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Abstract 
 

Economists have long recognized the efficiency properties of Pigouvian taxes to address 
environmental externalities and user fees for funding transportation infrastructure. A persistent concern 
with such policies is their distributional burden. The gasoline tax, which funds highways in the US, is 
widely viewed as regressive, and it is likely to become more so over times as higher-income households 
transition more rapidly than their lower-income counterparts to fuel-efficient or electric vehicles. This 
paper presents new evidence on the distributional burdens of the gasoline tax and other transportation-
related user fees such as bus and light rail charges and a vehicle miles tax  (VMT). While gasoline tax 
payments as a share of household income decline with income, this pattern is attenuated when these taxes 
are measured as a share of total expenditures. If the US were to switch from a gasoline tax to a household-
level VMT, which would place a greater relative burden on hybrid and electric vehicles, the tax burden 
would increase, on average, for households in the top income and expenditure deciles.  These better-off 
households would also bear much of the burden of an expanded commercial VMT,  because they have 
larger budget shares devoted to expensive tradeable goods.  User charges for airports, subways and 
commuter rail are progressive: low-income households use them less than middle- and upper-income 
households.  Bus fees, in contrast, loom much larger for low- than high-income households. 
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1 Introduction  
Transportation decisions are replete with externalities such as carbon emissions, traffic 

congestion, and motor vehicle fatalities.  Economists have long embraced user fees to address 

these externalities.   Adam Smith (1776) wrote that user fee financing would promote efficient 

investment decisions, for if transportation infrastructure is “made and supported by the 

commerce which is carried on by means of them, they can be made only where that commerce 

requires them, and consequently where it is proper to make them.”  William Vickrey (1952) 

called for taxes and time-varying charges for subways to address congestion externalities, and 

Small, Winston and Evans (1989) were early advocates of a commercial Vehicle Miles Tax to 

charge truckers for the marginal damages they impose on roads.  Yet Pigouvian mobility charges 

such as highway tolls and gas taxes remain politically unpopular.  This may be due to their 

salience to those who use transportation infrastructure – Finkelstein (2011) suggests that raising 

such taxes is easier when they are collected by less visible means, such as electronic tolling – and 

to the belief that they are regressive. 

This paper considers the distributional impact of various mobility-related user fees, 

including charges for airports, subways, commuter rail, and buses, as well as gasoline taxes and 

Vehicle Miles Taxes (VMTs).  The analysis of these different strategies for funding 

infrastructure is particularly timely in light of recent policy developments.  The Infrastructure 

Investment and Jobs Act of 2021 (IIJA) allocates grants for states and localities to build vehicle 

charging infrastructure, to replace or update public buses with low- or no-emission vehicles, and 

to explore options for electrification of commercial trucking at U.S. ports. In addition, as electric 

vehicles replace cars and light trucks powered by internal combustion engines, the VMT, which 

can be levied both on households and on commercial drivers, offers a way of avoiding a decline 

in the revenue source – gasoline taxes – that currently funds the Highway Trust Fund.  

 The rise of electric vehicles (EVs) has the potential to increase the regressivity of the 

gasoline tax.  In the 1970s, fuel efficiency was achieved through lighter, lower performance 

automobiles and better-off households preferred gas guzzlers. Today, as EVs gain market share, 

the market penetration is much greater among households than others.  Carmax (2017) reported 

that that 17 percent of hybrid/EV owners have household income of more than $200,000, and 

that 30 percent have incomes above $150,000.  By comparison, the Congressional Budget Office 

(2020) reported that in 2017, only five percent of single-person households had incomes of 
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$179,100, and ten percent of two-person households had incomes of $182,800 or higher.  High-

income groups are those over-represented among EV buyers.    

 This paper begins by calculating the distribution of outlays on current user charges, such 

as public transportation user fees and the federal gasoline tax. We consider payments relative to 

income, as in Chernick and Reschovsky (1997), as well as relative to household expenditures, as 

in Poterba (1991).  When household income is subject to transitory shocks, household 

expenditure may provide a more revealing measure of long-term well-being, and permanent 

income, than annual income.  For households spending less than $30,000, outlays on gasoline 

account for close to 5 percent of total expenditures.  The expenditure share falls below 2% 

among the highest-expenditure households. The current federal gasoline tax is regressive, though 

it is less regressive than it has been in the past. 

 The share of expenditure devoted to public transportation also declines with total 

expenditure over much of the distribution, although it rises at high levels as a result of commuter 

rail and air travel usage.  Bus trip counts are much higher for low income individuals.  

Commuter rail and air travel usage increase with expenditure, and in areas with developed 

systems, subway trips are relatively independent of expenditure in those areas with developed 

systems.  

 A household-level VMT directly charges for road usage, and eliminates the implicit 

subsidy to hybrids and EVs under the current system. A household with two cars, each delivering 

24 miles per gallon, that drives a total of 18,000 miles per year purchases 750 gallons of gasoline 

annually, with an 18.4 cent per gallon federal gasoline tax, and an average state gasoline tax of 

26 cents per gallon, this household would pay $333 in gas taxes.  Replacing both vehicles with 

EVs would save this annual outlay.  Imposing a VMT would eliminate the implicit tax benefit 

given to electric vehicles (EVs); it would also charge drivers for their congestion externality, 

although setting the appropriate level of this Pigouvian tax is complicated.  Because EV 

penetration in the US auto fleet at the moment is low, the distributional pattern of payments for a 

VMT that raises as much revenue as the current federal gasoline tax is very similar to that of the 

current gasoline tax.  The two will diverge to a greater degree in the future, at least if current 

projections for EV adoption are realized. 

 We also consider a commercial VMT. Four states, Kentucky, New York, Oregon and- 

New Mexico, have already adopted such taxes.  Under the assumption that trucking costs are 
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fully passed through to consumers of tradeable goods, and that VMT charges are added to 

trucking costs, the impact of a VMT on a given household depends on its budget share for 

tradeable goods.  These are the goods that require transportation.  We find that higher income 

households face greater burdens from the commercial VMT than their lower income 

counterparts, because tradeable goods represent a larger share of their budget.  

 This paper builds on a long literature on the distributional impacts of Pigouvian taxes 

related to transportation services.  Metcalf (1999) noted that environmental taxes meant to 

mitigate the social damage of pollution tend to be regressive.  Another paper by Metcalf (2022) 

is closely related to this study.  It presents a detailed analysis of the distributional impact of the 

VMT versus a gasoline tax.  In projecting the growth of EVs in the vehicle fleet, and in 

comparing households at different points in the income distribution, there are some differences in 

approach in the two studies; we highlight them below.  The overall conclusions are very similar, 

however.  Other related research includes Levinson (2019), which notes the relative regressivity 

of regulating fuel efficiency and imposing fuel taxes. Davis and Sallee (2020), Langer, Maheshri 

and Winston (2017), and van Dender (2019) all study the VMT.  Weatherford (2012) finds that 

moving from a gasoline tax to a VMT will have little distributional impact. Our analysis does not 

consider the distributional effects of transportation related externalities, which Banzhaf, Ma and 

Timmins (2019) find to place disproportionate burdens, through pollution, on low-income 

households.    

 The remainder of this paper is divided into five sections.  The next section provides 

background information on transportation-related user fees, including their level and their role in 

federal, state, and local budgets.  Section 3 introduces the two data sets, the Consumer 

Expenditure Survey (CEX) and the National Household Travel Survey (NHTS), that that form 

the basis for our analysis.  Section 4 presents our core findings on the distributional impacts of 

current transportation user fees. Section 5 focuses on the household and commercial VMT taxes, 

and compares their distributional burdens to the current gasoline tax.  There is a brief conclusion. 

2 Background on Transportation-Related User Fees   
Federal, state, and local governments all devote substantial expenditures to transportation 

infrastructure.   The federal government spends little on public transportation directly, relying 

more on intergovernmental grants.  State and local governments both make direct outlays on 

transportation.  Transportation infrastructure is funded through a combination of user fees and 
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general government resources.  User fees can refer to direct charges, such as tolls to access a 

bridge or highway, or to gasoline taxes.  When purchasing an airline ticket, for example, a 

consumer will pay a variety of user fees to different government entities, including taxes or fees 

to the Federal Aviation Administration (FAA), the Environmental Protection Agency (EPA), the 

Department of Homeland Security (DHS), and the local airport.   

Transportation-related user fees do not contribute a large share of total revenues for any 

level of government.  Most local and state governments rely heavily on intergovernmental 

transfer to fund infrastructure.  Since the 1990s, local governments have increasingly relied on 

user fees to fund airports and public transportation more generally.  States have generally 

become less reliant on car-related fees over time, as fuel taxes fell from an average of 10 percent 

of state budgets in 1970 to three percent of state budgets in 2017.  Federal revenues rely very 

little on any form of transportation user fee.  Fuel taxes comprise a declining share of Federal 

revenues, as nominal tax rates have been kept constant since 1993 and fuel efficiency has 

increased.   

The gap between transportation-related revenues and expenditures has generated interest 

in new funding sources.  The Infrastructure Investment and Jobs Act of 2021 proposes new 

programs and pilots around VMT fees, but political acceptance of such taxes will depend, in part, 

on their cost to different subsets of the population.  We now examine the distributional 

consequences of current transportation-related user fees and potential VMT alternatives.      

