Rental Voucher Programs in Middle Income Countries: Quasi-experimental Evaluation of the Chilean Rental Subsidy

Javiera Selman *

July 26, 2022

Click *here* for most recent version

Abstract

Many low and middle income countries are transitioning from ownership subsidies towards rental policies for low income families, similar to the US Section 8 program. I present the first evaluation of such programs on multiple housing and neighborhood quality outcomes in Chile, a middle income country. I use administrative data on all applicants and the voucher assignment protocol implemented by the Chilean Ministry of Housing and Urbanism (MINVU) between 2017 and 2019, and merge it with administrative data on a range of outcomes in December 2019. I further complement this data with a survey I implemented in partnership with MINVU in 2020. I exploit score cutoffs and tie-breaking rules in the assignment of the voucher to implement a local randomization regression discontinuity approach. In the period prior to the pandemic, results are similar to the US literature: holding a voucher reduces overcrowding but does little to induce residential mobility to better neighborhoods for low income families. In contrast, in the first eight months following the COVID-19 outbreak of March 2020, results show that rental vouchers had a broader impact on recipient households. Holding a voucher affected how families were coping with the large unexpected shock caused by COVID-19: they experienced less unwanted mobility and were less likely to miss their rent payments. Furthermore, they were less likely to cut food expenses or use emergency relief policies during this period. These results point to a previously underappreciated insurance role of rental subsidies in helping poor households cope with negative aggregated shocks.

^{*}Postdoctoral fellow, Economics Department and Murphy Institute, Tulane University. Email: javieraselman@tulane.edu. This research was made possible by a data-use agreement between the author and the Ministry of Housing and Urbanism of Chile. The opinions expressed are those of the author alone and do not represent the views of the Ministry. Thanks to Mapcity (www.mapcity.cl) for providing neighborhood data used in a previous version of this study. I am indebted to my PhD advisors Rajeev Dehejia, Ingrid Gould Ellen and Tatiana Homonoff for their support and guidance, and to Daniel Waldinger, Kathy O'Regan and Patrick Button for their useful comments. Thanks to seminar participants at the NYU Furman Center for Real Estate and Urban Policy, NYU-Wagner School and Tulane Economics Department, and conference participants and discussants at the 2021 APPAM Fall Research Conference Management and the UEA 11th EU Meeting. This research was supported by NYU-Wagner. All mistakes are my own.

1 Introduction

In December 2013, advised by the US Department of Housing and Urban Development (HUD) and inspired on the US rental voucher program Section 8, the Chilean Ministry of Housing and Urbanism (MINVU) launched the first rental voucher program in Latin America, the *Subsidio de Arriendo* (Rental Subsidy). To date, several countries in the region have followed Chilean steps from providing ownership subsidies exclusively towards incorporating rental assistance to low-income families.¹

Rental vouchers aim to provide neighborhood choice and increase mobility towards neighborhoods where low-income families can have more opportunities and experience upward social mobility (Chetty et al., 2018; Chyn and Katz, 2021). In addition, the Chilean rental voucher program was expected to reduce overcrowding and, by providing a more flexible housing policy option for young families, to discourage the high demand for fully funded subsidized housing that had shown negative effects on employment and segregation of low income families at the city periphery (OECD, 2012; Navarrete and Navarrete, 2016).

There is a large literature on rental voucher programs based on evidence from the US Section 8 program. This literature shows that rental voucher programs have not lived up to their promises of providing low income families with access to better neighborhoods, although they have reduced overcrowding, rent burden and improved other housing-related outcomes.

Differences in policy design and institutional context across countries could have a profound impact on the experiences and outcomes of rental voucher recipients (Colburn, 2021), specially between high and low or middle income countries. However, there is no causal evidence about how these programs are doing outside of the US.

This paper presents the first evaluation of a rental voucher program in a middle income country, Chile. Compared to the US, Chile is poorer, more unequal, has higher levels of informality², a smaller rental market, and large demand-side subsidies that have encouraged ownership for

¹Argentina, Mexico, Peru, Colombia, Paraguay, Uruguay and Brazil, among others, have launched rental subsidies in recent years. Policy design varies across countries.

²GDP per capita in the US (US\$55,753) was almost four times the Chilean GDP per capita (US\$15,091) in 2019; the Gini coefficient was 0.444 in Chile in 2017 and 0.411 in the US in 2016 (www.data.worldbank.org); and informality accounts for 29% of the employment in Chile (Henriquez, 2019).

decades.³

I estimate the causal effect of the Chilean rental voucher program on overcrowding, residential mobility, neighborhood characteristics and application to homeownership policies and private savings to buy a house. To do this, I exploit the assignment mechanism of the program. In particular, MINVU calculates an application score using multiple socioeconomic variables to rank families according to their vulnerability. Applicants above a score cutoff get a voucher.

I use a unique data set linking administrative data of all applicants to the program from 2017 to 2019 to individual and neighborhood outcomes in December 2019, obtained from different administrative data sources. I supplement administrative data with a survey to all applicants between September and November 2020, implemented in partnership with MINVU. With this data in hand, I estimate treatment effects using the Local Randomization approach to Regression Discontinuity Designs (LRRD), developed by Cattaneo, Frandsen and Titiunik (2015).

I evaluate the effect of two different rental voucher schemes, referred as regular rounds and elderly rounds by MINVU. Regular rounds target head of households aged 18 or older and provide a modest monthly voucher for about 36 months. Elderly rounds target people aged 60 or older and provide a more generous monthly voucher for 24 months. The evaluation sample includes 1,131 and 1,328 applicants just above and below the application score cutoff in regular and elderly rounds, respectively.

Pre-pandemic data yielded results similar to the evidence from the US program Section 8: holding a voucher reduced overcrowding but it did not provide better neighborhoods for low income families in Chile. Results vary between regular and elderly rounds. The voucher reduced overcrowding in 6.1 pp (46%) in regular rounds and in 2 pp (59%) in elderly rounds. Also, holding a voucher had a large effect on mobility of elderly households, yet it did not affect the distance that they moved. In contrast, in younger families the voucher had a small positive effect on the chances of moving, but voucher holders moved longer distances. Neighborhood characteristics did not change significantly. If anything, younger families ended up farther away from schools. Further, application to homeownership programs increased among elderly voucher holders. Among regular round participants, private savings to buy a house

³In 1974, Chile introduced the first demand-side housing subsidy directed to ownership, which was later adopted by several other countries and became the main housing policy in the region (Navarro, 2005).

and applications to homeownership programs were unaffected by the voucher.

The coronavirus outbreak in March 2020 exposed the vulnerabilities of an already existing global housing crisis. High and increasing rents and low and stagnated wages leave low income families with almost no residual income to overcome unexpected income shocks (Ellen, 2020) and therefore, vulnerable to long-term negative effects of eviction on well-being (Collinson and Reed, 2018). Many countries have tried to provide income and housing security during the pandemic through eviction moratoriums and emergency rental assistance. In this paper, I leverage survey data to investigate whether rental vouchers affect how families in regular rounds cope with large aggregated shocks, like the one that came with the coronavirus pandemic.

Treatment effects around the cutoff show that voucher holders had responded differently in the first eight months of the Covid-19 pandemic. The program had an important effect on housing stability: voucher recipients were less likely to miss rent payments and experience unwanted mobility. Also, families were less likely to cut food expenses or use emergency income assistance.

The contribution of this paper to the literature is twofold. First, it contributes to the empirical work that evaluates rental voucher programs. Overall, the existing evidence suggests that rental vouchers have been effective in reducing rent burden⁴, crowding, and homelessness of low-income households, but have not been as successful at providing better environments for children to grow up in (Mills et al., 2006; Kling et al., 2007; Jacob and Ludwig, 2012; Chyn, Hyman and Kapustin, 2019; Chetty, Hendren and Katz, 2016; Schwartz et al., 2020). However, most of the literature on housing vouchers is based on evaluations of the US program Section 8 in five large cities in the US and cannot be easily extrapolated to other contexts (Andersson et al., 2016). To the best of my knowledge, this paper is the first evaluation of a rental voucher program offered to low income families to rent a unit in the private market outside of the US.⁵ Further, while the elder population is an important fraction of housing subsidy recipients in the US (Collinson, Ellen and Ludwig, 2020), most empirical evidence analyzes the effect of rental

⁴Although compared to similar families without a subsidy, voucher holders may pay more for housing while quality standards remain unchanged (Mills et al., 2006; Kling et al., 2007; Ellen, Horn and Schwartz, 2016).

⁵Barnhardt, Field and Pande (2017) evaluate public housing using a lottery among a group of slum dwellers in Ahmedabad, India, to win a rental subsidy to rent a unit administered by the government at the periphery. Four-teen years after the lottery, results show no socioeconomic improvement, no increase in tenure security, isolation from social networks and a reduction of informal insurance.

vouchers on families with children. The evaluation of the Chilean rental voucher shows that rental vouchers can have important positive effects on the elderly, contributing to close this gap in the literature.

Secondly, this research contributes to the very few empirical studies regarding housing policy effects on housing security and the response of low-income families to unexpected income shocks. The evaluation of the Welfare to Work program presented in Mills et al. (2006) shows that among families receiving social assistance, rental vouchers reduce the risk of homelessness and doubling up with other families in normal times. This research focuses in a different research question: whether rental vouchers are able to provide housing security to low income families in times of large economic shocks. To the best of my knowledge, this is the first evaluation of a rental vouchers program during times of economic struggle and suggests a previously underappreciated insurance role of rental vouchers, reducing housing and income instability of low-income families.

The rest of the paper is organized as follows. The next section provides some background, introducing the Chilean rental voucher program and comparing its differences to the US Section 8 program. Then, Section 3 describes the data and Section 4 explains the research design. Section 5 describes how the evaluation sample is built and discusses the validity of the research design. Section 6 presents the results and robustness checks and Section 7 concludes.

2 Policy Context and Design

The Chilean rental voucher program subsidizes the rent paid by low-income households for units that they find in the private rental market. There are two main types of vouchers offered in Chile: regular rounds and elderly rounds of vouchers.⁶ Regular rounds target 18 or older-headed families with monthly income between US\$250 and US\$900,⁷ with at least US\$180 in private savings to buy a house⁸ and who are in the bottom seventy percentiles of the national

⁶In Chile, MINVU administers the application process, voucher assignment, leases and subsidy payments. Local housing authorities - SERVIUs in Chile- only provide information about the program, help in-person applicants and process paperwork to activate vouchers in MINVU's web platform.

⁷Families with 3 or more members have higher income upper bounds.

⁸MINVU started asking for saving's requirements to applicants to homeownership programs in the 1990s. The amount asked in the rental voucher programs is about forty percent of what it is asked for the ownership programs for most vulnerable families.

vulnerability index, measured by the *Registro Social de Hogares* (RSH).⁹ Voucher holders in these rounds receive US\$6,200 in fixed monthly installments of US\$180 to pay monthly rents up to the maximum payment standard, set nationally at US\$402.¹⁰ Voucher holders may space out the use of their total subsidy over an eight year period— although if used continuously, the subsidy lasts for about three years.

Elderly rounds target individuals 60 or older with incomes above \$140. Savings are not required. Benefits last for two years¹¹, although total subsidy and rent coverage vary slightly across four groups, based on their RSH group. Specifically, less vulnerable voucher holders (61-70th percentiles in the RSH) get US\$7,380 to cover up to 90 percent of their monthly rent, and the most vulnerable recipients (0-40th percentiles in the RSH) are assigned US\$7,780 to cover up to 95 percent of rents below the payment standard.¹²

To apply to the Chilean program, families can go online or in person to any of the fifty PHAs (SERVIUs) across the country.¹³ Rounds are opened from two to nine months and MINVU makes monthly or bimonthly assignments, selecting up to 3,000 voucher recipients each time. MINVU uses an application score to screen applicants and assign vouchers to the most vulner-able families. Specifics of the assignment mechanism are explained in detail in Section 4.

Families have two years to find a landlord willing to participate in the program.¹⁴ Voucher recipients that are initially renting can stay in the same house, while those doubling up with other people have to rent a different unit. Landlords cannot be a family members and the rental unit needs to have at least three separated spaces and meet some legal requirements.¹⁵

⁹The RSH calculates a score and classifies families in seven groups, according to their position in the score national distribution. The RSH is administered by the Ministry of Social Development (MDS). The index considers survey and administrative data on educational achievement, income, expenses, health, food security and living arrangements. Seven groups are created: below 40th, 41th-50th, 51-60th and 61-70th, 71-80th, 80-90th and 90-100th percentiles.

¹⁰Except for 30 out of 346 counties located at the north and south of the country where maximum payment standard raises to US\$475.

¹¹In 2019, when the first group of vouchers was about to expire, MINVU extended the benefits for two more years, which was not publicly announced or explained to voucher recipients.

¹²Only four percent of voucher recipients are not in the most vulnerable group. Section 4.1.

¹³Some municipalities may voluntarily help families in the application process.

¹⁴In the US, voucher recipients spend an average of two years on a waiting list to receive a voucher. Once they get a voucher, they have two to four months to lease-up, or they lose the voucher to another family in the waiting list (Collinson and Ganong, 2018).

¹⁵Have a certificate of occupancy and a registration number at the Chileans tax office.

Some differences between the US and Chilean rental voucher program may impact the effectiveness of the voucher. First, Section 8 is more generous. Rent burden of voucher recipients is fixed at thirty percent and the voucher covers the rest up to the maximum payment standard, set locally for each Metropolitan Area in the country.¹⁶ In Chile, on the other hand, the amount of the voucher and maximum payment standard is fixed.¹⁷

Second, while in Chile benefits last between 24 and 36 months, families in the US receive assistance as long as they meet program income requirements. Third, the size of the rental market in Chile and other Latin American countries is about half of the US rental market (Ross and Pelletiere, 2014; Blanco Blanco, Cibils and Miranda, 2014).¹⁸ Furthermore, while renting is particularly low among low-income families, ownership remains constant throughout the income distribution in Chile (Andrews and Sánchez, 2011).¹⁹

Table A.1 shows some descriptive statistics of the program. Between 2014 and 2019, MINVU received about ninety thousand applications (Column 1), assigned fifty thousand rental vouchers (Column 2) and spent US\$325 million.²⁰

Only four out of ten voucher recipients have used their vouchers (Column 4) in Chile, almost half of the average lease-up rate in the US (Finkel and Buron, 2001).²¹ Descriptive evidence shows that the chances of using the voucher are particularly low for migrants, families living in the poorest housing conditions and in areas with tighter housing markets (Bogolasky, 2021).

3 Data

This paper uses a unique data set including administrative, survey and public data at three different moments in time: baseline data gathered at application; outcome data collected in December 2019, before the pandemic; and outcome data collected from September to November 2020, six to eight months after the Covid-19 outbreak in March 2020.

¹⁶In 2020, the average rent paid by voucher holders was US\$355 and the amount of the monthly voucher per family was US\$810. See https://www.huduser.gov/portal/datasets/assthsg.html.

¹⁷Effective rent burden in Chile is then not fixed, varying between 40 and 50 percent.

¹⁸Rental housing represents twenty percent of the housing stock in Chile.

¹⁹More than sixty percent of families in the first income quintile are homeowners. This number is high even for Latin American countries and has not changed much over time.

²⁰Just for context, only in 2020, the two largest homeownership programs delivered forty thousand subsidies.

²¹The average lease up rate in the US is 70% but it varies between 35% and 100% across PHAs in the country.

Baseline Data. I access application data that MINVU collects to determine applicants eligibility and calculate the application score. I have socioeconomic and demographic characteristics, location and some housing characteristics. In addition, I have access to survey data for applicants in regular rounds between March 2017 and October 2019, the relevant period of analysis. This survey was implemented in partnership with MINVU and included questions about housing and neighborhood experiences, preferences, and beliefs about renting and residential mobility. On average, response rate in the period of analysis is 78%. Importantly, answers were collected before voucher recipients were announced.

Also, to replicate voucher assignments I build a unique data set of scores, application dates, and assignment characteristics (round type, dates, cutoffs, etc.) for all applicants to the program.²²

The data set includes individual data and neighborhood level data for each applicant. More specifically, using geocoded data²³ and county codes at the time of application I link the administrative data to public geocoded information on neighborhood characteristics. I create county level variables such as poverty, crime and density. Also, using detailed geocoded data I measure access (number and distance) to schools, health care centers, municipalities and PHAs in a 2 kilometers radius.

December 2019: Outcome data before the Covid-19 outbreak. I collect outcome data for December 2019 from multiple sources. First, unit characteristics, household composition and location were obtained from both the Household Social Registry (RSH) and MINVU's administrative data. I create the same neighborhood variables explained above using December 2019 geocoded location. Second, I have information on household application to the two largest homeownership programs, the *Fondo Solidario de Vivienda (DS49)* and *Subsidio Clase Media (DS1)* between January 2011 and December 2019.²⁴ Third, for regular rounds only, I also have data on private savings to buy a house.²⁵

²²I build this data linking administrative data to data from public documents and confirming any disagreement directly with policy makers involved in voucher assignment at the time.

²³This project uses a unique geocoded data of all applicants to the program collected from multiple data sources provided by MINVU and complemented with survey data to analyze its quality.

²⁴The DS49 provides fully funded housing (no mortgage) for very low income families, who are only required US\$300 in savings. The DS1 provides partial funding to low and middle income families. It gives a down payment that decreases with the price of the house and income of the family, available for low and middle income households who can finance the rest of the house with a mortgage loan or savings.

²⁵Savings accounts are required to apply to homeownership programs but they can be used to buy any house

November 2020: Outcome data after the Covid-19 outbreak. I partnered MINVU to implement a follow up survey between September and November 2020. The survey included questions to measure crowding, residential mobility, neighborhood characteristics, subjective well-being, health, housing and neighborhood satisfaction, income, employment, and behavioral responses during the first eight months following the outbreak in March 2020.

The next section describes the empirical strategy to evaluate the Chilean rental policy.

4 Research Design

In the Chilean rental voucher program, MINVU assigns available vouchers over an application score that they calculate for each applicant using a complex formula including multiple indicators. Table 1 describes the variables that are considered in the application score formula.

