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Abstract

Missing data is a prevalent, yet often ignored, feature of company fundamentals. In this paper, we doc-
ument the structure of missing financial data and show how to systematically deal with it. In a comprehen-
sive empirical study we establish four key stylized facts. First, the issue of missing financial data is pro-
found: it affects over 70% of firms that represent about half of the total market cap. Second, the problem
becomes particularly severe when requiring multiple characteristics to be present. Third, firm fundamentals
are not missing-at-random, invalidating traditional ad-hoc approaches to data imputation and sample selec-
tion. Fourth, stock returns themselves depend on missingness. We propose a novel imputation method to
obtain a fully observed panel of firm fundamentals. It exploits both time-series and cross-sectional depen-
dency of firm characteristics to impute their missing values, while allowing for general systematic patterns of
missing data. Our approach provides a substantial improvement over the standard leading empirical proce-
dures such as using cross-sectional averages or past observations. Our results have crucial implications for

many areas of asset pricing.
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1. Introduction

This paper studies a widespread yet little-researched phenomenon in finance: missing data in
firm fundamentals. Firm characteristics are the cornerstone of academic research in asset pricing,
investment, and corporate finance. Yet, the issue of missing data is usually ignored, and most studies
simply exclude firms with missing observations. The standard source of fundamental firm-level data
is the Compustat database, which includes over 1,000 individual variables. Most firm characteristics
used in asset pricing combine Compustat variables with information in the Center for Research in
Security Prices (CRSP) database. Many Compustat variables are sparsely populated; for example, Koh
and Reeb (2015) report that R&D information of 42% of all firms is missing between 1980 and 2006.!
The coverage of other important variables, such as current assets and liabilities, physical assets,
investment, profits, taxes, among others, is also limited, while other variables are present for almost
all firms.? As a result, the patterns of “missingness” vary substantially across characteristics.

Missing characteristic data has several potential effects for asset pricing. First, it reduces the
number of stocks in portfolios that are constructed by sorts on characteristics. Second, the set of
stocks in portfolios may vary by characteristic, which could make comparisons across factors diffi-
cult. Third, the performance of factor premia might be affected if firm fundamentals are not missing
at random. For example, consider two characteristics, A and B. For characteristic A missing observa-
tions are distributed randomly and independently of other characteristics. However, observations
of characteristic B are more likely to be missing for small stocks than for large stocks. If stock size
is a priced factor, returns of portfolios based on univariate sorts on A versus B will yield biased re-
sults. In this simple example, double-sorting on size could partially rectify the bias, however, such
solutions are infeasible if the distribution of missing observations is more complex in cross-section
and time series.

This paper has three objectives: (i) provide a comprehensive analysis of missing data in 45 asset
pricing characteristics, (ii) estimate an econometric model for imputing missing values, and, (iii)
analyze how missingness affects returns of portfolios sorted on characteristics. First, we find that
the issue of missing data is profound in several dimensions. While the frequency of missing data
is particularly severe until the early 1980s, missing data is still prevalent in more recent data. For

example, through the 2000s, over 75% of all stocks, accounting for over half the market cap, have

'We confirm their finding and find similar results in our updated sample.
2Compustat codes ACT, LCT, PPEGT, CAPX, GP, and variables starting with TX.
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missing observations. Moreover, while the frequency of missing observations decreases with firm
size, even the largest firms are affected. Second, the problem becomes particularly severe when
requiring multiple present characteristics. Third, firm fundamentals are not missing-at-random, and
have complicated dependency in both time series and cross-section; as a result, imputation based
on simple cross-sectional averages or focusing on a fully balanced panel of observations, may lead
to a significant bias in empirical findings. Fourth, stock returns depend on the extent of missing
data.

Based on the documented structure of missing data, we propose a novel imputation method to
obtain a fully observed panel of firm fundamentals. Our approach efficiently leverages the infor-
mation available in the data, from both time-series and cross-section. Importantly, our imputation
remains valid if the missingness depend on the dependency structure in characteristics. As a result,
we show that it performs significantly better than the current standards in extensive empirical test-
ing. Our approach to data imputation is easy to use in real-time, it is data-driven yet transparent,
and could be naturally extended to other settings.

A comprehensive analysis of the issue of missing firm fundamentals should first and foremost
answer the following questions: How widespread is the problem? What kind of firms are affected?
What are the key empirical regularities? We establish the following stylized facts:

Fact #1: Missing financial data is very prevalent, being a feature of almost any characteristic. The
number of missing fundamentals is large, both statistically and economically. Our dataset includes
of the 45 the most popular and widely used characteristics in asset pricing. From the start of our
sample period in 1967 until 1981, over 25% of observations across all stocks are missing, while 10%
of observations are missing between 1990 and 2020. Until 1975, all stocks have at least one missing
characteristic in any given year and only 25% of all stocks have no missing characteristics in any year
since 2000. There is, of course, substantial heterogeneity in the cross-section and over time, with
particular characteristics and time periods, for which over 90% of the data is missing. Missingness
is a feature of firms, which are small and large, young and mature, those, which are profitable and
financial distress.

Fact #2: The problem of missing data becomes substantially worse whenever one requires ob-
servations of multiple characteristics at the same time. A study of return predictability relying on
a fully observed panel of 45 firm characteristics would have to omit over 70% of firms, represent-

ing about one half of the total market capitalization. The issue remains in subsets of characteristics.



Consider five of the most widely-studied characteristics: book-to-market (BM), earnings-to-price (EP),
momentum (MOM), operating profitability (OP), and investment (INV). Between 1967 and 1980, only
50% of all stocks have a complete record of all five characteristics. The number increases to 80%
towards the end of our sample, so that one-fifth of all stocks miss at least one of the five character-
istic in a year. Hence, considering only firms with a fully observed set of fundamentals neglects a
substantial amount of data and, as we show, leads to severe sample selection.

Fact #3: Data is not missing at random. There is strong heterogeneity and dependency in the
distribution of missing observations, creating clusters both cross-sectionally and over time. Nat-
urally, some of the missingness patterns arise mechanically, for example different fundamentals
might require similar accounting variables, or young firms lack a prior history for constructing cer-
tain characteristics (e.g., momentum or long-term reversal). At the same time, there is a substantial
number of characteristics missing during any stage of the life cycle of the firm. Other clusters arise
because firms with missing data have a similar underlying latent structure. In particular, we note that
small-cap companies generally have a higher propensity for missing data, and that more extreme
realization of characteristics are often more likely to be unobserved.

Fact #4: Returns on their own depend on whether a firm has missing fundamentals. We show
that returns of stocks with observed and unobserved characteristics are different, which drives a
substantial selection bias, should one focus only on the data with observed characteristic values. On
average, we find that stocks with a missing characteristic value have lower overall returns than their
counterparts when the same variable is observed. Requiring the presence of multiple characteristics
has a pronounced and complex effect on mean returns of characteristic sorted portfolios.

Our paper also provides a novel approach to the imputation of missing firm fundamentals. A
conceptual contribution of our method lies in the joint modeling of characteristics values in the
three-dimensional space, reflecting time periods, individual firms, and the type of characteristics.
Our approach leverages both the time-series and cross-sectional dependency in characteristics to
impute the missing values, while accounting for patterns in missing data.

Imputing missing firm fundamentals is challenging for three reasons. First, characteristics are
dependent, both in the cross-section and over time. For example, small stocks are more likely to be
also growth stocks, or given the strong persistence of book-to-market ratios, prior observed values
contain information for future realizations. Hence, ad-hoc imputation methods like a simple cross-

sectional median would incur an omitted variable bias. Omitting relevant information leads to an



omitted variable bias even if observations would be missing at random. Second, characteristics
are not missing randomly. For example, small stocks are more likely to have missing observations.
Even if characteristics would not be predictable by cross-sectional information or their time-series,
non-random missingness leads to a selection bias. This is a second reason why ad-hoc approaches
like the median are invalid. The most challenging problem is that the latent information which
can predict characteristics can also affect the missingess itself. This makes it very hard to learn a
latent model for characteristics from the observed data. Flexible methods, that are estimated on
the observed data, and do not account for this interplay, are also subject to a selection bias. Our
approach provides a solution to all of these challenges.

First, we use a latent factor model to capture cross-sectional dependency in characteristics. The
key benefit of our procedure is that it remains valid even in the presence of complex missing pat-
terns. We can reliably recover the latent characteristic factor model when the probability of missing
data varies over time, for different characteristics and for different stocks. In particular, we allow
the missing data to depend on the factor model itself. For example, consistent with the data, our
approach allows, that missing characteristic observations happen with a higher probability among
smaller stocks, or stocks, whose underlying characteristic values are more extreme relative to other
stocks. Our approach also allows for complex time-series patterns, including less observed values
at the beginning of the sample, mixed-frequency observations and dependence on prior missing val-
ues. Second, we use a time-series model to capture the persistence in characteristics. Our model
combines the cross-sectional factors and time-series observation, and hence can extract slow persis-
tent movements from the time-series, while capturing fast changes from contemporaneous factor
realizations.

We show that our imputation method strongly dominates leading conventional approaches. The
most widely used imputation approach for firm characteristics is a simple cross-sectional median
(of the whole market or the industry the firm belongs to). We show that our model allows to achieve
a 50% reduction in the out-of-sample imputation error compared to using both types of medians.
Another popular approach, especially for persistent characteristics, lies in simply using their last
observed, stale values. This also leads to a subpar empirical performance, in particular, when there
are blocks of consecutively missing observations. Overall, we conclude that even though our impu-
tation method is very simple, transparent, and easy-to-use, it uniformly dominates leading empirical

approaches.



Modeling the joint dependence in characteristics also allows us to uncover new facts about the
underlying structure of firm-specific characteristics. In particular, we show that they have a very
pronounced cross-sectional dependence, which can be efficiently and parsimoniously captured by
a six-factor model. Interestingly, this factor structure is stable over time, and the factors driving
the underlying characteristic space are approximately the same for all the time periods, with a clear
economic interpretation. Furthermore, our setting also provides new insights on the relative im-
portance of time-series and cross-sectional dependency in the characteristic space. Our approach
allows the data to speak, and endogenously provides predictions based on their relative information
content. In particular, it shows that to effectively impute more volatile characteristics, one should
put more weight on the contemporaneous cross-sectional information, while imputing observations
for persistent characteristics should rely more on their prior history, whenever it is available.

Data imputation crucially matters for asset pricing, and its impact could be easily explored in a
wide range of empirical applications. For clarity and transparency we focus on the simplest possible
object: univariate portfolio sorts. All the applications relying on multidimensional data, e.g., re-
turn predictability via cross-sectional regressions or machine-learning techniques, are likely to have
even more pronounced effects. In our analysis the portfolios sorts either use a subset of stocks,
which require certain characteristics to be observed, or the full set with imputed values. In many
cases, requiring more characteristic observations lowers expected returns, while at the same time
the lower diversification with less stocks increases the volatility, resulting in overall lower Sharpe

ratios. However, as data is not missing at random, the effect can be complex.

Closely Related Literature

There is vast literature on the topic of missing data in statistics and data science. Our review fo-
cuses only on the most closely related literature in economics and finance. The most widely recently
used approaches to deal with missing data in firm fundamentals are a) cross-sectional median impu-
tation (e.g., Kozak et al. (2020) and Gu et al. (2020)), and b) using only the subset of fully observed
data (e.g., Freyberger et al. (2020) and Kelly et al. (2019)).

Naturally, our work is related to the econometrics literature on missing data in panels, with the
most widespread solutions relying on the estimation of a low rank model, which is then used to
impute missing values. The cross-sectional factor model, proposed in this paper, builds on the work

of Xiong and Pelger (2019), who provide an all-purpose estimator for latent factors that allows for



very general missing patterns. Importantly, their approach allows the missing pattern to depend on
the latent factor model, which is crucial for our application. Bai and Ng (2021), Cahan et al. (2021),
and Jin et al. (2021) develop alternative latent factor estimators with different assumptions on the
missing pattern. The imputation of missing values in a panel is closely related to conducting causal
inference in a panel, as discussed, among others, by Athey et al. (2021) and Xiong and Pelger (2019).
The unobserved counterfactual outcomes can be modeled as missing values. Hence, the common
challenge consists in uncovering a low-rank model that could be used to impute the missing data,
when the missingness or treatment depends on unobserved confounders. In particular, a naive
machine-learning prediction method is not appropriate for causal inference, if the treatment is not
completely at random. Conversely, the same problem arises with imputation of the data, which
needs to allow for various patterns of missingness in the estimation of the latent model.

Our empirical results and methods have direct implications for the multidimensional challenge
raised by Cochrane (2011). A fast growing literature has studied asset pricing with a large number
of predictors. Some representative work include Bryzgalova et al. (2019), Chen et al. (2019), Gu et al.
(2020), Freyberger et al. (2020) and Kelly et al. (2019). The methods used in those papers require
the presence of multiple characteristics, and as such lead either to some form of data selection or
data imputation. Our systematic study of missing firm fundamentals and the imputation tools that
we provide help to further improve the work in this research direction. A noteworthy study is the
work of Kaniel et al. (2021), which uses a version of our model to impute missing fundamentals in
the holdings of mutual funds.

Our paper is also related to latent factor models in financial data. Usually, factor models are
directly applied to a panel of returns. Representative works of estimating unconditional latent fac-
tors with some version of principal component analysis (PCA) include Connor and Korajczyk (1988),
Pelger (2019) and Lettau and Pelger (2020a,b). Conditional latent factors can be estimated from re-
turns that are either projected on characteristics in the case of Kelly et al. (2019) or on economic
states in Pelger and Xiong (2021b). Our paper does not extract a factor structure in returns, but in
fundamentals. Importantly, the factors are extracted from only partially observed data. Another
distinguishing element is that we deal with a three-dimensional data set, instead of the conven-
tional two-dimensional panel. This is related to Lettau (2022), who considers a fully observed three-
dimensional mutual fund data set, from which he extracts a tensor factor model.

Unfortunately, there is very little work that directly addresses the problem of missing financial



data. In a contemporaneous paper, Freyberger et al. (2021) also consider missing firm characteristics
in asset pricing, and show how to adjust the general GMM estimation in the presence of missing
data. Their work is focused on the estimation of conditional moments, with missingness modeled
as a function of pre-specified cross-sectional covariates. Xiong and Pelger (2022) use methods for
missing data imputation in the context of causal inference in finance. Their imputed values represent
the counterfactual outcome for studying the publication effect in a panel of anomalies. Blanchet
et al. (2022) analyze the trade-off between look-ahead-bias and variance in an imputation used for
out-of-sample investment. The few contemporaneous papers that are closely related to our work,
therefore, have very different goals and are complementary. Fundamentally, we provide a systematic
study of missing data in finance, establish the magnitude of this phenomenon, its stylized features,
and provides a “general purpose” solution to it, with a complete data set of firm fundamentals, which

can then be used in any of the follow-up applications.

2. Missing values

2.1. Data

We obtain the data from the CRSP/Compustat universe with the usual filters for outliers and
exchanges.® Our sample consists of 648 months from January 1967 to December 2020 and includes
22,630 individual stocks. We consider 45 characteristics related to value, investment, profitability,
intangibles, past returns, and trading frictions, see Table 1. The raw characteristics are converted
into centered rank quantiles and scaled to be in the [—0.5,0.5] interval.

We construct characteristics if the required variables are available in CRSP and COMPUSTAT.
Otherwise, we consider a characteristic missing. Characteristics are either updated monthly or at
a lower frequency which is typically quarterly. For quarterly updated characteristics, we do not
observe the monthly observations in-between the quarters, which are therefore mechanically missing.
To avoid these mechanical effects, all our evaluation metrics for characteristics that are updated

quarterly are based on quarterly data points. We are not “imputing” the months between the quarters

3The sample only includes stocks listed on the NYSE, NASDAQ, and AMEX exchanges (exchange codes 10, 11, 12) with
share codes 1, 2, or 3 (common stock, foreign incorporated, ADR) and at least one entry in the Compustat accounting
tables. We do not filter out stocks based on share price, nor do we filter out financial firms. However, we show in an
extensive robustness study that our results are not affected by these choices, that is, the results are robust to including
or excluding either of those subsets.