3 Data  
Our household travel analysis draws on two primary datasets. One is the National 

Household Travel Survey (NHTS), which we use to study transportation utilization by mode, 

vehicle characteristic, and driving behavior, by households’ expenditure group. The NHTS is 

conducted every 8 years to study household travel patterns, and is a key input into national, state, 

and regional infrastructure planning. The survey recruits households and asks them about their 

trips in a 24 hour period, including mode, purpose, trip length, time of day, among other 

characteristics. These surveys are then linked to a suite of demographic and socio-economic, 

vehicle, and location characteristics. We use data from three 2017 NHTS products: the 

household survey, the trip level survey, and the vehicle survey. This survey covers roughly 

139,000 households who use 256,000 distinct vehicles and make nearly 925,000 trips on the 

survey date.  The data are collected at the person-level, and then aggregated to households.  The 
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survey also provides weights used to aggregate households to population level statistics. We use 

this data set to estimate the number of households in various expenditure ranges who are using 

each mode of transportation, to calculate their driving behavior, and examine vehicle 

characteristics. To assess alternatives to the current policy regime, we modify this 2017 NHTS 

dataset, with more details in Section 5. 

We use the trip level data to study trip shares by mode and expenditure.  We focus on 

private vehicle, bus, subway, commuter rail, and airplane. The NHTS also includes data on the 

vehicles owned by each household, including their age, fuel type, and annual miles traveled.  

The NHTS has information on travel mode utilization, but not on travel expenditure, or total 

expenditures. For that, we turn to a second data source: the CEX.  It is a nationwide survey 

conducted quarterly by the Bureau of Labor Statistics. It provides estimates of annual 

expenditures on a variety of consumer goods and services, as well as total household expenditure 

and income. Expenditures and income are nominal in the CEX data, so we convert to real 2017 

dollars to keep incomes comparable to the most recent NHTS data. Appendix Table 4 shows that 

we are able to nearly match public reports using the public use microdata.1  

 In order to calculate how many gallons of gasoline households have purchased, and the 

taxes paid on them, we complement the CEX sample with annual data on state gasoline prices 

and taxes. State motor fuels tax rates data come from the Brookings-Urban Tax Policy Center.  

Our focus is on the total gasoline user fee levied in each state in each year.  To estimate fuel 

costs per gallon, we use the “all grades all formulations” retail price average for gasoline as 

reported by the Energy Information Administration (EIA), 2000-2021. The EIA reports annual 

data for nine states. For the other 41 states and Washington, D.C. we map states to one of seven 

regions assigned by the EIA.  

 For the commercial analysis, we incorporate data from the Bureau of Economic Analysis’ 

(BEA) Total Requirements tables, specifically the “Industry by Commodity/After 

Redefinitions/Producer Value” table for 2012, the most recent data available. These tables 

provide an estimate of the amount of input industry is required, in dollars, to produce one dollar 

worth of commodity output. We focus on the total requirements in trucking transportation to 

 
1 Specifically, we replicate the Consumer Expenditure Survey Table 1203.  
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produce a suite of consumer commodities listed in the CEX Table 1203.2 For a crosswalk, see 

Appendix Table 9.  

4 Distributional Impact of Charges for Public Transportation  
To measure the distributional burden of user fees for public transportation, we compute the share 

of total expenditure devoted to public transportation, and then rank households to deciles based 

on their total expenditures.    Especially for those at the highest and lowest income levels, 

expenditure may be a more meaningful indicator of household well-being than expenditure.  

Figure 1 shows the ratio of expenditures to income in CEX, by either income deciles or 

expenditure deciles. 

[Insert Figure 1] 

  Panel (a) shows that at low income levels, income is often lower than expenditures due to 

net transfers from tax credits or in-kind aid. At high incomes, expenditure falls below income 

because of substantial saving and because of transitory income such as capital gains from selling 

a house. Appendix Table 5 emphasizes that a household’s expenditure decile and its income 

decile, while correlated, need not coincide.  

 If we instead reorder households by their expenditure decile, we see that across all 

deciles, the ratio of expenditure to income is much flatter and closer to 1. This hews closer to 

what we would expect from a permanent income model.  When we do not have expenditure data 

for specific travel modes, as in using the NHTS data, we report utilization rates for various 

transportation services.  Because our analysis orders households by total expenditure, we must 

predict household expenditure in the NHTS datasets, which only provides income ranges. 

Appendix A outlines how we use demographic, socioeconomic, graphical and temporal 

information in the CEX to predict expenditure levels in the NHTS.   

4.1 Public Transportation  
Public transportation modes differ greatly in ease of access, wait times, and cost.  Better-

off households may find easier to adjust than their poorer counterparts. Figure 2 breaks down the 

number of trips taken each day per household, by mode and expenditure decile, using data from 

the NHTS. For each income group, we plot the share of trips taken by either bus, subway, 

 
2 For a breakdown of consumers’ expenditure groups, please refer to https://www.bls.gov/cex/tables/calendar-
year/mean-item-share-average-standard-error/cu-income-before-taxes-2019.pdf 
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commuter rail, or air travel. We plot two bars, the lighter bars indicate major public transit cities, 

defined as those with at least 10% of the population commuting by public transit: New York 

City, Chicago, Washington, DC, Boston, Philadelphia and San Francisco. The darker bars 

represent travel behavior in all of the other major metro areas in the NHTS, as well as those 

households living in sub-metro areas.  

[Insert Figure 2]  

Panel (a) shows that bus utilization is decreasing in expenditure, with households in the 

lowest expenditure decile using the bus approximately 0.2-0.7 times each day (roughly once 

every one to three days). In contrast, individuals in the highest expenditure decile use the bus 

only 0.05-0.12 times a day.  Panel (b) shows the same breakdown for subway use. Subway use is 

very popular for all expenditure deciles in major public transit cities. In contrast to bus usage, 

subway use increases with expenditure. This reflects the reliance of low-income inner city 

neighborhoods on public transit, as well as the relatively high incomes in urban cores across the 

country, such as Manhattan, where proximity to a subway is highly valued. Commuter rail use, 

in panel (c) displays the most progressive use of any form of land-based public transit. The 

highest expenditure survey respondents in major public transit cities reported using commuter 

rail 0.17 times each day, while utilization falls steeply for those in the bottom 7 expenditure 

deciles.  Commuter rail tends to be co-located with wealthy suburbs surrounding dense cities, 

and fare costs are higher than public bus or subways. Finally, panel (d) shows air travel by 

expenditure decile.  The gap between public transit cities and all other areas closes significantly, 

as airports are located in all city types. Air travel is highly progressive, with the highest 

expenditure decile taking more than 22 times as many trips as those in the lowest deciles; the 

highest expenditure bin households take air travel on average about 15 days per year, while the 

lowest expenditure decile taking a flight only once every 15 months or so.  

 These utilization breakdowns reflect households’ decisions based on the total costs of 

accessing infrastructure. Households pay user fees, which contribute to revenues collected by 

infrastructure providers, but they also pay in time costs, as well as in other ways such as 

locations rents. Observing the user fees alone, even for the largest public transit authorities, 

household user fees come nowhere near funding infrastructure operating expenses.  

[Insert Figure 3] 
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Figure 3 plots the average fare to average operating cost (exclusive of capital costs) ratio for the 

top 50 largest public transit authorities. The average authority recovers only 40% of the cost of 

providing a trip, reflecting large funding gaps from user fees alone.  

4.2 Private Vehicles  
We use CEX data to calculate gasoline expenditure relative to total expenditure.  Figure 4  

presents data on the distribution of gasoline expenditure shares, as well as federal gasoline tax 

expenditure shares.  In order to calculate expenditure on taxes, we need to know how many 

gallons each household uses. We bring in data on annual average retail gasoline prices from the 

EIA by state or region, and divide total expenditure by price per gallon, inclusive of taxes. We 

then multiply the imputed number of gallons by the state and federal taxes reported that year 

from the Tax Policy Center data.  

[Insert Figure 4] 

Panel (a) in Figure 4 shows that households’ annual expenditure on gasoline in 2017 was roughly 

the same as it was in 2001, after peaking in 2009 prior to the fracking boom. We also see that the 

highest expenditure ventile households spend less than half the share on gasoline as do the 

households in the lowest ventiles. Panel (b) shows that average federal fuel tax expenditure 

shares declined markedly between 2000 and 2010, as inflation and improvements in fuel 

efficiency eroded the burden of the federal gas tax. Expenditures on gasoline taxes at lower 

incomes are lower as a share of income in 2017, relative to those of better-off households, than 

in 2000. This is the result of greater gasoline expenditures, in total, at higher expenditures.  This 

may be the result of better-off households driving more miles, or of their driving more gas-

hungry luxury cars or SUV’s, which took off in the mid-2000s in the US.  

Appendix Figure 10 shows the pattern of gasoline tax expenditure relative to household 

income, and ranks households by income; it also suggests that the distribution of fuel taxes has 

become more progressive over time. The reduction in regressivity over time seems to be driven 

be lower expenditure shares among low-income households, while higher income households 

pay similar shares to what they did in 2001. Appendix Figure 11 shows the same analysis for 

state fuel taxes, either by income share or expenditure share.  While the burden of taxation has 

fallen for most expenditure levels, the upper end of the distribution masks important 

heterogeneity in vehicle trends. On the one hand, higher income individuals drive more miles, 
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pushing their expenditure share higher. On the other hand, they tend to own newer vehicles, 

which tend to have higher fuel standards, shown in Appendix Figure 12.  

An important modern trend motivating this paper is that higher income households also 

adopt hybrid and electric vehicles at much higher rates than their low-income peers, as show in 

Figure 5(a). Additionally, the richest households have vehicles that have higher fuel efficiency 

standards, reflected in Figure 5(b).  

[Insert Figure 5] 

Figure 5 presents an important change in the composition of vehicles owned by the highest 

income households, many of which are also high expenditure. The National Personal Travel 

Survey from 1977 found that higher income households owned less fuel efficient vehicles, on 

average their cars ran 3 fewer miles per gallon.3 The most recent reports from the 2017 National 

Household Travel Survey, in Figure 5 panel (b), show that this relationship has flipped as richer 

households buy hybrid and electric vehicles, which often have higher up-front costs than 

gasoline powered cars. As of 2017, the highest income households own vehicles that run, on 

average, 1.5 more miles per gallon. This change means that higher income households pay less in 

fuel taxes to travel the same distance as poorer households.   