Vouchers are assigned every one or two months, within each round.²⁶ Each of these are different assignment periods in which MINVU screens applicants to assign vouchers. The rolling application system implies that each applicant may participate in multiple assignment periods within a round.

Before 2019, all applicants in Chile were screened together at each assignment period, resulting in a unique national cutoff. In 2019, MINVU switched to regional screenings of applicants. Now, during each assignment period, applicants from each region are screened separately, having different cutoffs according to the number of vouchers available per region.²⁷

The number of available vouchers and number of assignments periods per round is set by decree before the start of each round of applications. Following administrative or political decisions made outside of the rental policy team at MINVU, sometimes these quantities change afterwards. However, these changes are not announced to the public.

In this research, I exploit this voucher assignment mechanism to evaluate the program using a Regression Discontinuity Design (RDD). Specifically, I exploit the discontinuity in the probability of treatment at the score cutoff that takes place each time that MINVU screens applicants

in the private market.

²⁶See Section 2 for a general description of the program.

²⁷The changed was made in response to a request made by two local housing authorities from two small regions in the extreme south of the country who complained about getting too few vouchers.

implementing a Sharp Multi-cutoff Regression Discontinuity Design.

The RDD is one of the most credible research designs in the absence of experimental treatment assignment. Identification is based in a simple and intuitive idea: when there is a discontinuous change in the probability of treatment by just surpassing a threshold, observations in a small window around that cutoff can be considered "as good as randomly assigned" to treatment and control groups (Lee and Card, 2008). Figure 1 shows the sharp discontinuity in treatment status at the cutoff and Figure 2 the distribution of application scores and cutoffs in the Chilean rental voucher program.

Instead of using the standard continuity approach, in this paper I estimate treatment effects using the Local Randomization approach to Regression Discontinuity Design (LRRD), first introduced by Cattaneo, Frandsen and Titiunik (2015). This approach makes stronger assumptions about the assignment mechanism near the cutoff (Branson and Mealli, 2018) and it provides unbiased robust estimates when the running variable is discrete and includes only a few mass points, as it is the case of the application score in the Chilean rental voucher program.²⁸

In 2017, following a reform to the national vulnerability index (RSH) ²⁹, the social vulnerability score added in the application score formula became discrete.³⁰ This reform changed the distribution of the application score: it became a discrete variable including multiples of 5, with a few mass points.³¹. Confronted with ties at the score cutoff, MINVU had to establish a tie-breaking protocol.

A three-step protocol was implemented to assign left standing available vouchers. First, families with the same total score would be re-ranked according to their family size score. Second, applicants with the same total and family size score would be re-ranked according to their social vulnerability score. Finally, applicants with the same total, family size and social vulnerability score, would be randomized to treatment and control. Only a small number of regular

²⁸In settings with large number of mass points, it is common practice to use the continuity approach and estimate standard errors clustered by the running variable (Lee and Card, 2008; Kolesár and Rothe, 2018). See Branson and Mealli (2018) for a review of alternative estimation methods in RDD settings.

²⁹Administered by another Ministry and used to assign most of the social benefits in Chile. See Section 2 for more details.

³⁰Continuous social vulnerability component is replaced by a variable taking four values, one for each group of the RSH in the target population.

³¹The support of the application score is finite and includes 131 unique values in regular rounds and 109 unique values in elderly rounds.

vouchers have been randomly assigned. Therefore, I use the sample of randomized vouchers to check the robustness of the main results in Section 6.3.

In this set up, the standard continuity approach fails to provide unbiased coefficients and confidence intervals in the smallest window possible.³² The LRRD, on the other hand, uses the actual random variation at the cutoff and the quasi-random (or as good as random) variation in a small window around the cutoff. Next, I explain how the LRRD is used to estimate causal treatment effects.

4.1 Local Randomization Approach to Regression Discontinuity

In each screening $s_t \in S$ in assignment period t of round r, applicants are sorted over their score X_{i,s_t} .³³ Those with the highest score receive a rental vouchers.

The assignment cutoff, c_{s_t} , is the value of the score of the applicant who is offered the last available voucher. Applicants who are not offered a voucher ($X_{i,s_t} \leq c_{s_t}$) are screened again with all new applicants in the following assignment period in the same round. This happens until the round closes. To be considered for the next round, they need to apply again.

Let $Y_{i,s_t}(1)$ and $Y_{i,s_t}(0)$ be the pair of potential outcomes under treatment and control in each screening of applicants $s_t \in S$ and $D_{i,s_t} = D_{i,s_t}(X_{i,s_t}) = I(X_{i,s_t} \ge c_{s_t}) \in \{0,1\}$ the treatment indicator. Then, $Y_{i,s_t} = D_{i,s_t}Y_{i,s_t}(1) + (1 - D_{i,s_t})Y_{i,s_t}(0)$ is the observed outcome for individual *i* (Rubin, 1974).

The LRRD assumes there exists a window $W_{s_t} = [x - e, x + e]$ in which the distribution of the score is known, and it is the same for all units, as in experimental data.³⁴ Inside W_{s_t} , potential outcomes may depend on the score only through treatment indicators and there should not be interference between potential outcomes of different units i.e. the stable unit treatment value

³²In the standard continuity approach, the continuity assumption of the regression functions $\mathbb{E} \{Y_i(1)|X_i=0\}$ and $\mathbb{E} \{Y_i(0)|X_i=0\}$ at the cutoff $X_i=0$ is used to approximate the average outcome that units above the cutoff would have had in the absence of treatment (Lee and Lemieux, 2010). The average treatment effect at the cutoff, τ_{Cont} , is $\tau_{Cont} = \mathbb{E} \{Y_i(1) - Y_i(0)|X_i=0\} = \lim_{x \downarrow c} \mathbb{E} \{Y_i(1)|X_i=0\} - \lim_{x \uparrow c} \mathbb{E} \{Y_i(0)|X_i=0\}$. When the running variable is discrete, specification bias in the average treatment effect ($\mathbb{E} \{Y_i(0)|X_i=c\} - \mathbb{E} \{Y_i(0)|X_i=c_k\}$) is no longer negligible. In practice, the continuity approach will consider each mass points as a bin and local polynomial methods would extrapolate from the closest mass point on either side of the cutoff.

³³Since each assignment period is unique to a round, to simplify notation I do not use the sub-index r.

³⁴There are no modelling assumptions as in the standard continuity approach.

assumption or SUTVA holds.³⁵

Under these assumptions, score ignorability $Y_{i,s_t}(X_{i,s_t}, D_{i,s_t}) = Y_{i,s_t}(D_{i,s_t})$ is guaranteed inside W_0 . Hence, as in experimental settings, the causal treatment effect under the LRRD, τ_{LR} , is the difference between the average outcome in the treated and control groups in the largest window around the cutoff in which local randomization assumptions hold. More formally,

$$\tau_{LR} = \bar{Y}_{i,s_t \in W_{s_t}}(1) - \bar{Y}_{i,s_t \in W_{s_t}}(0) \approx \mathbb{E} \left\{ Y_{i,s_t}(1) - Y_{i,s_t}(0) | X_{i,s_t} \in W_{s_t} \right\}$$

Similar to the problem of bandwidth selection in the standard continuity approach, window selection is the most important step in LRRD. In this paper, I use the data driven procedure developed by Cattaneo, Frandsen and Titiunik (2015) to identify the largest window around the cutoff in which LRRD assumptions hold.³⁶ Note that the window selection procedure simplifies if the running variable, here the application score, is discrete. In this case, the minimum possible window is known, therefore, the local randomization assumptions must hold in the window that contains the two mass points that are immediately above and below the cutoff in each s_t .

To implement this procedure, treatment and control units must be in different sides of the cutoff in each W_{s_t} , regardless of the values of the running variable. If there are ties at $c_{s_t} = 0$, the running variable require some transformation in $W_{s_t} = [0, 0]$, although any transformation that keeps the same order between mass points produces the same results (Cattaneo, 2018).³⁷

³⁵In a rental voucher program, interference could happen between neighbors or through the interaction in the rental market. I argue that this is unlikely in the Chilean program. The program is still very small and vouchers are assigned either across applicants from large geographical units, nationally or regionally. In this context, general equilibrium effects are unlikely to occur in local rental markets. The low lease up rate is 43% makes this even more unlikely, given that families do not use their voucher for many reasons, including preferences for residential immobility, preferences for homeownership and the lack of information about voucher status and the lease-up process. In this context, it is unlikely to live nearby others who have won the voucher, more so in the same round. Descriptive data on applicants supports these ideas. Geocoded data shows that three out of four applicants do not live next to any other applicant from previous rounds of the program. Also, baseline survey data to applicants between 2017 and 2019 shows that only 3% of applicants know a neighbor that won the voucher in the past. It is reasonable then to assume that treatment received by one individual do not affect outcomes for another individual in the sample.

³⁶I use the package rdwinselect in Stata to implement window selection in LRRD settings (Cattaneo, Frandsen and Titiunik, 2015).

³⁷I use the assignment rules of the program (See Section 2) to transform the running variable when there are ties at the cutoff ($W_s = [0,0]$): ties that were broken using family size or social vulnerability score are re-scaled to be in $W_s = [-2,2]$ and those remaining vouchers that were randomly assigned are re-scaled to be in $W_s = [-1,1]$. When there is no mass point at the cutoff, the minimum window is $W_s = [-5,5]$.

Fore each s_t , the chosen window, W_{s_t} , is the largest window such that the minimum p-value obtained in balance tests in pre-treatment covariates in $W_{s_{k,t}}$ and any smaller window $W_{s_{j,t}}$ (with j < k), is above a predetermined significance threshold, α . In this paper, $\alpha^* = 0.10$.

The LRRD uses randomization inference, robust in small finite samples.³⁸ Also, it uses two set of covariates. One set of pre-treatment covariates is used for window selection and another set is used for further falsification tests. I use variables that do not enter the application score formula directly. Further, I build additional covariates that are not observed by MINVU during voucher assignment using administrative data from other government agencies or divisions inside MINVU, and also survey and geocoded data not available for them during assimment periods. I describe the variables used in the window selection procedure in Section 5. Finally, all chosen windows W_{s_t} are stacked together in the evaluation sample W_0 that I use to estimate the causal effect of the program using a fixed effect model that exploits variation around the cutoff in each s_t .³⁹

Section 5 explains how W_0 is built using the data of the Chilean rental voucher program. Then, Section 5.3 presents the fixed effect model used to estimate causal treatment effects.

5 Evaluation Sample

To select windows W_{s_t} and build the evaluation sample W_0 , I start by creating a data set that stacks together all screenings of applicants s_t between March 2017 and September 2019. Initially, the data has 95,910 observations (56,705 unique applicants) that participated in 82 screenings that occurred in 22 assignment periods.⁴⁰

I implement three data restrictions to determine the subset of s_t that meet minimum conditions

³⁸Randomization inference assumes fixed potential outcomes but random assignment mechanism. The Fisher sharp null hypothesis of zero (additive) treatment effect ($H_0 : Y_i(0) = Y_i(1)$) is exact in that it uses observed outcomes to impute potential outcomes under treatment and control, such that $Y_i(0) = Y_i(1) = Y_i$. Balance tests of no difference in means on pre-treatment covariates assume fixed-margin treatment randomization within screenings of applicants. To be conservative, p-values in balance tests for window selection do not adjust for multiple testing.

³⁹This research design mimics a sequential stratified experimental design (Pocock and Simon, 1975) in which each assignment s is a strata or block of applicants that are independently assigned to treatment and control groups.

 $^{^{40}}$ This includes the entire support of the running variable. The maximum window length in the evaluation sample is [-15, 15]. Initially, the data has 16,245 observation in this window; 11,930 and 4,315 observations from 9,082 and 4,133 unique applicants in regular and elderly rounds, respectively.

to be considered in the window selection procedure. First, I analyze the number of observations close to the cutoff in each screening s_t . Following Cattaneo, Frandsen and Titiunik (2015), I exclude those screenings of applicants were the minimum window around the cutoff has less than ten observations at each side of the cutoff c_{s_t} .⁴¹ By doing this, I exclude 30,294 observations (14,504 unique applicants) from screenings that do not meet this criteria.⁴²

Second, I analyze the type of control units close to the cutoff. The rolling application system generates two types of control units: i) later treated or applicants that receive the voucher at a later assignment period during round r and ii) never treated or applicants that do not receive the voucher in any assignment period in round r. The focus of this research is to evaluate the effect of the voucher and comparing later treated to voucher holders captures a different estimand: the effect of holding a voucher for a few more months (treatment timing). I lack statistical power to estimate both effects separately since most screenings have a small number of units in a small window around the cutoff. Furthermore, some screenings with exclusively later treated in the potential control group do not meet LRRD assumptions in the smallest window around the cutoff. For this reason, I exclude 7,071 unique applicants (26,773 observations) corresponding to nine screening of applicants with only later treated in the control group in a small window around the cutoff.⁴³

Finally, I drop 2,992 observations from 2,174 applicants from the September 4th screening of elderly applicants to have common support between treated and controls at the cutoff in terms of application dates.⁴⁴

⁴¹This is done to have enough statistical power to test for balance in each assignment. Assuming a discrete outcome, a minimum detectable effect of one standard deviation and significance levels of 0.05-0.15, the randomization-based test of the sharp null of no treatment effect in the minimum window would have 60-80 percent of statistical power.

⁴²Most of the observations dropped are from regular rounds in 2019, after the regional voucher assignment reform was implemented. More specifically, only the regular assignments in October in the Los Lagos, Araucania and O'Higgins regions, and the elderly assignments in July in Santiago and Valparaiso regions have enough units in each side of the cutoff. Los Lagos, Araucania and O'Higgins are all regions located south from Santiago. Valparaiso and Santiago are in the center of the country and are the two most populated regions.

⁴³Regular screenings of April, May, July, August, September of 2017, September and November of 2018 and August 2019, and elderly screening of June 2018.

⁴⁴This assignment period was the first national elderly round of the program. It was implemented in May 2017 without much advertisement. In June 30th, MINVU increased their advertisement efforts to increase application before closing the round in August. As a consequence, all non-voucher recipients were applicants from the last six weeks of the assignment period (July 1st - August 16th). Applicants before June 30th were dropped. Doing this does not changed the distribution in a small window arond the cutoff.

The final data set to select W_{s_t} contains 35,848 observations from 30,610 unique applicants⁴⁵ that participated in 12 screenings (7 in regular and 5 in elderly rounds) in 9 voucher assignment periods (5 in regular and 4 in elderly rounds).⁴⁶ Columns 1 to 3 of Table 5 show the assignment period, region and cutoff of each screening s_t used in the selection window procedure.

I use the window selection procedure to analyze balance in the four smallest windows $W_{s_{j,t}}$ (*j* = 1, 2, 3, 4) around the cutoff in each screening of applicants *s*_t.

Finding covariates that vary between and within screenings in a small window around the cutoff is not trivial. The first set of covariates to implement the window selection procedure includes variables with larger variation that do not enter the application score formula. Specifically, it includes family income, and indicator variables for tenant, previous application to homeownership programs, having geocoded location and two dummy variables controlling for county characteristics: high density and PHA access.⁴⁷. Savings to buy a house at the time of application and online application are included in balance tests in regular screenings only. In elderly rounds I use an indicator variable for taking documents to validate income in person to the PHA.⁴⁸

The second set of covariates includes dummy variables for female, married, age between 25 and 35 for younger rounds and between 70 and 79 for elderly rounds, Chilean nationality, family poverty status⁴⁹, Santiago, high poverty counties (above the national poverty rate), having a

⁴⁷I create a dummy indicator for whether the county is one of the 53 counties (out of 343) that has a PHAs. This is a proxy for location characteristic and access to formal information about the rental voucher program and other housing policy options.

⁴⁸Elderly rounds do not ask for savings, and online application was not available for elderly rounds in the period of analysis. In regular rounds income validation is not reported in the data for online applications.

 $^{^{45}}$ Of these, 3122 and 2575 are in a small window around the cutoff [-15, 15] in regular and elderly rounds, respectively.

⁴⁶One last minor data restriction that had no implications in the window selection procedure was to exclude three applicants from the sample (farther from the cutoff), who had a score higher than the cutoff but were mistakenly assigned to the control group. In total, there were 380 of this mistakes in the period of analysis but 376 of these occurred in the regular screening in September 21st of 2018, which was excluded by the second sample restriction. The three remaining cases happened in October 19th of 2017 (1) and April 11th of 2018 (2). I confirmed with MINVU that these were not a problem in the data but actual individuals that were mistakenly not given a voucher.

⁴⁹Female, married and age are strongly correlated with application score. Number of children and family size enter the formula directly. Hence, I created a dummy indicator of being between the 25 and 75 percentiles of the age distribution per round type, which has a weaker correlation with application score. Also, I included family adjusted poverty status that, for similar income level, varies across families of different sizes. In 2017 poverty line adjusted by family size was US\$210, US\$342, US\$455, US\$556 for a family of one, two, three and four, respectively. The national poverty rate was 8.6 percent, varying from 2.1 percent in Magallanes to 17.2 percent in the Araucania region.

valid email address, and distance (km) to the closest PHA.

For regular rounds only, I use baseline survey data to create dummy variables for survey response, strong preferences to stay in baseline neighborhood, high satisfaction with baseline housing unit, knowing other applicants to the program, having access to a car and having neighbors perceived as high social class.⁵⁰. Finally, I included rent amount and rent burden, available only after September 2018. Balance tests results in the evaluation sample are shown in Section 5.1.

Nine windows W_{s_t} were selected using the data driven procedure and stacked together in the evaluation sample, W_0 . Columns 4 to 9 of Table 5 describes the screening of applicants included in W_0 . In particular, the minimum p-value of all balance tests conducted using the first set of covariates, the number of units to the right of the cutoff (treated), the number of units to the left of the cutoff (controls), and the minimum and maximum values of the normalized score included in each W_s . Windows W_{s_t} have different lengths. The maximum length of W_{s_t} is [-15, 10] and [-5, 5] in the sample of regular and elderly rounds, respectively.

