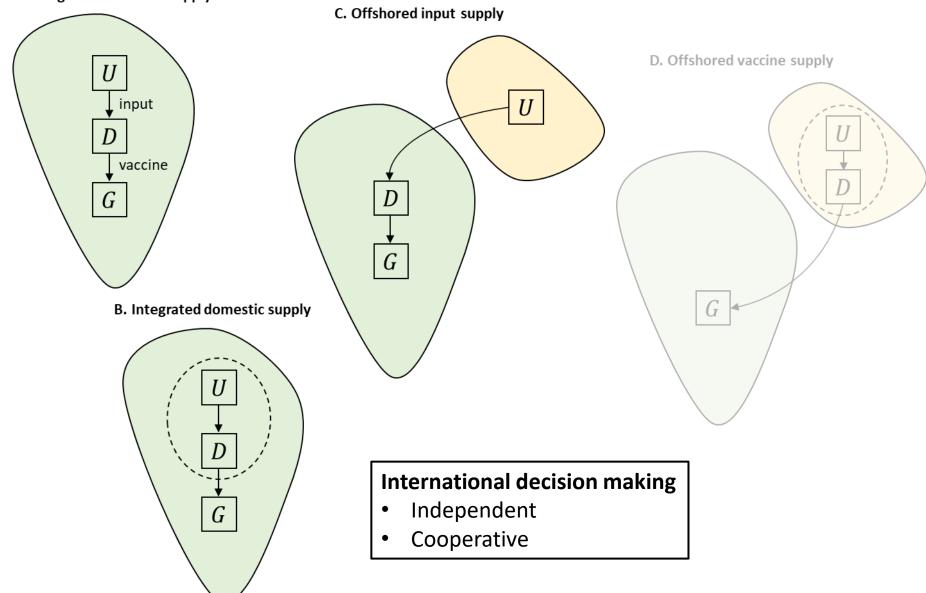
- \circ Absent vaccine, consumers infected each period with probability eta
- $\circ~$ Recover by end of period
- \circ Social harm *h* from individual's infection that period
- \circ Outbreak starts in period 1 and ends by period t_e

Vaccine benefits


- Prevents (serious) harm, not transmission
- $\circ~$ Effective for individual with probability heta
- Protection wanes after one period, so need revaccination to continue protection

Regulatory approval

- \circ Clinical trials and health agency decision take time, decision in period t_a
- Probability of successful approval *s*


Linear production technology

- \circ U can produce vaccine input up to available capacity each period
- Costs k for a unit of vaccine input capacity
- \circ Capacity installation takes lag of t_{ℓ} periods
- Unit production cost *c* for vaccine input
- *D* costlessly transforms input into final vaccine

Model: Alternative Structures

A. Unintegrated domestic supply

First Best

• Setup

- Government has full control over firms' operations
- $\circ~$ No social cost of public funds
- \circ Government has full information about k

• Components of government surplus

- Expected harm avoided $s\beta h\theta Q_1 t_\ell + s\beta h\theta Q_2 (t_e t_a t_\ell)$
- Expected production costs $scQ_1t_\ell + scQ_2(t_e t_a t_\ell)$
- Expected capacity costs $kX_r + skX_n$

Optimization problem

$$\max_{X_r, X_n, Q_1, Q_2 \ge 0} \{ s(\theta \beta h - c) [Q_1 t_{\ell} + Q_2 (t_e - t_a - t_{\ell})] - k X_r - s k X_n \}$$

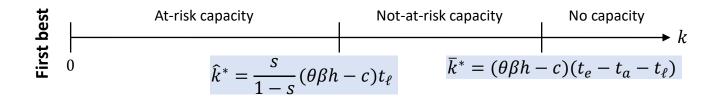
$$Q_1, Q_2 \le 1$$

s.t.
$$Q_1 \le X_r$$
$$Q_2 \le X_r + X_n$$

First Best

No excess capacity

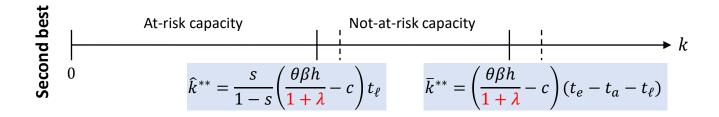
$$\circ Q_1 = X_r$$


$$\bigcirc Q_2 = X_r + X_n$$

Corner solution in capacity

- Linear programs typically have corner solutions, true here
- If serve any consumers, serve all
- o If invest in capacity, it is either all at risk or all not at risk

Threshold policy


- First best simply characterized by capacity-cost thresholds
- \circ Threshold for at-risk investment \widehat{k}^* and any investment \overline{k}^*