Table 1: Firm Characteristics by Category

Past Returns Value
1) r2_1 Short-term momentum Monthly (25) A2ME Assets to market cap Quarterly
(2) rl2_2 Momentum Monthly (26) BEME Book to Market Ratio Quarterly
3) rl2_7 Intermediate momentum Monthly 27) C Ratio of cash and short-term Quarterly
investments to total assets
4) r36_13 Long-term momentum Monthly (28) CF Free Cash Flow to Book Value  Quarterly
LT_Rev Long-term reversal Monthly (29) CF2p Cashflow to price Quarterly
(30) D2P Dividend Yield Monthly
(31) E2P Earnings to price Mixed Quart. & Monthly
Investment 32) Q Tobin’s Q Mixed Quart. & Monthly
(6) Investment Investment Quarterly (33) Sz2p Sales to price Mixed Quart. & Monthly
7) NOA Net operating assets Quarterly (34) Lev Leverage Quarterly
8) DPI2A Change in property, plants, equipment Quarterly
and inventory over assets
) NI Net Share Issues Quarterly Trading Frictions
(35) AT Total Assets Quarterly
Profitability (36) Beta CAPM Beta Monthly
(10) PROF Profitability Mixed Quart. & Yearly (37) IdioVol Idiosyncratic volatility Monthly
(11) ATO Net sales over lagged net operating assets  Quarterly (38) LME Size Monthly
(12) CTO Capital turnover Quarterly (39) LTurnover Turnover Monthly
(13) FC2Y Fixed costs to sales Mixed Quart. & Yearly (40) MKtBeta Market Beta Monthly
(14) oOp Operating profitability Quarterly (41) Rel2High Closeness to past year high
(15) PM Profit margin Quarterly (42) Resid_Var Residual Variance Monthly
(16) RNA Return on net operating assets Quarterly (43) Spread Bid-ask spread Monthly
(17) ROA Return on assets Quarterly (44) SUV Standard unexplained volume Monthly
(18) ROE Return on equity Quarterly (45) Variance Variance Montly
(19) SGA2S Selling, general and administrative Quarterly
expenses to sales
(20) D2A Capital intensity Quarterly
Intangibles
(21) AC Accrual Quarterly
(22) OA Operating accruals Quarterly
(23) OL Operating leverage Quarterly
(24) PCM Price to cost margin Quarterly

This table shows the 45 firm-specific characteristics sorted into six categories. More details on the con-
struction are in Table B.11.

with stale values, nor do we count those as missing values in our summary statistics.* However, our
procedure will provide imputed values in-between the quarters and hence also provides a solution
to mixed-frequency observations.

We use the most-up-to-date last observed values as current characteristics. For characteristics
based on the ratio of variables with different updating frequencies, we use the most up-to-date in-
formation of each variable, and the variable with the slowest updating frequency determines the
updating frequency of the characteristic. For example, the quarterly updated book-to-market ratio
divides the book value from the most recent quarter by the last observed monthly market capital-
ization. Asset pricing applications, which condition on characteristics, usually lag characteristics by
several months to ensure that the information is available to investors. Our data imputation uses

the most recent information; however, we lag characteristics in asset pricing applications.

4Using stale values in-between observations of characteristics with low updating frequency is a form of data im-
putation itself. Using stale values as the actual monthly characteristics values would also lead to mechanical trivial
predictability.



2.2. How much data is missing?

Missing financial data is prevalent, and almost all characteristics have missing observations. The
number of missing fundamentals is large, both statistically and economically. Figures 1 and 2 sum-
marize some patterns in missing values over time. The black line in Panel (a) of Figure 1 shows the
number of firms in our sample over time. As is well-known, the number of listed stocks has declined
over the last 25 years. At its peak in November 1997, our sample includes 7,784 stocks but only
4,241 in December 2020. The spike in January 1973 is due to the inclusion of the NASDAQ. The
plot also shows the number of firms with observed values of five important characteristics: book-to-
market (B2M), operating profitability (OP), investment (INV), and leverage (LEV). We also include the
ratio of real investment to book value of assets (DPI2A, Lyandres et al. (2008)) since it has the most
missing values among all 45 characteristics. Panel (b) shows the percentage of stocks with missing
values for each of the five characteristics.

Panels (a) and (b) of Figure 1 show substantial cross-sectional and time variation in missingness.
First, the proportion of missing values has, on average, decreased over time, which is not surprising
since the coverage of COMPUSTAT has improved throughout the sample, and changes in regulations
led to more comprehensive and more frequent disclosures of accounting information. Consider
first the four accounting variables B2M, OP, INV, and LEV. Missing data is particularly prevalent
throughout the early 1980s for all four characteristics. Between 30% and 95% of observations are
missing between 1967 and 1981.> About 15% to 20% of observations are missing between 1982
and 1992 followed by a further decline throughout the 2000s. At the end of the sample in 2020,
14%/10%/8%/3% of OP, INV, LEV, and B2M data is missing, respectively. Fewer book-to-market obser-
vations are missing than of the other variables because its definition includes several alternatives
and fall-back options if individual component variables are not in COMPUSTAT.®

The pattern of missing values of DPI2A (real investment-to-total assets) differs substantially from
those of the other four variables. Until 1975, very few firms have real investment observations

in COMPUSTAT, so DPI2A is virtually completely missing. In contrast to the other variables, the

*During this period, most stocks many report accounting variables only once per year, which accounts for the spikes
in the plots. As the reporting frequency increases over the sample, this pattern largely vanishes.

5Book equity is shareholder equity (SH) plus deferred taxes and investment tax credit (TXDITC), minus preferred
stock (PS). SH is shareholders’ equity (SEQ). If missing, SH is the sum of common equity (CEQ) and preferred stock
(PS). If missing, SH is the difference between total assets (AT) and total liabilities (LT). Depending on availability, PS is
redemption value (item PSTKRYV), liquidating value (item PSTKL), or par value (item PSTK). The market value of equity
(PRC*SHROUT) is as of the current month.
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Note: This figure summarizes missing values over time. Subfigure (a) shows the total number of stocks
and those that have observed values for our five example characteristics book-to-market (B2M), operating
profitability (OP), investment (INV, growth in total assets), leverage (LEV) and real investment (defined as
the change in property, plants, equipment and inventory) over lagged total assets (DPI2A). Subfigure (b)
shows the percentage of missing observations for the five example characteristics. Subfigure (c) plots
the percentage of missing observations for quarterly and monthly updated characteristics based on equal
and market capitalization-weighted averages. Subfigure (d) shows the percentage of missing observations
by market capitalization quintiles. Subfigure (e) displays the proportion of missing stocks that have no
missing observations or at most 3, 15 or 35 missing characteristics at a given point in time.
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share of missing observations remains above 35% over the rest of the sample. In 2004, 67% firm
observations were missing and more than half are missing in 2020. While DPI2A has the most
missing observations, there are several other variables with more than 20% missing data in 2020:
accruals (AC), fixed-costs-to-sales (FC2Y), operating accruals (OA), and SGAto-sales (SGA2S).

Figure 1(c) shows the time series of the share of missing values averaged across all character-
istics. We form two groups of characteristics that are updated either monthly or quarterly. Price
or return-based characteristics are available at a high frequency, while accounting variables are (at
most) available quarterly. Consider first the equal-weighted averages in Panel (c). The time series
of missingness of quarterly characteristics (black line) is similar to those found for B2M, OP, INV,
and LEV in Panel (b). Before 1982, over 40% of observations are missing; between 1982 and 1992,
about 20%, and between 8% and 14% afterward. Since the CRSP database has an (almost) complete
record of prices and returns, there are, on average, fewer missing values for characteristics that are
updated monthly. However, many monthly characteristics require lags of prices or returns, and thus
some observations are missing mechanically. For example, reversals require a return history of 60
months so that newly listed firms do not have any observations for the first five years. As a result,
between 10% and 20% of monthly characteristics are missing throughout the sample. The exception
is the period from 1973 to 1975 when the inclusion of the NASDAQ added many firms without a
history of prices and returns.

Figure 2 shows the share of missing values of all characteristics over time in the form of heatmaps.
Lighter (darker) shades correspond to lower (higher) shares of missing observations. The heatmaps
reveal time-series variation as well as heterogeneity across characteristics. The frequency of miss-
ing data of most quarterly characteristics, shown in the top panel, decreases substantially in the
early 1980s and again in the mid-1990s. There are several characteristics with many missing values
throughout the sample: AC, DPI2A, FC2Y, OA, OP, and SGA2S. The frequency of missing values in
monthly variables is directly linked to the number of lagged values that are required. The exceptions
are SUV and TURN, which are based on trading volume, however, volume for many NASDAQ stocks
is missing from CRSP between 1973 and 1983. Thus, the share of stock with missing values of SUV
and TURN is particularly during this period, which is visible in the heatmap in Panel (b).

The evidence so far was based on firm counts without taking firm size into account. Figure 1(c)
also shows the value-weighted percentage of missing observations for monthly (light blue) and quar-

terly (orange) characteristics. While the value-weighted percentage is lower than its equal-weighted

11



Figure 2: Missing Observations over Time By Characteristics
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Note: This figure is a heatmap of percentage of missing values for all 45 characteristics over time. Quarterly
characteristics collect all characteristics that are updated at a frequency lower than monthly.

counterpart, it is still substantial. In particular, quarterly updated characteristics are missing for
over 10% of the market capitalization after 1977.

Figure 1(d) reports the percentage of missing observations for quintiles of market capitalization
of companies. We observe that historically smaller companies used to have worse data coverage.

However, in the last 20 years, small and large companies have shown similar degrees of missingness.
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Importantly, at no point in time is missing only due to small-cap companies.

Missing data is a paramount problem whenever multiple characteristics are required. The miss-
ingness in individual characteristics largely underrepresents the severity of the problem. Figure 1(e)
shows the percentage of stocks that have no characteristics, less than 3, less than 15 or less than
35 of the 45 characteristics missing. The results are striking. Over 70% of firms are missing at least
some popular characteristic at any point in time. The total market cap corresponds to 48%. In other
words, an application that requires all 45 characteristics to be observed neglects half of the market
capitalization and 70% of the companies at any point in time. As we will show, using a fully observed
panel of data may lead to severe sample selection. This can affect all applications that require a full
panel of characteristics, which includes characteristic panel models, conditional latent factor models

or machine learning applications.

2.3. What is the structure of missingness?

In order to understand the structure of missingness, we study when, which, and for what values
firm fundamentals are missing. Figure 3 displays the percentage of missing observations for each
characteristic. We report if characteristics are missing at the start, at the end, or in the middle. Recall
that we only include a stock in the sample when we observe its returns and at least one entry in
Compustat in a given month. Missingness in the middle implies that we observe some previous and
future values. Missingness at the start mechanically appears for younger firms, while missingness
at the end can occur at the end of a company’s life. We see that many accounting-based variables are
missing after having been previously observed, which often occurs in missing time blocks. Overall
we confirm that missingness is a problem for all characteristics.

Some of the missingess patterns are purely mechanical and expected. For example, long-term
reversal and momentum have by construction missing observations for a new firm without prior
history. At the other extreme, market capitalization is always observed when there is a return in the
prior month. Figure C.1 in the Appendix provides missing observations by characteristic pooled by
stocks, which can be different than the overall averages if there is heterogeneity in the patterns for
individual stocks. While the overall percentage and relative ranking seems to be quite similar, there
are notable differences. Missing in the middle is less pronounced in the pooled averages, which
implies that there is a smaller subset of stocks for which observations are primarily missing in the

middle. Those characteristics that are based on past return observations, also constitute a larger
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Note: This figure shows the average percentage of missing observations for each characteristic. We de-
compose the missing values in those missing at the start (no previous observations), the middle (some
previous and future observations), the end (no further observations) and completely missing.

Figure 4: Missing Observations by Characteristic Quintiles
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Note: This figure shows the percentage of missing observations for different characteristic quintiles. The
left subfigure displays the missing observations for all characteristics and the example characteristics
book-to-market, operating profitability, investment, leverage and change in property, plants, equipment
and inventory over lagged total assets for the five size quintiles of stocks. The right subfigure presents
the proportion of missing values for the five example characteristics for their corresponding character-
istic quintile. The characteristic quintiles are based on the average observed characteristic value of the
corresponding stock.

percentage for the pooled averages. The lower panel in Figure C.1 shows the value-weighted pooled

averages with similar findings.

Next, we investigate how values of characteristics interact with the frequency of missing values.

We sort stocks into quintiles of a characteristic and compute the share of missing values among

stocks in each quintile. Figure 4(a) shows the percentage of missing observations by size quintiles.

The black line shows the average share of missing values across all 45 characteristics and shows that
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smaller stocks have more missing values than large stocks, however, the difference is modest. Even
in the largest size quintile 15% of the characteristics are missing. The downward slope is present in
most characteristics, but the dependency on size is heterogeneous. The size effect on leverage and
DPI2A is almost flat, while it is more pronounced for investment.

Next, we compute how the frequency of missing values of a characteristic depends on charac-
teristic values themselves. For each characteristic, we sort stocks into quintiles and compute the
proportion of missing values of the characteristic of the stocks in each quintile. The results are
shown in Panel (b) of Figure 4. The black line shows the mean across all characteristics. Its convex
shape implies that stocks with low and high characteristics have more missing values than stocks
with average characteristics. The difference is economically large; missing values of stocks at the
extreme of the characteristic distributions are twice as frequent as for stocks at the center (29% vs.
14%). This pattern is true for the majority of individual characteristics, see DPi2A, INV, and to a lesser
extent, B2M in Panel (b). These results suggest that missing values are not distributed randomly and
depend on characteristics themselves.

In order to better understand the structure of missingness, we predict missigness of individual
firm characteristics with logistic regressions. Table 2 shows the results for different sets of explana-
tory variables. We report separate regressions for characteristics missing at the beginning, in the
middle or at the end, as, for example, missingness at the end of a company’s life can be more related
to firm fundamentals than mechanical missingness for new firms.” We explain missingness with
the seven characteristics that are always observed, an indicator if the last observation was missing,
and the length of the missingness if the last observation was missing. We also allow for character-
istics fixed effect. The category missing in the middle is the most important for our analysis and
represents the largest part of this sample. It contains all observed and missing characteristic values
that have at least on prior observation and a last observation. The area under the curve (AUC) mea-

sures the accuracy of the prediction. Our best models achieve an out-of-sample AUC of 0.96, which

"For missing at the beginning, we consider the set of all characteristic observations that are missing at the beginning
of the sample and include the first time a characteristic is observed. Hence, the results for missing at the beginning
essentially predict the change from missing at the beginning to being observed for the first time. For missing at the end,
we include only the set of characteristic observations that end in terminal missingness. In more detail, we include the
set of only observed values (after potentially missing values) and the first terminal missing value. Thus, the results for
missing at the end predict the change from being observed to be missing completely. Missing in the middle excludes
the subset of characteristic observations that are missing at the beginning (no prior observations) and at the end (no
further observations after missingness). Note that this means that the same stock for the same characteristic can have
part of its time-series included in missing at the beginning (first set of observtions), missing in the middle (all observed
and missing values in the middle) and missing at the end (last block of observations).

15



Table 2: Logistic regressions explaining missingess

D2p IdioVol ME R2_1 SPREAD TURN VAR | FE Last Val Missing Gap | train AUC test AUC

Missing at the beginning

1_76:‘\—*3‘: _0_337‘:7‘::‘: _1_30:‘::‘\—* 0_073‘:7‘:7‘: 0_66;‘::‘\—* 0_537‘::‘:;‘: 0_62*3‘::‘: F F F 050 051
[230.70] [-22.57] [-158.80] [11.87] [68.62] [91.24] [41.44]
1.85%%* -0.28%** -0.60%** -0.07*** (0.63*** 0.70%%* 0.43%** F F 0.06%** 0.64 0.65
[176.56] [-16.30] [-63.71] [-11.05] [55.74] [104.68] [24.44] [ 439.24]
‘ T F F ‘ 0.72 0.76
T F 0.02%** 0.72 0.75
[ 186.00]
0.52%**% -0.03*** -0.64*** 0.10*** -0.06*** -0.18%** -0.31%** T F 0.027%** 0.74 0.77
[41.63] [-1.33] [-55.48] [13.42] [-4.42] [-21.58] [-14.41] [174.11]
Missing in the middle
0.58***  0.01*** -0.48*** 0.04*** 0.41** 0.26%%* -0.13*** F F F 0.56 0.53
[264.19] [0.65] [-163.53] [18.60] [116.29] [115.48] [-23.96]
T F F 0.76 0.73
T 5.28%** F 0.92 0.94
[ 892.16]
T 0.05%=* -4.92 0.93 0.95
[ 124.15] [-273.71]
0.30%**  -0.03*** -0.49*** 0.05*** (0.53%** -0.28%* (.03*** T 0.057%** -5.08%** 0.93 0.96
[25.48] [-1.11] [-31.73] [5.40] [31.03] [-24.77] [0.94] [125.68] [-263.79]
Missing at the end
0.60***  -0.14*** -0.64*** 0.03*** 0.38*** 0.05%** -0.04*** F F F 0.61 0.56
[377.13] [-35.79] [-307.86] [21.98] [152.37] [30.68] [-11.20]
‘ T F F ‘ 0.80 0.83
1_53:‘\—*3‘: _0_397‘:7‘::‘: _0_97:‘::‘\—* 0_073‘:7‘:7‘: 0_50;‘::‘\—* _01 5:’:7‘:7‘: 0_15**:‘:

T F F 0.82 0.83
[465.35] [-52.69] [-228.97] [23.06] [103.36] [-46.09] [18.46] ‘

This table shows the results of logistic regressions to predict the missingness of individual stock char-
acteristics. We report the results for different sets of explanatory variables for characteristics missing
at the beginning, in the middle or at the end. The values of the seven characteristics D2P, IdioVol, ME,
R2_1, SPREAD, TURN and VAR are always observed and hence can be included in the regressions. We also
include characteristic fixed effects (FE), an indictor variable if the last characteristic value was observed,
and the length of a missingness if the last value is not observed. The area under the curve (AUC) measures
the accuracy of the logistic regression. The regression is pooled over time, stocks and characteristics. The
model is estimated on the training data (1988-1998) and evaluated out-of-sample on the test data (1999-
2020). We also include the z-scores of the regression coefficients. Stars indicate the statistical significance,
where *** corresponds to 1% significance.

means that we explain a large part of the missing pattern and that the logistic regression captures
important features.