In total, W_0 has 2,459 observations (2,425 unique applicants), 1,131 (1,107) from five regular screenings in three assignment periods and 1,328 (1,318) from four elderly screenings in three assignment periods. Treated and controls in W_0 are balanced in both the first and second set of covariates.⁵¹ Randomized vouchers in the smallest window possible [-1, 1] represent 47.7% and 89.4% of the sample in regular and elderly rounds, respectively.

Next, I present falsification tests to analyze the validity of LRRD in the evaluation sample. Then, I show summary statistics of the evaluation sample and compare it to the broader population of voucher recipients to assess the external validity of the results of this evaluation.

 $^{^{50}}$ Survey data has missing values yet having a valid email and response to baseline survey are balanced between treated and control units. See Section 5.1

⁵¹Windows were selected using the first set of covariates. Then, I analyzed window length and balance in terms of the second set of covariates. To be conservative, I adjusted one screening to use a smaller sample around the cutoff. Initially, the selected regular window $W_{December28th2018}$ had 80 treated and 749 control units. While the normalized score of treated units where at the cutoff and controls were up to 15 points away from the cutoff. I use the two (instead of four) increasing windows around the cutoff for this assignment period, excluding 454 observations from the control group that were outside of the window [-5, 5] around the cutoff.

5.1 Falsification Tests

As in the standard continuity approach, the LRRD is valid if the running variable is not manipulated and there are no other discontinuities in baseline covariates around the cutoff. In the LRRD, the later means that treated and controls are balanced around the cutoff, as in experimental settings.

5.1.1 Balance Tests

In this section, I show the result of balance tests in the first and second set of covariates. Recall that the window selection procedure guarantees balance in the first set of covariates.

Given that quasi-experimental variation happens at each screening of applicants s_t , I estimate the following fully interacted fixed effect model to analyze statistical balance in the evaluation sample:

$$Z_{i,s_t} = \alpha + \tau_{1,s_t} D_{i,s_t} + \gamma_{s_t} * S_{s_t} + \beta_{s_t} D_{i,s_t} * S_{s_t} + \epsilon_{i,s}$$
(5.1)

Where Z_{i,s_t} is the vector of baseline covariates, D_{i,s_t} is an indicator variable for having an application score above the cutoff, γ_{s_t} are screenings of applicants fixed effects and $D_{i,s_t} * S_{s_t}$ is the interaction between treatment and screening of applicants S_{s_t} . To test for balance I test the null (H_0) of no treatment effect in each screening of applicants s_t : τ_{1,s_t} and β_{s_t} are equal to 0.

Columns 8 and 9 of Tables 6 and 7 present balance results in the evaluation sample in regular and elderly rounds, respectively. In both cases, the sample is balanced in the analyzed baseline characteristics.⁵² Further, the bottom panel shows the results of a joint significance test of all covariates⁵³, confirming balance.⁵⁴

⁵²Recall that Z_{i,s_t} includes covariates that are strongly correlated with application score while excluded from the application score formula, and also covariates that are not observed by MINVU during voucher assignment.

⁵³I run a regression using treatment status as the dependent variables and all covariates that are available for the full sample. I replace missing values of distance to PHA with the observed distance in each screening and add a dummy to control for missing geocoded data.

⁵⁴To further understand identification, Tables A.8 and A.7 analyze differences in the values of score components and total score between the evaluation sample and the randomized sample across regular and elderly rounds. There are very small differences, specially in elderly rounds. Looking at the application score formula, these differences do not have an economic meaning to the extent that they do not translate in significant household differences.

Baseline survey response, geocoded location, female, married, Chilean, Santiago MSA, rent and rent burden do not vary across groups within all screenings of applicants. For these covariates, Columns 8 and 9 present a weaker yet commonly used balance tests, using a modified version of equation 5.1, that assumes $\beta_{s_t} = 0$. Then, τ_{1,s_t} tests for the null of zero weighted average effect across all screening of applicants together in the pooled data (H'_0). ⁵⁵

5.1.2 *Manipulation of the running variable*

Manipulation of the application score would be very costly for prospective applicants, if possible at all. Applicants would need to anticipate voucher availability, their own score and the entire score distribution.⁵⁶

To analyze manipulation, I conduct a density test. Specifically, I do a binomial test of the probability of treatment in a small window around the cutoff (Cattaneo, 2018). For intuition, if applicants cannot precisely control their value of the score, the probability of success (treatment) q is expected to be consistent with the assignment mechanism assumed in W_0 .

Following Cattaneo (2018), I assume complete randomization (q = 0.5). Table 4 shows no evidence of manipulation. The observed treatment probability in the data used for window selection and in the subset of screenings included in the evaluation sample are not statistically different from 0.5.

5.2 Descriptive Statistics

Tables 7 and 6 show summary statistics of the evaluation sample W_0 . Columns 1 to 3 present summary statistics of the pooled sample and Column 4 to 7 describe the control and treatment group in W_0 .

The evaluation sample in regular rounds includes mostly Chilean families headed by young single mothers. Average income is US\$530.⁵⁷ One fifth of the families are under the poverty line

⁵⁵This is a weaker balance test in that H'_0 could be zero if a specific linear combination of the effects in each s_t is zero, while H_0 is false (Young, 2019; Firpo, Foguel and Jales, 2020).

⁵⁶Not surprisingly, Tables 2 and 3 show no clear pattern between the number of participants and the number of available vouchers, or between available vouchers and the value of the cutoff.

⁵⁷Average household income in Chile was US\$1,302 in the last National Socioeconomic Survey (CASEN); in the first four income deciles was, respectively, US\$140, US\$400, US\$540 and US\$655 (CASEN 2017).

and three fourths are initially tenants, paying almost half of their household income towards rent (US\$224). Also, 67% live in high poverty counties.

In elderly rounds, 61% of elder applicants in the evaluation sample are women, 39% have a partner, and 54% are initially renting. Compared to the regular sample, the elderly have lower family income (average income is US\$243) and are more likely to be under the poverty line. However, they live in denser, less poor counties, and are located closer to a PHA than those in regular rounds.

Voucher use among recipients in W_0 is 38%, lower than the national average (43%) (Table A.1 in the Appendix). The lease up rate varies both across regular and elderly rounds, and across s_t . Table A.2 shows the lease up rate of voucher recipients in each screening of applicants. On average, 29% of voucher holders in regular rounds have used their vouchers. In elderly rounds, the average lease up rate is 44.5%. In both cases, voucher use varies across assignment periods. In both cases, the maximum lease-up rate is observed in the assignment period in April 2018.⁵⁸

An advantage of the multi-cutoff set up is that the evaluation sample includes treated and control units in close windows around different cutoffs, which may contribute to reducing the local nature of traditional single cutoff RDD estimates (Cattaneo et al., 2016). To assess the external validity of the results of this evaluation, Tables A.3 and A.4 in the Appendix show descriptive statistics for the full sample of voucher recipients in regular and elderly rounds, respectively.

Indeed, few and small differences are observed between all voucher recipients in the period of analysis and the subset of observations in the evaluation sample, specially in elderly rounds.⁵⁹ In regular rounds, main differences seemed to be explained by the exclusion of the screening of applicants in Santiago, that did not have enough observations in the smallest window around the cutoff. Consistently, Santiago is underrepresented. Also, there is a larger fraction of families living in poor counties (67% vs 50%), yet the average proportion of families under the poverty line is similar (21% vs 25%).

The next section presents the fixed effects model used to estimate causal effects of the Chilean

⁵⁸Recall that, in addition to the timing of the treatment, the cutoff and the regional distribution may vary across assignment periods.

⁵⁹Further, Column 8 in Tables A.3 and A.4 in the Appendix shows overall very small differences between voucher recipients and non-voucher recipients in baseline covariates.

rental voucher program.

5.3 Econometric Model

I use the following equation to estimate the causal effect of the rental voucher program in outcome Y_{i,s_t} of applicant *i* in screening of applicants s_t from assignment period *t*.

$$Y_{i,s_t} = \alpha + \tau D_{i,s_t} + \beta Z_{i,s_t} + \gamma_{s_t} + \epsilon_{i,s_t}$$
(5.2)

Where D_{i,s_t} is an indicator variable for having an application score above the cutoff, $X_{i,s_t} > 0$, Z_{i,s_t} is a vector of baseline covariates including covariates used to asses balance in Section 5.1⁶⁰, and γ_{s_t} are screenings of applicants fixed effects. Note that each screening has a different cutoff and occurs in a specific moment in time (assignment period *t*).⁶¹ Hence, I cannot disentangle the heterogeneity across different cutoffs from the heterogeneity introduced by having a voucher for different amounts of time.

For the period before the pandemic, outcomes Y_{i,s_t} includes overcrowding, residential mobility, savings for ownership⁶², application to the main two homeownership programs in Chile and several neighborhood characteristics.⁶³

In November 2020, eight months after the COVID-19 outbreak, Y_{i,s_t} comprises overcrowding, residential mobility, housing and neighborhood characteristics and satisfaction, tenure, rent burden, employment, income, health, and families' response to the economic hardship that came with the pandemic.

⁶⁰I use the subset of covariates that are available for the entire sample. In regular rounds, Z_{i,s_t} includes tenancy, savings, income, online application, previous applications to homeownership programs, non missing geocoded data, PHA in the county, high poverty county, high density county, female, chilean, family poverty status, age group, distance to closes PHA, married and baseline survey response. In elderly rounds I use the same set of controls, excluding online application, savings and baseline survey response.

⁶¹After the reform in 2019, in a specific region.

⁶²Extensive (opened account) and intensive margins (balance) outcomes are included.

⁶³Access to pre-schools, schools and health care services (primary care and hospitals) are measured using the distance to the closest service and available supply in one and two kilometers. Neighborhood school quality is measured by average standardized math and language sixth grade tests scores and the fraction of private, public and subsidized schools in one and two kilometers. Distance to commercial activity is approximated by the distance to the closest municipality. Total crime at the county level is measured in standard deviations from the national mean (z-score). Finally, to characterize neighborhood income composition I include county poverty rate and the fraction of low income schools in the neighborhood i.e. the fraction of schools in which the majority of their students in low income families.

I estimate equation 5.2 separately for regular and elderly rounds. The parameter of interest, τ , is the normalized and pooled LRRD estimate of the effect of being assigned a voucher, or Intention to Treatment Effect (ITT). Specifically, τ recovers a double average: the weighted average of the average ITT effect within screenings of applicants s_t .

Local Average Treatment Effects (LATE) of using the rental voucher are not reported in the paper because of small sample sizes and low lease-up rate among voucher recipients.⁶⁴ As the program increases and raises its lease-up rate, future evaluations of the program could have enough statistical power to estimate the effect of using the voucher. Still, ITTs are the estimates of interest from a policy perspective in that lease-up cannot be enforced.

The next section presents the results of the evaluation of the Chilean rental voucher program.

6 Results

This section presents the results of the evaluation of the rental voucher program using the fixed effect model in equation 5.2 in Section 5.3.

Tables 8 to 10 present the results for regular and elderly rounds before and during the pandemic. In each table, Specifications 1 and 2 include screening of applicants fixed effects. Specification 2 adds baseline covariates, $Z_{i,s}$, used in Section 5.1. I report large-sample based inference (F-test) (Column 8) and Fisherian randomization inference (Column 9), robust in small samples.

Otherwise noted, this section discusses the results in Column 7, estimating the ITT effects of holding a voucher (τ in equation 5.2) controlling for baseline covariates $Z_{i,s}$.⁶⁵ and Fisherian randomization inference.⁶⁶ The bottom panel in each table shows the Westfall-Young multipletesting test of overall treatment irrelevance.

⁶⁴If we expect those who have not used their voucher to behave similar to those who have, then this evaluation underestimates the effect of the rental voucher program in Chile since LATE is τ adjusted by compliance rates in the treated group (Angrist and Pischke, 2008).

⁶⁵Including covariates in $Z_{i,s}$ has efficiency gains and only little impact on the coefficients.

⁶⁶I use the package randomd in Stata to estimate Randomization-t exact test developed in Young (2019)). I use 1000 iterations, re-randomizing the data by screening of applicants, as in a stratified experimental design.

6.1 Treatment Effects in December 2019 (Before the Coronavirus Pandemic)

Two set of outcomes are created and analyzed using administrative data before the pandemic, in December 2019. The first group of outcomes assess the effect of the voucher on housing, residential mobility and neighborhood characteristics. The second group of outcomes measures the effect of the rental voucher on application to homeownership policies and private savings to buy a house.⁶⁷

6.1.1 Housing, residential mobility and neighborhood characteristics

Panel A in Table 8 and 9 shows that, with respect to the control group mean in Column 2, holding a voucher reduced overcrowding in 6.1 pp (46%) in regular rounds and 2 pp (59%) in elderly rounds, respectively.⁶⁸ The reduction in overcrowding in elderly rounds is originated by voucher holders living in smaller families and having more available bedrooms. In contrast, results in regular rounds is driven exclusively by the increase in the number of bedrooms, not by a change in household size.

There are important differences in the effects of the rental voucher on residential mobility across regular and elderly voucher schemes (Panel B in Tables 8 and 9). The effect of the more generous voucher to elder households on mobility is larger: holding a voucher increased residential mobility in 7.6 pp (12%) in regular rounds and in 20 pp (29.4%) in elderly rounds. The effect on distance, on the other hand, is large and statistically significant (15.7 km) only in regular rounds receiving a modest voucher.

Panel C in Tables 8 and 9 shows the effects of the voucher on neighborhood characteristics. The rental voucher did not improve neighborhood characteristics in regular or elderly rounds. If anything, treated younger families with children in regular rounds moved to areas farther away from schools and pre-schools. In elderly rounds, on the other hand, neighborhoods characteristics remained the same except for the distance to the closest school, which is shorter as a result of the voucher.

⁶⁷Section 5.3 describes the outcomes in more detail.

⁶⁸Overcrowding is defined as more than 2 family members sleeping together in one bedroom. This is one of the variables that MINVU uses to measure applicants' housing vulnerability. This is a more severe measure of overcrowding than the most commonly used in Chile. Three indicators are more brodaly used: mild (between 2.5 and 3.5 individuals per bedroom), high (3.5-5 individuals per bedroom) and critical (above 5) (Casen 2017).

Altogether, despite the differences between the Chilean rental voucher and the US Section 8 program, the evaluation of the Chilean program before the pandemic shows similar results to previous literature focused in the US experience: holding a voucher improves housing conditions but it does not provide better neighborhoods for low income families. In addition, this evidence shows important differences between voucher schemes in residential mobility.

6.1.2 Homeownership

Panel D in Table 8 shows that holding a voucher did not affect application to homeownership programs in regular rounds. Coefficients are positive but small and non significant. Furthermore, there was no effect on the extensive or intensive margins of savings to buy a house i.e. both treated and controls kept their savings account opened with enough savings to apply to a homeownership program (Column 2).

In contrast, results in Table 9 show that the rental voucher increased application to homeownership programs in 3.2 pp (25.2%) among the elderly. Importantly, the effect is driven by an increase of the number of applications to the fully funded homeownership program (DS49) that provide housing at the periphery and has been associated to an increase in segregation of low income families (OECD, 2012).

6.2 Treatment Effects During the Coronavirus Pandemic

This section uses a subset of applicants in the evaluation sample W_0 who responded an online survey implemented six to eight months following the Coronavirus pandemic outbreak, in March 2020. With this data, I use equation 5.2 to estimate the causal effects of holding a voucher during the pandemic. Given the few responses from elderly rounds, the following analysis focuses in regular rounds only.⁶⁹

The survey was sent to applicants in the evaluation sample who had a valid email address: 88% in regular rounds.⁷⁰ Of these, 634 individuals in five regular screening of applicants s_t

⁶⁹Only 38% of the sample in elderly rounds had a valid email and 40% of these responded the survey, corresponding to 173 individuals. While there is no selective attrition and the sample is balance in baseline characteristics, sample size in two screening of applicants does not have the minimum number of observations at each side of the cutoff. Given the small sample left to do the analysis, I excluded elderly rounds altogether.

⁷⁰Section 5.1 shows that the evaluation sample is balanced in email availability.

responded the survey (64% response rate).

Section B in the Appendix analyses selective attrition and balance in this sub-sample of applicants. The data shows no evidence that the treatment affected survey response. Further, local randomization assumptions hold in the subset of regular applicants inside W_0 who responded the survey.⁷¹

I use survey data to analyze the effect of the voucher on three sets of outcomes. The first one measures the effects on housing, household or family composition, residential mobility and neighborhood characteristics. With this survey, I am able to study additional housing and neighborhood outcomes, not available in administrative data, such as housing and neighborhood satisfaction, and housing consumption.

The second set of outcomes assess the effect of the voucher in health and subjective well being. The third and last set of outcomes includes employment, income during the pandemic, and measures families response to the large aggregated shock that came with the Covid-19 pandemic.

6.2.1 Housing, Residential mobility, Family Composition and Neighborhood Characteristics

Eight months into the pandemic, 86% of the control group was renting and the voucher had no significant effect on tenancy (Panel A in Table 10).⁷² Nonetheless, the policy affected other important housing margins.

In a highly informal rental market⁷³ holding a voucher increased the probability of having a lease in 12.6 percentage points (17%) and rent burden decreased in 12.6pp (25%). In particular, monthly out of the pocket rent payments decreased in US\$48.5, while the average rent amount (US\$261) and income remained the same.

Compared to the control group, voucher recipients were about 8 pp. (10%) and 10 pp (13%)

 $^{^{71}}$ In addition, Table B.3 in the Appendix shows that the results in December 2019 for this subset of observations. While some coefficients are slightly smaller and others have larger p-values, overall the results look very similar to the estimates using the full sample of regular rounds in W_0 presented above.

⁷²Survey data at baseline shows that eighty percent in both the treatment and control groups were tenants when they applied to the program. Homeowners are not eligible to the rental voucher program.

⁷³Baseline survey shows that 35% of those who were tenants at baseline did not have a rental lease.

more likely to have an independent room for the kitchen⁷⁴ and a heating system, respectively.⁷⁵ Further, voucher holders were 8.4 pp (11%) more likely to be satisfied with their housing.