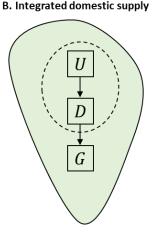
- As in first best, government has full control over firm operations and full information
- Add social cost of public funds $\lambda > 0$ (Laffont & Tirole 1993, Snow & Warren 1995)

Solution

- Similar corner solution to first best
- \circ Just scale all vaccine cost terms by $1 + \lambda$
- $\circ~$ In threshold formulas, as if vaccine benefits discounted by reciprocal of $1+\lambda$

Third Best: Domestic Supply

Setup


- Government has no direct control over firms' operations
- Must induce supply via procurement contract
- Faces social cost of public funds
- \circ Firms have private information about k, random with pdf f and cdf F
- Assume domestic, integrated firm to start

• Revelation mechanism

- Firm announces type \tilde{k}
- Required to install capacities $X_r(\tilde{k})$ and $X_n(\tilde{k})$
- Required to produce outputs $Q_1(\tilde{k})$ and $Q_2(\tilde{k})$
- \circ Paid per-dose bonus price $p_1(ilde{k})$ for early doses and $p_2(ilde{k})$ later
- Paid per-unit capacity subsidies $\sigma_r(\tilde{k})$ and $\sigma_n(\tilde{k})$
- Truth-telling and participation constraints

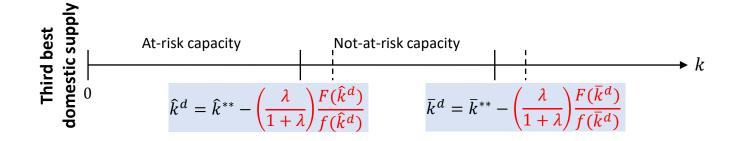
• Solution has simple form

- Price set to cover production cost: $p_1(\tilde{k}) = p_1(\tilde{k}) = c$
- $\circ~$ For ${ ilde k}$ low, firm fully invests at risk, receiving capacity subsidy σ_r
- $\circ~$ For $ilde{k}$ moderate, firm fully invests not at risk, receiving capacity subsidy σ_n
- \circ For \tilde{k} high, firm does not invest

Third Best: Domestic Supply

Optimization problem

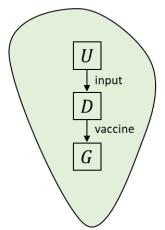
$$\int_{k}^{k} \{s[\theta\beta h - (1+\lambda)c](t_{e} - t_{a}) - (1+\lambda)\sigma_{r} + \Pi_{r}(k)\}f(k)dk$$
$$+ \int_{k}^{\bar{k}} \{s[\theta\beta h - (1+\lambda)c](t_{e} - t_{a} - t_{\ell}) - s(1+\lambda)\sigma_{n} + \Pi_{n}(k)\}f(k)dk$$
$$\prod_{r}(k) \ge \Pi_{n}(k) \forall k \in [0, \hat{k}] \quad (ICR)$$
$$s.t. \quad \begin{array}{c} \Pi_{n}(k) \ge \Pi_{r}(k) \forall k \in [\hat{k}, \bar{k}] \quad (ICN) \\ \Pi_{r}(k) \ge 0 \forall k \in [0, \hat{k}] \quad (IRR) \\ \Pi_{n}(k) \ge 0 \forall k \in [\hat{k}, \bar{k}] \quad (IRN) \end{array}$$


where

$$\Pi_r(k) = \sigma_r - k$$
$$\Pi_n(k) = s(\sigma_n - k)$$

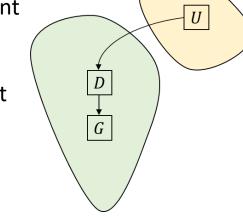
Solution

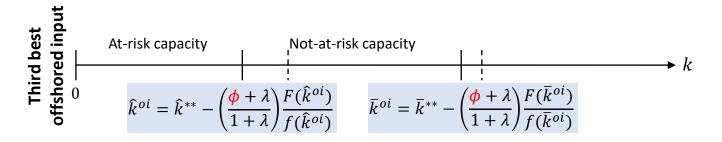
- $\circ~$ Only two constraints bind: (ICR) for type \widehat{k} and (IRN) for type \overline{k}
- Solving simultaneously gives subsidies $\sigma_n = \bar{k}$, $\sigma_r = (1 s)\hat{k} + s\bar{k}$
- Substitute and take first-order conditions with respect to thresholds