First, characteristic fixed effects are crucial in the prediction, confirming our previous finding
that missingness is heterogeneous. Second, the realization of contemporaneous characteristics is
highly significant in predicting missingness. As we will show, characteristics are cross-sectionally
correlated, which confirms the endogeneity in missingess. Last but not least, missingness is corre-

lated over time. The negative sign on the length of a missing gap indicates that missing data is likely
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to appear in blocks. Table B.2 reports the number of missing blocks and their mean and median
length. Indeed, most missing values cluster together and have an average length of around one to
two years.

The structure of missingness has also important implications for how to impute missing values.
First, imputation methods need to allow for different information sets. If no prior values are ob-
served, it is obviously not possible to condition on prior observations in the imputation method.
Second, stocks with different fundamentals can be more likely to have missing values. Hence, an im-
putation methods needs to allow the probability of missingness to be heterogenous and depend on
fundamentals. If we model characteristics with a factor model, this implies that the joint distribution

of missingness can depend on the factor model itself.

2.4. Characteristics Dependency

Characteristics are dependent over time and cross-sectionally on other characteristics. This de-
pendency establishes the foundation of any method that tries to model or predict characteristics. It
implies that observing the realizations of other characteristics or prior values allows us to predict
the realizations of unobserved characteristics.

Many characteristics are very persistent. Figure 11 shows the 45 characteristics sorted by their
standard deviation and autocorrelation. As expected, many characteristics, for example market capi-
talization and total assets, are very slowly moving and highly serially correlated. This implies that the
previous values of these persistent characteristics have information for their future realizations. In
fact, the autocorrelation of several characteristics is close to one, implying that their previous value
would be a good predictor. This predictability persists over longer horizons. Indeed, the 12-months
autocorrelation is still over 0.4 for around half of the characteristics. However, we also find that a
number of characteristics, primarily based on prior returns like short-term momentum or idiosyn-
cratic volatility, are highly volatile and seem to show negligible time-series predictability. Hence, the
persistence is quite heterogenous. Overall, we conjecture that disregarding time dependency when
imputing missing values might lead to an omitted variable bias.

Characteristics are cross-sectionally correlated. Figure 6 shows pairwise correlations in charac-
teristics averaged over time and stocks. We observe obvious clusters of correlations. These could
be interpreted as exposure to common characteristic factors. Hence, disregarding observed values

of other characteristics when imputing missing values could lead to an additional omitted variable
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bias. For example, small stocks are more likely to be growth stocks. Therefore, imputing a missing
book-to-market value of a small company with a market median, would inherently lead to a bias.
The clusters of cross-sectional dependence seem to form around different groups of characteristics.
Not surprisingly, characteristics based on past returns exhibit correlations. Similarly, we observe
a dependency cluster among trading friction or value characteristics. However, the dependency is

complex and requires a sophisticated tool to capture it from the data.

Figure 5: Time-series Variation and Dependency of Characteristic Ranks
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Note: This figures presents the time-series variation and dependency of characteristic ranks. The top figure
shows the sorted standard deviation over time for each characteristic. The bottom figures summarizes
the 1-month and 12-months autocorrelation coefficients for each characteristic.
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Figure 6: Heatmap of Pairwise Correlation

L
o ,00<g
£aCEAS
ATO
oL N
RN
PROF il
D2A ||
NOA
AC
OA|
R2_1 3
0y SU o6
SPREAD [ sPREADHE™
RVAR
IdioVol
VAR
FC2Y 0.4
SGA2S
C2A
BETA_d!
BETA_m BETA_m| {02
TURN
N
Q
B2M 0.0
A2ME
LEV|
s2PlEN
AT -0
ME
E2P|
CF2P
D2P| o.
DPI2A
INV]
PCMI W
R12_2 o
R1277 '
HIGH52
OPf W
PM
CF2B
R36_13
R60_13] [ |
ROAIY W [
RNA|
ROE = <0< >.
OJoEII0I—>0
2°0ga2¥°yR
a [°4
o
%]

Note: This figure shows the pairwise correlations across time and stocks for each characteristic. The time
period is the sample from 1977-2020.

The general dependency patterns between characteristics seem to be stable over time. We have
observed in Figure 1 that the frequency of missing characteristics changes drastically around the year
1977. Figure C.2 shows the pairwise correlations in characteristics averaged over time and stocks
from 1967 to 1976, while Figure 6 is based on 1977-2020. While the strength of the dependency
seems to vary, the location of correlation clusters stays the same. This would be consistent with
a factor model in the characteristic space, where the factors stay the same, but the scale of the

exposure to those factors can vary.

3. Model

The estimation of a model for the imputation of missing values faces two fundamental challenges.
First, it should take advantage of all available information. An ad-hoc imputation method, such as the

cross-sectional median, would incur an omitted variable bias. Omitting relevant latent information
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also leads to an omitted variable bias, even if observations were missing at random. Our solution to
the problem is to extract all latent cross-sectional information from the data instead of pre-specifying
a set of covariates. In other words, we let the data speak about which contemporaneous information
can best predict a given characteristic. Second, the model for characteristics, that is estimated on the
observed data, needs to be valid on the unobserved data as well. This is the crucial aspect where our
approach stands out from the related literature. Even when the missingness depends in a complex
way on latent information extracted with our model, our predictions provide correct imputed values
for the unobserved entries. Flexible methods that are estimated on the observed data and do not
account for the dependency between missingness and the information that predict characteristics
are subject to a selection bias. In particular, as data is not missing randomly, ad-hoc approaches
suffer from a selection bias in addition to the omitted variable bias.

Our data set of month/stock/characteristic observations forms a three-dimensional vector space:
Citl withi =1,..,.N,t=1,..,Tand l =1,..., L.

The data have a cross-sectional dimension of N; stocks, a time-series dimension T, and the number
of different characteristics L. The typical dimensions are around N; = 6,000, T = 600 and L = 45.
The notation of an upper index selects a matrix of this three dimensional array. For example, we

denote by
Ci, withi=1,.,Nyandl=1,..L

the N; X L matrix of characteristics at time t.

Based on our empirical findings above, we use the time-series dependency and cross-sectional
dependencies in characteristics to predict missing values. The fundamental problem is to estimate
a low dimensional model to predict a characteristic value with past, (possibly) future, and other
contemporaneous cross-sectional information. The prediction model is used to impute missing
values. We use an estimation approach that allows us to estimate the parameters of the prediction

model in the presence of missing values.
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3.1. Cross-Sectional Information
An essential building block for our model is based on a cross-sectional factor model. We start

by estimating a low-dimensional cross-sectional factor model by PCA for each month t:
Cly=FIAl" +el, withi=1,..,Nyandl=1,..,L.

The upper index t indicates that we can have separate factor models for each time t. We assume a
K factor model, i.e. F© € RM*K and A € RPK. without missing values, we can estimate F' and
Al as the singular values of Ct, i.e. we apply a simple PCA to C'C!'. More specifically, we obtain

F' € RMVK as the eigenvectors of the K largest eigenvalues of the N; X N; matrix

tT

CiCi

M=

1
Ly

1
The different entries in this “characteristic covariance” matrix indicate how close two different stocks
are. Two stocks with very similar characteristics have a high “characteristic covariance”. In the
presence of missing values, we use the approach of Xiong and Pelger (2019) and estimate F' as the
eigenvectors of the K largest eigenvalues of
ij = —IQt | i1C5,0s
Lil1eql;
where Qlt,p is the set of all characteristics which are observed for the two stocks i and j at time t. By

construction IQﬁy i1 =< L. The characteristic loadings follow from a regression on the estimated F*,

-1

Nt T Nt
Af - (z WL ) (z wzlﬁfcf,l) |
i=1

i=1

where Wi":l = 1 if characteristic [ is observed for stock i at time t and Wit,l = 0 otherwise. Hence, this
is simply a linear regression using only observed values. Xiong and Pelger (2019) provide the formal
theory and show that this estimator is consistent under general assumptions on the approximate
factor model and the missing pattern. The setup is a large dimensional panel, that is, both N; and
L go to infinity, but at general and possibly different rates. An approximate factor model assumes
that asymptotically most of the dependency is captured by the factors, while the “idiosyncratic”
characteristic errors eﬁll are only weakly dependent. This setup allows for a different factor model

at each time t and hence is a local model.
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Based on our empirical findings, the “loadings” A are close to constant over time, which results

in the model
Ci,=FN"+e;, withi=1,.,N;andl=1,...,L.

Under the assumption of constant “loadings”, we can estimate A from a pooled regression

T N, -1 T N,
A= (Z (Z Wit,zFitFitT>) (Z (Z WiﬁlFitCit,l>) .
t=1 \i=1 t=1 \i=1

While, in principle, the factors can be estimated as in the local model, they need to be appropriately
rotated to represent the same factors over time. Appendix A discusses the implementation. The
global A can be interpreted as characteristic “portfolio weights” to construct the latent factors Fr.
As this estimation uses the full data, it represents a global model. If the loadings are constant over

time, the global model is more precise as it uses substantially more data.

3.2. Time-Series Information

We combine the XS (cross-sectional) information with TS (time-series) information. Given an es-
timate of the contemporaneous XS factors ' € RM*X we combine those with past and (possibly)
future time-series information to predict contemporaneous characteristics. We consider a backward-
cross-sectional model (B-XS) with only the past observed information and a backward-forward-cross-
sectional model (BF-XS), which combines past and future information. Both models are based on

regressions to estimate either B*8*5 € RX*! or gLEFXS € RK+2,

B-XS Model:
CHN = ST (o By Bl
BF-XS Model:
CHFNS = BWENST (g By i)

The framework includes several important special cases:

(a) Time-series AR(1) model (B): B*2™5 = (BB 0 - ()),
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Table 3: Different Imputation Methods

Method ‘ Estimation

Backward-Forward-XS (BF-XS) | CFIXS = (BBFS)7 (Cf,t,l Cliyr FLyoo lff,K)
Backward-XS (B-XS) P = (BT (C%,t—l ﬁil,1 ﬁf,K)
Forward-XS (F-XS) i = (BT (Czl,t-&-l Fly - lfil,K)
Cross-sectional (XS) cY = B’ (131-1,1 Fil,K)

Time-series (B) C = B’ <Cf,t_1)

Previous value (PV) C’E\t/ = Cf,t,l

Cross-sectional median crmedian —

Note: This table summarizes the different estimation approaches. Each estimation approach has a local
and global version.

(b) Last observed value (PV): [Sl’B'XS = (1 0 - ())_

(c) Cross-sectional median: Bl’B'XS = (O 0 - 0) (as we have centered the rank quantiles at 0).

We estimate the f vectors in a regression using the stacked observed values. This means that we use
all Cl-l,t with observed Cf,t_l (respectively Cl-l,t_l and Cl-l,Hl) and stack them together in a large vector.
Without missing values, this vector would have the dimension Zthl N;. For each characteristics [,
we obtain the vector BB € RX*! and g'*** € RX*2. In the local model, we use the local factors
and the observed characteristics for the time t to obtain the local Bt, while the global model uses
globally estimated factors in a regression that stacks all characteristics over time. For a given set
of cross-sectional and time-series information in the vector Xf’t we obtain the local model from the

local regression

-1

N; N
Bt = (2 Wit,le’tX;’tT) (2 Wit,lXil’tCll,t) :

i=1 i=1

and the global model from a global regression

T Ny -1 T N

R T

B = (Z (Z Wi X! )) (Z (Z Wf,le’th,t» :
t=1 \i=1 t=1 \i=1

Table 3 summarizes the different estimation approaches. For each estimator we have a local

version that only uses information at time t and a global version that uses the full time-series.
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Figure 7: Joint Distribution of Missing Patterns
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Note: This figure shows the heatmaps of missing data for each stock for three representative example days.
Both axis are sorted by the missing percentage, where we first order by firms and then characteristics.
Missing data is indicated in yellow. The three representative example months are 1986-04, 1998-10 and
2017-07. For illustration we also include simulated missing-at-random (MAR) data, which we sort in the
same way.

3.3. Distribution of Missingness

The fact that characteristics are not missing at random has implications for how to correctly
impute missing values. A straightforward attempt would be to use a parametric or non-parametric
model to predict characteristics either based on their own past and/or given the contemporaneous
realizations of other characteristics. If such a model is estimated by masking characteristics at
random, then it would only be appropriate to impute characteristics, which are missing completely
at random. However, as we have already documented in the previous sections, characteristics are
not missing at random. Therefore, a machine learning application with random masking on the
training data, could lead to a bias in imputed values.

The missingess in characteristics is complex, as illustrated in Figure 7. We show the joint distri-

bution of missing patterns on three representative example months. These plots show the missing
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entries for each firm, where the characteristics are sorted by their missing percentage. Obviously,
the missingness is heterogenous and dependent between characteristics. The dependency is also
expected as many characteristics depend on similar CRSP or Compustat variables in their construc-
tion, as summarized in Table B.12. For illustration, we also include a plot that shows the simulated
pattern for missing at random (MAR). The missing-at-random assumption is clearly violated in the
data.

Our imputation method is particularly well suited for this problem as it allows for general missing
patterns. We allow missigness to be heterogenous, time-varying, stock-specific and to depend on the
latent factor model. These general results follow from the theory provided in Xiong and Pelger (2019),
which correspond to our local cross-sectional model (XS). As the generality of the missing pattern in
the Xiong and Pelger (2019) approach is of particular importance for our application, we discuss it
in more detail.

In our local cross-sectional model (XS), the probability of missingness, IP (Wf,l = O) = pf‘l can
depend on the specific stock i, the characteristic I and the time t. First, note that our setup allows
for a different factor model at each time ¢, and hence imposes no assumptions on the temporal
structure of pf‘l. This means that the missingness can vary in a completely general way over time,
which includes periods of more unobserved data like at the beginning of our sample, block-missing
patterns, mixed-frequency observations or missingness because prior values are unobserved. The
probability of missingness is also very general in the characteristic dimension and can be different
for each characteristic. This allows for characteristic-specific heterogeneity, for example DPI2A has
a higher probability to be unobserved than book-to-market ratios. Another case is group-specific
heterogeneity, where for example there are less observations when characteristics are updated quar-
terly or when a group of characteristics relies on the same accounting variable as an input. Last, and
most importantly, the probability of missingness can in an extremely general way depend on the fea-
tures of each stock. More precisely, the probability can be a general, time-varying and characteristic-
specific function of any vector of stock specific information S! € R" and the stock-specific factors
F{, thatis, pi; = fi;(F{,S}). For example, the characteristics of small stocks or more extreme char-
acteristic realizations are more likely to be unobserved, which we can account for. In this sense, we
allow for an endogenous missing pattern.

However, for the purpose of identification, we need to impose some assumptions on the miss-

ingness, which cannot be further relaxed. The random variable W{l has to be independent of A} and
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. .. . =X
eil. Essentially, the “characteristic covariance” Zij-‘t

should be asymptotically the same if estimated
from the partially observed data or the infeasible complete data. In other words, we can learn from
the partially observed data which stocks are similar to each other. This is a reasonable assumption.
Overall, our model is extremely general and accounts for all empirical features of missing character-
istics.