 We show in Appendix B how the progressivity of gas taxes and carbon fees depends on 

the nature of the abatement technology.  When better gas mileage meant reducing car weight and 

power, then the poor were more likely to take advantage of that possibility.   Consequently, in 

the 1970’s, gas taxes were paid disproportionately by the rich driving heavy cars.  When better 

mileage means buying a Tesla, then gas taxes become a disproportionate burden on the poor, 

who cannot afford the upfront cost of green technology.  

5 Distributional Impact of Alternative User Fee Structures  
This section applies the same approach to computing the distributional impact of user fee 

structures to two alternatives to the status quo, personal and commercial VMTs.  

5.1 Comparing the Federal Gasoline Tax to a VMT  
First, we consider replacing the federal gasoline tax with a VMT levied on households. 

We envision limiting this to personal vehicles, as much of the commercial vehicle fleet relies on 

 
3 The NPTS, like the NHTS, only provides reports based on income, so we are unable to compare vehicle 
characteristics by expenditure across the two datasets.  
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diesel. The federal gasoline tax was last updated in 1993, when it was set at 18.4 cents per 

gallon. To keep up with inflation, the equivalent tax rate in 2021 would be set at about 34 cents 

per gallon. Further diminishing the purchasing power of the gas tax, infrastructure costs have 

been increasing, in particular for new lane-miles, as reported by Brooks and Liscow (2019) and 

Mehrotra, Turner and Uribe (2021). Finally, vehicles have become more fuel efficient, and the 

tax collected per vehicle mile traveled has fallen. The static tax rate, rising infrastructure costs, 

and increased fuel efficiency have all contributed to a growing gap between tax revenues 

allocated to the Federal Highway Trust, $43.4 billion in 2021, and its expected outlays, expected 

to average $60.4 billion over FY2021-FY2025 (Kirk and Mallett, 2020).  

US residents are increasingly adopting hybrid and electric vehicles, whittling away at the 

gas tax revenues. As of 2020, sales of hybrids, plug-in hybrids, and all-electric vehicles grew to 

5.4% of all light vehicle sales, from 2.3% in 2011, the year in which all-electric vehicles first 

came to market, and 0% in 1999, the year the Toyota Prius came to market. Importantly, all-

electric vehicle sales alone have grown from 0.1% of all sales in 2011, to 1.7% in 2020, none of 

which pay any federal gas tax (Davis and Boundy, 2019). As this market continues to grow, 

policymakers have increasingly considered switching to the vehicle miles tax (VMT), which 

would tax drivers based on their road usage rather than gas consumption, ensuring that electric 

car drivers would contribute to paying for the infrastructure maintenance costs that they impose 

on the system.  

 Proposals for updating the gasoline tax or adopting a VMT vary, so we consider three 

alternative scenarios: (1) anchoring the VMT’s tax per mile to the mean effective tax per mile 

under the current federal gasoline tax rate, (2) adjusting the federal gasoline tax such that it will 

fully fund the federal Highway Trust Fund (HTF) outlays expected over 2021-2025, and (3) 

setting the VMT tax per mile to fully fund the HTF outlays expected over 2021-2025. We detail 

each of these options below, but first outline some characteristics of the current tax regime, 

including miles traveled, mean revenues paid per person, and aggregate revenues.  

5.1.1 Miles and Federal Revenues under Current Gas Tax  

 As of 2017, the most recent year for while we have data from the National Household 

Travel Survey, the average household drives about 12,000 miles per year, or about 33 miles per 

day. This mean masks substantial heterogeneity in travel, with the 25th percentile driving 15 

miles per day, and the 75th percentile driving nearly triple that at 42 miles per day. Additionally, 



 12 

the dark bars of panel (a) in Figure 6 shows that higher expenditure households tend to drive 

more per annum than their low-expenditure counterparts, suggesting the gasoline tax would be 

progressive. However, for taxes paid per mile, we need to know not only how many miles 

households drive, but how many miles per gallon each vehicle uses, and on average, lower-

expenditure households drive older and less fuel efficient vehicles. The first column in Table 2 

shows that lower expenditure households pay less in annual gasoline taxes than their higher 

expenditure counterparts.  However, the highest expenditure households are much more likely to 

have fuel efficient hybrid or electric vehicles, reducing their tax burdens to even lower than the 

lowest expenditure decile gasoline households.  

 5.1.2 Modeling the Effects of a Change in Per-Mile Travel Costs 

To analyze the impact of various alternatives to the current user fee structure on gasoline 

consumption, we develop a simple theoretical framework. Let each household i have a quasi-

linear separable utility with power function for transport such that,  

     Ui(Ti) = Yi − pTi + ATi
σ       (1) 

Households earn income Yi, and Ti represents travel in miles, which is paid at a price per mile, p. 

This yields a first order condition of the constant elasticity functional form after taking logs,  
!""
!#"

: 𝑙𝑛(𝑇$) =
%

%&'
𝑙𝑛(A𝜎) − %

%&'
𝑙𝑛(𝑝)       (2) 

Equation 2 identifies the price elasticity of demand for travel, εg = − %
%&'

, which we  

set to εg = −0.31, a middle ground in the elasticities estimated by Levin, Lewis and Wolak 

(2017).    

 Each of our three options will use a different 𝑡( ∈ {𝑡%, 𝑡), 𝑡*}, and since each option would 

replace the existing fuel tax, the price paid after adoption is the original gas price per mile paid at 

the pump, p, less the original gas tax per mile, τ, plus the proposed tax per mile, 𝑡(, either a VMT 

or an updated gasoline tax.  

 In reality, initial p and τ are going to vary by the observed gasoline prices in one’s area, 

as well as by a household’s fuel utilization, such that each household has their own gas price per 

mile, pi, and their own tax per mile, τi,. Moving from a tax on gasoline consumption, to a tax on 

miles consumption, removes the heterogeneity in how much people are taxed per mile, so tj is 

fixed across households for VMT proposals.  
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For hybrid and electric vehicles, we have to modify their price per mile, as they do not 

pay the federal fuel tax as gasoline vehicles do. To do this, we set the cost per mile, pe, for 

electric vehicles at 4 cents, which assumes the vehicle travels 3 miles per kWh, at the average 

rate for electricity of 11.7 cents per kWh (Advanced Vehicles Testing Activity, 2011). For 

hybrid vehicles, we assume an average price of $2.41/gallon, taken from the NHTS sample, and 

an efficiency of 45 mpg, yielding a hybrid cost per mile of ph = $0.055, or 5 and a half cents per 

mile. These prices do not vary across households due to data limitations.  

We can calculate miles driven under tj as the initial miles driven, Ti, less (plus) the change 

in miles as prices rise (fall), relative to the initial price per mile,  

𝑇$
(() =	𝑇$ +	𝑇$ 3

-#$	&"
."
4 𝜀/     (3) 

and tax revenues are 𝑡( × 𝑇$
(().  We consider the distributional impact of three policy options, 

corresponding to our three different revenue scenarios, which differ only in their proposed tj. 

Before considering alternative policies, since this paper has been motivated by the 

increasing share of high-expenditure households adopting electric vehicles, we construct a 

counterfactual world that captures not today’s EV penetration in the marketplace, but a scenario 

that corresponds to some years into the future.  Specifically, we allow for sales of hybrid and 

electric vehicles (HEV together, HV and EV for hybrid and electric vehcles, respectively), to 

continue to grow over the next fifteen years, and track how this translates into compositional 

shifts in the stock of vehicles in the personal fleet. We  assume that by 2037, approximately one 

third of the vehicle fleet will be HEV, and use this counterfactual composition to compare the 

distribution of the gasoline tax and a VMT.  Appendix C provides details on how we construct 

the counterfactual vehicle fleet for 2037.    

5.1.3 Policy Counterfactuals 

(1) Match VMT at Current Effective Tax/Mile: Our first VMT option would set 𝑡% =

	%
0
∑ 𝜏$ = $0.0089$ , roughly 9/10ths of a cent per mile. This policy would induce no behavior 

changes on average; however, depending on the difference between t1 and τi, it would still induce 

a change in miles driven for individuals. 

(2) Fully Fund the HTF with a Gasoline Tax: Our second policy counterfactual would raise 

the federal gas tax, t2, to fund the HTF. Of the $40.5 billion raised to fund the FHT 2017, federal 

fuel taxes comprised $25.7 billion, or 64% of the revenues. Over the 2021-2025 fiscal years, 
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projections estimate FHT outlays of $60.43 billion on average, with revenues coming up short at 

only $42.9 billion.4 We set the gasoline tax such that 

$60.43	𝑏𝑖𝑙𝑙𝑖𝑜𝑛 = 	∑ 𝑡'𝑇(
(')

(∈,-.       (4) 

 

We minimize the difference between the budget target and gasoline tax revenues to estimate a t2 

= $0.0323 per mile, or $0.727 per gallon. Importantly, this tax is leveied only on the subset of 

households driving gasoline powered vehicles in 2037. 

(3) Fully Fund the HTF with a VMT: Finally, we set t3 to fully fund the HTF, using a VMT.  

$60.43	𝑏𝑖𝑙𝑙𝑖𝑜𝑛 = 	∑ 𝑡/𝑇(
(/)

(       (5) 

We minimize the difference between this budget target and VMT tax revenues, yielding a VMT 

of t3 = $0.026. This is roughly 20% lower than the gasoline tax in proposal 2, as the wider tax 

base allows more people to contribute less per mile.  

[Insert Table 1] 

Table 1 summarizes the taxes per gallon, and taxes per mile under the current baseline, as 

well as the three policy counterfactuals.   