Third Best: Domestic Supply

A. Unintegrated domestic supply

Unintegrated domestic supply

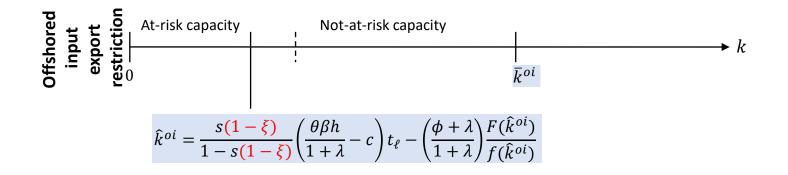

- Suppose bargain efficiently over operation decisions
- \circ Nash bargaining with weights ϕ , 1ϕ
- \circ No effect on optimum



- \circ Input supplied by offshore U, final good by domestic D
- $\circ~$ Continue to assume efficient Nash bargaining with weights ϕ , $1-\phi$

• Economic impact

- Government does not internalize profit of foreign establishment
- Dislikes leakage of information rent to foreign firm even more
- Effect arises even without social cost of public funds
- Distorts incentives downward to extract more information rent


C. Offshored input supply

Setup

- Return to case of offshored input
- Assume foreign country can restrict exports to keep supplies for citizens
- \circ Exogenous probability ξ

• Economic impact

- Creates hold-up problem with government capacity subsidy, firm investment
- Potentially severe direct effect, cutting off vaccine supply
- Isomorphic to reduction in probability of success

- Scope for raising global welfare via international cooperation
- Here, two countries striking agreement to maximize net joint surplus

Provisions

- Correct two distortions
- Ban export restrictions: ($\xi = 0$)
- Not just allow capacity subsidies but encourage them
- Increase to level as if internalized foreign-firm surplus
- Achieve third best with domestic sourcing

- $\circ~$ Up to now, location exogenous
- Due to historical accident, specialized inputs, comparative advantage
- o Endogenize location
- Government can effectively dictate location via incentive-contract terms
- So far, offshoring modeled as only presenting problems
- Generate tradeoff with production-cost advantage $c \Delta$ offshore

• Distortions

- If choose offshored inputs, underinvestment due to two distortions
 - Concern about subsidy leakage (φ)
 - Concern about export restrictions (ξ)
 - Also potentially large direct effect of export restrictions on vaccine supply
- If choose domestic sourcing, distortion at the extensive margin
 - Lose production-cost advantage

International cooperation

- Obvious role if choose offshoring, to correct distortions there
- Less obvious if choose domestic sourcing since investment conditionally efficient
- Correct location distortion in that case

Calibrations

Parameter	Definition	Source or note
$t_a = 1$	Approval lag	1 period = 6 months
$t_\ell = 1$	Capacity lag	1 period = 6 months
$t_e = 6$	Pandemic duration	6 periods = 3 years
$\theta = 0.75$	Vaccine efficacy	Ssentongo et al. (2022) BMC Infectious Disease
$\lambda = 0.3$	Social cost funds	Snow & Warren (1995) J Pub. Ec.
<i>s</i> = 0.4	Prob. success	Lo et al. (2020) Har. Data Sci. Rev.
$\phi = 0.5$	Foreign bargaining weight	Equal bargaining power
$\xi = 0.5$	Prob. export restriction	Maximum entropy
N = 250 mil	Vaccinations	US government seeks 75% coverage
<i>c</i> = \$10	Unit production cost	Kazaz et al. (2021) CGD note
$\beta h = $2,160$	E(benefit) per course	Snyder et al. (2020) <i>Health Aff.</i> \$360/month in US
$\mu_k = \$13.4$	Unit capacity cost mean	Snyder et al. (2020) lognormal from CEPI data
$\sigma_k = \$13.6$	Unit capacity cost std. dev.	Snyder et al. (2020) lognormal from CEPI data

Table 1: Calibration Results

	Probability of investment		
Scenario	At-risk capacity	Any capacity	Expected net program benefit (bil. \$)
First best	0.324	0.604	467
Second best	0.220	0.515	384
Third best domestic vaccine	0.179	0.434	320
 Third best foreign input No export restriction (ξ = 0) Export restriction (ξ = 0.5) 	0.135 0.011	0.357 0.295	258 125
 Third best foreign vaccine No export restriction (ξ = 0) Export restriction (ξ = 0.5) 	0.107 0.008	0.306 0.257	217 105

Extensions

• Progressing

- ✓ Linear-price contracts, no private information
- ✓ Convex capacity costs
- ✓ Hold-up problem for foreign input supplier a la Antras and Staiger (2012)
- ✓ Repurposed rather than greenfield capacity
- ✓ Calibrate to enriched capacity-cost model
- ✓ Alternative epidemiology with durable protection

• Future work

- Alternative SIR epidemiology with reduction in transmission
- Oligopoly suppliers
- Supply chain exporting vaccine back to countries imported inputs from