Results in crowding and residential mobility are similar to December 2019: overcrowding decreased in 6.4 pp and holding a voucher increased residential mobility in 9.4 pp (16%). Distance from initial location, on the other hand, is not statistically significant in this smaller sample.

This data suggests that reductions in overcrowding and increases in mobility rate do not fade over time. Distance, on the other hand, might decrease over time as those with stronger location preferences may take longer to search and move nearby. However, I cannot disentangle the effect of the pandemic from the long term effects of the voucher and, as shown below, the pandemic affected mobility and might have as well affected preferences for remaining close to social networks.

The survey included several questions to measure access to amenities in the immediate neighborhood (4 blocks radius). Panel F in Table 10 shows similar results to those in December 2019. Voucher holders did not access neighborhoods with better characteristics.

Despite being 7.5 pp (12%) more likely to live close to a park, the effect of the voucher on access to childcare, schools, transportation and primary care centers was not statistically significant. Further, distance to work, family and friends did not change with the treatment.

Subjective coefficients regarding neighborhood satisfaction and safety perception are not statistically significant, nonetheless, they are all consistently negative. Furthermore, voucher holders were 7.7 pp (47%) more likely to have been recently exposed to gang fights in the neighborhood and 7.3 pp (25%) less likely to have a neighbor they could ask for childcare support, suggesting that the voucher may cause isolation from social networks.⁷⁶

6.2.2 Health and Subjective Well Being

I analyse the effect of the voucher on health related outcomes in Panel D in Table 10. The voucher did not affect overall physical health or happiness of voucher recipients.

⁷⁴Which is one of the requirements to use the voucher in a certain unit.

⁷⁵Other housing expenses like cable TV, smart phone, computer or Wifi have a small and not significant effect.

⁷⁶Coefficients for having close friends in the neighborhood or neighbors who they could for economic help are both negative, although not statistically significant. Isolation among rental policy beneficiaries in low income countries have been previously shown by (Barnhardt, Field and Pande, 2017).

The analysis of mental health outcomes shows mixed effects during this period. On the one hand, voucher holders were 8.1 pp (11.8%) less likely to feel worried (pvalue 0.114). On the other hand, they were 9.9 pp (24.6%) more likely to feel anxious according to the PHQ4 test.⁷⁷

This data does not allow us to further understand this result. It might be that residential mobility increases anxiety but at the same time having the rent subsidized provide some peace of mind. Given the large burden on mental health imposed by the pandemic, specially in low income families, it is important to further understand the link between rental vouchers and mental health during a crisis.

Below, I present the effect of the rental policy on economic outcomes during the pandemic. This is the last set of outcomes of this evaluation.

6.2.3 Employment, income and household responses during COVID-19 pandemic

Panel C (Column 2) in Table 10 gives us a sense of the size of the unexpected economic shock for young low income families in Chile. Roughly 88% of the control group suffered partial or total income loss after the outbreak in March 2020. Unemployment associated to the pandemic — mostly suspended contracts of dependent workers and independent workers who could not go out to work during strict quarantines — was 17%.

Fifteen different strategies to cope with the economic shock that came with the pandemic were surveyed. Almost the entire sample had to turn to some of these strategies to generate new income, cut spending or increase debt to adapt to the new economic circumstances. The data shows that the most common responses were to resort to government emergency assistance (58%) and the reduction of food expenses (59%). In addition, about half of the sample declares to have cut utility and other monthly bills and used family savings.

The rental voucher did not prevent the reduction of household income generated by the pandemic, although it reduced debt overload in 12.5 pp (18%). Interestingly, the voucher increased temporary unemployment in the beginning of the pandemic, yet it did not affect employment overall.⁷⁸ Further research is needed to explore whether the voucher allowed more single

⁷⁷To distinguish from serious diagnoses, the survey included the Patient Health Questionnaire-4 (PHQ4) test, a four-questions screening for anxiety and depression. Results show that 17, 40 and 31 percent of the control group were evaluated as normal, anxious and depressed using this test, respectively.

⁷⁸Previous literature in the US (Jacob and Ludwig, 2012) show negative effects of rental policies on employ-

mother —main beneficiaries of regular rounds— to be at home with their kids when the pandemic first hit.

The voucher did not reduce the need to do extraordinary things to adapt to the new economic circumstances. However, the policy had important positive effects on the way in which families were coping with the consequences of the large unexpected shock. First, holding a rental voucher had positive effects in housing stability during the pandemic. Unwanted or emergency moves and delayed rent payments were 5.6 pp (72%) and 11 pp (45%) less likely among voucher holders, respectively.⁷⁹ Second, voucher holders were 12.6 pp (21.5%) and 8.5 pp (15%) less likely to reduce their food budget and rely on emergency relief policies, respectively.

These results point to a previously underappreciated insurance role of rental subsidies in helping poor households cope with negative aggregated shocks.

6.3 Robustness Checks

This section analyzes the robustness of estimates of equation 5.2 presented in the previous section to window length included in the evaluation sample. To do this, I use a subset of observations in the smallest window possible that were randomly assigned to treatment and control.

In the period of analysis, 2,400 elderly and 1,315 regular vouchers were randomly assigned. However, in some screenings of applicants only a few units were randomized or randomization failed to provide a balance sample of treated and controls.⁸⁰ In other cases, there were only later treated in the control group. Dropping these screenings form the sample leaves 1,187 elderly and 539 regular randomized vouchers to estimate the effect of holding a rental voucher, all of which are included in the smallest window possible around the cutoff in the evaluation sample. Hence, this exercise is a robustness check of the size of the window included in the evaluation sample.

ment. In the Chilean rental voucher program the fixed (and smaller) amount of the subsidy does not change the marginal tax rate and therefore it is expected that employment is not affected by the policy.

⁷⁹Positive effects of rental vouchers in housing stability have been previously documented in the US in periods of no economic crisis (Mills et al., 2006).

⁸⁰This happened mostly because MINVU had very few vouchers left to randomize over a large number of applicants at the cutoff or because they made some last minute change to the available number of vouchers or length of application periods. See Section 5 for more details.

Tables A.5 and A.6 in the Appendix show balance analysis in this sub sample in regular and elderly rounds, respectively. In both cases, there is no evidence of statistically significant differences between treated and controls.

I analyzed the effect of the voucher using actual randomization only in the period before the pandemic.⁸¹ Tables A.9 and A.10 in the Appendix show the results for regular and elderly rounds, respectively. Results in Section 6.1 are robust to window length, despite some small differences in the estimated coefficients in the smallest window possible.

7 Discussion

This research coincided with the COVID-19 pandemic, and offered an unexpected opportunity not just to explore the effects of voucher programs in lower-income countries, but also to explore the effects of voucher programs when families are confronted with large economic shocks. Specifically, this paper studies the effect of the recently new rental voucher program in Chile on housing and neighborhood quality indicators of low income families in Chile, before and after the COVID-19 pandemic outbreak in March 2020.

Results in the period before the pandemic are similar to those of the existing literature for the US: holding a voucher seems to improve housing conditions by reducing overcrowding yet it does little to provide better neighborhoods for low income families.

In addition, the rental voucher did not discourage the application to homeownership programs of young families, as was the expectation of the government. Moreover, the voucher increased application among the elder —whose rents are almost fully subsidized in the rental voucher program.

Some combination of preferences for homeownership, benefit duration and access to more information through the interaction with the PHA might explain this result in elderly rounds. Future research could explore how the recent reform that automatically renovates the rental voucher in elderly rounds may change the cost-benefit analysis of different housing policy options in the elder population.

In the eight months following the COVID-19 outbreak of March 2020, results show that the

⁸¹Less than 300 observations in regular rounds were randomly assigned and responded the survey.

rental policy had an important effect on how young families with children were coping with the large unexpected income shock. Voucher holders were less likely to miss their rent payments or experience unwanted mobility. Also, they were less likely to reduce their food budget and rely on emergency relief policies during this period.

These findings point to a previously underappreciated role of housing subsidies in helping poor households cope with negative income shocks. This is particularly relevant for low and middle income countries, where high levels of informality and social inequalities make unexpected large income variations more likely to occur, and their potential negative effects bigger.

References

- Andersson, Fredrik, John Haltiwanger, Mark J Kutzbach, Giordano E Palloni, Henry Pollakowski, and Daniel H Weinberg. 2016. "Childhood housing and adult earnings: A betweensiblings analysis of housing vouchers and public housing." *NBER working paper*, , (w22721).
- Andrews, Dan, and Aida Caldera Sánchez. 2011. "The evolution of homeownership rates in selected OECD countries: Demographic and public policy influences." *OECD Journal: Economic Studies*, 2011: 207–243.
- Angrist, Joshua D, and Jörn-Steffen Pischke. 2008. *Mostly harmless econometrics*. Princeton university press.
- Barnhardt, Sharon, Erica Field, and Rohini Pande. 2017. "Moving to opportunity or isolation? Network effects of a randomized housing lottery in urban India." *American Economic Journal: Applied Economics*, 9(1): 1–32.
- Blanco Blanco, Andrés, V Fretes Cibils, and A Muñoz Miranda. 2014. "Rental housing wanted: Policy options for Latin America and the Caribbean." *Inter-American Development Bank. Fiscal and Municipal Management Division. IV. Title. V. Series.*
- Bogolasky, Francisca. 2021. "The Paradox: When Poor Housing Conditions Act as a Barrier to Better Housing." PhD diss.
- Branson, Zach, and Fabrizia Mealli. 2018. "The Local Randomization Framework for Regression Discontinuity Designs: A Review and Some Extensions." arXiv preprint arXiv:1810.02761.
- Cattaneo, Matias D. 2018. "A Practical Introduction to Regression Discontinuity Designs: Volume II."
- Cattaneo, Matias D, Brigham R Frandsen, and Rocio Titiunik. 2015. "Randomization inference in the regression discontinuity design: An application to party advantages in the US Senate." *Journal of Causal Inference*, 3(1): 1–24.

- Cattaneo, Matias D, Rocío Titiunik, Gonzalo Vazquez-Bare, and Luke Keele. 2016. "Interpreting regression discontinuity designs with multiple cutoffs." *The Journal of Politics*, 78(4): 1229–1248.
- Chetty, Raj, John N Friedman, Nathaniel Hendren, Maggie R Jones, and Sonya R Porter. 2018. "The opportunity atlas: Mapping the childhood roots of social mobility." National Bureau of Economic Research.
- Chetty, Raj, Nathaniel Hendren, and Lawrence F Katz. 2016. "The effects of exposure to better neighborhoods on children: New evidence from the Moving to Opportunity experiment." *American Economic Review*, 106(4): 855–902.
- Chyn, Eric, and Lawrence F Katz. 2021. "Neighborhoods Matter: Assessing the Evidence for Place Effects." *Journal of Economic Perspectives*, 35(4): 197–222.
- Chyn, Eric, Joshua Hyman, and Max Kapustin. 2019. "Housing Voucher Take-Up and Labor Market Impacts." *Journal of Policy Analisis and Management*, 38(1): 65–98.
- Colburn, Gregg. 2021. "The use of markets in housing policy: a comparative analysis of housing subsidy programs." *Housing Studies*, 36(1): 46–79.
- Collinson, Robert, and Davin Reed. 2018. "The effects of evictions on low-income households." *Unpublished Manuscript.*[Google Scholar], 1–82.
- Collinson, Robert, and Peter Ganong. 2018. "How do changes in housing voucher design affect rent and neighborhood quality?" *American Economic Journal: Economic Policy*, 10(2): 62–89.
- Collinson, Robert, Ingrid Gould Ellen, and Jens Ludwig. 2020. "IN THIS ISSUE : Means-Tested Transfer Programs : Reforming Housing Assistance.", (1): 0–27.
- Ellen, Ingrid Gould. 2020. "What do we know about housing choice vouchers?" *Regional Science and Urban Economics*, 80: 103380.
- Ellen, Ingrid Gould, Keren Mertens Horn, and Amy Ellen Schwartz. 2016. "Why Don't Housing Choice Voucher Recipients Live Near Better Schools? Insights from Big Data." *Journal of Policy Analysis and Management*, 35(4): 884–905.

- Finkel, Meryl, and Larry Buron. 2001. "Study on Section 8 voucher success rates. Volume I. Quantitative study of success rates in metropolitan areas." *prepared by Abt Associates for the US Department of Housing and Urban Development*, 2–3.
- Firpo, Sergio, Miguel N Foguel, and Hugo Jales. 2020. "Balancing tests in stratified randomized controlled trials: A cautionary note." *Economics Letters*, 186: 108771.
- Henriquez, Lysette. 2019. "Formalization: The Case of Chile." International Labour Organization.
- Jacob, Brian A., and Jens Ludwig. 2012. "The effects of housing assistance on labor supply: Evidence from a voucher lottery." *American Economic Review*, 102(1): 272–304.
- Kling, Jeffrey R, Jeffrey B Liebman, Lawrence F Katz, Source Econometrica, No Jan, B Y Jeffrey R Kling, Jeffrey B Liebman, Lawrence E Katz, and Wood Johnson. 2007. "Experimental Analysis of Neighborhood Effects." *Econometrica*, 75(1): 83–119.
- Kolesár, Michal, and Christoph Rothe. 2018. "Inference in regression discontinuity designs with a discrete running variable." *American Economic Review*, 108(8): 2277–2304.
- Lee, David S, and David Card. 2008. "Regression discontinuity inference with specification error." *Journal of Econometrics*, 142(2): 655–674.
- Lee, David S, and Thomas Lemieux. 2010. "Regression discontinuity designs in economics." *Journal of economic literature*, 48(2): 281–355.
- Mills, Gregory, Daniel Gubits, Larry Orr, David Long, Judie Feins, Bulbul Kaul, Michelle Wood, Amy Jones, et al. 2006. "Effects of housing vouchers on welfare families." Washington, DC: US Department of Housing and Urban Development, Office of Policy Development and Research., 8(2010): 2.
- Navarrete, Pablo, and Nicolás Navarrete. 2016. "Moving "away" from Opportunities?: Homeownership and Employment."

Navarro, Mario. 2005. "Land Lines." L. LINES, 37(6).

OECD. 2012. OECD Economic Surveys: Chile. January 2012.

- Pocock, Stuart J., and Richard Simon. 1975. "Sequential Treatment Assignment with Balancing for Prognostic Factors in the Controlled Clinical Trial." *Biometrics*, 31(1): 103.
- Ross, Lauren M, and Danilo Pelletiere. 2014. "Chile's new rental housing subsidy and its relevance to US housing choice voucher program reform." *Cityscape*, 16(2): 179–192.
- Rubin, Donald B. 1974. "Estimating causal effects of treatments in randomized and nonrandomized studies." *Journal of educational Psychology*, 66(5): 688.
- Schwartz, Amy Ellen, Keren Mertens Horn, Ingrid Gould Ellen, and Sarah A. Cordes. 2020. "Do Housing Vouchers Improve Academic Performance? Evidence from New York City." *Journal of Policy Analisis and Management*, 39(1): 131–158.
- Young, Alwyn. 2019. "Channeling fisher: Randomization tests and the statistical insignificance of seemingly significant experimental results." *The Quarterly Journal of Economics*, 134(2): 557–598.

Figures and Tables

Figure 1: Sharp RD Design

This figure presents treatment probability for different values of the normalized application score.

Figure 2: Multiple Cutoff Regression Discontinuity Design

Figure 3: Regular Rounds

The figure presents the distribution of the application score in regular rounds in the pooled data. Vertical lines indicate multiple values of cutoff in the program.

Figure 4: Elderly Rounds

The figure presents the distribution of the application score in elderly rounds in the pooled data. Vertical lines indicate multiple values of cutoff in the program.

			Differences in
	Score Component	Regular Rounds	Elderly Rounds
1	Household member ¹	40 per member	=
2	Children under 5 ²	30 per member	=
3	Children between 6 and 18	20 per member	=
4	Elderly*	30 per member	60 per member
5	Single Parent of 18 or younger children	35	=
6	Physical disability	30 per member	=
7	Tortured in dictatorship (applicant and/or partner)	100 per member	=
8	Military Service	20 per member	=
9	Gendarmerie Service (applicant and/or partner)	40 per member	=
10	Previous Applications (max 3)	20 per prev application	=
11	Social Vulnerability (RSH Index) ³	0 (81-100th), 45 (71-80th), 90 (61-70th)	=
	• •	135 (51-60th), 180 (40-50th)	=
12	Housing Vulnerability	0, 20, 40, 60, 80, 100, 120, 140, 160	=
	(sum of multiple scores) ⁴		
_13	Applicant's age (60-64, 65-69, 70-74, >75)	No	20, 40, 60, 100

Table 1: Application Score

This table presents all score components. Notes: (1) Applicants are excluded in regular rounds; (2) Age by the end of the application year; (3) Includes crowding, housing quality, access to reliable water and basic sanitation; (4) Before the reform the formula was (13484-Family's FPS Score)/100, using the Social Vulnerability Card (FPS) instead of the RSH Index.

Assignment	Ν	Min Xi	Max Xi	Vouchers	Cutoff
Date	(1)	(2)	(3)	(4)	(5)
26apr2017	2,090	85	665	956	300
17may2017	2,214	85	720	996	275
21jun2017	2,373	85	720	1,000	275
24jul2017	2,343	85	705	999	240
24aug2017	2,495	85	685	1,000	240
27sep2017	2,714	85	650	999	235
19oct2017	3,085	85	695	1,933	200
13dec2017	5,751	85	790	900	395
11apr2018	2,591	85	695	1,500	285
01jun2018	6,848	85	755	1,500	370
21sep2018	3,399	125	700	1,000	355
26oct2018	4,162	125	800	1,000	375
20nov2018	7,174	125	800	2,157	350
28dec2018	5,017	125	345	80	345
03jun2019	4,657	85	700	1,985	331
19aug2019	5,076	85	680	1,990	297
10oct2019	6,607	85	740	3,559	273
Total	68,596	85	800	23,554	317

Table 2: Assignments in Regular Rounds

This table shows descriptive statistics for each assignment period that occurred between April 2017 and October 2019 in Regular Rounds. Column 1 shows the total number of applicants that were screened. Column 2 and 3 present the maximum and minimum score among all applicants. Column 4 indicates the number of available vouchers and column 5 the value of the cutoff. Columns 1 to 4 in June, August and October 2019 aggregate all 16 regional screening of applicants and Column 5 shows the average cutoff across all regions.