The results extend to the global models and the B-XS, F-XS and BF-XS models. The estimation
step of the loadings in the global models can be formulated as a “local” model with a larger number
of stocks by stacking together the different time periods of individual stocks. The factors are the
same for the local and global models. Hence, once we show that A’ is close to a global A, all the
results of the local model carry over. The models that combine cross-sectional and time-series
observations use the same type of cross-sectional regression weighted by observed values in the
second step. These regressions are key for the generality of our results as they do not impose any
further assumptions on the missing pattern besides that (ZQV;I Wf,le‘tXf‘tT) is asymptotically of
full rank and that the error in the combined regression is independent of the missing pattern.

We want to emphasize that the complex missing patterns are one of the reasons why it is so
challenging to correctly impute missing values. The imputation of missing values is closely related
to problems in causal inference as discussed among others in Athey et al. (2021) and Xiong and
Pelger (2019). A naive machine learning prediction method is not appropriate for causal inference if
treatments are not completely random. The same problem arises with imputation, which needs to

account for patterns in the missingness. This is done with our approach.

3.4. Discussion

3.4.1. Look-ahead bias

The choice of imputation method has implications for the follow-up application. Using more data,
either in the form of a global model or by incorporating future information, generally improves the
quality of the imputation. However, some of the most important use cases of the characteristics
data, including out-of-sample asset pricing and investment, need to avoid a look-ahead-bias. This
means future information cannot be used in the imputation, as it could make the performance of
an investment strategy appear to be better than what it is actually achievable. Blanchet et al. (2022)
discuss the tradeoff between look-ahead-bias and the precision of the imputation.

In our empirical study, the model that uses the most information while avoiding any look-ahead-

26



bias is the local Backward (B-XS) model. The model that uses the most information overall, but
also “peaks” into the future, is the global Backward-Forward (BF-XS) model. These two benchmark
models allow us to study the tradeoff between using more data and using future information. There
are other modifications of our models that could avoid a look-ahead-bias, while using more data.
Instead of using only the current month for the local B-XS model, we could use a rolling window for
a “locally” global version of the B-XS model. However, as we will show in our analysis below, the
factor structure of the cross-sectional factor model is very stable over time. Hence, the global XS
and B-XS model are very close to a rolling window look-ahead-bias-free version. The more serious
look-ahead bias can arise from directly using future information as an input for imputation, that is,

in the Forward models.

3.5. Rank normalization vs. raw characteristics

We model rank normalized data, which can easily be mapped back into raw characteristics. In
order to obtain a statistical model for characteristics, we need to appropriately normalize them.
Fundamentally, this relates to the conceptual question about how we model dependency. Centered
rank normalized characteristics are the natural choice. By using ranks, we deal with the outliers in
the raw characteristics, and also achieve stationarity in the cross-section and over time.

There is a simple mapping between the rank quantiles and raw values through the empirical
density function of each characteristics. Therefore, after estimating the density functions, the im-
puted rank quantiles also provide imputed values for the raw characteristics. We will include these
results in our empirical study. We will estimate the density function non-parametrically and also
parametrically assuming a normal distribution. In both cases, we do not assume that there is a
linear dependency between raw characteristics, but only between their relative ranks. As a further
robustness result, we also include the results for a factor model which is directly applied to the char-
acteristic space. This requires us to normalize the raw characteristic values by their cross-sectional
median and cross-sectional standard deviation after winsorizing the extreme outliers.

We center our ranks at zero, i.e., we report characteristic quantiles between [—0.5, 0.5], which is
without loss of generality. Hence, the cross-sectional median corresponds to the value zero. Using
uncentered rank quantiles between [0, 1] simply adds an additional latent cross-sectional factor,

that captures the median and is similar to a “market” or “level” factor.
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3.6. Evaluation metrics
We evaluate the different models based on their RMSE (root mean squared errors). The aggre-
gated RMSE for the model implied characteristic CAi,t,l is averaged over all stocks, time-periods and

characteristics:
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We also consider the RMSE for each characteristic separately

rq . N2
RMSE; = Z . N Z (Ciea = Ciet)
as well as over time
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All our results are reported in-sample and out-of-sample. The in-sample results evaluate how
well a low dimensional model can approximate the characteristics. As these results can be biased
upwards due to overfitting, we also need to conduct an out-of-sample analysis (OOS). The OOS anal-
ysis masks observed entries before we estimate the model on the remaining data. The OOS RMSE
compares the masked observed entries with the model implied values. We consider two different
missing patterns for the out-of-sample analysis. The first case is OOS missing-at-random, where we
mask 10% of the observed characteristics randomly. The second case is OOS block-missing, where
we mask 10% of characteristics in blocks of 1 year. The second case accounts for the empirically
observed temporal dependency in missing patterns. It is important to include this case, as for very
persistent characteristics the last observed value can provide a very good prediction, but empirically

it is often not available.

4. Factor Structure in Characteristics

Empirically, firm characteristics are well described by a parsimonious factor model. Before con-
ducting an extensive comparison between different imputation methods, we study the properties of
a cross-sectional latent factor model. We discuss the choice of the number of factors, their economic

interpretation and variation over time. Estimating a cross-sectional latent factor model requires that
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Figure 8: Number of Latent Factors
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Note: In this figure we determine the number of latent factors. The left subplot shows the magnitude of
eigenvalues of the characteristic covariance matrix relative to the sum of all eigenvalues averaged over time.
The right subplot displays the out-of-sample imputation RMSE as function of the number of cross-sectional
factors using the block-missing masking.

at least some characteristics are observed for each stock. Moving forward, our analysis focusses on
the data set of all stocks that have at least ten characteristics observed at each point in time. As
shown in Figure 4(e) this requirement imposes almost no restrictions, and on average 97% of all
stocks have < 35 of the 45 characteristics missing after 1977. The second restriction is that we
focus on the data after 1977, which is more homogenous and more widely used in empirical appli-

cations. We have confirmed that our general results are robust to these two choices.

4.1. Number of factors

The number of systematic cross-sectional characteristic factors is directly linked to the eigenval-

XSt

ues of the characteristic “covariance” matrix ,’". Figure 8(a) plots the magnitude of eigenvalues

of iﬁ’t relative to the sum of all eigenvalues averaged over time. These eigenvalues can be inter-
preted as the amount of variation explained by a small number of global factors. The first four
factors explain the most variation in the data. It seems that the factors five to nine also contribute
a non-negligible amount. Overall, we find strong evidence for a factor structure.

We select the number of factors by minimizing the out-of-sample RMSE. Figure 8(b) shows the
OOS RMSE for the block-missing masking as a function of the number of factors. We consider a global

cross-sectional model (XS) and report the RMSE for monthly, quarterly and the all characteristics.

The OOS RMSE of monthly updated characteristics is minimized for six latent factors. It seems that
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adding a seventh factor might have a marginal benefit for quarterly updated characteristics. The
aggregated RMSE reflects these two findings and six latent factors are very close to the optimum.
As the seventh factor leads essentially to no meaningful improvement, we select six factors as our
parsimonious baseline model.

The results of the cross-sectional model (XS) carry over to the models that also include time-
series information. Table B.4 in the Appendix shows the OOS RMSE for block-missing patterns for
different number of factors for the local B-XS, global B-XS and local XS. The optimal number depends
on the type of characteristic and method, but seems to be between six and eight factors. The benefit
of including more than six factors seems to be only marginal and hence we opt for the parsimonious

six-factor model.

4.2. Local vs. global factors

The loading structure of the cross-sectional factor model is relatively stable over time. A global
factor model assumes a constant loading matrix A, while a local factor model allows for time-varying
loadings A'. We show that the loading structure is relatively stable over time and hence justifies the
use of constant loadings. Figure 9 plots the generalized correlations between the global loadings
A and local loadings A" for the first six factors over time. A generalized correlation equal to six
would imply that the two loading matrices span the same space. While there is some variation, the
generalized correlation is close to the maximum. We conclude that it is meaningful to analyze the

composition of the global factors.

4.3. Structure of factors

The characteristic factors have a meaningful economic interpretation. The loadings A can be
interpreted as weights to construct the characteristic factors. We focus on the global model as it
is described by only one set of weights, which are closely related to the local weights. Figure C.3
in the Appendix plots the composition of the six latent factors, which are described by A. The
characteristics are grouped together by categories.

Some of the latent factors can be linked to characteristic categories. The second factor seems to
load heavily on value characteristics. The third factor has large weights for profitability characteris-
tics. The fourth factor seems to be a trading friction factor. The sixth factor has negative positions
in past returns and investment and positive positions in the other categories. Some of the structure

seems also to be related to the updating frequency of characteristics and their volatility. Figure C.4
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Figure 9: Generalized Correlation of Global and Local Factor Weights
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Note: This figure shows the time series of the generalized correlation of the constant global A with the
time-varying local A" estimated each month. We consider a six-factor model.

shows the composition based on the updating frequency. Factor one has large weights on monthly
updated characteristics, and in particular on those that have a high volatility. In this sense we can
label it a high volatility characteristic factor. On the other hand, factor five loads more on slowly

moving characteristics.

4.4. Rank normalization vs. raw characteristics

Our main analysis reports the results for rank quantiles, but the results carry over to raw charac-
teristics. Table B.4 in the Appendix shows the out-of-sample imputation RMSE in the original char-
acteristic space without transforming characteristics into ranks. We consider OOS block-missing for
different number of cross-sectional factors. The raw characteristics are normalized by their cross-
sectional mean and variance.® The RMSE are further normalized by the RMSE of a simple median
imputation. The first model is our baseline factor model estimated on ranks and transformed back
into the characteristic space with the empirically estimated density function of each characteristic.
We estimate the density function with the machine learning method k-nearest neighbor. The second
and third model estimates the factor model directly on the characteristics. In the fourth and fifth
case, we estimate the factor model in the kernel transformed space with a Gaussian kernel and revert

it back to the raw characteristics.

8Because of the outliers we need to winsorize the data. In more detail, we first estimate the cross-sectional mean and
standard deviation of each raw characteristics for each day. Then, we winsorize the values that deviate more than five
standard deviations from the cross-sectional mean. After winsorizing, we reestimate the mean and standard deviation,
which we use to finalize the normalization of the raw characteristics.
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We observe that a factor model estimated on rank quantiles and inverted back to raw charac-
teristics outperforms a factor model directly applied to raw characteristics. If we use a normal
distribution instead of a non-parametric density function to invert the model into the raw character-
istic space, we perform slightly worse, but still substantially better than directly estimating a factor
model in the raw characteristic space. A local model with locally estimated normal density function
can perform better than the empirical non-parametric density. We conclude that the rank quantile
space is appropriate for the latent factor model and provides better results than a factor model in

the raw characteristic space.

5. Imputation

5.1. Aggregate comparison between methods

In an extensive comparison study we compare the quality of different imputation approaches.
We include the different variations of our model framework and the most widely used conventional
ways to deal with missing data. The baseline model without look-ahead bias (that is, without using
future information) is the local B-XS. The baseline model using as much information as possible
is the global BF-XS. All cross-sectional models use six latent factors based on the analysis in the
previous section. We consider the global and local versions of our models and different combinations
of time-series information, that is backward, forward or none. Another special case would be to
drop the cross-sectional model and only run an AR(1) model. The popular conventional approaches
encompasses using only the previous value, a cross-sectional median or the industry-specific median
for imputation. In total, have the following 11 models: global BF-XS, global B-XS, global F-XS, global
XS, global B, local B-XS, local XS, local B, previous value (PV), XS median and industry median.

The main results are summarized in Table 4, which shows the imputation errors for these differ-
ent imputation methods. We report the in-sample, OOS missing-at-random and OOS block-missing
results for all characteristics and separated by their updating frequency. The first striking observa-
tion is that cross-sectional median or industry median results in roughly twice as large imputation
errors compared to our baseline models local B-XS and global BF-XS. These results are robust to the
updating frequency and the in- or out-of-sample analysis. We conclude that the current standard
of ignoring the time-series and cross-sectional dependency is strongly suboptimal. The local and
global versions of our model are relatively close, but the global version seems to lead to slightly

smaller imputation errors. We will revisit this aspect in more detail in Section 5.3.

32



Table 4: Imputation Error for Different Imputation Methods

| In-Sample | 00S MAR | 00S Block
Method ‘ all quarterly monthly ‘ all quarterly monthly ‘ all quarterly monthly
global BF-XS | 0.11 0.10 0.13 0.15 0.15 0.14 0.17 0.16 0.19
global F-XS | 0.10 0.07 0.14 0.16 0.17 0.16 0.18 0.17 0.20
global B-XS | 0.15 0.15 0.14 |0.16 0.16 0.15 |0.19 0.18 0.20
global XS 0.19 0.18 0.21 0.23 0.22 0.24 0.22 0.21 0.24
global B 0.16 0.17 0.15 |0.17 0.17 0.15 |0.21 0.20 0.22
local B-XS 0.15 0.16 0.14 |0.16 0.17 0.15 |0.19 0.19 0.20
local XS 0.21 0.20 0.22 0.23 0.22 0.24 0.23 0.22 0.24
prev 0.18 0.18 0.18 |0.19 0.19 0.19 |0.23 0.21 0.25
local B 0.16 0.17 0.15 |0.17 0.17 0.15 |0.21 0.20 0.22
XS-median | 0.29 0.29 0.29 |0.29 0.29 0.29 |0.28 0.28 0.29
ind-median | 0.29 0.29 0.29 |0.29 0.29 0.29 |0.28 0.28 0.29

Note: This table shows imputation RMSE by imputation method averaged over all characteristics and sep-
arately for monthly and quarterly updated characteristics. We report the imputation error in-sample eval-
uated over all observed data, and out-of-sample for masked characteristics from the fully present subset
of the data. For the out-of-sample analysis we mask 10% of the data either missing at random or missing
in time-series blocks for 12 consecutive months.

Our baseline models are the best within their categories. Within the global models the global BF-
XS dominates the alternative approaches. This is not surprising as using future information should
be beneficial. However, the difference between the global BF-XS and global B-XS for the out-of-sample
data is much smaller compared to using only a cross-sectional model (XS). This is expected as very
persistent characteristics should be well predicted by their past observations. Using simply the
previous value performs worse than using an AR(1) time-series model as characteristics are usually
not stale, but only autocorrelated. A simple backward time-series model, labeled as B, performs
surprisingly well. However these results depend crucially on the availability of previous observations.
In the case of block-missing patterns, which is empirically more relevant, the global and local B-XS
model outperforms the global and local B. We conclude that using both information sets, the time-
series and cross-sectional dependency, seems to be beneficial and that our baseline models, local
B-XS and global BF-XS, are the best imputation methods.

In order to provide some intuition, we illustrate the model implied and imputed time-series for
representative examples. Figure 10 shows characteristic time-series for Microsoft and Hasbro, two
representative companies in different industries and hence with different fundamentals. We show

their characteristic time-series for three characteristics with different levels of persistence. The
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Figure 10: Ilustrative Model-Implied and Imputed Time-Series
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Note: This figure shows illustrative realized and model-implied characteristic time-series for Microsoft and
Hasbro. We plot the realized characteristic rank over time, and the model implied values with the B-XS,
BF-XS and median model. The gray shaded areas indicate missing blocks of one-year which are not part of
the estimation, and hence serve as out-of-sample evaluation. We consider size, operating profitability and
idiosyncratic volatility, which are three representative characteristics of decreasing persistence.

most persistent is market capitalization. Operating profitability has a medium level of persistence,
while idiosyncratic volatility is a fast fluctuating characteristic. These three examples are relatively

representative as they capture stylized features of other characteristics. We show the model implied
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values in-sample and also the imputation results for out-of-sample missing blocks of 12 months.
The most obvious observation is that the median value creates very large errors in observed and
imputed values. Importantly, if we would use the median imputed values for the missing blocks, we
would also distort the time-series of the characteristics. For example the centered rank quantile for
the size of Microsoft would jump from about 0.5 to 0 and back to 0.5. In contrast, the imputed values
with our methods reflect substantially better the level and dynamics of characteristics. Second, our
two baseline models are very exact on the in-sample data. Obviously, the imputation is more chal-
lenging on the out-of-sample data. Third, our models reflect dynamic changes in the out-of-sample
data, which are captured by the cross-sectional factor component. As we will see in Section 5.3,
this cross-sectional component is more relevant for fast changing characteristics like idiosyncratic
volatility. Last but not least, the BF-XS seems to “connect” the two end points of the missing data,
while the B-XS model is for obvious reasons “anchored” at the starting point of the missing block.
The aggregated comparison results are robust over time and with respect to the market capital-
ization of the stocks. Figures C.8, C.10 and C.12 in the Appendix show the RMSE for each month.
The relative ordering of the different methods is very stable over time. Table B.8 in the Appendix
reports the RMSE for different size deciles. While the errors are larger in magnitude among smaller
stocks, the relative comparison between the models stays the same. Importantly, even the largest
size decile accounts for a substantial part of the imputation errors, and hence the results are not

driven by fitting only small cap stocks.’