5.1.4 Counterfactual Results  

Figure 6 shows the distributional results of adopting a VMT meant to match the average 

current gasoline tax per mile. Panel (a) shows that driving patterns remain roughly the same, no 

matter the expenditure decile, across the baseline tax and proposed VMT. Panel (b) plots the 

average taxes paid under both schemes, by expenditure decile. On average, households in the 

bottom seven expenditure deciles end up paying lower taxes per year under the VMT than under 

the gasoline tax while those in the top three expenditure deciles pay more. This is driven by the 

small share of HEV’s, roughly 2.5% of the current stock, landing mostly in the top 40% of the 

expenditure distribution, with 75% of all HEV’s in the these expenditure deciles.  

[Insert Figure 6] 

Figure 7 plot the miles driven and annual taxes paid by expenditure decile for the 2nd and 

3rd proposals, in which we use the 2037 counterfactual vehicle composition and fully fund the 

HTF. Panel (a) compares the miles driven under the gasoline tax and the VMT. Miles driven 

 
4 Currently, these shortfalls are paid from general revenues. If general revenues come from income taxes, these 
contributions are quite progressive, with high expenditure households paying large amounts in income taxes, as in 
Appendix Figure 13. However, if these general revenues are financed through debt, there is less concurrence on the 
progressivity of the debt burden on households. 
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under the two scenarios are nearly identical until the fifth expenditure decile, after which miles 

driven under the gasoline tax begin to outstrip the miles driven under the VMT, for a mileage 

gap of almost 4000 miles in the highest expenditure decile. This wedge is driven by the 

behavioral response of HEV households, which are concentrated in the highest expenditure 

deciles, responding to a large increase in their per-mile costs, as they had previously paid no fuel 

taxes.  

[Insert Figure 7] 

Panel (b) of Figure 7 translates miles driven to taxes collected, based on the individual 

vehicle’s fuel efficiency in the case of the gasoline tax. Households in the first through sixth 

expenditure deciles pay significantly higher taxes under the gasoline tax scheme than under the 

VMT scheme, reflecting the higher share of less-efficient gasoline vehicles among these 

households, as well as relatively few miles traveled. At the seventh expenditure decile, 

households pay roughly equal taxes under both schemes, while the top three expenditure deciles 

pay considerably more under the VMT scheme than the gasoline tax. We forecast that about 55% 

of the vehicle fleet in the top 3 deciles will be HEV by 2037, while only 21% will be HEV in the 

bottom seven expenditure deciles, driving these gasoline-VMT tax payment wedges.  

We also explore average taxes paid by vehicle type (gasoline, hybrid, electric), for our 

2037 VMT policy counterfactual, and examine how driving behavior responds to the tax policy. 

Table 2 shows the annual average taxes paid per household, by expenditure decile and vehicle 

type. We present payments under the 2017 composition and baseline taxes, the 2037 VMT 

proposal without allowing for the behavioral response outlined in 5.1.2, and the full model under 

the 2037 VMT proposal.  

[Insert Table 2] 

Under the current tax policy, hybrid and electric vehicles pay significantly less or even no 

gasoline tax relative to households with gasoline vehicles. Comparing the second and third 

columns, we see that for gasoline vehicles, the increase in per mile costs under the 2037 VMT 

induce a 5% decline in revenues, as drivers adjust their mileage downwards. In contrast, for the 

group with the largest increase in per mile costs, the electric vehicle owners, they would pay 

around 12% higher taxes if we did not allow for driving behavior to respond to the per-mile price 

increase.   
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 None of these calculations include the potential benefits of reducing other taxes that are 

currently levied to fund the HTF, or the lower driving externalities, such as reduced congestion 

and emissions, that might be associated with higher taxes.  We note that a VMT would not be 

levied at the gas pump, but rather might be paid in a few installments each year.  This could 

affect price salience and might change the value of εg we have assumed in this analysis.  

5.2 Expanding the Commercial VMT  
 We also consider the implications of an expanded vehicle miles tax for commercial 

vehicles. Heavy trucks are currently taxed at $0.24 per gallon of diesel, but this taxation is 

unlinked to the value, weight, or distance of the shipped goods. This results in trucks often 

maximizing their load capacity, which can result in significant road damage. In most states, the 

majority of trucking taxes paid are fuel taxes, registration fees, and tire taxes. Small, Winston 

and Evans (1989) note that in a handful of states, taxes have varied by miles traveled or by 

vehicle weight. New Mexico, New York and Oregon have moved towards a VMT for 

commercial trucks that varies with the trucks’ maximum load capacity ($0.01-0.29 per mile, 

depends on weight). On the other hand, Kentucky has adopted a flat fare structure set in the 

middle of the other states’ ranges at $0.03/mile, regardless of weight.  

 Our analysis of the commercial VMT differs from that of the personal driver VMT in two 

ways. First, we do not replace the diesel tax with a VMT, but instead add a VMT in addition to 

the diesel tax, as the commercial vehicle fleet is not greening at the same rate as the personal 

fleet. Second, in addition to analyzing how a VMT would change commercial vehicles mileage 

(to be added in next draft), we analyze how adopting a commercial VMT changes the end-user 

price of traded goods. This unifies our analysis of the commercial and personal VMT policies by 

centering both of them on the household, rather than the vehicle. In the commercial context, we 

first estimate the share of shipping costs and fuel taxes in household expenditure. Next, we 

explore how an additional commercial VMT would impact household’s expenditure and 

consumption bundles.   

5.2.1 Current Indirect Federal Diesel Tax Burdens on Households 

We first calculate the share of consumer expenditures attributable to shipping costs, in 

particular those from commercial trucking, and federal diesel taxes. To do so, we use data from 

the BEA’s Total Requirements, input-output tables, which tell us how many dollars of trucking 

transportation costs are needed to produce a dollar of various output commodities. The total 
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requirements tables list inputs and outputs by industry code, NAICS, or by commodity code, but 

these are not available in the CEX, so we crosswalk commodities and CEX expenditure 

categories by hand. Appendix Table 9 provides a detailed crosswalk; when categories are more 

granular in the input-output tables than in the CEX, we average the trucking costs within the 

CEX category, across input-output commodities. Across all CEX categories, we find that truck 

transportation contributes to about 0.72 cents for every dollar of output, but this varies from 0.04 

cents (rented dwellings), to 3.1 cents (water and other public utilities) per dollar of final output. 

Trucking contributes to 0.8% of GDP, so we adjust our trucking shares upward to match this on 

average, which means inflating them by about 10% (Bureau of Transportation Statistics, 2018).  

The input-output data give us the truck transportation share of final output, so to calculate 

the share of household expenditure going to diesel taxes, we include statistics from the American 

Transportation Research Institute, who find that that marginal cost of a mile of trucking is about 

$1.646 (Leslie and Murray, 2021). Given a federal diesel tax of $0.24/gallon, and a mean fuel 

efficiency of 6.4 miles/gallon, this translates to diesel costs of $0.038/mile, or about 2.3% of the 

marginal mile cost. With these data in hand, we can calculate the diesel tax burdens for each 

household’s final consumption bundle,  

𝑒$1$2324 = 0.023 × ∑ 𝑒$55 × 𝛾5 		   (6) 

where 𝑒$1$2324 is the household expenditure on diesel taxes, 𝑒$5  is household i’s expenditure on 

commodity c reported in the CEX, and 𝛾5is the trucking input needed to produce one dollar of 

final commodity c. Total expenditure on trucking is the sum, over all commodities in a 

household’s consumption bundle, of each commodity’s trucking share multiplied by expenditure 

on that commodity. To deflate this to money spent on diesel taxes, we multiple trucking 

expenditure by the 2.3% share that diesel taxes contribute to the total trucking cost.  

[Insert Figure 8] 

Figure 8 shows the distribution of average diesel tax shares and diesel taxes paid by 

expenditure decile. As panel (a) shows, the total share of diesel taxes in the average household’s 

expenditures is low, ranging from 0.015% of total expenditure for the lowest decile, to 0.011% 

for the highest expenditure decile. Diesel tax shares are regressive in shape, as the expenditure 

shares fall monotonically by decile, but they add up to fairly minimal amounts. Panel (b) shows 

that the lowest expenditure decile can expect to contribute about $2 per year indirectly to federal 
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diesel taxes, while the highest expenditure households contribute, on average, about $19 per 

year. 

5.2.2 Implications of Commercial VMT Adoption  

 Setting the VMT on commercial vehicles could be informed by the costs imposed by 

truckers on pavement and bridge maintenance. Beider and Austin (2019) report estimates social 

costs imposed by heavy trucks per mile. Costs increase with vehicle weight, holding axles fixed: 

for example, for 5-axle trucks, the damage costs per mile are estimated to increase from 

$0.05/mile for 70-80k lb. truck, to $0.85/mile for 110-120k lb. truck. Costs also decrease with 

vehicle axle count: a truck weighing 100-110k with 5 axles imposes $0.83/mile of damage, while 

an additional axle drops this damage to $0.50/mile. Unfortunately, these damage costs are 

significantly higher than any VMT adopted, be it flat or varying by weight. As such, we anchor 

our analysis to a simple flat VMT, as in Kentucky, and set to $0.03 per mile. Combined with the 

existing diesel fuel tax cost per mile, this nearly doubles the taxation costs per mile, increasing 

them from $0.038 to $0.068. We choose to supplement rather than supplant as the electrification 

of the commercial vehicle fleet lags that of the personal vehicle fleet, with the overwhelming 

majority of commercial drivers still pay diesel taxes.  

 In order to analyze the impact of adopting a commercial VMT, we calculate the change in 

expenditures needed to purchase a household’s original consumption bundle, demonstrating how 

much expenditures must grow to keep people at their original bundles. These constructs are 

similar to the concept of compensating variation; however, we have abstracted away from utility 

functions and income.  