Assignment	N	Min Xi	Max Xi	Vouchers	Cutoff
Date	(1)	(2)	(3)	(4)	(5)
04sep2017	6,280	135	730	1,859	380
11apr2018	2,063	175	645	1,000	380
25jun2018	3,789	175	860	999	420
19oct2018	8,084	145	710	997	420
05jul2019	7,098	105	740	1,033	394
Total	27,314	105	860	5,888	401

Table 3: Assignments in Elderly Rounds

This table replicates the analysis in Table 2 using elderly rounds data. See Table 2 for details. Columns 1 to 4 in July 2019 aggregate all 16 regional screening of applicants and Column 5 shows the average cutoff across all regions.

Binomial Test (q=0.5)										
Screenings	Ν	Observed T	Expected T	Observed q	p-value					
	(1)	(2)	(3)	(4)	(5)					
Window Selection	5,043	2,485	2,522	0.49	0.311					
Evaluation Sample	2,801	1,405	1,400	0.50	0.880					

Table 4: Density Test

This table presents the results of a binomial tests to evaluate the presence of manipulation in the running variable. The assumed probability of success q is 50%. See Section 5.1 for more details.

	Screening	Region	Cutoff	Controls	Treated	Length	Min pvalue	Left	Right
Assignment Period	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Regular Rounds									
19oct2017	1		200						
11apr2018	2		285	151	117	10	.12	-5	5
01jun2018	3		370						
28dec2018	4		345	295	80	7	.21	-5	2
10oct2019	5	6	285	97	49	20	.29	-10	10
10oct2019	6	9	285	153	122	30	.4	-15	15
10oct2019	7	10	275	48	19	4	.25	-2	2
Elderly Rounds	0								
04sep2017	1		380	377	279	15	.23	-10	5
11apr2018	2		380	275	110	10	.14	-5	5
19oct2018	3		420						
05jul2019	4	5	380	159	30	10	.18	-5	5
05jul2019	5	13	400	19	79	7	.28	-5	2

Table 5: Window Selection Results

This table shows descriptive statistics of each screening of applicants in the evaluation sample. Columns 2 describes the region where the assignment takes place after switching to regional screenings in 2019. Column 3 shows the cutoff. Columns 4 and 5 show the number of individuals below (control) and above (treated) the cutoff. Columns 6 to 6 describe the window selected in each assignment: the length of the window, the minimum p-value of all balance tests using covariates explained in Section 5.1, the minimum and maximum value of the running variable inside the window.

		Summary Statistics							Balance	
		Pooled		Con	trol	Trea	ited	Т	est	
	Ν	Mean	SD	Mean	SD	Mean	SD	F-test (p)	Rand-t (p)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Tenant in baseline	1,328	0.54	0.50	0.55	0.50	0.53	0.50	0.451	0.471	
Family income (UF)	1,328	6.22	2.81	6.19	2.74	6.29	2.92	0.611	0.633	
PHA in county of residence	1,328	0.47	0.50	0.47	0.50	0.47	0.50	0.426	0.474	
County above national poverty	1,328	0.32	0.46	0.34	0.47	0.28	0.45	0.262	0.398	
High density county	1,328	0.54	0.50	0.52	0.50	0.58	0.49	0.877	0.875	
Female	1,328	0.61	0.49	0.59	0.49	0.63	0.48	0.115	0.141	
Age 70-79	1,328	0.56	0.50	0.57	0.49	0.54	0.50	0.300	0.324	
Below family adjusted PL	1,328	0.56	0.50	0.57	0.50	0.55	0.50	0.864	0.872	
KM to closest PHA	1,328	12.03	16.62	12.42	16.83	11.39	16.26	0.195	0.263	
Valid email address	1,328	0.37	0.48	0.39	0.49	0.34	0.47	0.222	0.235	
Spouse/partner	1,328	0.39	0.49	0.39	0.49	0.40	0.49	0.697	0.701	
Chilean	1,328	0.98	0.13	0.98	0.14	0.99	0.12	0.078*	0.649	
Previous app. to ownership subsidy	1,328	0.05	0.22	0.06	0.23	0.04	0.20	0.452	0.312	
Income documents to PHA	1,328	0.99	0.12	0.99	0.11	0.98	0.13	0.948	0.492	
Santiago MSA	1,328	0.27	0.44	0.23	0.42	0.34	0.47	0.847	0.066*	
Geocoded location	1,328	0.96	0.20	0.95	0.21	0.97	0.18	0.324	0.483	
SCREENING FE								Yes	Yes	
Joint Significance F-Test (p)								0.120	0.170	

Table 6: Balance in Baseline Characteristics in Elderly Rounds

This table presents summary statistics and balance tests between treatment and control groups in the evaluation sample in elderly rounds. Columns 1 to 7 show summary statistics of baseline characteristics. Columns 8 and 9 show balance results from testing the fully interacted model in equation 5.1 (H_0) or the the weaker null hypothesis (H'_0) excluding interaction terms from 5.1. Column 8 presents inference using large-sample based inference (F-test) and column 9 present Fisherian randomization inference p-values (Randomization-t exact test). I use the package randcmd (1000 iterations) to calculate randomization inference p-values in Stata (Young, 2019). The bottom panel presents the F-test of joint significance from regressing the treatment indicator on baseline covariates. See Section 5.1 for details. Significance levels: * p<0.1; ** p<0.05; *** p<0.01.

	Summary Statistics							Balance	
		Pooled		Con	trol	Trea	ited	Т	est
	Ν	Mean	SD	Mean	SD	Mean	SD	F-test (p)	Rand-t (p)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Tenant in baseline	1,131	0.75	0.43	0.75	0.43	0.74	0.44	0.978	0.978
Saving balance on application day (UF)	1,131	16.60	29.44	16.75	34.31	16.31	16.47	0.388	0.402
Family income (UF)	1,131	13.33	4.80	13.24	4.61	13.50	5.13	0.686	0.688
Online application	1,131	0.36	0.48	0.37	0.48	0.35	0.48	0.512	0.486
High density county	1,131	0.39	0.49	0.40	0.49	0.37	0.48	0.906	0.919
County above national poverty	1,131	0.67	0.47	0.65	0.48	0.71	0.46	0.648	0.672
PHA in county of residence	1,131	0.47	0.50	0.48	0.50	0.47	0.50	0.740	0.747
Previous app. to ownership subsidy	1,131	0.15	0.36	0.14	0.35	0.17	0.37	0.747	0.733
Age 25-35	1,131	0.60	0.49	0.58	0.49	0.64	0.48	0.103	0.128
Below family adjusted PL	1,131	0.21	0.41	0.20	0.40	0.22	0.42	0.733	0.744
KM to closest PHA	1,131	18.03	22.99	17.52	22.20	19.01	24.43	0.486	0.497
Valid email address	1,131	0.88	0.33	0.88	0.33	0.88	0.33	0.810	0.823
Want to stay same neighborhood	677	0.56	0.50	0.57	0.50	0.55	0.50	0.713	0.737
Satisfaction with housing unit	723	0.66	0.47	0.66	0.47	0.65	0.48	0.156	0.196
Does not know other applicants	659	0.53	0.50	0.51	0.50	0.57	0.50	0.095*	0.118
Access to car	655	0.34	0.47	0.35	0.48	0.31	0.47	0.537	0.562
(Perceived) High social class neighbors	702	0.49	0.50	0.49	0.50	0.49	0.50	0.627	0.667
Baseline Survey response	995	0.82	0.38	0.82	0.39	0.82	0.38	0.764	0.941
Geocoded location	1,131	0.89	0.31	0.90	0.30	0.88	0.32	0.146	0.890
Female	1,131	0.89	0.31	0.89	0.31	0.89	0.31	0.611	0.233
Spouse/partner	1,131	0.17	0.38	0.18	0.38	0.15	0.36	0.158	0.751
Chilean	1,131	0.94	0.24	0.93	0.26	0.97	0.18	0.007***	0.557
Santiago MSA	1,131	0.11	0.31	0.11	0.32	0.10	0.30	0.887	0.821
Rent	772	5.65	3.03	5.65	3.12	5.66	2.81	0.622	0.943
Rent burden	772	0.47	0.28	0.47	0.29	0.48	0.24	0.654	0.235
SCREENING FE								Yes	Yes
Joint Significance F-Test (p)								0.245	0.373

Table 7: Balance in Baseline Characteristics in Regular Rounds

This table replicates the analysis in Table **??** using data from regular rounds. See Table **??** for details. Significance levels: * p < 0.1; ** p < 0.05; *** p < 0.01.

				Spe	ecification	1	Specification 2		2
		Con	trol	Treatment	OLS	Rand-t	Treatment	OLS	Rand-t
	Ν	Mean	SD	Effect	p-value	p-value	Effect	p-value	p-value
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
A. Housing Conditions									
Household size Dec 2019	1,131	2.847	1.204	0.052	0.494	0.506	0.058	0.434	0.459
Number of bedrooms	1,121	1.750	0.820	0.194	0.000***	0.000***	0.203	0.000***	0.000***
Number of people per bedroom	1,121	1.816	0.770	-0.175	0.000***	0.000***	-0.182	0.000***	0.000***
Overcrowing indicator	1,121	0.133	0.340	-0.061	0.001***	0.001***	-0.061	0.001***	0.002***
B. Residential Mobility									
Staved in same unit	1,003	0.587	0.493	-0.089	0.008***	0.009***	-0.076	0.021**	0.018**
Distance (km)	1,003	7.392	45.429	16.781	0.039**	0.029**	15.711	0.049**	0.037**
Distance (km) (Movers)	441	17.906	69.449	30.031	0.067*	0.058*	27.523	0.101	0.090*
Staved 1km or less from application location	441	0.332	0.472	-0.051	0.283	0.277	-0.048	0.321	0.323
Moved to another county	441	0.150	0.357	0.073	0.052*	0.056*	0.069	0.051*	0.040**
C. Neighborhood Characteristics									
Distance to closest municipality	1,003	3.273	4.627	0.394	0.245	0.249	0.387	0.249	0.236
Distance to closest school (km)	1,003	0.896	1.797	0.441	0.027**	0.031**	0.446	0.032**	0.036**
Distance to closest Pre-Shcool (km)	1,003	0.976	2.286	0.489	0.028**	0.039**	0.493	0.028**	0.030**
Distance to closest Primary Care (km)	930	1.545	2.440	0.348	0.158	0.163	0.331	0.195	0.203
Number of Schools in 1Km	1,003	4.851	4.265	-0.297	0.330	0.340	-0.256	0.384	0.388
Number of Schools in 2Km	1,003	14.858	12.818	-0.997	0.231	0.235	-0.786	0.271	0.272
Number of Preschool in 1Km	1,003	3.008	2.535	-0.070	0.691	0.719	-0.045	0.790	0.800
Number of Health Care in 2km	1,003	4.959	4.567	-0.326	0.252	0.240	-0.250	0.308	0.293
Fraction of Public Schools 1Km	827	0.445	0.288	-0.008	0.712	0.687	-0.006	0.785	0.767
Fraction of Subsidized Schools 1Km	827	0.521	0.281	-0.000	0.984	0.984	-0.003	0.894	0.899
Fraction of Private Schools 1Km	827	0.034	0.105	0.008	0.262	0.270	0.009	0.241	0.241
Mat. SIMCE, 3 Closest School 2km	878	263.786	17.432	0.293	0.818	0.828	-0.090	0.943	0.951
Mat. SIMCE, 3 Closest School 2km	878	249.516	18.520	0.246	0.858	0.869	0.070	0.959	0.951
Fraction of Low Income Schools 1km	827	0.619	0.341	0.015	0.547	0.547	0.014	0.563	0.569
Fraction of Low Income Schools 2km	886	0.597	0.266	0.002	0.909	0.900	0.000	0.995	0.996
County poverty rate	1,003	0.115	0.064	-0.000	0.950	0.957	-0.002	0.548	0.554
Total crime (County z-score)	1,003	1.014	1.556	0.122	0.282	0.283	0.121	0.118	0.103
D. Homeownership									
Application to Ownership Programs	1,131	0.313	0.464	0.027	0.343	0.304	0.012	0.583	0.589
Application to partially funded program (DS1)	1,131	0.222	0.416	0.029	0.273	0.230	0.017	0.428	0.409
Application to fully funded program (DS49)	1.131	0.124	0.329	0.014	0.470	0.395	0.010	0.599	0.570
Active ownership savings account	1.131	0.911	0.285	0.010	0.565	0.534	0.008	0.644	0.644
Balance in ownership savings account (US)	1,033	24.132	31.862	1.071	0.597	0.580	0.365	0.838	0.852
	-								
SCREENING FE				YES	YES	YES	YES	YES	YES
CONTROLS (Z)				NO	NO	NO	YES	YES	YES
Westfall-Young Multiple Testing (p-value)						0.020**			0.020**

Table 8: Effect of Regular Voucher Before the Covid-19 Pandemic (2019)

_

This table presents estimates of equation 5.2 using outcomes measured in December 2019. Columns 2 and 3 show the average and standard deviation of the outcome in the control group. Specifications 1 (Columns 4 to 6) includes screening of applicants fixed effects. Specification 2 (Columns 7 to 9) includes screening of applicants fixed effects and baseline covariates explained in Section 5.3. Large-sample based inference (OLS p-values) are presented in Columns 5 and 8, and Fisherian randomization inference (Randomization-t p-values from Young (2019) are presented in Columns 6 and 9. The bottom panel shows the Westfall-Young multiple-testing test of overall treatment irrelevance considering all outcomes together. Significance levels: * p < 0.05; *** p < 0.01.

Table 9: Effect of Elderly Voucher Before the Covid-19 Pandemic (2019)

				Spe	ecification	1	Spe	pecification 2	
		Cor	ntrol	Treatment	OLS	Rand-t	Treatment	OLS	Rand-t
	Ν	Mean	SD	Effect	p-value	p-value	Effect	p-value	p-value
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
A. Housing Conditions									
Household size Dec 2019	1,328	1.600	1.091	-0.144	0.012**	0.006***	-0.175	0.001***	0.001***
Number of bedrooms	1,252	1.358	0.735	0.443	0.000***	0.001***	0.443	0.000***	0.001***
Number of people per bedroom	1,247	1.243	0.597	-0.298	0.000***	0.001***	-0.317	0.000***	0.001***
Overcrowing indicator	1,314	0.034	0.182	-0.017	0.097*	0.110	-0.020	0.046**	0.049**
B. Residential Mobility									
Stayed in same unit	1,198	0.680	0.467	-0.201	0.000***	0.001***	-0.199	0.000***	0.001***
Distance (km)	1,198	16.123	116.539	1.389	0.838	0.843	-0.520	0.938	0.931
Distance (km) (Movers)	458	50.324	201.952	-19.348	0.249	0.262	-26.552	0.140	0.150
Stayed 1km or less from application location	458	0.301	0.460	-0.003	0.938	0.932	-0.002	0.956	0.960
Moved to another county	460	0.266	0.443	-0.022	0.589	0.583	-0.026	0.514	0.521
C. Neighborhood Characteristics	1 100	0 888	7 000	0.554	0.100	0.104	0.401	0.100	0.100
Distance to closest municipality	1,198	3.///	7.220	-0.554	0.138	0.124	-0.481	0.189	0.189
Distance to closest school (km)	1,198	1.11/	4.007	-0.130	0.473	0.511	-0.099	0.612	0.647
Distance to closest Pre-Shcool (km)	1,198	1.129	4.269	-0.155	0.451	0.486	-0.111	0.612	0.640
Distance to closest Primary Care (km)	1,137	1.614	4.103	-0.120	0.561	0.581	-0.081	0.704	0.721
Number of Schools in 1Km	1,198	7.056	5.731	-0.315	0.353	0.339	-0.536	0.097*	0.086*
Number of Schools in 2Km	1,198	21.328	15.354	-0.071	0.940	0.949	-0.744	0.361	0.363
Number of Preschool in 1Km	1,198	3.731	2.925	-0.136	0.470	0.474	-0.202	0.267	0.270
Number of Health Care in 2km	1,198	6.546	5.648	-0.145	0.675	0.658	-0.364	0.238	0.207
Fraction of Public Schools 1Km	1,050	0.405	0.241	-0.010	0.537	0.548	-0.004	0.796	0.809
Fraction of Subsidized Schools 1Km	1,050	0.529	0.244	0.007	0.660	0.658	0.004	0.823	0.814
Fraction of Private Schools 1Km	1,050	0.066	0.137	0.003	0.747	0.750	0.000	0.957	0.956
Mat. SIMCE, 3 Closest School 2km	1,087	264.174	17.522	-0.758	0.507	0.527	-0.874	0.455	0.478
Mat. SIMCE, 3 Closest School 2km	1,088	251.717	18.091	-0.129	0.914	0.909	-0.240	0.843	0.836
Fraction of Low Income Schools 1km	1,050	0.463	0.337	-0.025	0.275	0.277	-0.007	0.736	0.716
Fraction of Low Income Schools 2km	1,092	0.438	0.266	-0.023	0.198	0.199	-0.008	0.639	0.615
County poverty rate	1,200	0.084	0.048	-0.003	0.389	0.368	0.002	0.467	0.467
Total crime (County z-score)	1,200	1.698	1.965	0.096	0.451	0.461	-0.047	0.648	0.673
D. Homeownership	1 000	0.102	0.000	0.001	0.000	0.005	0.022	0.050*	0.050*
Application to Ownership Programs	1,328	0.123	0.329	0.021	0.292	0.305	0.032	0.052*	0.052*
Application to partially funded program (DS1)	1,328	0.077	0.267	-0.002	0.891	0.916	0.005	0.687	0.690
Application to fully funded program (DS49)	1,328	0.061	0.240	0.027	0.095*	0.073*	0.030	0.044**	0.034**
SCREENINC EE				VES	VES	VES	VES	VES	VES
CONTROLS (7)				NO	NO	NO	VES	VES	VES
CONTROLS(Z)				INU	INU	INU	115	113	1123
Westfall-Young Multiple Testing (p-value)						0.005***			0.005***

This table replicates the analysis in Table 8 using elderly rounds data. See Table 8 for details. Significance levels: * p < 0.1; ** p < 0.05; *** p < 0.01.