5.2. Imputation results for different types of missingness

As a next step we want to understand how the imputation results are affected by the type of
missingness. Hence we show all the results of the previous subsection for data missing at the start,
the middle and the end of the sample. Table 5 collects the in-sample and out-of-sample RMSE results.
Note that the type of missingness restricts which models can be used. For example, when observa-
tions are missing at the beginning of the sample, we can obviously not use any of the models that
require prior observations. Similarly, for observations at the end, the forward models are excluded.
Only missingness in the middle of the sample allows us to use all models. Our aggregated results
in the previous subsection only reported the errors for observations where a model was applicable.

Here we separate those effects.

9Tables B.8 and B.9 show that the results are also robust with respect to filters based on share prices and to excluding
financial institutions.
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Table 5: Imputation Error for Types of Missingness

\ In-Sample \ 00S MAR \ 0O0S Block

Method \ all quarterly monthly\ all quarterly monthly\ all quarterly monthly

Start of the sample

global BE-XS | - - - - - - - - -

global F-XS | 0.10 0.06 0.15 0.18 0.19 0.17 0.20 0.19 0.22
global B-XS - - - - - - - - -

global XS 0.21 0.19 0.23 0.29 0.30 0.29 0.25 0.23 0.27
global B - - - - - - - - -

local B-XS - - - - - - - - -

local XS 0.23 0.22 0.25 0.27 0.26 0.28 0.25 0.24 0.26
prev - - - - - - - - -

local B - - - - - - - - -

XS-median | 0.32 0.32 0.31 0.32 0.32 0.31 0.31 0.31 0.30
ind-median | 0.32 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.30

Middle of the sample
global BF-XS | 0.11 0.10 0.13 0.15 0.15 0.14 0.17 0.16 0.19
global F-XS | 0.10 0.07 0.14 0.16 0.17 0.16 0.18 0.17 0.20
global B-XS | 0.15 0.15 0.14 0.16 0.16 0.15 0.19 0.18 0.20
global XS 0.19 0.18 0.21 0.22 0.21 0.24 0.22 0.21 0.24
global B 0.16 0.17 0.15 0.16 0.17 0.15 0.21 0.20 0.22
local B-XS 0.15 0.16 0.14 0.16 0.16 0.15 0.19 0.19 0.20
local XS 0.21 0.20 0.22 0.23 0.22 0.24 0.23 0.22 0.24
prev 0.18 0.18 0.18 0.19 0.19 0.19 0.23 0.21 0.25
local B 0.16 0.17 0.15 0.16 0.17 0.15 0.21 0.20 0.22
XS-median | 0.29 0.29 0.29 0.29 0.28 0.29 0.28 0.28 0.29
ind-median | 0.29 0.29 0.29 0.29 0.28 0.29 0.28 0.28 0.29
End of the sample

global BF-XS | - - - - - - - - -

global F-XS - - - - - - - - -

global B-XS | 0.19  0.21 0.16 |0.19  0.20 017 |0.21  0.21 0.21
global XS 0.24 0.25 0.22 0.27 0.26 0.28 0.25 0.24 0.26
global B 0.21 0.23 0.18 0.20 0.22 0.18 0.23 0.24 0.23
local B-XS 0.20 0.22 0.16 0.19 0.21 0.17 0.22 0.22 0.22
local XS 0.27 0.27 0.26 0.28 0.27 0.30 0.25 0.25 0.26
prev 0.23 0.24 0.21 0.22 0.23 0.21 0.26 0.25 0.26
local B 0.21 0.23 0.18 0.20 0.22 0.18 0.23 0.23 0.23
XS-median | 0.35 0.36 0.34 0.33 0.33 0.33 0.32 0.32 0.31
ind-median | 0.35 0.36 0.34 0.33 0.33 0.33 0.32 0.32 0.31

Note: This table shows imputation RMSE by imputation method for different types of missingness. We
report the imputation error in-sample evaluated over all observed data, and out-of-sample for masked
characteristics from the fully present subset of the data. For the out-of-sample analysis we mask 10% of
the data either missing at random or missing in time-series blocks for 12 consecutive months.

The best model for missing observations at the beginning of the sample are the global F-XS when
using all possible information and the local XS when avoiding a look-ahead bias. These are the
special cases of our baseline models that exclude the prior information. Importantly, the difference
to the median imputation is even more pronounced than for the aggregated results. Therefore, we

recommend to use these two baseline models for imputing the missing values at the start.

36



The best model for missing observations in the middle are the global BF-XS for full observations
and the local B-XS among the look-ahead-bias free models. The magnitude of the RMSE and relative
ordering is very close to the aggregate results in Table 4. Overall our baseline models dominate the
other approaches. Last but not least, we show that the global B-XS and local B-XS are the best model
for missingness at the end of the sample. While the relative ordering of methods stays the same,
the magnitude of errors seems to be higher.

We conclude that the best model avoiding future information is the local B-XS, and, if data is
missing at the beginning, we replace it by the local XS. The best global model is the global BF-XS, which
we replace by the global F-XS for missingness at the beginning and the global B-XS for missingness

at the end.

5.3. Which information matters?

Which characteristics are hard to predict and what information is the most useful? In order to
answer these questions we compare the imputation errors for each characteristic. In the main text
we focus on the out-of-sample results with block-missing pattern, while the Appendix collects the
in-sample and out-of-sample missing-at-random results. Figure 11 plots the out-of-sample block-
missing imputation errors for individual characteristics sorted in ascending order based on their
time-series volatility. Characteristics on the right, for example short-term momentum, fluctuate the
most and hence might be harder to predict from the time-series, while the characteristics on the left,
for example total assets, are more persistent.

The median or industry median are in almost all cases the worst possible models. The pure
cross-sectional model, which includes the median as a special case for a zero factor model, strictly
dominates the median imputation. The imputation of more volatile characteristics seems to benefit
more from cross-sectional information. On the other hand, the more persistent characteristics seem
to rely more on time-series information. A pure time-series or pure cross-sectional model is not
uniformly better, and in almost all cases a combination of both information leads to superior results.
The global BF-XS model has the smallest errors except for short-term momentum and unexplained
volume. These two variables seems to be essentially unpredictable and are the only cases where a
median model is competitive. The local B-XS is for almost all characteristics the best local model.

The results are qualitatively similar for missing-at-random as shown in Figure C.5 in the Ap-

pendix. Overall, the benefit of cross-sectional information for more persistent information seems
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Figure 11: Imputation Error For Individual Characteristics
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Note: This figure shows the imputation RMSE by imputation method across individual characteristics. The
characteristics are sorted in ascending order based on the time-series standard deviation of characteristics.
We report the imputation error out-of-sample for masked characteristics from the fully present subset of
the data. For the out-of-sample analysis we mask 10% of the data either missing in time-series blocks for
12 consecutive months.

to shrink. This is expected, as there are only very few missing points in a row and hence the last
observed values can be very informative. However, the relative ranking stays the same. The results
are comparable for the in-sample analysis.

In order to assess the relative importance of the time-series and cross-sectional information, we
compare the relative weights in the regressions of the B-XS and BF-XS models. Figure 12 shows the re-
gression coefficients on the cross-sectional factor model and the time-series information for the B-XS
model. The XS weight denotes the sum of absolute values of the coefficients on the cross-sectional
factor model. The characteristics are sorted in ascending order based on their autocorrelation. As
expected, the time-series weight follows closely the autocorrelation. This means that the most per-
sistent characteristics use primarily time-series information for the imputation. In contrast, highly
volatile and only weakly serially correlated characteristics put larger weights on the cross-sectional
factor model. For example, idiosyncratic volatility puts 90% of its weight on cross-sectional factors.
Figure C.7 shows that the BF-XS exhibits exactly the same pattern. Interestingly, the weights on
past and future information are essentially symmetric. It seems that the weights on past and future

information in the BF-XS add up to the time-series weights in the B-XS model, that is, the relative
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Figure 12: Information used for Imputation
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Note: This figure shows the regression coefficients on the cross-sectional factor model and the time-series
information. The XS weight denotes the sum of absolute values of the coefficients on the cross-sectional
factor model. The characteristics are sorted in ascending order based on their autocorrelations.

Figure 13: Global and Local Imputation For Individual Characteristics
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Note: This figure shows the imputation RMSE by imputation method across individual characteristics. The
characteristics are sorted in ascending order based on the time-series standard deviation of characteristics
We report the imputation error out-of-sample for masked characteristics from the fully present subset of

the data. For the out-of-sample analysis we mask 10% of the data missing in time-series blocks for 12
consecutive months.
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weights on the overall time-series is the same in both models. We provide the detailed weights on
the individual factors in Tables B.6 and B.7 in the Appendix, which are in line with our interpretation
of the cross-sectional factors.

Last but not least, we compare the global and local models in more detail. Figures 13 and C.6 show
a comparison of imputation RMSE for local and global method across individual characteristics. As
before, the characteristics are sorted in ascending order based on the time-series standard deviation
of characteristics. As expected by the aggregate statistics, the global models are slightly better
than their local counterpart. However, highly volatile characteristics can benefit from local models.
This is for example visible for the pure cross-sectional models. This implies that the models are
relatively stable over time for most characteristics, but there can be some time variation among the

more volatile characteristics.

6. Asset Pricing

6.1. Market strategy with observables

Missing financial data can have a profound impact on asset pricing, depending on the application
and extent of the problem. Firm characteristics are the most widespread conditioning drivers of
expected returns in asset pricing. We begin this section by documenting a very simple empirical
result: even the average return on a market-style long-only portfolio of stocks depends on whether
the portfolio is constructed of stocks that have particular characteristics observed. In other words,
even simply having - or not - observable values for popular firm characteristics like book-to-market
ratio, or Tobin’s Q, on its own have an impact of asset returns, separate from its value.

Figure 14 shows the average return of long-only portfolios that include or exclude particular
characteristics. Just the sheer presence of many firm-specific fundamentals seems to have an impact
on asset returns - in part, due to the selection of firms with certain characteristics into the observable
set. Overall, stocks with an observable characteristic value seem to have a higher rate of return,
compared to those, for which this variable is missing. For example, stocks for which we observe
earnings-to-price ratios, have more than twice the annual returns of the firms missing this data.
On average, this difference is particularly pronounced when we consider only stocks, for which
this characteristic is not missing at the beginning, but only in the middle and at the end. In this

sense, “opaque” companies seem to have lower expected returns than more “transparent” firms. We
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Figure 14: Market-wide investment strtagy
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Note: This figure depicts the average annual return of the market-like long-only portfolio, using stocks
that include/exclude particular characteristics.

conclude that estimating expected returns on only partially observed data can suffer from a selection
bias.
We now turn to the most popular way to construct cross-sectional strategies based on character-

istics, namely decile-sorted portfolios.

6.2. Conditional sorts

In this section, we show that the way missing data is handled, has direct implication for con-
ditional expected returns. We specifically focus on the simplest asset pricing implications, yet we
expect the effects to be even more pronounced in more complex settings. In all the empirical appli-
cations, in order to ensure that the characteristic information is available to an investor in real time,
we use the values of observed or imputed characteristics lagged by six months.'°

Most multivariate asset pricing applications, including multiple sorts and panel regressions on
multiple characteristics, require the presence of multiple characteristics. In order to illustrate the

effect of requiring the presence of multiple characteristics, we focus on the properties of the most

O0ur results are qualitatively the same if we use a lag of three month or longer lags. Note, our focus is not on the
optimal lag horizon for investments, but to clarify that it has an impact how we deal with missing data. Investors could
also use different lag horizons for different characteristics, yet even in that setting our results largely remain unchanged.
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basic investment strategies, deciles sorts, and study how they are affected by the requirements of
observing data for additional characteristics. Following the usual convention, the decile cutoff values
are based on NYSE breakpoints, similar to Fama and French (1993).

First, we study the empirical effect of data selection and imputation on conditional returns for
some of the most widely used characteristics, size (ME), book-to-market ratio (B2M), investment (INV),
operating profitability (OP), momentum (R12_2) and long-term reversal (R60_12). In addition, we also
consider the accounting based characteristics net share issues (NI) and expenses to sales (SGA2S),
since those seem to be strongly affected by missing values. We construct value weighted decile
sorted portfolios for the main characteristics, size, value, investment and operating profitability.
In order to understand the effect of requiring the presence of multiple characteristics, we study
the asset pricing implications for the first and last deciles of these four characteristic sorts, when
requiring that additional characteristics are observed. In more detail, we first include only stocks
that have the sorting characteristic available. Then, we take the subset of stocks for which also size
is available. We continue stepwise, by incrementally requiring that in addition INV, OP, NI, SGA2S,
R12_2,R60_13 or all 45 characteristics are available. The decile cutoff points remain the same NYSE
breakpoints.

Figure 14 shows the Sharpe ratio, mean return, standard deviation and percentage of stocks
used in the first and tenth decile. At first, we use the least restrictive sample of stocks that requires
only that leading characteristic to be observed, progressively requiring more and more additional
fundamentals to be observed. We also include the strategies with characteristic values imputed with
the local BW model, which is free of the look-ahead bias and could be easily used by investors in
real time. The first obvious observation is that using all the stock with imputed values or all stocks
for which we only require the availability of a single sorting variable, lead to essentially the same
means and Sharpe ratios. This is reassuring, since it further confirms the validity of our imputation
approach even for the firms that have fairly extreme values of the fundamentals. This result is in
direct contrast with the situation where we simply require additional characteristics to be observed,
which changes the composition of the decile portfolios, it’s rate of return and Sharpe ratio.

Requiring more characteristics drastically reduces the number of stocks that are included in port-
folios sorts. In the case of size, the number of small stocks (decile 10, based on NYSE breakpoints)
drops from almost 50% of all the tradable companies to less than 10%, whenever all the characteris-

tics are required to be observed. Restricting stocks to have contemporaneous observations for the
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Figure 15: Univariate Sorts With and Without Missing Values
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Note: This figure shows the Sharpe ratio, average return, standard deviation and percentage of stocks for
the univariate first and tenth value weighted characteristic sorted deciles for different subset of stock with
and without imputation. We sequentially restrict the set of stocks to those that multiple characteristics
available. First, we include all stocks for which only the sorting characteristic is available, then in addition
we require in addition the availability of size (ME). In the next step, the sorting characteristics, size and
investment (INV) need to be observed. We continue with operating profitability (OP), Net Share Issues (NI),
Selling, general and Administrative expenses to sales (SGA2S, momentum (R12_2) and long-term rever-
sal (R60_13). We sort based on book-to-market, size, investment and operating profitability. We impute
missing values with our baseline local BW-XS model.

book-to-market (B2M), investment (INV), and operating profitability (OP), removes 15% of the over-
all sample. These results are even more extreme for portfolios sorted by the book-to-market ratio
(see Panel A in Figure 15). In this case the number of available stocks for the extreme growth and

value deciles drops from above 10% to about 2% of the sample, whenever all the characteristics are
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required to be observed. The requirement to observe ME, INV and OP (in addition to the book-to-
market) already leads to a relative reduction of 10-20% of the initial number of firms, available for
the strategy. The smaller number of stocks has an expected effect on the volatilities of the portfolio
sorts, since one would expect having fewer stocks to lead to less diversified portfolios, and hence,
higher overall volatility. Indeed, we observe that in most cases volatility increases. Note, however,
that in general this does not have to yield a monotonic effect: since characteristics are not missing
at random, both lower degree of diversification and firm selection contributes to the overall effect
on volatility, making it difficult to predict the overall sign of the effect.

Importantly, the systematic structure in missing data creates a selection bias in mean returns.
The mean returns of extreme deciles on investment, size, value, and operating profitability are al-
ready affected by requiring the presence of only three additional characteristics. Once again, due to
the non-random nature of missingness, it can have an ambiguous effect on the risk premia. In all
four cases, requiring the presence of all the characteristics leads overall to lower average returns. As
the average returns tend to decrease in the more restrictive subsample of stocks, while the volatility
effect increases in many cases, the Sharpe ratios tend to decrease as well. However, the exact effect
on the Sharpe ratio and the corresponding t-statistics can be fairly complex.