 Final expenditure on any item can be decomposed into expenditure on the good, and the 

expenditure on the diesel tax component necessary to ship the good to the purchaser. As such, 

households, indexed by i,spend a portion, 1 − 𝛼5-  , of their total expenditures on consumption 

goods, 𝑔𝑜𝑜𝑑$5- , and the diesel taxes levied on said goods, 𝑡𝑎𝑥$5- : 

 

𝑒$5- = (1 − 𝛼5-)𝑒$5- + 𝛼5-𝑒$5- 	      (7) 

 𝑒$5- = 𝑔𝑜𝑜𝑑$5- + 𝑡𝑎𝑥$5- 	           (8) 

c indexes commodities, and the shares are anchored to the total requirements. After a tax policy 

change, we calculate expenditure responses, holding the household’s original consumption 

bundle fixed in time 0:  
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Δ𝑒$5 = 3%&60
1

%&602
− 14 𝑒$57 	           (9) 

 

 

Figure 9 displays the results of adopting the proposed commercial VMT. At the lowest 

expenditure decile, total expenditure needs to increase by 0.0138% in order to accommodate the 

near doubling of the commercial diesel tax per mile. This declines to 0.0131% for the middle 

expenditure deciles, before rising again to 0.0135% for the top deciles. This increases the out of 

pocket costs for the lowest deciles from $2 to $4 per year, while the highest decile see indirect 

diesel tax payment rise to $36, from $19.  

[Insert Figure 9] 

Overall, a significant increase in the commercial per mile tax results in small changes in 

out of pocket contributions, especially relative to adopting a personal VMT. Table 3 summarizes 

the estimated revenue yield as well as the distributional outcomes for each of the policy 

counterfactuals we have considered. Extrapolating the vehicle fleet forward in time, if we were 

to fully fund the HTF with user fees, structuring those fees as a gas tax puts the lowest relative 

burden on the highest spending households. Annual out of pocket costs increase from $364 at the 

low end before peaking for the seventh expenditure decile at $713, before falling nearly 30% for 

the highest spending households to $504. A VMT better expands the tax base by charging per 

mile, rather than fuel, as higher expenditure households increasingly opt for highly efficient 

HEVs; tax burdens increase nearly monotonically, only dropping marginally for the highest 

decile as the 10th decile has a higher share of electric vehicles than hybrid vehicles, relative to the 

9th decile. Finally, the impact of levying a commercial VMT, even assuming full passthrough of 

the tax onto the final cost of goods, only moderately increases households’ tax burdens, on 

average increasing indirect diesel tax burdens from $7.66 to $13.94 per year.  

[Insert Table 3] 

6 Conclusion  
Changing patterns of vehicle ownership in the last few decades have contributed to a shift 

in the distributional burden of the gasoline tax, and prospective changes will amplify these 

changes.  In the late 1970s, the miles per gallon for vehicles owned by high income households 

were lower, on average, than those for low-income households.  As electric vehicles and hybrids 

have become more common, and as the fuel efficiency of new vehicles has increased, this pattern 
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has shifted: in 2019, vehicles driven by high-income households were on average more fuel 

efficient than those of low-income households.  These changes mean that policymakers must 

grapple with potentially rising inequity in who bears the burden of the fuel tax. 

In this paper, we examine the impact of replacing the gasoline tax with a VMT levied on 

all drivers, or one levied only on commercial vehicles, as a way to bolster declining revenues 

from gasoline and diesel taxes. We find that adoption of these policies would result in a less 

regressive user fee burden for households, especially if current trends toward greater ownership 

of EVs and hybrids continue.  High-income households also spend relatively more on tradeable 

goods, the prices of which are more sensitive to transport costs that would increase in response to 

a commercial VMT. Adopting either type of VMT would therefore likely be less regressive than 

the current gasoline tax.  

As various policies encourage alternatives to driving, such as public transit, the role of 

user fees and other means of financing this infrastructure will attract greater attention. We also 

find that user charges for various forms of public transportation vary in their distributional 

burdens. Many public transit authorities already offer discounts based on life stage, such as 

student or senior discounts, in line with reduced fare requirements for authorities that receive 

federal funding (CFR Title 49, Section 609). Some also offer low-income fare adjustments. 

These provisions have important effects in improving the progressivity of user fees for financing 

these transportation modes. The IIJA includes more than $100 billion for public transportation, 

with equity and modernization highlighted as key policy goals. User fees financing could provide 

a way of expanding the revenue base for new public transit projects. We hope to consider in 

future work how various public transportation policies that create differentials in user fees across 

households with different average incomes affect the progressivity or regressivity of these fees.  
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Appendix 
 
A Predicting Expenditures in the NHTS  

In order categorize households in the NHTS data by expenditure bin, we must impute 

household expenditures. To do this, we estimate an income-expenditure profile, taking into 

consideration household characteristics. We first regress expenditure in the CEX data for the 

2000-2019 sample using a suite of socioeconomic and demographic  characteristics, state and 

year fixed effects. These include a fourth order polynomial in a household’s real income (2017 

$s), indicators for household head’s race, Hispanic status, whether they are employed, retired, a 

student, a homeowner, or male. We include the age-education profile by adding age in 5 year 

bins, education level, and the full set of age bin and education interactions. For household size, 

we include bins for family size, indicators for number of children, the head of household’s 

marital status, and the interactions between marital status and number of children. Finally, we 

include year and state dummies. All of these explanatory variables for expenditure can be found 

in both the CEX and NHTS datasets. We weight the regression by the population weights in the 

CEX.  

Results from predicting expenditure on the suite of socioeconomic and demographic 

characteristics, as well as year and time dummies, are presented in Appendix Table 6, column 

(1). We see that each additional dollar of income is estimated to lead to $0.31 in additional 

expenditure. The R2 is 0.36, suggesting there is a lot of variation in expenditure not captured by 

demographics, socioeconomic characteristics, location, or time.  

[Appendix Table 6 here] 

We store all of the coefficients on our explanatory variables for expenditure and use them to 

construct a predicted expenditure in the NHTS data for the 2001, 2009 and 2017 surveys. Before 

doing so, we harmonize variable definitions where required. For example the NHTS classifies 

education bins differently in 2001 vs. 2009/2017, and differently from the CEX. We also impute 

income in the NHTS, as income is only provided in binned ranges. We set household income to 

the median of a bin’s income range, and put all income in 2017 $’s to be consistent with CEX 

values. Expenditure is then constructed at the linear sum of the predictive variables multiplied by 

their respective coefficients stored from the CEX regression.  
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To compare the model fit, we regress predicted expenditure on income in the CEX data, 

and predicted expenditure on imputed income in the NHTS and compare profiles. Utilizing the 

predicted expenditure on the right hand side for the CEX data has the benefit of including 

information from the socioeconomic and demographic characteristics, state and year dummies, 

without directly including them in the regression. This allows us a more consistent comparison to 

the NHTS predicted expenditure, which is mechanically constructed from those right hand side 

variables.  

Column (2) shows the expenditure-income profile regressing predicted expenditures on 

true incomes in the CEX, while column (3) shows the expenditure-income profile regressing 

predicted expenditures on imputed incomes in the NHTS. Both point estimates show that an 

increase in income of around $1 yields an additional predicted expenditure of around $0.40, 

showing similar profiles across the two datasets. Our estimates of average expenditure for those 

without incomes are higher in the NHTS than the CEX data, suggesting NHTS survey 

respondents are on average, higher income.  
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B Technological Adoption and the Progressivity of the Gas Tax 

This appendix presents a model that highlights the interplay between household income and 

the adoption of a energy-saving technologies.   We assume that individuals choose one of two 

technologies, and their level of driving.  The choice of technology determines the energy use per 

mile (denoted 𝑔$), the fixed cost of purchase (denoted 𝑘$) and the enjoyableness of driving 

(denoted 𝛼$).   All together. welfare from using technology “i” is defined as  

(1) 𝑊𝑒𝑙𝑓𝑎𝑟𝑒 = (𝑌 − 𝑝!𝑔"𝑑 − 𝑘"/
#$% + 𝛼"𝑑#$%,  

where Y is income, 𝑝/ represents the price of gas, d is the endogenous distance travelled and 𝜌 >

0.   We assume a benchmark technology “0” and an energy-saving technology 1, where 𝑔7 > 𝑔%.   

Condition upon the choice of technology i, the total spending of energy equals (8&9")

%:;.3
4$2/"

4$26"<
$2
4

 

and so this always increases with income.   This is also increasing with the composite term 

𝛼$𝑔$
=&%, which captures the the combined impact on the technology’s marginal parameter on 

driving.  The relationship between energy use and income can only be reversed because of the 

relationship between the technology adoption and income levels.   The following proposition 

describes the link between green technology adoption and income, and it is proved in the 

appendix:  

Proposition:  (a)  If 𝑘7 > 𝑘% and 62
61
> 3/2

/1
4
%&=

, then all individuals adopt the energy saving 

technology and gas consumption is always rising with income.  If 𝑘7 < 𝑘% and 62
61
< 3/2

/1
4
%&=

, 

then no one adopts the energy saving technology and gas consumption is always rising with 

income.   

 (b) If 𝑘7 > 𝑘% and3/2
/1
4
%&=

>	62
61

, then individuals adopt the clean technology if and only 

if Y>Y*, where Y* is a finite value of 𝑌 > 𝑘7.  Energy consumption rises continuously 

everywhere with Y, except at the point Y*.  At Y=Y*,  energy consumption increases 

discontinuously with Y if and only if 1 > 8∗&91
8∗&92

> 62/2
4$2

61/1
4$2.   

(c) If 𝑘7 < 𝑘% and3/2
/1
4
%&=

< 62
61

, then individuals adopt the clean technology if and only if 

Y>Y*, where Y** is a finite value of 𝑌 > 𝑘%.  Energy consumption rises continuously 
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everywhere with Y, except at the point Y**.  At Y=Y**, energy consumption decreases 

discontinuously with Y if and only if 8∗∗&91
8∗∗&92

> 62/2
4$2

61/1
4$2 > 1.    