Table 10: Effect of Regular Voucher During the Covid-19 Pandemic (2020)

				Sp	ecification	1	Spe	ecification	2
		Con	itrol	Treatment	OLS	Rand-t	Treatment	OLS	Rand-t
	N	Mean	SD	Effect	p-value	p-value	Effect	p-value	p-value
A II-min - and II-mahald Changetanistics	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
A. Housing and Household Characteristics	400	0.9/2	0.245	0.014	0.070	0.690	0.026	0.421	0.420
Formal Lease	204	0.862	0.345	0.014	0.07***	0.000***	0.026	0.421	0.429
Total ront (unit)	297	0.735	0.444	3 780	0.007	0.009	0.120	0.007	0.007
Rent paid	376	201.322	106 387	-51 372	0.705	0.001***	-48 538	0.00***	0.001***
Rent burden (rent naid)	334	0 509	0 271	-0.137	0.000***	0.001	-0.126	0.000***	0.001
Rent burden (rent amount)	344	0.553	0.252	-0.041	0.108	0.122	-0.032	0.204	0.223
Shelter deprivation (slum, shared room or other)	552	0.180	0.385	-0.038	0.256	0.278	-0.023	0.470	0.473
Lives with Parents/Grand parents	410	0.143	0.351	-0.001	0.970	0.964	-0.010	0.785	0.797
Living with grandchild	410	0.023	0.151	0.004	0.832	0.861	0.012	0.508	0.493
Spouse/Partner	409	0.319	0.467	0.071	0.166	0.174	0.078	0.102	0.103
Child borned since application	380	0.133	0.340	0.050	0.238	0.231	0.045	0.289	0.294
Household Size	512	3.331	1.461	-0.161	0.201	0.203	-0.118	0.341	0.347
Number of bedrooms	496	2.223	0.897	0.028	0.705	0.696	0.037	0.618	0.609
Number of people per bedroom	496	1.653	0.843	-0.145	0.038**	0.037**	-0.147	0.035**	0.032**
Overcrowding indicator	498	0.129	0.336	-0.064	0.021**	0.025**	-0.064	0.030**	0.035**
Pet Owner	410	0.016	0.124	-0.012	0.278	0.271	-0.009	0.400	0.454
Laundry Room	428	0.416	0.494	-0.003	0.955	0.944	0.005	0.924	0.916
Kitchen Room	480	0.796	0.404	0.075	0.042**	0.038**	0.080	0.034**	0.030**
Hot water	496	0.850	0.357	-0.006	0.868	0.855	-0.023	0.508	0.509
Heat system	496	0.775	0.418	0.129	0.000***	0.001***	0.103	0.001***	0.002***
Cable TV	495	0.634	0.483	-0.016	0.718	0.688	-0.042	0.366	0.325
Wifi	493	0.564	0.497	0.021	0.648	0.655	0.004	0.935	0.930
Smart Phone Lease	491	0.641	0.480	0.052	0.250	0.255	0.038	0.406	0.422
Computer	495	0.497	0.501	0.053	0.260	0.243	0.041	0.383	0.354
B. Residential Mobility		0.501	0.402	0.001	0.0504	0.05/*	0.001	0.0154	0.0507
Stayed in same unit	441	0.591	0.493	-0.094	0.059*	0.056*	-0.094	0.065*	0.058*
Distance (km)	358	7.779	44.523	9.971	0.326	0.370	8.550	0.301	0.343
Number of moves from application	441	0.737	1.137	-0.001	0.992	0.996	0.009	0.930	0.930
Less than 6 months current house	546	0.141	0.348	-0.034	0.245	0.253	-0.036	0.215	0.225
Between 6 months and 1 year current house	546	0.147	0.354	0.088	0.011**	0.012**	0.086	0.018**	0.022**
Between 1 and 2 years current house	546	0.214	0.411	0.076	0.052*	0.055*	0.084	0.034**	0.037**
2 or more years current house	546	0.499	0.501	-0.130	0.003***	0.003***	-0.134	0.003***	0.002***
Less than 6 months current neighborhood	538	0.095	0.294	-0.007	0.784	0.786	-0.012	0.630	0.640
Between 6 months and 1 year current neighborhood	538	0.131	0.338	0.058	0.075*	0.081*	0.056	0.101	0.105
Between 1 and 2 years current neighborhood	538	0.188	0.391	0.042	0.249	0.277	0.042	0.256	0.283
2 or more years current neighborhood	538	0.586	0.493	-0.093	0.036**	0.041**	-0.085	0.057*	0.069*
C. England and Income									
Work	406	0.700	0.450	0.018	0.710	0 721	0.026	0.465	0.400
Work	406	0.700	0.459	-0.018	0.710	0.721	-0.036	0.405	0.499
Covid-19 unemployment	400	0.170	0.376	0.056	0.172	0.206	0.068	0.100	0.117
Na incomo loco after COVID 10	414	0.090	0.461	-0.124	0.120	0.010	-0.125	0.017**	0.009
D Household Response During in Covid 19 Crisis	415	0.215	0.411	0.070	0.129	0.149	0.000	0.209	0.232
Covid 19 responses moved out	411	0.077	0.267	0.052	0.017**	0.022**	0.056	0.01/**	0.016**
Covid 19 response: delayed rent payments	264	0.077	0.207	-0.032	0.017	0.022	-0.036	0.014	0.016
Covid 19 response: active moved in	304 411	0.241	0.429	-0.117	0.000	0.007	-0.108	0.012	0.018
Covid 19 response: reduced food hudget	411	0.000	0.240	0.011	0.702	0.007	0.024	0.410	0.432
Covid 19 response: reduced hoalth expenses	411	0.367	0.495	-0.109	0.036	0.044	-0.126	0.018	0.023
Covid 19 response: reduced itelatin expenses	411	0.363	0.462	-0.060	0.217	0.206	-0.067	0.160	0.175
Covid-19 response: delayed monthly hillings	+11 /11	0.444	0.300	-0.033	0.320	0.330	-0.030	0.374	0.367
Covid 19 response: informal loan (family friends)	411	0.444	0.490	-0.078	0.137	0.127	-0.085	0.110	0.094
Covid 19 response: formal lean or credit	411	0.403	0.492	-0.054	0.205	0.294	-0.031	0.325	0.330
Covid-19 response: sold expansive goods (vehicle jewelry etc.)	411	0.158	0.366	0.011	0.172	0.200	0.023	0.233	0.504
Covid-19 response: sold or rented real state /land	411	0.004	0.062	0.015	0.238	0.256	0.023	0.174	0.193
Covid-19 response: used family savings	411	0 494	0.501	-0.013	0.200	0.200	-0.028	0.596	0.618
Covid-19 response: new activities to generate more income	411	0.347	0.477	-0.037	0 448	0 431	-0.046	0.363	0.334
Covid-19 response: gave or lent money to family members	411	0.116	0.321	-0.030	0.362	0.345	-0.029	0.399	0.396
Covid-19 response: applied/used government emergency solutions	411	0.583	0.494	-0.083	0.110	0.096*	-0.085	0.111	0.100
Covid-19 response: none	411	0.058	0.121	-0.003	0.895	0.890	0.002	0.926	0.932
Covid-19 response: other	411	0.050	0.201	-0.028	0.105	0.114	-0.013	0.437	0.438
covia i) response. olici		0.000	0.21)	0.020	0.105	0.111	0.010	0.107	0.100
E. Virus Transmission and Mental Health									
At least one Covid-19 case- Home	388	0.041	0.199	0.025	0.309	0.322	0.019	0.473	0.481
At least one Covid-19 case- Family	388	0.254	0.436	0.018	0.713	0.710	0.020	0.683	0.679
At least one Covid-19 case- Friends	388	0.197	0.398	-0.010	0.817	0.824	0.000	0.999	1.000
At least one Covid-19 case- Neighbors	388	0.180	0.385	-0.015	0.714	0.707	-0.012	0.782	0.778
At least one Covid-19 case- Work	388	0.193	0.395	-0.039	0.326	0.313	-0.062	0.144	0.144
At least one Covid-19 case- Other acquaintance	388	0.324	0.469	0.031	0.549	0.562	0.023	0.650	0.652
Do not know any COVID-19 case	388	0.307	0.462	-0.056	0.244	0.219	-0.037	0.441	0.403
Good health	397	0.586	0.494	0.063	0.225	0.203	0.057	0.277	0.257
Happy	382	0.702	0.458	0.046	0.339	0.335	0.029	0.566	0.551
Feel depressed	393	0.794	0.405	-0.069	0.130	0.141	-0.050	0.280	0.275
Feel worried	393	0.685	0.465	-0.094	0.067*	0.069*	-0.081	0.122	0.114
PHQ4 Test: Normal	393	0.169	0.376	-0.031	0.436	0.477	-0.034	0.423	0.449
PHQ4 Test: Anxiety	393	0.403	0.492	0.111	0.038**	0.039**	0.099	0.067*	0.061*
PHO4 Test: Depression	393	0.310	0.464	0.049	0.332	0.353	0.028	0.583	0.611

Table 10: (Continuation) Effect of Regular Voucher During the Covid-19 Pandemic (2020)

				Specification 1 Specification 2					2
		Con	trol	Treatment	OLS	Rand-t	Treatment	OLS	Rand-t
	Ν	Mean	SD	Effect	p-value	p-value	Effect	p-value	p-value
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
F. Neighborhood Characteristics									
Close to childcare/pre-school (4 blocks)	538	0.580	0.494	0.009	0.837	0.849	0.014	0.766	0.757
Close to Schools (4 blocks)	538	0.586	0.493	-0.065	0.149	0.145	-0.051	0.259	0.256
Close to subway/bus (4 blocks)	538	0.642	0.480	0.013	0.760	0.771	0.038	0.394	0.397
Close to Park (4 blocks)	538	0.612	0.488	0.063	0.146	0.153	0.075	0.080*	0.089*
Close to Health Care (4 blocks)	538	0.470	0.500	-0.021	0.641	0.646	0.001	0.974	0.972
Less than 15 min commute time to family	370	0.439	0.497	0.009	0.867	0.842	-0.005	0.937	0.938
Less than 15 min commute time to friends	325	0.458	0.499	0.031	0.604	0.617	0.045	0.459	0.472
Less than 15 min commute time to school	347	0.519	0.501	0.017	0.768	0.759	0.003	0.960	0.957
Less than 30 min commute time to work	310	0.713	0.454	-0.029	0.611	0.599	-0.025	0.670	0.666
Street Alcohol Consumption	397	0.544	0.499	0.027	0.606	0.614	0.021	0.694	0.709
Street Drug Consumers	397	0.435	0.497	-0.027	0.596	0.608	-0.034	0.515	0.524
Street Drug Trafficking	397	0.274	0.447	-0.026	0.579	0.591	-0.024	0.605	0.603
Destroyed property	397	0.327	0.470	-0.029	0.558	0.556	-0.028	0.564	0.581
Graffiti	397	0.210	0.408	-0.029	0.468	0.452	-0.039	0.362	0.337
Gang Fights	397	0.165	0.372	0.064	0.133	0.119	0.077	0.076*	0.056*
People Carrying guns	397	0.190	0.393	0.015	0.723	0.705	0.015	0.716	0.691
Shooting	397	0.387	0.488	0.043	0.413	0.421	0.047	0.368	0.382
Prostitution	397	0.060	0.239	0.005	0.842	0.847	0.012	0.629	0.624
Feels safe walking at night	398	0.550	0.498	-0.034	0.529	0.544	-0.033	0.545	0.561
Feels safe inside the house at night	394	0.765	0.425	0.031	0.496	0.504	0.025	0.573	0.589
Victim of violence (physical)	391	0.119	0.324	-0.023	0.449	0.437	-0.016	0.625	0.624
Victim of robbery	370	0.298	0.458	0.005	0.912	0.915	0.010	0.833	0.838
G. Housing and Neighborhood Satisfaction									
Satisfaction current housing unit	547	0.754	0.431	0.078	0.029**	0.028**	0.084	0.019**	0.020**
Satisfaction current neighborhood	526	0.802	0.399	-0.023	0.524	0.515	-0.031	0.378	0.392
Would ask neighbors for childcare	510	0.297	0.458	-0.081	0.046**	0.044**	-0.073	0.082*	0.081*
Has close friends in the neighborhood	513	0.436	0.497	-0.034	0.464	0.443	-0.019	0.688	0.672
Would ask neighbors for economic help	507	0.243	0.429	-0.036	0.348	0.348	-0.042	0.282	0.270
SCREENING FE				YES	YES	YES	YES	YES	YES
CONTROLS (Z)				NO	NO	NO	YES	YES	YES
Westfall-Young Multiple Testing (p-value)						0.000***			0.000***

This table presents estimates of equation 5.2 using outcomes measured in the follow-up sample implemented in September-November 2020. Columns 2 and 3 show the average and standard deviation of the outcome in the control group. Specifications 1 (Columns 4 to 6) includes screening of applicants fixed effects. Specification 2 (Columns 7 to 9) includes screening of applicants fixed effects and baseline covariates explained in Section 5.3. Large-sample based inference (OLS p-values) are presented in Columns 5 and 8, and Fisherian randomization inference (Randomization-t p-values from Young (2019) are presented in Columns 6 and 9. The bottom panel shows the Westfall-Young multiple-testing test of overall treatment irrelevance considering all outcomes together. Significance levels: * p<0.1; ** p<0.05; *** p<0.01.

A Appendix: Additional Figures and Tables

		Voucher	Lease-up (N)	Lease-up (%)
	Applicants	Recipients	May-20	May-20
Round	(1)	(2)	(3)	(4)
1-2014 Regular	5023	5004	1994	40%
2-2014 Regular	2045	2045	906	44%
2015 Regular	3525	3001	1391	46%
2016 Regular	11892	10576	4676	44%
2017 Regular	13634	8785	3809	43%
1-2018 Regular	8350	3002	1345	45%
2-2018 Regular	9175	4238	1816	43%
2019 Regular	10584	7536	2775	37%
Total Regular Rounds	64228	44187	18712	42%
2016 Elderly (Pilot)	630	630	326	52%
2017 Elderly	6292	1871	945	51%
1-2018 Elderly	5858	2068	1110	54%
2-2018 Elderly	4526	939	440	47%
2019 Elderly	7118	1049	471	45%
Total Elderly Rounds	24424	6557	3292	50%
Total Program	88652	50744	22004	43%

Table A.1: Program Summary Statistics

This table presents descriptive statistics for each round of the program between 2014 and 2019. Columns 1 and 2 show the total number of applicants and number of voucher offers in each round. Column 3 presents the total number of voucher recipients that ever used their vouchers and Column 4 presents the lease up rate (Column 3 divided by Column 2). Columns 3 and 4 use data on all leases that voucher recipients activated between April 2014 and May 2020.

	All	Apr 2018	Dec 2018	Oct 2019 O'Higgins	Oct 2019 Araucania	Oct 2019 Los Lagos
Regular	0.29	0.42	0.29	0.24	0.21	0.11
	All	Sept 2017	Apr 2018	Jul 2019 Valparaiso	Jul 2019 Santiago	
Elderly	0.44	0.45	0.57	0.43	0.24	

Table A.2: Lease-up rate by screening of applicants in the Evaluation Sample

This table shows lease up rates per screening of applicants in the evaluation sample for regular and elderly rounds.

Table A.3: Summary Statistics Voucher Recipients and Non Recipients Regular Round

	All	Applica	nts	Recip	ients	Non-Recipients		Difference
	Ν	Mean	SD	Mean	SD	Mean	SD	(7)-(5)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Tenant in baseline	41,738	0.70	0.46	0.68	0.47	0.72	0.45	0.04
Saving balance on application day (UF)	41,738	14.47	16.64	14.18	16.18	14.84	17.21	0.65
Family income (UF)	41,738	14.80	5.47	14.56	5.56	15.12	5.32	0.57
Online application	41,738	0.34	0.47	0.34	0.47	0.34	0.47	0.00
High density county	41,738	0.45	0.50	0.43	0.50	0.47	0.50	0.03
County above national poverty	41,738	0.50	0.50	0.50	0.50	0.50	0.50	-0.01
PHA in county of residence	41,738	0.49	0.50	0.49	0.50	0.50	0.50	0.01
Previous app. to ownership subsidy	41,738	0.14	0.35	0.14	0.35	0.14	0.34	-0.01
Age at application	41,738	34.71	10.46	34.02	9.57	35.60	11.46	1.57
Below family adjusted PL	41,737	0.25	0.43	0.32	0.47	0.16	0.37	-0.16
KM to closest PHA	41,738	14.61	19.04	15.08	19.46	14.00	18.47	-1.08
Valid email address	41,738	0.86	0.35	0.85	0.36	0.87	0.33	0.02
Want to stay same neighborhood	24,771	0.54	0.50	0.54	0.50	0.53	0.50	-0.00
Satisfaction with housing unit	25,983	0.59	0.49	0.58	0.49	0.60	0.49	0.02
Does not know other applicants	24,250	0.62	0.49	0.61	0.49	0.62	0.49	0.01
Access to car	21,943	0.33	0.47	0.33	0.47	0.33	0.47	-0.01
(Perceived) High social class neighbors	25,541	0.51	0.50	0.51	0.50	0.51	0.50	-0.00
Baseline Survey response	36,342	0.79	0.41	0.78	0.41	0.80	0.40	0.02
Geocoded location	41,738	0.90	0.29	0.90	0.30	0.91	0.29	0.01
Female	41,713	0.83	0.38	0.83	0.37	0.83	0.38	-0.00
Spouse/partner	41,738	0.25	0.43	0.25	0.44	0.24	0.42	-0.02
Chilean	41,713	0.92	0.28	0.91	0.29	0.93	0.26	0.02
Santiago MSA	41,738	0.20	0.40	0.20	0.40	0.20	0.40	-0.00
Rent	17,877	6.12	2.74	6.17	2.78	6.04	2.69	-0.13
Rent burden	17,872	0.46	0.26	0.47	0.26	0.44	0.26	-0.03
Score Components and Total Score								
Family size score	41,738	68.03	34.87	81.11	37.42	51.10	21.65	-30.01
Single parenthood score	41,738	19.79	17.35	20.85	17.18	18.41	17.48	-2.44
Number of children under 5 score	41,738	14.38	17.37	18.32	18.51	9.28	14.22	-9.04
Number of children 6 to 18 score	41,738	14.73	15.60	18.48	17.09	9.87	11.77	-8.61
Social vulnerability score	41,738	158.42	38.19	170.86	23.55	142.31	46.57	-28.55
Housing vulnerability score	41,738	36.50	54.16	55.48	61.94	11.92	26.34	-43.55
Application score	41,738	324.46	100.62	375.41	91.90	258.47	67.69	-116.95

This table shows summary statistics for the entire population of applicants. Columns 1 to 3 show statistics for all applicants during the period of analysis, Columns 4 and 5 for voucher recipients and Columns 6 and 7 for non voucher recipients. Columns 7 shows the difference in means between treatment and control group.