Our results extend to the conditional mean based on the majority of characteristics. Figure 16
shows the Sharpe ratios and mean returns for the top and bottom deciles of stocks, sorted by a given
characteristic for two types of samples: first, requiring only that a single characteristic is observed,
and second, requiring all 45 characteristics to be observed at the same time. We group firm-specific
variables by their type, and report both the Sharpe ratio and average return of the corresponding
deciles.

For most characteristics, the Sharpe ratios on the fully observed panel are lower than on the larger
panel of firms with missing information. Consider for example, the case of sorting based on operat-
ing leverage (characteristic OL in the intangible category in Figure 16). In a fully observed panel, the
Sharpe ratio of the bottom decile decile based on OL, is 30% lower compared to the case of a simple
univariate sort that requires only a single observed characteristic. Similar patterns can be observed
for dividend-to-price (D2P), momentum (R12_7), expenses-to-assets (DPI2A), spread (SPREAD), re-
turn on assets and equity (ROA/ROE), and many others. Hence, the combination of possible lower
expected returns and/or higher volatility on a restricted sample can create a negative selection bias

for simple asset pricing statistics. The directional effect on mean returns is more complex than for
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Figure 16: Top and Bottom Deciles With and Without Missing Values
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Note: This figure shows the Sharpe ratios and average returns for value weighted decile sorted portfolios,
formed from stocks with observed single or full panel of characteristics. The left set of plots shows the
Sharpe ratios of the top and bottom deciles, while the right set of plots shows the mean returns. The light
blue and green bars correspond to the first and last deciles, comprised of a fully observed panel of stocks
with all the characteristics. The dark blue and green bars correspond to the return on the extreme deciles
formed by stocks required to have only the characteristic available used in sorting.
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Sharpe ratios, emphasizing again the complex interaction between the sorting characteristics and
missingness. It seems that in many cases, where mean returns are larger on the restricted sample,
the increase in volatility dominates, thus resulting in a lower Sharpe ratio. The corresponding Sharpe
ratios and mean returns of deciles with imputed data are very close to the sorts that require only
a single characteristic to be observed. The results of this subsection focus on the selection bias of
requiring the availability of multiple characteristics, which is different from the previous subsection
studying the effect of missing only a single characteristic.

The systematic selection bias in the expected returns of decile-sorted portfolios carries over
to univariate long-short factors. Table B.10 in the Appendix reports the mean, standard deviation,
Sharpe ratio, percentage and market value of missing characteristics for univariate long-short decile
factors. As in the case of case of decile sorts, these factors are constructed with NYSE breakpoints.
We compare the results when using (1) only stocks with fully observed 45 characteristics, (2) stocks
with at least 10 characteristics observed and imputed data, (3) only the specific sorting characteristic
observed, the combination of (2) and (3), and the difference between (2) and (3). The selection of
stocks has obviously a strong effect on risk premia and Sharpe ratios, even for simple univariate
long-short factors. As a long-short factor combines the impact of selection and imputation in the
two separate legs, the effects can be complex and more or less pronounced than for the individual

legs.

7. Conclusion

This paper focuses on a very widespread yet rarely recognized issue of missing data in firm-
specific characteristics. First, we document the systematic feature of missing data: it is pervasive
and widespread among the overwhelming majority of firms. In our representative data set of the 45
most often used characteristics, more than 70% of firms are missing at least one of them at any given
point of time. We show that firm fundamentals are not missing-at-random, but display complex
systematic patterns. We leverage the complicated cross-sectional and time-series dependence in
firm characteristics to propose a new imputation method, which is easy to use, and substantially
outperforms existing alternatives.

Our findings are relevant for numerous applications in asset pricing, since, as we demonstrated,
asset returns are affected by missing observations of the firm characteristics. The effects are partic-

ularly pronounced when requiring a large set of characteristics to be observed. While, for the sake
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of clarity, we demonstrate our findings with simple univariate portfolio returns, we suspect it to
have a first order effect in return predictability regressions (both linear models and those based on
machine learning), as well as all the recently proposed advanced frameworks of stock returns that
typically require a large balanced panel of stock characteristics.

Naturally, the problem of missing data does not just apply to stock-specific characteristics, and
is encountered universally in various applications in finance: I/B/E/S forecast data, ESG ratings of
firms, and many others. Given the Big Data environment, and new sources of information being
available with an increasing speed, we suspect that the issue of missing data will become even more
paramount going forward. We hope that our paper laid out the foundations and general guidelines

for imputing missing data that could be applied in many different settings in the follow up work.
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Appendix A. Model

Implementation

In this Appendix we provide a modification of our latent factor model estimator in Section 3.1,
which is faster and easier to implement. The estimation of the eigenvectors of the N; X N; dimen-
sional characteristic covariance matrix 3*! are computationally expensive. For fully observed data,
up to some normalization, the PCA estimation is “symmetric” in the two dimensions and we could
base our analysis on the eigenvectors of the L X L matrix N% Zlivzfl cict i However, in the presence
of missing data, this would impose different assumptions on the missing pattern.

Here we propose a modification of the estimator in Section 3.1, that empirically results in essen-
tially the same estimated model. First, we estimate “noisy” loadings A’ € R*¥ as the eigenvectors

of the K largest eigenvalues of the L X L matrix

1
0L,

2. CiiCip,
i€of,
where Of,p is the set of all stocks that have the characteristics [ and p observed at time t. By con-

struction IOf,pl < N;. The characteristic factors follow from a regression on the estimated A:

-1

L L
i = (z wf,lAfAf) (z wf,lAfcf,l) |

=1 =1
In a last step, we obtain the loadings from a regression that accounts for missing observations:

-1

Nt Nt
~ Ay ", T A
Aj = (Z Wi F! ) (Z Wf,zchf,l) :

i=1 i=1
The regressions, weighted by observed values, provide valid estimates even when the missing pat-
tern depends on the factors. The first matrix, whose eigenvectors are used to extract the noisy
loadings, imposes some restriction on the missing pattern. However, as long as the noisy loadings
are correlated with the actual loadings, the third regression corrects for the complex missing pattern
structure. The advantage of this second approach is that it is much faster to implement. It is moti-
vated by the iterative PCA estimation, which is discussed among others in Xiong and Pelger (2019)
for missing values and Pelger and Xiong (2021a) for noisy loadings in the case of fully observed
data. This alternative implementation also motivates the interpretation of the loadings A as “charac-

teristic portfolio weights”, which provides insights into the economic meaning of the characteristic



factors.

Under the assumptions of constant loadings, the estimation is modified as follows. First, we
estimate noisy loadings A as the eigenvectors of the K largest eigenvalues of % Z{:I <Nit zfi\’:t ) cict T) .
The second step of the factor estimation E} is the same, and in the third step we use the pooled

regression

Multihorizon Forecasts

In this appendix we discuss the prediction for longer horizons. Our pure cross-sectional models
(XS) only use contemporaneous information and as such do not impose any assumptions on the time-
series dynamics. In the main text we estimate models that incorporate the time-series dynamics of
characteristics. The estimated models (B-XS, BF-XS, B) estimate one-step ahead forecasts. However,
for blocks of missing time-series obervations we face the issue of a longer horizon forecast. Using a
time-series model for a multi-step prediction requires to make further assumptions on the dynamics
of the cross-sectional factors and the non-systematic component.

The implementations of our baseline models for B-XS, BF-XS and B, that we use in the main text,
estimate the parameters based on one-step ahead forecasts, and plug in the last observed value for
the multi-step forecast. This means that for our implementation of the B-XS model, the prediction

for s periods into the future, given that Cf,t_l is the last observed value, is
ALBXS  _ (ApLBXS) ' [ Al At At
Ciltis—1 = (ﬁ ) (Ci,t—l Fip - Fi,K) .

This is different from a recursive imputation of the missing values, which uses the imputed values
from the last period as an input for the imputation of the next period. Note that a recursive model
requires to take a stand on the time-series dynamics of the factors and idiosyncratic component,
which was not part of the estimation. Essentially, the BZ’B'XS could be different for different horizon
forecasts. In this appendix, we present a more general model, which includes our baseline imple-
mentation as a special case. Our more general model estimates the dynamic multi-horizon structure
from the data. We can show that our simple baseline implementation is actually close to an optimal
model. Given its parsimonious structure, the main text only focuses on this transparent model.

Fundamentally, the key element of our model is to combine the information from the contempo-



raneous cross-section and the time-series dimension. A general model can be casted as a weighted
average of separate forecasts that uses different information sets.

First, we start with the same pure cross-sectional factor model as before:
Ciy=FA"+ej; withi=1,.,Nyandl=1,..,L.

Given the estimated factors and loadings, we obtain our pure XS forecast:

Importantly, this forecast is available for all entries. We have shown empirically, that a pure XS
model can be improved when combined with time-series information. This is done in the weighted
average step, where we will also distinguish between a model that only uses past information or also,
in addition, future information:

B-XS weighted model:
E [Ci,t,l|Ci,t—s,l,Fit] = w S + wPCiyp g
BF-XS weighted model:
E [Ci,t,l|Ci,t—s,la Ci,t+k,l,Fit] = WS + W Crysa + Wi Cirna.

This model is closely related to our baseline benchmark model, but allows to deal with multi-horizon
forecasts in a more systematic way. Consider s = 1, i.e. we use only a one-step ahead forecast. In

this case the weighted backward model can be expressed as

.
E [Ci,t,l|Ci,t—1,la Ff] = ((wi(s'l/h) e (WS AR) wsTS'B’l> (ﬁit,1 -~ Flg Ci,pl,l) .

This means that the weighted model is a special case of the baseline benchmark model for a one-

period prediction, but with a constraint on Bl’B'XS. The constraint is sensible as it imposes that FA "

captures the pure XS characteristic information, while the time-series information provides the right

level for the forecast, without changing the relative cross-sectional weighting of the pure XS factors.

The weighted framework allows more flexibility for multi-period forecasts with a small number

of parameters and without a priori imposing strong assumptions on the time-series structure. We



could easily obtain a non-parametric model for the weights wfs'l , w?'l and w,f‘l. One implementation,

which could be viewed as a non-parametric estimation, is to simply estimate different models for
each forecast horizon without further restricting them. For a specific characteristic [ and a specific
lack s, we could stack the characteristics Cf,t over time and the cross-section and run a regression on
the stacked values of Cil,t_ sand C“flx 5. However, we suggest to impose some structure on the weights.

Guided by our empirical findings, the following parametric model provides a parsimonious and

interpretable framework:

~ _ Bl
wSTS B,l — aB,l + bB,le yo's
TSFL _ R 4 bF,le—y“k

XSL _ XS bXS,le—yXS’[min(s,k)

This means that the B-XS and B-XS weighted model can be expressed as

BW weighted model:
XS A _ Bl
E [Ci,t,l|Ci,t—s,l,Ff] = (aXS,l + bl S) Ch® + (aB’l + pBle™ S) Citsi
BWFW weighted model:

XS A _ Bl
E [Ci,t,l|Ci,t—s,la Cit+k,l, Flt] = <aXS,l + e mm(s'k)) G + (aB’l +bPe™ S) Cit—s,l

Rl
+ (aF’l + bF’le Y k) Ci,t+k,l

This model has as two special cases: One special case keeps a weight of one on the last observed
value, the second special case interpolates linearly between the last and first observed values. The

parameters of the weight functions can be easily estimated from minimizing the squared error of

=z

T t S
2
t (ol XS,1 ALXS Bl
DD (e (Ci,t —ws G W Ci,t—s,l)
i=1s5=1

t=1

on the observed data.
The parametric model formulation has the benefit of being easy to interpret. The value of a + b
measures the short-term effect, and y measures the decay in information. A very persistent charac-

teristic is expected to have a large value for a but a small value for b and y.'!

" The weighted framework can be generalized to include a time-series forecasting model. This forecast could be based



The more flexible model, that allows for horizon dependent weights, does not lead to substan-
tial improvements relative to our baseline implementation. Table A.1 compares the global B-XS as
implemented in the main text, and the more flexible global weighted B-XS. Note, that in-sample a
more flexible model will by construction always result in smaller RMSE. However, the differences
seem to be very small. For OOS missing-at-random we deal primarily with one-step ahead forecasts,
and hence the additional flexibility of the weighed B-XS cannot help. The only case, where the more
general structure can be relevant, is the OOS block-missing analysis. However, the improvements
seem to be minor. We conclude that our simple model is almost as good as a more complex model.

Hence, we favor the more parsimonious model as our baseline.

Table A.1: Imputation Error for Different Imputation Methods

| In-Sample | 00S MAR | 00S Block
Method ‘ all quarterly monthly ‘ all quarterly monthly ‘ all quarterly monthly
weighted B-XS | 0.14 0.14 0.15 0.16 0.16 0.15 0.18 0.17 0.20
global B-XS 0.15 0.15 0.14 0.16 0.16 0.15 0.19 0.18 0.20

Note: This table shows imputation RMSE for the global B-XS and global weighted B-XS methods averaged
over all characteristics and separately for monthly and quarterly updated characteristics. We report the
imputation error in-sample evaluated over all observed data, and out-of-sample for masked characteristics
from the fully present subset of the data. For the out-of-sample analysis we mask 10% of the data either
missing at random or missing in time-series blocks for 12 consecutive months.

for example on an autoregressive model or a more complex non-parametric time-series model. Given the information
set I;_, and a forecasting model, we could include the forecast I|E [Ci,t,z\ps] in the weighted model with an additional

weight wSTS’l.



Appendix B. Tables

Table B.1: Missing by Characteristic Quintiles

All ME Quintile Characteristic Quintile
[1-2] (2-3] (3-4] (4-5] [1-2] (2-3] (3-4] (4-5]
A2ME 12.43% 13.44% 10.51%  10.23% 9.93% 8.50% 9.56% 11.43% 15.25%
AC 43.20% 39.89%  34.04% 32.28% 26.67% 52.34%  26.01%  23.93% 51.18%
AT 12.43% 13.44% 10.51% 10.23% 9.93% 11.25%  10.20% 9.29% 9.01%
ATO 19.36% 22.33% 17.71%  16.24%  14.06% 19.27%  15.69% 14.11%  14.89%
B2M 10.69% 12.13% 8.67% 7.95% 6.63% 8.53% 7.75% 8.59% 12.31%

BETA_d 46.97% 56.44%  48.95% 44.73%  31.59% 39.19%  29.91%  28.54%  38.25%
BETA_m 35.85% 43.79%  37.57%  33.96%  23.76% 35.33%  22.39%  21.68%  32.85%

C2A 14.54% 15.49%  12.28%  12.10%  12.39% 15.45%  14.34%  12.39% 7.57%
CF2B 11.99% 14.17%  10.00% 8.86% 7.11% 9.73% 10.20%  10.09% 13.30%
CF2P 8.94% 10.81% 7.16% 5.38% 2.86% 8.62% 6.35% 6.36% 5.77%
CTO 19.35% 22.32% 17.70% 16.23%  14.06% 19.37%  15.25%  14.60%  15.24%
D2A 24.79% 25.89%  21.39%  20.77%  19.39% 22.07%  18.57% 18.61% 19.21%
D2p 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
DPI2A 55.95% 51.92%  52.41% 50.37%  44.98% 57.90%  37.42%  33.58% 38.17%
E2P 8.94% 10.81% 7.16% 5.38% 2.86% 8.70% 6.33% 5.94% 9.14%
FC2Y 28.24% 28.17%  24.02%  22.34%  23.87% 15.19% 17.68% 17.27%  20.42%
HIGHS5?2 61.96% 70.83%  64.36%  60.54%  44.51% 83.61%  59.03% 49.68%  78.85%
INV 33.04% 38.42%  32.44%  30.16%  24.25% 43.89% 23.13% 21.88%  37.65%
IdioVol 0.04% 0.09% 0.03% 0.01% 0.00% 0.05% 0.03% 0.03% 0.05%
LEV 16.87% 16.14%  13.46% 14.17%  13.40% 12.68% 12.97% 13.45% 16.62%
ME 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
NI 32.01% 39.49%  32.54%  29.44%  22.76% 39.96%  23.09%  24.72%  32.03%
NOA 20.41% 23.11%  19.00% 17.98%  16.52% 17.71%  17.17%  17.08%  15.99%
OA 32.31% 24.86%  20.88%  20.51%  19.30% 40.22%  17.57%  15.58%  42.48%
OL 14.88% 16.34%  12.74%  12.30%  12.36% 15.26% 11.42% 11.68%  13.30%
OP 18.95% 14.32%  10.00% 8.81% 7.08% 10.94%  10.85% 9.61% 8.99%
PCM 17.12% 21.26%  16.81% 13.15% 10.61% 17.53% 14.05% 11.89%  10.13%
PM 13.91% 14.98%  11.53%  10.82% 9.91% 11.82%  11.73%  11.56%  14.21%
PROF 18.24% 21.22%  16.95%  15.13% 11.73% 18.78%  13.32%  12.78%  14.74%
Q 12.43% 13.44% 10.51%  10.23% 9.93% 14.38% 11.61% 9.76% 8.32%
R12_2 20.73% 26.04%  21.98% 19.41% 13.29% 36.47%  14.75% 11.49% 41.87%
R12_7 20.56% 25.75%  21.80% 19.32%  13.23% 39.37%  15.27% 12.00%  45.58%
R2_1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
R36_13 48.09% 58.13%  50.21%  45.42%  32.03% 5791%  28.88%  22.84%  57.89%
R60_13 63.55% 74.31% 66.17%  60.78%  44.31% 63.36%  36.02%  29.05%  56.02%
RNA 21.66% 24.03%  19.65% 18.63% 17.24% 21.01%  16.50%  15.87%  18.25%
ROA 24.85% 28.86%  23.71%  21.98%  18.45% 25.90%  20.29% 17.08%  20.22%
ROE 23.15% 27.61% 21.93% 19.76%  15.17% 25.53% 17.74%  14.86%  20.98%
RVAR 0.04% 0.07% 0.03% 0.01% 0.03% 0.02% 0.02% 0.03% 0.04%
S2p 9.27% 11.08% 7.26% 5.42% 2.91% 7.87% 6.21% 6.50% 8.21%
SGA2S 28.27% 28.23%  24.03%  22.35%  23.87% 14.81% 17.56% 17.45%  20.65%
SPREAD 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
SUv 7.74% 10.50% 8.07% 6.30% 4.23% 28.97% 6.01% 7.66%  36.33%
TURN 5.55% 7.80% 5.57% 4.30% 2.82% 9.18% 4.80% 3.53% 3.96%
VAR 0.04% 0.07% 0.03% 0.01% 0.03% 0.02% 0.02% 0.03% 0.04%

Note: This table reports the percentage of missing observations for different size and characteristic quintiles. The means are
pooled by stocks.