The conditions 8∗∗&91
8∗∗&92

> 62/2
4$2

61/1
4$2 and  8∗&91

8∗&92
> 62/2

4$2

61/1
4$2 are equivalent to the condition 

%:?.3/2@
4$2
4 62

2
4

%:?.3/1@
4$2
4 61

2
4
> O?.3/2@

4$2
4 62

2
4

?.3/1@
4$2
4 61

2
4
P

%&=

, which is written only in terms of exogenous variables.   

 

This proposition details three possible scenarios for green technologies and the relationship 

between income and energy use.  In the parameter ranges covered in Part (a) of the Proposition, 

the green technology is either adopted for all values of Y or not adopted for all values of Y.   As 

all individuals use the same technology, and hence richer people use more energy.   

The parameters discussed in Part (b) seem relevant for the 1970s and 1980s.   Energy-saving 

cars, such as the Honda Civic, were typically much smaller and less expensive, than gas-

intensive cars, like Cadillacs.  The energy saving was created primarily by having less weight 

and less power.   Consequently, the green technology is adopted by the poor rather than the rich.  

Energy use rises with income almost everywhere, and it may jump up with income at the point of 

technology adoption, as long as the price gap between the two cars isn’t too large.    If the up-

front cost of two technologies is similar, which is guaranteed by 8∗&91
8∗&92

> 62/2
4$2

61/1
4$2, then the post-

purchase parameter aggregate (𝛼$𝑔$
=&%) determine the change in energy use, and we have 

assumed 𝛼7𝑔7
=&% > 𝛼%𝑔%

=&% in part (b).   

If the up-front cost difference is larger, then this cost will have effectively an “income 

effect,” which means that the Cadillac buyer is pushed to drive less.  The condition that  8∗&91
8∗&92

>

62/2
4$2

61/1
4$2 ensures that the “substitution effects” associated with the Cadillac (more fun to drive and 

more gas per mile) overwhelm that income effect  

 The parameters discussed in Part (c) are oriented towards new expensive technologies 

that reduce energy use, but cost more.   Tesla reduce energy use, but they are also typically more 

powerful and quieter.   The proposition predicts that if 𝑘7 < 𝑘% and 3/2
/1
4
%&=

< 62
61

, then the green 
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technology is adopted by the rich.  Again, energy use is rising almost everywhere with income, 

but in this case, energy use jumps downward with income at the point of adoption if 𝑘7 low 

relative to 𝑘%,that 8∗∗&91
8∗∗&92

> 62/2
4$2

61/1
4$2 > 1 holds.  In this case, price inequality is needed to generate 

the added income effect that pushes driving down for the Tesla driver.   It is not enough for the 

Tesla just to be gas efficient to satisfy this condition, given our functional form, because 

improvements in gas mileage are offset by extra driving.     
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individuals choose technology 1.    Gas consumption will drop discontinuously down as income 

rises at the point if and only if 8∗∗&91
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C Forecasting the Vehicle Fleet in the NHTS 

C.1 Constructing the Annual Vehicle Fleet  
In order to examine how the distribution of user fees paid on personal vehicles will 

change over time, we need to have an idea of how the personal vehicle fleet will evolve. In this 

section, we walk through the steps to predict the composition of the vehicle fleet, by year, 

through 2042.  First, we collect data on light vehicle sales from the Transportation Energy Data 

Book, Edition 39, produced by Oak Ridge National Laboratory for the Department of Energy. 

We have data on all sales between 2000 and 2020; for post-2020, we regress total light vehicle 

sales on a time trend, and predict out to 2042.  

To understand the change in the light vehicle stock over time, we collect data on annual 

vehicle registrations, again from the Transportation Energy Data Book, Edition 39. We allow 

registrations to grow by 0.7% per year post-2020, the average growth rate between 2000 and 

2020. Annual registrations then give us the net change in the vehicle fleet, after accounting for 

sales and retirement.  

In order to change the composition of HEV and gasoline powered vehicles over time, we 

need a forecast of how many HEV vehicles we expect on the road each year, as well as gasoline 

vehicles, and retired vehicles. Unfortunately, we do not have predictions for stocks, but a variety 

of consulting firms have made their own predictions for sales shares. Among the many 

predictions, Deloitte predicts 27% of sales will be HEV by 2030, Ford predicts 40% will be EV 

by 2030, KPMG predicts 52% EV by 2030.. We fit a logistic function to proxy for an adoption 

curve, target the two parameters to fit real adoption between 2000 and 2020, and set the mid-

point for full HEV sales at 2032, in line with the predictions listed above:  

𝑆𝑎𝑙𝑒𝑠𝑆ℎ𝑎𝑟𝑒-DEF =	
1

1 + 𝑒&7.)H(-&)7*))
 

Appendix Figure 14 plots out our sales adoption curve in panel (a). We see that HEV sales 

outstrip gas vehicle sales after 2032, as calibrated, and gasoline sales drop to nearly 0 by the mid 

2040’s. Panel (b) highlights that changes in stock are much slower to respond to even highly 

dominated HEV sales. While sales of HEV pass 50% in 2032, the stock of vehicles is less than 

20% HEV. It takes another 5 years for the vehicle stock to reach 1/3rd HEV, at which point HEV 

sales comprise 80% of all sales.   
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With predicted HEV sales shares, predicted sales, and annual registrations, we can back 

out how many vehicles are retired from the fleet each year:  

Δ𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠-:%,- = 𝑆𝑎𝑙𝑒𝑠-DEF + 𝑆𝑎𝑙𝑒𝑠-
/I3 − 𝑅𝑒𝑡𝑖𝑟𝑒- 

Appendix Table 7 shows the evolution of the vehicle fleet from 2000 to 2037. Over that 

time, we can expect to add 92,407,000 HEV vehicles and 205,730,000 gasoline vehicles to the 

fleet, while we remove 260,748,000 vehicles.  

[Insert Appendix Table 7] 

But this still does not yield the share of stock over time. For that, we need to know initial 

conditions for HEVs, X, and gasoline vehicles, Y.  

Year Registered Vehicles Hybrid/Electric Vehicles Gas Vehicles 

2017 248,926 X Y 

2037 286,314 X+92,407 Y+205,730-260,748 
Note: All vehicle counts in millions.  

Let 𝑋 = ∑ 𝑆𝑎𝑙𝑒𝑠-DEF)7%J
%KKK , since we know there were 0 sales and 0 stock in 1999 for HEVs. Then 

take 𝑌 = 𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠)7%J − 𝑋. We assume all retired vehicles are gasoline vehicles.  

Year Registered Vehicles Hybrid/Electric Vehicles Gas Vehicles 

2017 248,926 5,387 243,539 

2037 286,314 97,794 188,521 
Note: All vehicle counts in millions.  

We see that the total vehicle fleet grows by 15%, but HEVs grow from approximately 2% of the 

vehicle fleet in 2017 to just over 34% in 2037. We stop our forecast in 2037, as this is the first 

year in which HEVs comprise 1/3rd of the vehicle stock.  

C.2 Creating a Forecast for the 2037 NHTS    
We observe 229,324 surveyed vehicles in the NHTS (with positive expenditure and miles 

driven). To create a 2037 NHTS forecast, we first expand the vehicle stock to 263,723 vehicles, 

by increasing the number of vehicles in each expenditure decile by 15%. Crucially, we do not do 

this equally by vehicle type.  

𝑆𝑡𝑜𝑐𝑘)7*JDEF = 0.34	 × 	1.15	 × 	229,324 = 89,666 

and 

𝑆𝑡𝑜𝑐𝑘)7*J
/I3 = 0.66	 × 	1.15	 × 	229,324 = 174,056 
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We also need to determine how to distribute the total stock of HEVs and gasoline vehicles across 

expenditure deciles. We assume that the distribution we observe in 2017 will remain constant 

over time, with the highest spending groups also being the first to adopt HEVs.  

[Insert Appendix Table 8] 

Appendix Table 8 outlines the 2017 NHTS vehicle composition, by expenditure decile. 

The 2017 data have 223,639 gasoline and 5,685 hybrid/electric vehicles surveyed. The lowest 

expenditure decile only has 41 HEVs observed in the data, and this monotonically increases until 

we arrive at the highest expenditure decile, with 1,526 observed HEVs. This means that about 

27% of all HEVs observed in the data belong to the highest expenditure decile households, will 

less than 1% of HEVs belong to the lowest decile households. Fixing these shares from column 5 

in Appendix Table 8, and applying them to the 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠)7*Jyields 𝐻𝐸𝑉)7*J, by decile. 𝐺𝑎𝑠)7*J 

is then (𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠)7*J − 𝐻𝐸𝑉)7*J).  

Finally, we calculate the change in the number of vehicles, the change in HEV stock, and 

change in gasoline stock, for each expenditure decile. This guides us in how we add observations 

to the baseline 2017 dataset to arrive at a 2037 dataset we can use for analysis and policy 

proposals.  

To expand our 2017 NHTS sample, we proceed in three steps. First, we duplicate a 

random sample of observations in each expenditure decile. Second, we allocate the duplicated 

observations to either being a gasoline vehicle or HEV. In deciles with new gasoline vehicles, 

∆𝐺𝑎𝑠 > 0, all HEV vehicles that were randomly duplicated remain HEV, we randomly allocate 

the remaining ∆𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠 between gasoline and HEV, according to their 2037 targets. For deciles 

that lose gasoline vehicles, we recode all randomly duplicated vehicles at HEV, then randomly 

reassign original gasoline vehicle observations as HEV until we hit the 2037 HEV and gasoline 

targets. Finally, we randomly allocate new HEVs as either electric or hybrid, with 60% and 40% 

shares, respectively. New electric vehicles have a gas/mile of 0, and new hybrid vehicles are 

assigned gas/mile of 0.025, or the mean 1/MPG for the 2017 hybrid sample.  