Table A.4: Summary Statistics Voucher Recipients and Non Recipients Elderly Rounds

	All	Applicat	nts	Recip	ients	Non-Recipients		Difference
	Ν	Mean	SD	Mean	SD	Mean	SD	(7)-(5)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Tenant in baseline	23,462	0.61	0.49	0.54	0.50	0.64	0.48	0.10
Family income (UF)	23,462	6.74	3.82	6.26	3.17	6.90	4.01	0.63
High density county	23,462	0.49	0.50	0.46	0.50	0.51	0.50	0.04
County above national poverty	23,462	0.39	0.49	0.40	0.49	0.38	0.49	-0.02
PHA in county of residence	23,462	0.49	0.50	0.51	0.50	0.49	0.50	-0.02
Previous app. to ownership subsidy	23,462	0.07	0.25	0.06	0.23	0.07	0.25	0.01
Age at application	23,462	70.46	6.65	75.29	6.89	68.85	5.72	-6.44
Below family adjusted PL	23,462	0.60	0.49	0.60	0.49	0.60	0.49	-0.00
KM to closest PHA	22,175	13.53	19.42	14.04	20.16	13.35	19.16	-0.69
Valid email address	23,462	0.41	0.49	0.34	0.48	0.43	0.50	0.09
Geocoded location	23,462	0.95	0.23	0.94	0.23	0.95	0.23	0.00
Female	23,371	0.61	0.49	0.55	0.50	0.63	0.48	0.08
Spouse/partner	23,462	0.38	0.49	0.37	0.48	0.38	0.49	0.01
Chilean	23,371	0.98	0.15	0.98	0.14	0.98	0.15	-0.00
Santiago MSA	23,462	0.25	0.43	0.22	0.42	0.25	0.44	0.03
Income documents to PHA	23,462	0.95	0.22	0.97	0.17	0.94	0.23	-0.03
Score Components and Total Score								
Family size score	23,462	43.06	14.46	47.42	23.97	41.60	8.84	-5.82
Single parenthood score	23,462	0.18	2.48	0.18	2.53	0.17	2.46	-0.01
Number of children under 5 score	23,462	0.25	2.96	0.76	5.26	0.08	1.52	-0.68
Number of children 6 to 18 score	23,462	0.85	4.90	1.84	7.72	0.51	3.41	-1.33
Social vulnerability score	23,462	165.06	33.71	178.49	9.54	160.56	37.50	-17.93
Housing vulnerability score	23,462	15.99	37.49	40.99	61.77	7.61	17.85	-33.38

This table replicates the analysis in Table A.3 using elderly rounds data. See Table A.3 for details

Table A.5: Balance in Baseline Characteristics in Sample of Randomized Vouchers in Regular Rounds

			Sum	mary Sta	atistics			Balance		
		Pooled	l	Con	trol	Trea	ted	Т	est	
	Ν	Mean	SD	Mean	SD	Mean	SD	F-test (p)	Rand-t (p)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Tenant in baseline	539	0.70	0.46	0.70	0.46	0.69	0.46	0.965	0.967	
Saving balance on application day (UF)	539	16.03	14.67	16.04	14.37	16.00	15.13	0.425	0.469	
Family income (UF)	539	12.31	3.71	12.39	3.58	12.18	3.89	0.227	0.259	
Online application	539	0.41	0.49	0.42	0.49	0.41	0.49	0.204	0.225	
High density county	539	0.39	0.49	0.40	0.49	0.38	0.49	0.883	0.889	
County above national poverty	539	0.60	0.49	0.55	0.50	0.67	0.47	0.328	0.340	
PHA in county of residence	539	0.51	0.50	0.53	0.50	0.48	0.50	0.671	0.710	
Previous app. to ownership subsidy	539	0.15	0.36	0.14	0.35	0.16	0.37	0.899	0.909	
Age 25-35	539	0.67	0.47	0.67	0.47	0.68	0.47	0.337	0.360	
Below family adjusted PL	539	0.18	0.38	0.16	0.37	0.20	0.40	0.286	0.327	
KM to closest PHA	539	15.74	20.35	14.90	19.02	16.96	22.10	0.415	0.461	
Valid email address	539	0.90	0.30	0.90	0.30	0.90	0.30	0.619	0.657	
Want to stay same neighborhood	349	0.54	0.50	0.53	0.50	0.54	0.50	0.791	0.818	
Satisfaction with housing unit	373	0.65	0.48	0.65	0.48	0.65	0.48	0.601	0.655	
Does not know other applicants	341	0.55	0.50	0.50	0.50	0.60	0.49	0.043**	0.110	
Access to car	339	0.31	0.46	0.33	0.47	0.27	0.45	0.251	0.321	
(Perceived) High social class neighbors	361	0.48	0.50	0.48	0.50	0.49	0.50	0.800	0.803	
Baseline Survey response	490	0.86	0.35	0.84	0.37	0.88	0.33	0.517	0.674	
Geocoded location	539	0.88	0.33	0.88	0.32	0.88	0.33	0.576	0.602	
Female	539	0.97	0.17	0.97	0.18	0.98	0.15	0.577	0.334	
Spouse/partner	539	0.04	0.20	0.05	0.21	0.04	0.19	0.933	0.496	
Chilean	539	0.95	0.21	0.94	0.23	0.97	0.18	0.144	0.910	
Santiago MSA	539	0.13	0.33	0.14	0.34	0.12	0.32	0.888	0.266	
Rent	341	5.65	3.08	5.63	3.00	5.70	3.27	0.445	0.633	
Rent burden	341	0.50	0.28	0.49	0.28	0.52	0.26	0.057*	0.362	
SCREENING FE								Yes	Yes	
Joint Significance F-Test (p)								0.749	0.811	

This table replicates the analysis in Table 7 using the sample of randomized vouchers assigned by MINVU in regular rounds. See Table 7 for details.

Table A.6: Balance in Baseline Characteristics in Sample of Randomized Vouchers in Elderly Rounds

			Sumr	nary Sta	tistics			Balance		
		Pooled		Con	trol	Trea	ted	Т	est	
	Ν	Mean	SD	Mean	SD	Mean	SD	F-test (p)	Rand-t (p)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Tenant in baseline	1,187	0.54	0.50	0.55	0.50	0.52	0.50	0.574	0.578	
Family income (UF)	1,187	6.03	2.51	6.01	2.46	6.07	2.59	0.622	0.657	
PHA in county of residence	1,187	0.47	0.50	0.47	0.50	0.46	0.50	0.264	0.314	
County above national poverty	1,187	0.31	0.46	0.33	0.47	0.28	0.45	0.555	0.668	
High density county	1,187	0.55	0.50	0.52	0.50	0.59	0.49	0.815	0.835	
Female	1,187	0.62	0.49	0.61	0.49	0.64	0.48	0.439	0.450	
Age 70-79	1,187	0.57	0.49	0.58	0.49	0.55	0.50	0.428	0.456	
Below family adjusted PL	1,187	0.56	0.50	0.57	0.50	0.55	0.50	0.746	0.780	
KM to closest PHA	1,187	12.02	16.67	12.66	17.23	11.05	15.75	0.241	0.357	
Valid email address	1,187	0.36	0.48	0.38	0.49	0.32	0.47	0.038**	0.072*	
Spouse/partner	1,187	0.39	0.49	0.39	0.49	0.39	0.49	0.971	0.984	
Chilean	1,187	0.98	0.14	0.98	0.15	0.99	0.12	0.063*	0.373	
Previous app. to ownership subsidy	1,187	0.05	0.21	0.05	0.22	0.04	0.19	0.516	0.574	
Santiago MSA	1,187	0.27	0.44	0.22	0.41	0.35	0.48	0.905	0.565	
Geocoded location	1,187	0.96	0.20	0.95	0.22	0.97	0.18	0.464	0.127	
SCREENING FE								Yes	Yes	
Joint Significance F-Test (p)								0.094	0.137	

This table replicates the analysis in Table 6 using the sample of randomized vouchers assigned by MINVU in regular rounds. See Table 6 for details.

Table A.7: Total Score and Score Components by Group in Sample of Randomized Vouchers

		Pooled		Trea	ted	Controls		Difference
	Ν	Mean	SD	Mean	SD	Mean	SD	(7)-(5)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Regular Rounds								
Family size score	539	40.00	0.00	40.00	0.00	40.00	0.00	0.00
Single parenthood score	539	35.00	0.00	35.00	0.00	35.00	0.00	0.00
Number of children under 5 score	539	23.67	13.25	24.00	13.42	23.56	13.21	0.44
Number of children 6 to 18 score	539	5.23	8.68	8.00	10.95	4.29	8.80	3.71
Number of elderly score	539	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Number of people with disability score	539	1.85	4.13	6.00	13.42	0.44	0.98	5.56
Social vulnerability score	539	180.00	0.00	180.00	0.00	180.00	0.00	0.00
Housing vulnerability score	539	2.64	5.91	2.71	6.07	2.62	5.85	0.10
Application score	539	295.00	28.28	295.00	28.28	295.00	28.28	0.00
Elderly Rounds								
Family size score	1,187	40.00	0.00	40.00	0.00	40.00	0.00	0.00
Single parenthood score	1,187	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Number of children under 5 score	1,187	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Number of children 6 to 18 score	1,187	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Number of elderly score	1,187	58.52	2.26	59.80	0.28	58.04	3.19	1.76
Number of people with disability score	1,187	0.51	0.49	0.20	0.28	0.57	0.57	-0.37
Social vulnerability score	1,187	180.00	0.00	180.00	0.00	180.00	0.00	0.00
Housing vulnerability score	1,187	11.95	7.78	11.21	7.62	13.65	11.45	-2.44
Application score	1,187	385.00	10.00	385.00	10.00	385.00	10.00	0.00

This table shows summary statistics of total application score and score components in the sample of randomized vouchers included in the evaluation sample. It includes first the sample in regular rounds and then in elderly rounds. Columns 1 to 3 show statistics for the pooled sample, Columns 4 and 5 for the control group and Columns 6 and 7 for the treatment groups. Columns 7 shows the difference in means between treatment and control group.

		Pooled		Trea	ted	Cont	rols	Difference
	Ν	Mean	SD	Mean	SD	Mean	SD	(7)-(5)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Regular Rounds								
Family size score	1,131	48.65	6.15	51.27	6.98	47.50	6.88	3.77
Single parenthood score	1,131	27.53	4.84	28.40	2.93	27.03	6.36	1.37
Number of children under 5 score	1,131	12.96	8.74	17.80	11.49	10.20	8.20	7.60
Number of children 6 to 18 score	1,131	11.81	5.22	13.03	7.46	12.05	5.84	0.98
Number of elderly score	1,131	0.85	0.49	0.20	0.33	1.18	0.72	-0.98
Number of people with disability score	1,131	1.63	3.34	6.15	13.33	0.38	0.66	5.77
Social vulnerability score	1,131	173.90	3.42	171.78	4.81	174.51	4.21	-2.73
Housing vulnerability score	1,131	6.60	6.61	5.19	5.25	7.46	7.37	-2.27
Application score	1,131	293.51	28.04	297.37	27.34	291.06	29.05	6.31
Elderly Rounds								
Family size score	1,328	41.19	0.53	42.76	1.74	40.87	1.05	1.89
Single parenthood score	1,328	0.06	0.09	0.19	0.30	0.00	0.00	0.19
Number of children under 5 score	1,328	0.01	0.02	0.00	0.00	0.02	0.04	-0.02
Number of children 6 to 18 score	1,328	0.39	0.23	1.19	1.45	0.08	0.16	1.11
Number of elderly score	1,328	57.35	2.10	57.01	3.39	56.85	2.86	0.16
Number of people with disability score	1,328	1.06	0.76	0.81	0.86	1.31	1.11	-0.49
Social vulnerability score	1,328	177.56	1.11	178.19	2.85	174.46	5.92	3.73
Housing vulnerability score	1,328	13.28	8.11	13.14	6.60	15.87	13.36	-2.73
Application score	1,328	384.65	10.03	385.21	9.87	384.11	9.55	1.09

Table A.8: Total Score and Score Components by Group in the Evaluation Sample

This table replicates the analysis in Table A.7 using the entire evaluation sample. See Table A.7 for details.

Table A.9: Effect of Regular Voucher Before the Covid-19 Pandemic (2019): Randomization

				Spe	ecification	1	Spe	cification 2		
		Con	trol	Treatment	OLS	Rand-t	Treatment	OLS	Rand-t	
	Ν	Mean	SD	Effect	p-value	p-value	Effect	p-value	p-value	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
A. Housing Conditions										
Household size Dec 2019	539	2.623	1.127	-0.016	0.884	0.894	-0.021	0.847	0.859	
Number of bedrooms	536	1.571	0.764	0.262	0.001***	0.000***	0.266	0.001***	0.000***	
Number of people per bedroom	536	1.852	0.740	-0.269	0.000***	0.000***	-0.279	0.000***	0.000***	
Overcrowing indicator	536	0.092	0.290	-0.047	0.033**	0.026**	-0.053	0.020**	0.016**	
B. Residential Mobility										
Stayed in same unit	472	0.522	0.500	-0.071	0.144	0.147	-0.060	0.214	0.225	
Distance (km)	472	6.291	24.988	19.916	0.073*	0.024**	18.607	0.071*	0.021**	
Distance (km) (Movers)	233	13.143	34.922	37.667	0.085*	0.042**	33.574	0.071*	0.024**	
Stayed 1km or less from application location	233	0.301	0.460	-0.007	0.919	0.940	0.001	0.984	0.981	
Moved to another county	233	0.180	0.386	0.042	0.424	0.406	0.055	0.290	0.299	
C. Neighborhood Characteristics										
Distance to closest municipality	472	3.491	5.211	0.690	0.229	0.237	0.738	0.215	0.213	
Distance to closest school (km)	472	0.953	2.099	0.619	0.097*	0.084*	0.668	0.096*	0.091*	
Distance to closest Pre-Shcool (km)	472	1.033	2.580	0.767	0.048**	0.044**	0.784	0.051*	0.048**	
Distance to closest Primary Care (km)	440	1.630	2.780	0.623	0.162	0.155	0.632	0.189	0.184	
Number of Schools in 1Km	472	5.097	4.496	-0.481	0.293	0.272	-0.449	0.318	0.293	
Number of Schools in 2Km	472	15.748	13.032	-1.864	0.117	0.107	-2.030	0.053*	0.048**	
Number of Preschool in 1Km	472	3.201	2.615	-0.120	0.650	0.630	-0.103	0.687	0.674	
Number of Health Care in 2km	472	5.047	4.359	-0.550	0.146	0.129	-0.632	0.064*	0.065*	
Fraction of Public Schools 1Km	386	0.457	0.286	0.021	0.515	0.514	0.032	0.329	0.332	
Fraction of Subsidized Schools 1Km	386	0.517	0.277	-0.043	0.177	0.183	-0.053	0.103	0.105	
Fraction of Private Schools 1Km	386	0.025	0.087	0.022	0.041**	0.039**	0.021	0.044**	0.039**	
Mat. SIMCE, 3 Closest School 2km	412	261.867	17.804	1.630	0.356	0.340	1.119	0.525	0.512	
Mat. SIMCE, 3 Closest School 2km	412	248.423	19.461	0.531	0.786	0.755	-0.014	0.994	0.991	
Fraction of Low Income Schools 1km	386	0.603	0.335	0.036	0.331	0.327	0.031	0.392	0.409	
Fraction of Low Income Schools 2km	415	0.573	0.274	0.031	0.264	0.276	0.025	0.335	0.354	
County poverty rate	472	0.105	0.060	0.001	0.786	0.798	-0.001	0.820	0.831	
Total crime (County z-score)	472	1.058	1.573	0.052	0.724	0.740	0.040	0.699	0.718	
D. Homeownership										
Application to Ownership Programs	539	0.336	0.473	0.061	0.156	0.140	0.028	0.409	0.391	
Application to partially funded program (DS1)	539	0.236	0.425	0.044	0.265	0.240	0.018	0.564	0.521	
Application to fully funded program (DS49)	539	0.157	0.365	0.013	0.690	0.689	-0.002	0.944	0.941	
Active ownership savings account	539	0.918	0.274	0.018	0.486	0.539	0.015	0.568	0.587	
Balance in ownership savings account (US)	498	24.278	32.152	4.000	0.167	0.170	2.526	0.316	0.331	
SCREENING FE				YES	YES	YES	YES	YES	YES	
CONTROLS (Z)				NO	NO	NO	YES	YES	YES	
Westfall-Young Multiple Testing (p-value)						0.003***			0.003***	

This table replicates the analysis in Table 8 for the sample of randomized vouchers in regular rounds. See Table 8 for details. Significance levels: * p<0.1; ** p<0.05; *** p<0.01.