Table B.2: Lengths of Missing Blocks

number of gaps mean length median length \ number of gaps mean length median length

A2ME 11693 11.14 9 OA 3814 18.6 7
AC 11948 12 9 OL 11320 8.85 3
AT 11693 11.14 9 opP 6542 11.75 6
ATO 7550 11.95 9 PCM 10324 9.65 3
B2M 11617 11.16 9 PM 11535 9.54 3
BETA_d 1324 31.46 4 PROF 11595 11.3 9
BETA_m 1556 28.58 5 Q 11693 11.14 9
C2A 6599 12.18 6 R12_2 1406 42.02 23
CF2B 6447 11.93 6 R12_7 2165 26.92 7
CF2P 4770 13.93 6 R2_1 2040 25.54 6
CTO 7458 12.05 9 R36_13 1812 33.59 23
D2A 14002 14.67 9 R60_13 1169 44.34 48
D2p 2040 25.54 6 RNA 12979 9.61 6
DPI2A 5612 29.51 12 ROA 6968 12.42 9
E2P 4770 13.93 6 ROE 6818 12.57 9
FC2Y 7927 15.5 9 RVAR 2019 25.89 7
HIGH52 1137 23.45 4 S2p 5238 13.32 6
INV 13076 11.28 9 SGA2S 7919 15.52 9
IdioVol 2162 24.31 6 SPREAD 2085 25.01 6
LEV 13952 13.64 9 Suv 2129 22.96 4
ME 2040 25.54 6 TURN 2156 22.53 3
NI 8757 12.11 9 VAR 2019 25.89 7
NOA 4071 16.71 7

Note: This table shows the number of missing blocks and their mean and median length for each characteristic.



Table B.3: OOS RMSE for Different Cross-Sectional Factor Models

Number of factors \ all characteristics \ quarterly characteristics \ monthly characteristics

local B-XS
1 0.198 0.191 0.209
2 0.196 0.190 0.206
3 0.195 0.189 0.205
4 0.194 0.188 0.204
5 0.192 0.186 0.202
6 0.191 0.185 0.200
7 0.190 0.184 0.199
8 0.189 0.184 0.198
9 0.189 0.183 0.198
global B-XS
1 0.198 0.190 0.210
2 0.196 0.189 0.207
3 0.194 0.187 0.206
4 0.193 0.186 0.205
5 0.189 0.181 0.202
6 0.186 0.179 0.199
7 0.183 0.178 0.190
8 0.181 0.177 0.187
9 0.180 0.174 0.190
local XS
1 0.258 0.257 0.259
2 0.244 0.241 0.249
3 0.229 0.221 0.244
4 0.222 0.216 0.234
5 0.217 0.210 0.230
6 0.214 0.206 0.228
7 0.211 0.202 0.226
8 0.211 0.201 0.227
9 0.216 0.205 0.235

Note: This table shows the out-of-sample imputation RMSE for different number of factors for the local and global cross-
sectional factor model with or without the past time-series information.



Table B.4: OOS RMSE in Characteristic Space for XS Factor Models

Number of factors | all characteristics | quarterly characteristics | monthly characteristics

Constant factor weights on ranks

6 \ 0.780 \ 0.737 \ 0.846
Factor model on normalized raw characteristics, global fit
1 0.963 0.931 0.995
2 0.939 0.899 0.986
3 0.926 0.886 0.973
4 0.910 0.858 0.979
5 0.913 0.854 0.994
6 0.923 0.855 1.018
7 0.934 0.859 1.040
8 1.092 0.886 1.384
9 1.674 0.914 2.542
Factor model on normalized raw characteristics, local fit
1 0.956 0.927 0.982
2 0.928 0.894 0.965
3 0.911 0.876 0.950
4 0.905 0.871 0.942
5 0.898 0.859 0.943
6 0.901 0.858 0.954
7 0.912 0.860 0.980
8 0.974 0.897 1.081
9 1.054 0.912 1.260
Factor model on kernel transformation of ranks global fit
1 0.920 0.917 0.926
2 0.874 0.864 0.893
3 0.830 0.799 0.883
4 0.810 0.784 0.857
5 0.792 0.759 0.849
6 0.784 0.750 0.841
7 0.781 0.747 0.839
8 0.793 0.741 0.878
9 0.889 0.745 1.104
Factor model on kernel transformation of ranks local fit
1 0.909 0.908 0.912
2 0.858 0.848 0.875
3 0.811 0.786 0.856
4 0.786 0.763 0.826
5 0.768 0.744 0.812
6 0.757 0.731 0.804
7 0.751 0.720 0.805
8 0.755 0.719 0.817
9 0.794 0.741 0.883

Note: This table shows the out-of-sample imputation RMSE in the original characteristic space without transforming charac-
teristics into ranks. The characteristics are normalized by their cross-sectional mean and variance. The RMSE are further
normalized by the RMSE of a medial that sets imputed values to zero, i.e. a simple median imputation. The first model is our
baseline factor model estimated on ranks and transformed back into the characteristic space with the empirically estimated
density function of each characteristic. We estimate the density function with the machine learning method, k-nearest neighbor.
The second and third model estimates the factor model directly on the characteristics. In the fourth and fifth case, we estimate
the factor model in the kernel transformed space with a Gaussian kernel and revert it back to the raw characteristics. For the
out-of-sample analysis we mask 10% of the data in randomly in time-series blocks for 12 consecutive months.



Table B.5: Imputation Error By Size Deciles

\ In-Sample \ 00S MAR \ 00S Block
size decile method | all quarterly monthly | all quarterly monthly | all quarterly monthly
local B-XS | 0.16 0.15 0.17 0.18 0.17 0.19 0.22 0.22 0.22
1 local XS 0.23 0.24 0.22 0.26 0.27 0.26 0.25 0.26 0.24
local B 0.17 0.16 0.18 0.19 0.17 0.20 0.24 0.24 0.23
local B-XS | 0.15 0.14 0.15 0.16 0.16 0.17 0.20 0.21 0.19
2 local XS 0.21 0.22 0.20 0.24 0.25 0.23 0.23 0.24 0.22
local B 0.16 0.14 0.16 0.17 0.16 0.18 0.21 0.22 0.20
local B-XS | 0.14 0.13 0.15 0.16 0.15 0.16 0.19 0.20 0.18
3 local XS 0.20 0.21 0.20 0.23 0.24 0.23 0.22 0.23 0.22
local B 0.15 0.14 0.16 0.16 0.16 0.17 0.20 0.22 0.20
local B-XS | 0.14 0.13 0.15 0.16 0.15 0.16 0.19 0.19 0.18
4 local XS 0.20 0.21 0.19 0.23 0.24 0.22 0.22 0.23 0.22
local B 0.15 0.14 0.16 0.16 0.15 0.17 0.20 0.21 0.19
local B-XS | 0.14 0.13 0.14 0.15 0.14 0.16 0.18 0.19 0.17
5 local XS 0.20 0.21 0.19 0.22 0.23 0.22 0.22 0.22 0.21
local B 0.15 0.13 0.15 0.16 0.15 0.16 0.19 0.21 0.18
local B-XS | 0.13 0.12 0.14 0.15 0.14 0.15 0.18 0.18 0.17
6 local XS 0.20 0.20 0.19 0.22 0.23 0.22 0.21 0.22 0.21
local B 0.14 0.13 0.15 0.15 0.14 0.16 0.19 0.20 0.18
local B-XS | 0.13 0.12 0.14 0.14 0.14 0.15 0.17 0.18 0.16
7 local XS 0.19 0.20 0.19 0.22 0.22 0.22 0.21 0.22 0.21
local B 0.14 0.13 0.14 0.15 0.14 0.15 0.18 0.20 0.17
local B-XS | 0.13 0.12 0.14 0.14 0.13 0.15 0.17 0.18 0.16
8 local XS 0.19 0.20 0.19 0.22 0.22 0.22 0.21 0.21 0.21
local B 0.14 0.13 0.14 0.15 0.14 0.15 0.18 0.19 0.17
local bw | 0.13 0.12 0.13 0.14 0.13 0.14 0.16 0.17 0.16
9 local XS 0.19 0.20 0.19 0.22 0.22 0.22 0.21 0.21 0.21
local B 0.14 0.12 0.14 0.14 0.13 0.15 0.18 0.18 0.17
local B-XS | 0.12 0.11 0.13 0.13 0.13 0.14 0.16 0.16 0.15
10 local XS 0.19 0.19 0.19 0.21 0.21 0.22 0.21 0.21 0.21
local B 0.13 0.12 0.14 0.14 0.13 0.14 0.17 0.18 0.16

Note: This table shows out of sample imputation RMSE by imputation method for each size decile, overall and also for monthly
updated and quarterly updated characteristics. We report the imputation error in-sample evaluated over all observed data, and
out-of-sample for masked characteristics from the fully present subset of the data. For the out-of-sample analysis we mask 10%
of the data either missing at random or missing in time-series blocks for 12 consecutive months.



Table B.6: Information used for Imputation for B-XS Model

Characteristic | F1 | F2 | F3 | F4 | F5 | F6 | PrevVal
A2ME -0.01 | 0.08 | -0.0 | 0.01 | -0.03 | 0.01 0.82
AC -0.01 | -0.01 | -0.01 | -0.0 | -0.03 | -0.03 0.84
AT 0.0 | -00 | 00 0.0 0.0 0.0 0.99
ATO -0.0 | -0.02 | -0.05 | -0.03 | 0.01 | 0.02 0.85
B2M -0.0 | 003 | 0.0 | -0.0 | -0.01 | -0.0 0.92
BETA_d 0.01 | -0.01 | -0.01 | 0.03 | -0.0 | 0.02 0.94
BETA_m 0.0 | -0.01 | -0.0 | 0.01 | -0.0 | 0.01 0.96
C2A 0.01 | -0.01 | 0.01 | -0.01 | -0.0 | 0.01 0.94
CF2B -0.04 | -0.01 | -0.01 | -0.03 | -0.1 | 0.02 0.73
CF2P -0.03 | 0.01 | -0.01 | 0.0 | -0.02 | -0.01 0.91
CTO -0.01 | -0.03 | -0.11 | -0.04 | 0.02 | 0.01 0.75
D2A 0.0 | -0.0 | -0.01 | 0.01 | 0.01 | 0.0 0.96
D2p -0.0 | 0.0 0.0 | -00 | 00 0.0 0.98
DPI2A -0.02 | -0.04 | -0.01 | 0.06 | 0.01 | -0.11 0.65
E2P -0.1 | 0.01 | -0.03 | -0.02 | -0.11 | -0.01 0.61
FC2Y 0.02 | -0.02 | 0.02 | -0.02 | -0.01 | 0.03 0.89
HIGH52 -0.05 | -0.02 | 0.02 | -0.04 | 0.02 | -0.01 0.73
INV -0.02 | -0.03 | 0.0 | 0.02 | -0.01 | -0.05 0.86
IdioVol 0.28 | -0.04 | -0.14 | 0.12 | -0.26 | -0.14 -0.1
LEV -0.0 | 001 | -0.0 | 0.01 | 0.0 0.0 0.97
ME -0.01 | -001 | 0.0 | 0.01 | 0.01 | 0.01 0.96
NI 0.01 | -0.01 | 0.01 | 0.02 | -0.0 | -0.03 0.92
NOA 00 | 00 |-0.01 | 002 | 0.0 | -0.03 0.93
OA -0.01 | -001 | -0.0 | -0.01 | -0.05 | -0.03 0.62
OL 0.01 | -0.02 | -0.09 | -0.04 | 0.04 | 0.02 0.79
op -0.08 | -0.01 | -0.05 | 0.02 | -0.11 | 0.02 0.66
PCM -0.01 | -0.02 | 0.03 | -0.01 | -0.07 | 0.03 0.86
PM -0.08 | -0.01 | 0.02 | 0.02 | -0.11 | -0.0 0.7
PROF 0.0 | -00 | -0.02 | -0.01 | -0.01 | 0.02 0.93
Q 0.01 | -0.08 | 0.0 | -0.01 | 0.02 | -0.01 0.81
R12_2 -0.04 | -0.04 | 001 | -0.02 | -0.0 | -0.07 0.76
R12_7 -0.04 | -0.05 | 0.01 | -0.02 | -0.01 | -0.1 0.69
R2_1 -0.05 | -0.06 | 0.01 | 0.0 | -0.01 | -0.0 -0.05
R36_13 -0.01 | -0.02 | 0.0 0.0 0.0 | -0.01 0.92
R60_13 -0.01 | -0.01 | 0.0 0.0 0.0 | -0.0 0.95
RNA -0.06 | -0.04 | -0.03 | -0.02 | -0.07 | 0.01 0.74
ROA -0.07 | -0.06 | -0.04 | -0.01 | -0.04 | -0.02 0.71
ROE -0.07 | -0.05 | -0.03 | -0.0 | -0.06 | -0.02 0.69
RVAR 0.19 | -0.03 | -0.09 | 0.09 | -0.18 | -0.09 0.32
s2p -0.01 | 0.05 | -0.08 | -0.01 | -0.01 | 0.02 0.79
SGA2S 0.03 | -0.02 | 0.03 | -0.03 | -0.02 | 0.03 0.87
SPREAD 0.11 | -0.01 | -0.04 | 0.03 | -0.09 | -0.06 0.58
Suv 0.01 | -0.02 | -0.01 | 0.08 | -0.07 | -0.01 0.02
TURN 0.01 | -0.07 | -0.02 | 0.16 | -0.02 | 0.06 0.63
VAR 0.18 | -0.03 | -0.09 | 0.1 | -0.17 | -0.08 0.34

Note: This table shows the the regression coefficients on the cross-sectional factor model and the past time-series information
of the global BW-XS model. We report the coefficients on each of the six factors and the past value.