The final 2037 forecasted dataset has a vehicle stock that is 66% gasoline, 15% hybrid, 

and 19% electric, compared to the 2017 observed dataset that is 97.5% gasoline, 2.3% hybrid, 

and 0.1% electric.  

 

 



Tables

Table 1: Tax per Mile ($’s), by Proposal

Proposal τ/gallon (cents) τ/mile (cents)
Baseline Federal Gas Tax 18.4 µ=0.89*
Match Current Effective Tax/Mile (τ1) 0.89
Fully Fund the HTF: Gasoline Tax (τ2), 60/40 EV/HV 72.7 µ=3.23*
Fully Fund the HTF: VMT (τ3), 60/40 EV/HV 2.6

Notes: Top two rows use data from the National Household Travel Survey, 2017, vehicle level dataset.
All taxes funding the 2021-2025 mean outlays for the HTF use 2037 forecasted NHTS panel. This table
summarizes the taxes used in the proposals outlined in section 5. *mean τ/mile only calculated for hybrid
and gasoline vehicles as electric do not pay the tax.
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Table 2: Mean Taxes Paid by Expenditure Decile: Fully Funding HTF with VMT

Gasoline Vehicles
Baseline ($’s) Paid (no ∆Miles) ($’s) Paid (∆Miles) ($’s)

1 91 291 276
2 121 367 348
3 151 449 426
4 177 514 488
5 192 539 511
6 207 552 524
7 231 571 542
8 235 540 513
9 255 516 490
10 256 450 427

Hybrid Vehicles
Baseline ($’s) Paid (no ∆Miles) ($’s) Paid (∆Miles) ($’s)

1 29 221 176
2 67 254 202
3 57 305 243
4 71 369 293
5 54 439 349
6 59 429 342
7 59 428 341
8 58 475 378
9 66 488 388
10 70 529 421

Electric Vehicles
Baseline ($’s) Paid (no ∆Miles) ($’s) Paid (∆Miles) ($’s)

1 0 244 214
2 0 262 230
3 0 257 225
4 0 334 293
5 0 355 311
6 0 363 318
7 0 405 355
8 0 420 369
9 0 457 401
10 0 452 397

Notes: This table shows the mean amount of federal taxes paid per household, by vehicle type and expendi-
ture decile, for three scenarios. In the first column, we present annual federal fuel taxes paid by vehicle type
under the current federal gasoline tax. In the second column, we present annual user fees paid under our
VMT proposal, assuming no change in driving behavior induced by the change in tax scheme. In the final
column, we present annual user fees paid under our VMT proposal, allowing for driving behavior to respond
to changes in per mile driving costs induced by switching from a gasoline tax to a VMT. We calibrate the
VMT to fully fund the HTF, use the 2037 forecasted vehicle fleet, with a 60/40 electric-hybrid breakdown
of new vehicles. For households with multiple types of vehicles (i.e. a gasoline vehicle and a hybrid vehicle),
total payment is split across the categories. 34



Table 3: Comparing Out-of-Pocket Costs for Households (annual $’s)

Expenditure Decile 1 2 3 4 5 6 7 8 9 10
Gasoline Tax (Fully Funding HTF) 364 467 574 666 675 700 713 684 646 504
VMT (Fully Funding HTF) 283 378 473 545 600 642 712 734 790 777
Diesel Taxes 4 6 8 10 12 13 15 18 23 36

Notes: This table shows annual out-of-pocket costs for households, in $’s, for the various fuel-related user
fees considered. The top row shows the mean gasoline tax paid annually, using the 2037 forecast vehicle fleet
in conjunction with a gasoline tax calibrated to fully fund the HTF. The second row show the mean VMT
paid annual, using the 2037 forecast vehicle fleet with a VMT calibrated to fully fund the HTF. The bottom
row shows the mean user fees paid by consumers of final goods that use truck transportation, assuming an
additional $0.03 VMT added to commercial trucking, on top of the existing diesel tax.

Figures

35



Figure 1: Expenditure/Income by Income and Expenditure Decile, 2017 CEX
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(b) Expenditure Deciles
Notes: Data from the Survey of Consumer Expenditures, 2017. Panel (a) shows the average
Expenditure/Income ratio within income deciles. Panel (b) shows the same ratio, averaged within ex-
penditure deciles. All ratios winsorized at the 5th and 95th percentiles, for ease of inspection.
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Figure 2: Public Transit Utilization in the NHTS, by Expenditure Decile
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(d) Air Travel
Notes: Data from the National Household Travel Survey, 2017, trip level dataset aggregated to households.
Panel (a) shows the distribution of daily household trips by bus, panel (b) by subway, panel (c) by commuter
rail, and panel (d) trips that paid tolls. Figures do not include households with negative expenditure. All
figures split by a city’s status as a major public transit city: New York City, Chicago, Boston, Washington,
DC, Philadelphia and San Francisco.
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Figure 3: Public Transit Fares as Share of Operating Costs
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Notes: Data from the National Transit Database, 2019. The figure shows the ratio of average passenger fare
to average operating costs, exclusive of capital costs, for the 50 largest transit authorities, as measured by
their operating expenses. Transit authorities may offer multiple travel modes; we average over modes within
authority, weighted by ridership. The dashed line calculates the unlinked passenger trips weighted average
fare/cost ratio across the top 50 largest authorities.
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Figure 4: Gasoline and Fuel Tax Expenditures in the CEX, by Expenditure Level
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(b) Federal Taxes
Notes: Data from the CEX waves from 2001, 2009 and 2017. All panels plot binned scatters and their
associated linear fits. Panel (a) shows the average expenditure share devoted to gasoline by expenditure
ventile. Panel (b) plots the expenditure share devoted to federal fuel taxes by expenditure ventile. Ex-
penditure is winsorized at the 1st and 99th percentiles prior to binning, for positive values of expenditure.
Data on annual fuel prices by state or region from the Energy Information Administration’s “all grades all
formulations” retail price average.
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Figure 5: Vehicle Characteristics in the NHTS, by Expenditure Level
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Notes: Data from the NHTS waves from 2001, 2009 and 2017. All panels plot binned scatters and their
associated linear fits. Panel (a) shows the share of vehicle identified as hybrid or electric, by expenditure
ventile; note that there was no indication available in 2001. Panel (b) shows mean fuel economy, by expen-
diture ventile. Expenditure is winsorized at the 1st and 99th percentiles prior to binning, for positive values
of expenditure.
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Figure 6: Baseline (2017) vs. Revenue Neutral VMT (2017)
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Notes: Data from the 2017 NHTS. Panels show the mean miles traveled and mean federal taxes paid, com-
paring the current gasoline tax and proposed revenue-neutral vehicle miles tax (VMT). All results conditional
on having positive predicted expenditures.
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Figure 7: Fully Fund HTF with Gas Tax vs. Fully Fund HTF with VMT (2037)
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(b) Mean Federal Taxes Paid
Notes: Data from the 2017 NHTS. Panels show the mean miles traveled and mean federal taxes paid,
comparing a gasoline tax and a vehicle miles tax calibrated to fully fund the 2021-2025 HTF. The figures use
the 2037 forecasted vehicle fleet, assuming a 60/40 split of new non-gasoline vehicles by electric and hybrid.
All results conditional on having positive predicted expenditures.
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Figure 8: Diesel Tax Shares and Amount Paid Annually, by Expenditure Decile
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Notes: BEA IO tables, CEX 2019.
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Figure 9: Change in Expenditure Needed to Maintain Original Consumption Basket, by
Expenditure Decile
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Notes: BEA IO tables, CEX 2019. The figure presents the amounts of additional expenditure needed to
purchase the original consumption bundle observed in the CEX, under the adoption of a new federal VMT
of $0.03/mile.
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Table 5: Joint Distribution of Expenditure and Income Deciles

Income
Decile

Expenditure Decile
1 2 3 4 5 6 7 8 9 10

1 49 18 11 7 5 3 3 2 1 2
2 32 28 15 9 5 4 3 2 1 1
3 12 25 20 15 11 6 4 3 2 3
4 4 14 22 18 15 9 6 4 3 3
5 2 8 16 20 18 15 9 5 4 3
6 1 4 10 15 18 18 14 9 6 5
7 0 1 4 9 15 20 20 15 8 7
8 0 1 2 5 8 15 22 23 17 8
9 0 0 1 2 4 9 16 23 29 18
10 0 0 0 0 1 2 5 11 28 51

Expenditure
Decile

Income Decile
1 2 3 4 5 6 7 8 9 10

1 50 31 11 4 2 1 0 0 0 0
2 19 28 25 14 8 4 1 1 0 0
3 12 15 19 22 16 10 4 2 1 0
4 7 9 15 19 20 15 9 5 2 0
5 5 4 11 15 18 18 16 8 4 1
6 3 3 5 9 14 18 20 15 9 2
7 3 3 4 6 9 13 20 23 15 5
8 2 2 3 5 5 9 16 24 23 12
9 1 1 2 3 4 6 8 17 29 28
10 2 1 2 3 3 5 7 8 17 51

Notes: Entries in each panel denote the percentage of customer units in the income or expenditure
decile listed in the row that are found in the income or expenditure decile in the column, as in
Poterba (1990). Calculations based on the 2017 Consumer Expenditure Survey.
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Table 6: Actual and Predicted Expenditure-Income Profiles

CEX NHTS
(1) (2) (3)
Expi Êxpi Êxpi

Inci 0.31 0.41
(0.003) (0.000)

Înci 0.40
(0.001)

Constant 8,625 25,542 32,195
(1879) (17) (74)