Table A.10: Effect of Elderly Voucher Before the Covid-19 Pandemic (2019): Randomization

				Spe	ecification	1	Spe	2	
		Cor	trol	Treatment	OLS	Rand-t	Treatment	OLS	Rand-t
	Ν	Mean	SD	Effect	p-value	p-value	Effect	p-value	p-value
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
A. Housing Conditions									
Household size Dec 2019	1,187	1.565	1.059	-0.234	0.000***	0.000***	-0.250	0.000***	0.000***
Number of bedrooms	1,122	1.351	0.736	0.436	0.000***	0.000***	0.445	0.000***	0.000***
Number of people per bedroom	1,118	1.223	0.564	-0.328	0.000***	0.000***	-0.341	0.000***	0.000***
Overcrowing indicator	1,176	0.029	0.169	-0.019	0.041**	0.041**	-0.020	0.030**	0.025**
B. Residential Mobility									
Stayed in same unit	1,073	0.681	0.466	-0.209	0.000***	0.001***	-0.208	0.000***	0.001***
Distance (km)	1,073	16.445	122.110	-5.232	0.378	0.406	-6.618	0.303	0.323
Distance (km) (Movers)	414	51.556	212.333	-32.292	0.065*	0.050**	-34.237	0.071*	0.059*
Stayed 1km or less from application location	414	0.290	0.455	0.014	0.765	0.752	0.012	0.802	0.799
Moved to another county	416	0.268	0.444	-0.041	0.353	0.334	-0.042	0.311	0.303
C. Neighborhood Characteristics									
Distance to closest municipality	1,073	3.905	7.503	-0.832	0.040**	0.036**	-0.701	0.069*	0.061*
Distance to closest school (km)	1,073	1.163	4.251	-0.183	0.374	0.405	-0.138	0.524	0.555
Distance to closest Pre-Shcool (km)	1,073	1.186	4.522	-0.237	0.309	0.327	-0.176	0.468	0.473
Distance to closest Primary Care (km)	1,022	1.663	4.327	-0.174	0.452	0.475	-0.116	0.624	0.636
Number of Schools in 1Km	1,073	7.114	5.818	-0.504	0.159	0.150	-0.727	0.035**	0.026**
Number of Schools in 2Km	1,073	21.450	15.462	-0.468	0.643	0.629	-1.124	0.198	0.196
Number of Preschool in 1Km	1,073	3.755	2.975	-0.227	0.255	0.224	-0.301	0.121	0.109
Number of Health Care in 2km	1,073	6.547	5.699	-0.200	0.584	0.591	-0.413	0.207	0.187
Fraction of Public Schools 1Km	938	0.397	0.237	0.004	0.801	0.825	0.009	0.615	0.625
Fraction of Subsidized Schools 1Km	938	0.534	0.238	-0.004	0.806	0.803	-0.007	0.692	0.674
Fraction of Private Schools 1Km	938	0.069	0.139	-0.000	0.993	0.990	-0.002	0.845	0.856
Mat. SIMCE, 3 Closest School 2km	974	264.493	17.587	-1.203	0.324	0.332	-1.203	0.336	0.347
Mat. SIMCE, 3 Closest School 2km	975	251.926	18.012	-0.451	0.718	0.715	-0.476	0.707	0.700
Fraction of Low Income Schools 1km	938	0.455	0.335	-0.013	0.585	0.573	-0.001	0.953	0.952
Fraction of Low Income Schools 2km	978	0.437	0.267	-0.019	0.313	0.316	-0.008	0.648	0.646
County poverty rate	1,075	0.083	0.047	-0.003	0.408	0.418	0.001	0.542	0.516
Total crime (County z-score)	1,075	1.741	1.970	0.045	0.737	0.734	-0.074	0.496	0.491
D. Homeownership									
Application to Ownership Programs	1,187	0.118	0.323	0.021	0.315	0.303	0.031	0.085*	0.088*
Application to partially funded program (DS1)	1,187	0.067	0.250	0.006	0.694	0.672	0.012	0.404	0.420
Application to fully funded program (DS49)	1,187	0.068	0.252	0.015	0.374	0.388	0.020	0.217	0.241
				VEC	VEC	VEC	VEC	VEC	VES
CONTROLS (7)				NO	NO	NO	VES	VES	VES
				INC	INC	INC	115	115	115
Westfall-Young Multiple Testing (p-value)						0.008***			0.008***

This table replicates the analysis in Table 8 for the sample of randomized vouchers in elderly rounds. See Table 8 for details. Significance levels: * p < 0.1; ** p < 0.05; *** p < 0.01.

B Selective Attrition and Balance in Follow up Survey Data

Attrition

I analyze the presence of selective attrition in the Follow-up Sample. In other words, whether the treatment affected differently the likelihood of responding the survey between units at different sides of the cutoff in the evaluation sample. It is worth mentioning that, while we could not provide monetary incentives, we did several things to reduce the chances of selective attrition.⁸²

⁸²First, to enhance confidence, the email was sent from the same institutional email used to send the baseline survey. In addition, the email included a link to MINVU's Web site where the survey was acknowledge and its goals were explained. Second, we provided non monetary incentives to respond the survey. Policy changes during the pandemic created high information demands; PHAs were closed while MINVU announced different changes to its programs to adapt to the current crisis. Furthermore, in July 2020, at the peak of the pandemic,

The follow-up survey was sent by email to all individuals who applied to the program between March 2014 and May 2020 who had a valid email. In total, 60,926 surveys were sent, 37,338 of whom applied between 2017 and 2019, the relevant application period in this paper. The response rate in this group was 57 percent, 60 percent (18,185) in regular rounds and 44 percent (3,023) in elderly rounds.⁸³ In the evaluation sample, the response rate was 59 percent (779) and 28 percent (171) in regular and elderly rounds, respectively.⁸⁴ These rates of response are high for online surveys.

Figures B.1 and **??** show response rates by assignment and treatment group. Except for some assignments, treated and controls show similar response rates. Moreover, it is not clear whether holding a voucher made it more or less likely to respond the survey.

More formally, to analyze selective attrition, I estimate the following linear probability model, separately for elderly and regular rounds.

$$Y_{i} = \alpha + \gamma_{s} Assignment_{s} + \tau_{s} D_{i,s} + \beta_{s} D_{i,s} x Assignment_{s} + \delta Z_{i} + \epsilon_{i,s}$$
(B.1)

This equation is similar to the fully interacted FE model in equation 5.1 used to analyze balance in Section 5.1. Here, however, the dependent variable Y_i is an indicator variable taking the value of one for those who responded the follow up survey and zero for the rest. Z_i include baseline covariates used in balance tests in the previous section.

Tables B.1 and **??** show the estimates of τ_s and β_s for regular and elderly rounds, respectively. The bottom panel presents the results (p-values) of three different analysis of the null of joint significance: F-Test, Randomization-t Joint significance test and the Westfall-Young multiple-testing test of overall treatment irrelevance (Young, 2019).

Table B.1 shows that all individual coefficients, τ_s and β_s , in the evaluation sample are not significant in regular rounds. Furthermore, joint significance of these coefficients is rejected by all three different tests in the bottom panel. The analysis suggests that there was not selective attrition between treated and controls in the follow up survey.

In elderly rounds, Table **??** shows that while some individual coefficients are statistically significant at the 95 and 90 percent of confidence, the data suggests that there was no selective attrition in the overall sample. However, results for elderly rounds needs to be taken with some caution given the small sample sizes.

Balance

I analyze balance in the follow-up sample. Even in the absence of selective attrition, the strong assumptions made in the Local Randomization RD framework may not hold in a subset of individuals from the evaluation sample; excluding observations in different mass points around the cutoff may introduce bias. Compared to the continuity approach, the LRRD has the advantage of using a fixed sample, therefore, it is easier to test whether identification assumptions still hold in the sub-sample of follow-up respondents.⁸⁵

MINVU announced 150k emergency rental subsidies, available also to already voucher recipients of elderly and regular rounds. In this context, we created a blog with short and simple answers to frequently asked questions and provided survey respondents with the opportunity of sending their own questions at the end of the survey, which we responded through the blog. We received more than 10k questions during the data collection period.

⁸³In this period the elderly applied to the program in person only, having lower quality contact information in the data set. We tried to reach out to the elderly using text messages but phones were also not valid or updated. I do not report this data.

⁸⁴These numbers exclude those who answer but did not recall applying to the program or applied for someone else, which was common in elderly rounds. I dropped fifty responses for this reason in elderly rounds.

⁸⁵In the continuity approach, outcomes are analyzed using different bandwidth, therefore, it would be harder

Figure B.1: Follow up Sample Attrition

This Figure shows response rate of the follow up survey in each screening of applicants. C is the control group (below the cutoff) and T is the treatment group (above the cutoff).

Table B.2 replicates the balance analysis presented in Section 5.1 for the follow up sample. Given the smaller sample sizes, I just present randomization inference results in this section. In general, the results are similar in the evaluation and follow-up samples. In regular rounds, table B.2 shows small differences in two baseline covariates, age and income, significant at 90 and 95 percent of confidence, respectively. Furthermore, the F-test of joint significance and the Westfall-Yang test of overall treatment relevance do not provide evidence of imbalance between treatment and control groups.

Altogether, the data suggests that treatment did not affect follow up responses and Local Randomization assumptions are still valid within the sub-sample that responded the survey. Nonetheless, given the small sample sizes, specially in elderly rounds, the results in Section B need to be taken with some caution.

to study non-linearities caused by attrition in the follow-up survey.

Screenings of Applicants	Survey Response	Survey Response
0 11	(1)	(2)
Treat*Assignment April 2018	0.054	0.054
	(0.399)	(0.385)
Treat*Assignment December 2018	-0.048	-0.050
5	(0.606)	(0.582)
Treat*Assignment October 2019 (R6)	0.105	0.093
	(0.307)	(0.370)
Treat*Assignment October 2019 (R9)	0.004	0.015
C	(0.964)	(0.860)
Treat*Assignment October 2019 (R10)	-0.071	-0.103
e v	(0.651)	(0.520)
F-Test (n-value)	0.352	0.366
Rand-t Joint Test (p-value)	0.267	0.261
Ouestionnaires sent	993	993
Responses	634	634
Response rate	0.64	0.64
SCREENING FE	YES	YES
COVARIATES	NO	YES

Table B.1: Follow Up Sample Attrition in Regular Rounds

This table shows estimates of equation B.1 to analyze the effect of treatment in the non-response of the follow-up survey. Baseline covariates in the analysis presented in Column 2 include income and distance to the closest PHAs and dummy variables for female, age, married, tenant, baseline application to homeownership programs, poor, online application, baseline survey response, living in a high density county, high poverty county. Bottom panel presents p-values for two different analysis of the null of joint significance: F-Test and Randomization-t Joint significance test. Significance levels: * p < 0.1; ** p < 0.05; *** p < 0.01.

			Sumr	nary Sta	tistics			Bal	ance
		Pooled		Con	trol	Trea	nted	Т	est
	Ν	Mean	SD	Mean	SD	Mean	SD	F-test (p)	Rand-t (p)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Tenant in baseline	1,328	0.76	0.43	0.76	0.43	0.74	0.44	0.681	0.644
Saving balance on application day (UF)	634	15.77	15.27	15.46	14.05	16.32	17.22	0.716	0.740
Family income (UF)	634	13.55	4.83	13.41	4.76	13.79	4.94	0.213	0.220
Online application	634	0.40	0.49	0.40	0.49	0.40	0.49	0.526	0.474
High density county	634	0.40	0.49	0.43	0.50	0.35	0.48	0.041**	0.035**
County above national poverty	634	0.69	0.46	0.68	0.47	0.71	0.45	0.469	0.455
PHA in county of residence	634	0.50	0.50	0.50	0.50	0.49	0.50	0.709	0.647
Previous app. to ownership subsidy	634	0.16	0.36	0.15	0.36	0.17	0.38	0.520	0.489
Age 25-35	634	0.65	0.48	0.62	0.49	0.69	0.46	0.069*	0.061*
Below family adjusted PL	634	0.20	0.40	0.20	0.40	0.19	0.39	0.841	0.856
KM to closest PHA	634	18.02	23.31	17.58	23.16	18.80	23.59	0.883	0.879
Baseline Survey response	634	0.88	0.33	0.88	0.32	0.88	0.33	0.958	0.940
Want to stay same neighborhood	634	0.59	0.49	0.59	0.49	0.59	0.49	0.652	0.661
Satisfaction with housing unit	478	0.68	0.47	0.67	0.47	0.69	0.46	0.575	0.583
Does not know other applicants	506	0.55	0.50	0.53	0.50	0.58	0.50	0.262	0.285
Access to car	467	0.34	0.47	0.35	0.48	0.33	0.47	0.706	0.700
(Perceived) High social class neighbors	465	0.50	0.50	0.50	0.50	0.50	0.50	0.787	0.792
Geocoded location	495	0.89	0.32	0.89	0.31	0.88	0.33	0.494	0.505
Female	634	0.91	0.28	0.91	0.29	0.91	0.28	0.957	0.973
Spouse/partner	634	0.16	0.36	0.17	0.37	0.14	0.35	0.303	0.332
Chilean	634	0.93	0.25	0.91	0.29	0.97	0.17	0.003***	0.003***
Santiago MSA	634	0.09	0.29	0.10	0.30	0.09	0.28	0.943	0.883
Rent	634	5.91	3.53	5.97	3.69	5.78	3.18	0.735	0.744
Rent burden	442	0.49	0.31	0.49	0.34	0.47	0.26	0.544	0.538
SCREENING FE								Yes	Yes
Joint Significance F-Test (p)								0.159	0.242

Table B.2: Balance in Baseline Characteristics in Regular Rounds-Follow Up Survey

This table replicates the analysis in Table 7 using only individuals in regular rounds that responded the follow up sample. Given the smaller sample sizes, this table presents the weaker balance test of the null H'_0 . See Table 7 for further details. Significance levels: * p<0.1; ** p<0.05; *** p<0.01.

Table B.3: Effect of Regular Voucher Before the Covid-19 Pandemic (2019): Follow Up Sample

				Specification 1			Specification 2		
		Con	trol	Treatment	OLS	Rand-t	Treatment	OLS	Rand-t
	Ν	Mean	SD	Effect	p-value	p-value	Effect	p-value	p-value
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
A. Housing Conditions									
Household size Dec 2019	634	3.005	1.256	-0.009	0.936	0.933	0.024	0.821	0.829
Number of bedrooms	632	1.905	0.868	0.144	0.040**	0.049**	0.164	0.019**	0.020**
Number of people per bedroom	632	1.771	0.817	-0.164	0.009***	0.016**	-0.167	0.006***	0.013**
Overcrowing indicator	632	0.119	0.325	-0.043	0.077*	0.087*	-0.039	0.110	0.143
B. Residential Mobility									
Staved in same unit	560	0.581	0.494	-0.117	0.009***	0.008***	-0.098	0.026**	0.024**
Distance (km)	560	5.060	23.019	13.129	0.053*	0.050*	12.650	0.057*	0.047**
Distance (km) (Movers)	258	12.069	34.416	21.557	0.087*	0.098*	17.526	0.139	0.147
Staved 1km or less from application location	258	0.333	0.473	-0.060	0.321	0.324	-0.051	0.419	0.407
Moved to another county	258	0.133	0.341	0.069	0.116	0.123	0.051	0.234	0.233
C. Neighborhood Characteristics									
Distance to closest municipality	560	3 201	4 264	0.080	0.850	0.850	0 107	0.805	0.808
Distance to closest school (km)	560	0.905	1.201	0 491	0.111	0.105	0.445	0.157	0.131
Distance to closest Pre-Shcool (km)	560	0.974	2 028	0.398	0.198	0.194	0.358	0.255	0.255
Distance to closest Primary Care (km)	520	1 540	2 155	0.335	0.356	0.372	0.293	0.435	0.448
Number of Schools in 1Km	560	4 696	4 330	-0.418	0.298	0.284	-0.221	0.581	0.571
Number of Schools in 2Km	560	14.559	12.969	-1.356	0.209	0.201	-0.480	0.607	0.591
Number of Preschool in 1Km	560	2 939	2 596	-0.187	0.416	0.433	-0.067	0.761	0.767
Number of Health Care in 2km	560	4 763	4 466	-0.187	0.609	0.604	0.076	0.813	0.813
Fraction of Public Schools 1Km	460	0.445	0.298	-0.012	0.687	0.706	-0.014	0.647	0.656
Fraction of Subsidized Schools 1Km	460	0.512	0.290	0.007	0.804	0.795	0.010	0.731	0.730
Fraction of Private Schools 1Km	460	0.012	0.117	0.005	0.671	0.755	0.010	0.753	0.733
Mat SIMCE 3 Closest School 2km	487	265 540	17 532	-1 719	0.317	0.000	-1 986	0.228	0.731
Mat. SIMCE, 3 Closest School 2km	487	250.861	18 475	-1 343	0.463	0.322	-1 175	0.507	0.201
Fraction of Low Income Schools 1km	460	0.605	0 348	0.013	0.405	0.724	0.013	0.507	0.301
Fraction of Low Income Schools 2km	100	0.003	0.268	0.010	0.257	0.724	0.013	0.020	0.724
County poverty rate	560	0.575	0.200	0.029	0.257	0.292	0.023	0.328	0.330
Total crime (County 7 score)	560	1 151	1 601	0.052	0.733	0.743	-0.005	0.437	0.451
Iotal crime (County 2-score)	500	1.151	1.001	0.032	0.755	0.720	0.100	0.002	0.004
D. Homeownership									
Application to Ownership Programs	634	0.322	0.468	0.002	0.968	0.927	-0.005	0.870	0.873
Application to partially funded program (DS1)	634	0.240	0.428	-0.014	0.679	0.611	-0.019	0.489	0.496
Application to fully funded program (DS49)	634	0.124	0.330	0.013	0.635	0.633	0.005	0.839	0.830
Active ownership savings account	634	0.911	0.285	0.001	0.981	0.892	-0.003	0.887	0.869
Balance in ownership savings account (US)	578	24.478	34.813	-1.314	0.614	0.586	-1.687	0.438	0.435
SCREENING FE				YES	YES	YES	YES	YES	YES
CONTROLS (Z)				NO	NO	NO	YES	YES	YES
Westfall-Young Multiple Testing (p-value)						0.186			0.290
······································						0.100			·

This table replicates the analysis in Table 8 including only individuals that responded the follow up sample. See Table 8 for details.