Covariates yes no no
R2 0.36 0.90 0.47
N 644,240 644,240 312,204

Notes: This table shows the output from regressing Expi = α + βInci + Covariatesit + εi in
column (1), Êxpi = α + βInci + εi in column (2), and Êxpi = α + βÎnci + εi in column (3).
Columns (1) and (2) use data from the CEX, 2000-2019. Column (3) uses data from the 2001,
2009 and 2017 NHTS. Êxpi in column (2) predicted as discussed in [[INSERT SECTION HERE]]
using CEX data; Êxpi in column (3) constructed using the parameters estimated in [[INSERT
SECTION HERE]]and applying them to the NHTS data; Înci set to the median income value
for the income bins provided in NHTS as no continuous income is provided. Standard errors in
parentheses.
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Table 7: Forecasting Vehicle Registrations, Sales and Retirement

Year ∆Registrationst,t−1
̂Salest

̂shareHEV
t SalesHEV

t SalesGas
t Retiret

2017 3249 16827 3.3 555 16272 13578
2018 673 16919 3.9 660 16259 16246
2019 2931 16630 4.2 698 15932 13699
2020 1768 14114 5.4 762 13352 12346
2021 1781 15055 6.6 995 14060 13275
2022 1793 15015 8.1 1215 13800 13222
2023 1805 14975 9.9 1483 13492 13169
2024 1818 14934 12.2 1810 13124 13117
2025 1830 14894 14.8 2210 12685 13064
2026 1843 14854 18.2 2697 12157 13011
2027 1856 14814 22.2 3293 11521 12958
2028 1869 14774 27.2 4019 10755 12905
2029 1882 14734 33.3 4906 9828 12851
2033 1936 14573 56.2 8193 6380 12638
2034 1949 14533 62.2 9046 5487 12584
2035 1963 14493 67.9 9843 4650 12530
2036 1976 14453 73.1 10566 3887 12476
2037 1990 14413 77.7 11203 3210 12422

Totals 92,407 205,730 260,748

Data on vehicle registrations and sales by fuel type from Transportation Energy Data Book, Edition 39
produced by Oak Ridge National Laboratory for the Department of Energy. Sales and share hybrid/electric
based on data up to 2020; registration data through 2019. Additional years authors’ forecast. Registrations,
sales, and retirement in 1000’s.

Table 8: Creating a Forecast for 2037 NHTS Data

Decile Vehicles2017 HEV2017 Gas2017 P(Decile|HEV) Vehicles2037 HEV2037 Gas2037 ∆V ehicles ∆ HEV ∆ Gas
1 11013 41 10972 0.72 12665 646 12019 1652 605 1047
2 15093 113 14980 1.99 17357 1784 15573 2264 1671 593
3 18100 174 17926 3.05 20815 2735 18080 2715 2561 154
4 20072 251 19821 4.42 23083 3963 19120 3011 3712 -701
5 22312 356 21956 6.25 25659 5604 20055 3347 5248 -1901
6 25896 491 25405 8.63 29780 7738 22042 3884 7247 -3363
7 28177 713 27464 12.55 32404 11253 21151 4227 10540 -6313
8 28658 859 27799 15.11 32957 13549 19408 4299 12690 -8391
9 30005 1161 28844 20.44 34506 18328 16178 4501 17167 -12666
10 29998 1526 28472 26.85 34498 24075 10423 4500 22549 -18049

229324 5685 223639 100.01 263723 89665 174056 34399 83990 -49591

Data in columns 1–5 based on 2017 NHTS vehicle level survey aggregated to households, by authors’ house-
hold expenditure deciles. Data in columns 6–7 based on 2037 stock of HEV and Gas vehicles according to
authors’ forecast, assuming constant distribution of HEVs across expenditure deciles.
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Table 9: Crosswalk from BEA’s Total Requirements to CEX Expenditure Categories

BEA IO Commodity CEX Category Truck transportation Share
All other food and drinking places food away from home 0.0070593
Amusement parks and arcades fees and admissions 0.0090132
Automotive equipment rental and leasing vehicle rental, leases, licenses and other charges 0.0043736
Automotive repair and maintenance vehicle maintenance and repairs 0.0077437
Book publishers reading 0.0110228
Child day care services education 0.0078640
Civic, social, professional, and similar organizations cash contributions 0.0070915
Clothing and clothing accessories stores apparel and services 0.0090630
Direct life insurance carriers life and other personal insurance 0.0009194
Dry-cleaning and laundry services household operations 0.0094253
Elementary and secondary schools education 0.0054672
Food and beverage stores alcoholic beverages 0.0108911
Food and beverage stores food at home 0.0108911
Full-service restaurants food away from home 0.0093778
Gasoline stations gasoline, other fuels, and motor oil 0.0154538
General merchandise stores household operations 0.0099524
Grantmaking, giving, and social advocacy organizations cash contributions 0.0048319
Health and personal care stores personal care products and services 0.0055965
Health and personal care stores drugs 0.0055965
Health and personal care stores medical supplies 0.0055965
Home health care services medical services 0.0052707
Hospitals medical services 0.0072299
Independent artists, writers, and performers fees and admissions 0.0008481
Insurance carriers, except direct life vehicle insurance 0.0010972
Insurance carriers, except direct life health insurance 0.0010972
Junior colleges, colleges, universities, and professional schools education 0.0053413
Limited-service restaurants food away from home 0.0116851
Medical and diagnostic laboratories medical services 0.0050679
Motor vehicle and parts dealers vehicle purchases 0.0112025
Museums, historical sites, zoos, and parks fees and admissions 0.0070809
Newspaper publishers reading 0.0065464
Nonstore retailers household operations 0.0072482
Nursing and community care facilities medical services 0.0067906
Offices of dentists medical services 0.0048821
Offices of other health practitioners medical services 0.0044240
Offices of physicians medical services 0.0033476
Other ambulatory health care services medical services 0.0080157
Other amusement and recreation industries fees and admissions 0.0167363
Other educational services education 0.0060345
Other personal services household operations 0.0041878
Outpatient care centers medical services 0.0050748
Owner-occupied housing owned dwellings 0.0013106
Performing arts companies fees and admissions 0.0044224
Periodical Publishers reading 0.0080464
Personal and household goods repair and maintenance household operations 0.0035449
Personal care services personal care products and services 0.0053846
Religious organizations cash contributions 0.0084143
Residential mental health, substance abuse, and other residential care facilities medical services 0.0084259
Services to buildings and dwellings natural gas 0.0091427
Services to buildings and dwellings electricity 0.0091427
Services to buildings and dwellings fuel oil and other fuels 0.0091427
Spectator sports fees and admissions 0.0031418
Tenant-occupied housing rented dwelllings 0.0004256
Veterinary services pets 0.0130759
Waste management and remediation services water and other public services 0.0307979
Wired telecommunications carriers telephone services 0.0042030
Wireless telecommunications carriers (except satellite) telephone services 0.0071040

Mean truck transportation cost share: 0.0072095

Notes: Data on total requirements from the BEA’s total requirements table, for truck transportation industry
(input) to all other commodities (output). Truck transportation share denotes the dollars of truckign industry
input required, both directly and indirectly, to produce one dollar of the final BEA IO commodity for final
use. Expenditure categories from the BLS’s Table 1203. Income before taxes: Annual expenditure means,
shares, standard errors, and coefficients of variation, Consumer Expenditure Survey, 2019. Crosswalked by
authors.
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B Appendix Figures

Figure 10: Gasoline and Federal Fuel Tax Expenditure Shares of Income in the CEX, by
Income
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(b) Federal Taxes
Notes: Data from the CEX waves from 2001, 2009 and 2017. All panels plot binned scatters and their
associated linear fits. Panel (a) shows the average income share devoted to gasoline expenditures by income
ventile. Panel (b) plots the income share devoted to federal fuel taxes expenditures. Income is trimmed
at the 5th and 95th percentiles prior to binning, for positive values of income. Data on annual fuel prices
by state or region from the Energy Information Administration’s “all grades all formulations” retail price
average.
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Figure 11: State Fuel Tax Expenditure Shares of Income and Total Expenditure in the CEX
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(a) Expenditure Share, by Expenditure
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(b) Income Share, by Income
Notes: Data from the CEX waves from 2001, 2009 and 2017. All panels plot binned scatters and their
associated linear fits. Panel (a) shows the average income share devoted to state gasoline taxes by income
ventile. Panel (b) plots the expenditure share devoted to state fuel taxes by expenditure ventile. Income
is trimmed at the 5th and 95th percentiles prior to binning, for positive values of income. Expenditure is
winsorized at the 1st and 99th percentiles, prior to binning, for positive values of expenditure. Data on annual
fuel prices by state or region from the Energy Information Administration’s “all grades all formulations” retail
price average. State motor fuels tax rates data come from the Brookings-Urban Tax Policy Center
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Figure 12: Vehicle Characteristics in the NHTS, by Expenditure Level
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Notes: Data from the NHTS waves from 2001, 2009 and 2017. All panels plot binned scatters and their
associated linear fits. Panel (a) shows the mean vehicle age by expenditure ventile. Panel (b) plots the average
annual miles driven by expenditure ventile. Expenditure is winsorized at the 1st and 99th percentiles before
binning, for positive values of expenditure.
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Figure 13: Breakdown of Contributions to Highway Trust Fund (2017)
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Notes: Data from the 2017 NHTS. Graph shows the annual household contribution to the HTF from federal
fuel taxes, or from income taxes. Income taxes calculated using data from the NHTS in conjunction with
the NBER’s TAXSIM program.
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Figure 14: Hybrid and Electric Vehicle Adoption Curves
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Notes: Data on vehicle registrations and sales by fuel type from Transportation Energy Data Book, Edition 39
produced by Oak Ridge National Laboratory for the Department of Energy. Sales and share hybrid/electric
based on data up to 2020; registration data through 2019. Additional years authors’ forecast. Registrations,
sales, and retirement in 1000’s.
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