Table B.7: Information used for Imputation for BF-XS Model

Characteristic | F1 | F2 | F3 | F4 | F5 | F6 | PrevVval | NextVal
A2ME 00 | 004 | 0.0 | 00 | -0.02 | 0.01 0.45 0.45
AC 00 | -00 | 0.0 | 0.0 | -0.01 | -0.01 0.5 0.49
AT 0.0 | 0.0 0.0 0.0 | -0.0 | 0.0 0.5 0.49
ATO -0.0 | -00 | -0.01 | -0.01 | 0.0 | 0.01 0.49 0.48
B2M -0.0 | 002 | 0.0 | -0.0 | -0.01 | -0.0 0.48 0.48
BETA_d 0.0 | -00 | -00 | 001 | -0.0 | 0.0 0.5 0.48
BETA_m 0.0 | 00 | -00 | 00 | -0.0 | 0.0 0.5 0.5
C2A 0.0 | 00 | 00 | -00 | 00 | 0.01 0.5 0.49
CF2B -0.02 | -0.0 | -0.0 | -0.01 | -0.05 | 0.01 0.47 0.47
CF2P -0.01 | 00 | -00 | 00 | -0.01 | -0.0 0.49 0.48
CTO -0.01 | -0.01 | -0.05 | -0.01 | 0.0 0.0 0.45 0.45
D2A 0.0 [ -0.0 | -00 | 00 0.0 0.0 0.5 0.5
D2pP -0.0 | 0.0 0.0 | -00 | -00 | 00 0.5 0.5
DPI2A -0.0 | -0.01 | -0.0 | 0.03 | 0.01 | -0.05 0.47 0.48
E2P -0.04 | 0.0 | -0.02 | -0.01 | -0.07 | -0.01 0.43 0.43
FC2Y 0.01 | -0.01 | 0.01 | -0.01 | -0.0 | 0.01 0.48 0.48
HIGH52 -0.02 | -0.02 | 0.01 | -0.02 | 0.01 | -0.01 0.45 0.46
INV -0.0 | -0.01 | 0.0 | 0.01 | -0.01 | -0.02 0.49 0.48
IdioVol 0.26 | -0.04 | -0.13 | 0.12 | -0.25 | -0.13 | -0.12 0.08
LEV 00 | 00 | 00 | 00 | -0.0 | 00 0.5 0.49
ME 00 | -00 | 00 | 001 | 0.0 0.0 0.5 0.48
NI 0.0 | -0.0 | 00 | 001 | -0.0 | -0.01 0.5 0.49
NOA 00 | 00 | -0.0 | 001 | -0.0 | -0.01 0.49 0.49
OA 00 | -00 | 0.0 | 0.0 | -0.03 | -0.02 0.5 0.49
OL 0.0 | -0.01 | -0.04 | -0.02 | 0.02 | 0.01 0.45 0.46
op -0.03 | -0.01 | -0.02 | 0.01 | -0.07 | 0.01 0.43 0.44
PCM -0.01 | -0.01 | 0.01 | -0.0 | -0.04 | 0.01 0.47 0.47
PM -0.04 | -0.01 | 0.01 | 0.01 | -0.06 | -0.0 0.43 0.44
PROF 0.0 | -00 | -001 | 0.0 | -0.0 | 0.01 0.5 0.49
Q 0.0 | -0.05 | 00 | -0.0 | 0.02 | -0.01 0.45 0.45
R12_2 -0.01 | -0.02 | 0.0 | -0.01 | -0.0 | -0.04 0.46 0.47
R12_7 -0.02 | -0.02 | 0.0 | -0.01 | -0.01 | -0.05 0.46 0.45
R2_1 -0.05 | -0.06 | 0.01 | 0.0 | -0.01 | -0.0 -0.05 -0.04
R36_13 0.0 | -00 | 00 0.0 0.0 | -0.0 0.49 0.49
R60_13 -0.0 | -00 | 0.0 0.0 0.0 | -0.0 0.5 0.5
RNA -0.02 | -0.02 | -0.01 | -0.01 | -0.04 | 0.0 0.46 0.46
ROA -0.02 | -0.02 | -0.01 | -0.0 | -0.01 | -0.01 0.48 0.46
ROE -0.02 | -0.02 | -0.01 | -0.0 | -0.02 | -0.01 0.48 0.46
RVAR 0.14 | -0.02 | -0.07 | 0.07 | -0.14 | -0.07 | 0.31 0.19
s2p -0.01 | 0.03 | -0.04 | -0.01 | -0.01 | 0.01 0.45 0.45
SGA2S 0.01 | -0.01 | 0.01 | -0.01 | -0.0 | 0.01 0.48 0.48
SPREAD 0.08 | -0.01 | -0.03 | 0.03 | -0.07 | -0.04 0.34 0.38
Suv 0.01 | -0.02 | -0.01 | 0.08 | -0.07 | -0.01 0.03 0.04
TURN 0.01 | -0.05 | -0.02 | 0.11 | -0.02 | 0.04 0.39 0.38
VAR 0.13 | -0.02 | -0.07 | 0.08 | -0.13 | -0.06 0.32 0.21

Note: This table shows the the regression coefficients on the cross-sectional factor model and the past time-series information
of the global BF-XS model. We report the coefficients on each of the six factors and the past and future values.



Table B.8: Imputation Error For Different Size Filters

estimation ‘ evaluation | aggregate | quarterly | monthly

< $ 1 firms 0.13 0.16 0.08

<$1firms | = $ 1 firms 0.17 0.17 0.16
all 0.17 0.17 0.16

< $ 1 firms 0.38 0.25 0.44

>$1firms | =$1firms 0.15 0.14 0.15
all 0.15 0.14 0.15

< $ 1 firms 0.38 0.25 0.44

all > $ 1 firms 0.15 0.14 0.15

all 0.15 0.14 0.15

Note: This figure shows the imputation RMSE for the global B-XS model across fits and evaluations on firms with filters based
on share prices.

Table B.9: Imputation Results with and without Financial Firms

estimation ‘ evaluation ‘ aggregate ‘ quarterly ‘ monthly
financial firms financial firms 0.15 0.13 0.16
non financial firms 0.15 0.13 0.16
non financial firms financial firms 0.15 0.14 0.16
non financial firms 0.15 0.14 0.15

This figure shows the imputation RMSE for the global B-XS model across fits and evaluations on financial and non-financial
firms.



Table B.10: Univariate Long-Short Decile Factors with and without Imputation

\ (1) Fully Observed (2) Obs = 10 (3) Specific Char Observed )+ 3) (2)-(3)

|mean stdev Sharpe vw % % |mean stdev Sharpe vw % % |mean stdev Sharpe vw % % |mean stdev Sharpe vw % % |mean stdev Sharpe vw % %

A2ME |352 112 031 022 041|244 9.06 027 04 063|166 627 026 092 0.99]|1.66 627 026 0.93 10|

AC ‘1.79 5.22 034 0.22 0.41‘1.87 50 037 04 0.63‘1.97 5.07 039 0.7 0.79‘1.98 5.05 0.39 0.72 0.82‘2.15 13.98 0.15 0.02 0.03

AT |141 451 031 0.22 041|135 434 031 04 0.63]1.38 424 032 092 0.99]1.38 424 032 093 1.0 |

ATO |2.14 529 04 022 041]213 521 041 04 063|225 531 042 0.89 099|225 531 042 0.89 0.99] 1.88 18.31 0.1 0.01 0.0

B2M |2.38 774 031 022 041|253 7.28 035 04 063 23 571 04 093 099 2.3 571 04 093 1.0]1.69 2572 0.07 0.0 0.0

BETAd| 211 87 024 022 041]225 85 027 04 063|218 803 027 078 095|218 8.03 027 0.79 0.95|

BETA_m‘2.38 9.21 0.26 0.22 0.41‘2.61 8.8 0.3 04 0.63‘2.65 8.53 0.31 0.85 0.96‘2.65 8.53 031 0.86 0.96‘

C2A ‘2.09 6.19 0.34 0.22 0.41‘2.04 598 034 04 0.63‘2.21 6.09 0.36 0.91 0.99‘2.22 6.1 036 0.91 0.99‘4.87 153 032 0.0 0.0

CF2B | 179 525 034 0.22 041|1.89 502 038 04 0.63]1.87 471 04 092 0.99/1.88 471 04 092 0.99]1.04 20.62 0.05 0.0 0.0

CF2P |1.89 6.53 0.29 0.22 0.41|2.09 6.65 0.31 0.4 0.63]1.52 3.98 0.38 0.93 0.99]1.52 3.98 0.38 0.93 1.0 |

CTO |1.87 497 0.38 0.22 0.41|1.95 493 04 04 0.63]2.07 496 042 0.89 0.99]2.07 496 042 0.9 0.99| 1.2 1815 0.07 0.01 0.0

D2A |1.67 581 0.29 0.22 0.41|1.79 525 0.34 0.4 0.63|1.86 5.34 035 0.78 0.91]1.83 521 035 0.83 0.94| 1.95 7.2 027 0.04 0.03

D2P | 23 51 045 022 041]232 488 048 04 0.63]212 417 051 1.0 1.0|212 417 051 1.0 10|

DPI2A | 1.76 6.17 0.29 0.22 0.41] 1.74 5.9 03 04 063|185 592 031 0.5 0.61]1.84 591 031 0.61 0.77]1.58 9.68 0.16 0.11 0.16

E2P | 227 639 036 022 041]2.23 597 037 04 0.63|208 523 04 093 099[2.08 523 04 093 1.0]3.25 2549 013 0.0 0.0

FC2y ‘1.73 4.65 0.37 0.22 0.41‘1.76 4.58 0.38 04 0.63‘1.93 4.99 039 0.75 0.8‘1.95 4.99 039 0.78 0.83‘2.73 7.24 0.38 0.03 0.03

HIGH52‘1.19 4.37 0.27 0.22 0.41‘1.23 4.23 029 04 0.63‘1.27 3.94 0.32 0.66 0.9‘1.27 3.94 0.32 0.66 0.9‘

INV ‘1.78 6.27 0.28 0.22 0.41‘1.91 6.07 032 04 0.63‘1.96 6.01 0.33 0.83 0.97‘1.96 5.98 033 0.84 0.98‘0.85 15.38 0.06 0.01 0.0

Idi0V01‘2.78 845 0.33 0.22 0.41‘2.91 847 034 04 0.63‘3.37 8.98 0.37 1.0 1.0‘3.37 898 0.38 1.0 1.0‘

LEV ‘2.07 6.06 0.34 0.22 0.41‘1.91 6.0 032 04 0.63‘1.75 5.74 0.31 0.86 0.95‘1.75 5.72 0.31 0.88 0.97‘2.15 12.19 0.18 0.02 0.02

ME |148 459 032 0.22 041|148 446 033 04 063143 43 033 10 1.0[143 43 033 1.0 10|

NI ‘1.91 6.26 0.31 0.22 0.41‘1.87 5.99 031 04 0.63‘1.84 5.57 0.33 0.83 0.97‘1.84 5.58 0.33 0.84 0.97‘2.07 10.69 0.19 0.01 0.0

NOA ‘1.64 5.97 0.27 0.22 0.41‘1.65 5.75 029 04 0.63‘1.64 5.04 0.33 0.89 0.99‘1.64 5.04 033 0.89 0.99‘1.25 30.89 0.04 0.01 0.0

OA ‘1.8 5.29 0.34 0.22 0.41‘1.78 5.09 035 04 0.63‘1.94 5.12  0.38 0.75 0.8‘1.93 5.13 0.38 0.76 0.83‘1.11 23.06 0.05 0.01 0.03

OL ‘1.81 498 0.36 0.22 0.41‘1.94 499 039 04 0.63‘2.03 4.92 041 09 0.99‘2.04 492 042 091 0.99‘2.63 15.15 0.17 0.01 0.0

op ‘1.88 5.28 0.36 0.22 0.41‘1.87 512 036 04 0.63‘1.97 5.04 0.39 0.83 0.93‘1.97 5.04 0.39 0.84 0.93‘2.19 23.16 0.09 0.0 0.0

PCM ‘1.63 498 0.33 0.22 0.41‘1.61 4.76 0.34 04 0.63‘ 1.7 481 0.35 0.89 0.99‘ 1.7 481 035 091 0.99‘3.96 13.19 0.3 0.01 0.0

PM [179 571 031 0.22 041|169 527 032 04 063|155 448 035 09 098|155 448 035 091 099|274 192 014 0.01 0.0

PROF ‘1.87 483 0.39 0.22 0.41‘ 1.92 473 041 04 0.63‘ 1.99 4.79 041 0.9 0.99‘1.99 479 042 09 0.99‘2.06 18.77 0.11 0.0 0.0

Q | 1.6 513 031 022 041|1.65 496 033 04 0.63|1.78 523 0.34 0.92 0.99]1.79 523 034 093 1.0]

R12.2 | 234 6.46 036 0.22 041|241 6.24 039 04 0.63|259 634 041 092 0.98/2.59 6.34 041 092 0.98|

R12.7 | 226 6.61 0.34 0.22 0.41]239 6.48 037 0.4 0.63]265 6.53 0.41 092 0.98/2.66 6.53 0.41 0.92 0.98|

R2_1 |1.85 6.17 03 0.22 0.41]1.92 593 032 04 0.63]207 594 035 10 1.0]207 594 035 1.0 1.0 |

R36.13 | 1.94 6.5 0.3 0.22 041|206 6.36 032 0.4 0.63]|202 6.05 033 0.77 0.95/2.01 6.05 0.33 0.78 0.95]0.49 14.98 0.03 0.01 0.0

R60.13 | 1.76 6.08 0.29 0.22 0.41|1.87 6.12 031 04 0.63|1.89 587 0.32 0.64 0.91]1.89 5.86 032 0.65 0.91]1.77 14.03 0.13 0.01 0.0

RNA ‘1.85 5.13  0.36 0.22 0.41‘1.79 4.88 0.37 04 0.63‘1.89 4.92 039 0.87 0.98‘1.89 491 038 0.88 0.98‘2.99 16.75 0.18 0.01 0.0

ROA ‘1.66 5.07 0.33 0.22 0.41‘1.64 4.79 034 04 0.63‘1.75 491 036 0.87 0.98‘1.76 49 036 0.87 0.98‘

ROE ‘1.7 5.15 0.33 0.22 0.41‘1.63 4.76 034 04 0.63‘1.75 4.84 036 0.87 0.98‘1.76 4.84 036 0.88 0.98‘

RVAR |2.83 911 031 022 041|298 895 033 04 063 3.5 925 038 1.0 10|35 925 038 1.0 10|

S2p ‘2.81 695 04 0.22 0.41‘2.51 6.41 0.39 04 0.63‘2.69 6.39 042 0.92 1.0‘2.69 6.38 042 093 1.0‘-0.06 26.34 -0.0 0.0 0.0

SGA25‘1.78 51 035 0.22 0.41‘1.78 485 037 04 0.63‘1.97 5.37  0.37 0.75 0.8‘1.99 531 0.37 0.78 0.83‘2.65 7.38 036 0.03 0.03

SPREAD|3.17 1044 0.3 0.22 041]3.32 10.19 033 04 0.63]3.68 9.59 038 1.0 1.0|3.68 959 038 1.0 1.0]

Suv ‘1.78 5.24 0.34 0.22 0.41‘ 1.8 513 035 04 0.63‘1.96 5.0 039 093 1.0‘1.96 5.0 039 0.94 1.0‘

TURN |249 7.96 031 022 041|261 775 034 04 063|274 7.63 036 094 1.0|2.74 7.63 036 094 10|

VAR |277 932 03 022 041|292 92 032 04 063335 939 036 10 10335 939 036 1.0 1.0]

This table shows the mean, volatility, Sharpe ratio, value percentage and percentage of total stocks used to construct long-short
decile factors. The quantile cutoffs are based on deciles of fully present NYSE data. We consider (1) fully observed data, (2)
only > 10 observed characteristics, where the rest is imputed, (3) specific characteristic present, other characteristics missing,
(4) union of 3 and 2 (in 3 or 2), (5) not in (3) but in (2). Mean and standard deviations are reported as percentages. We use the
global B-XS model to impute missing values that have prior observations available and the global XS model for the case without
prior observations.



Table B.11: Firm Characteristics

Acronym Name Definition Reference Freq
A2ME Assets to market cap Total assets (AT) over market capitalization (PRC*SHROUT) as of current month Bhandari (1988) Q
AC Accrual Change in operating working capital per split-adjusted share from the fiscal year end t-2 to t-1 divided by book Sloan (1996) Q
equity (defined in B2M) per share in t-1. Operating working capital per split-adjusted share is defined as current
assets (ACTQ) minus cash and short-term investments (CHEQ) minus current liabilities (LCTQ) minus debt in current
liabilities (DLCQ) minus income taxes payable (TXPQ).
AT Total Assets Total Assets (ATQ) Gandhi and Lustig (2015)
ATO Net sales over lagged Net sales (SALEQ) over lagged net operating assets. Net operating assets are the difference between operating assets Soliman (2008)
net operating assets and operating liabilities (defined in NOA)
B2M Book to Market Ratio Book equity is shareholder equity (SH) plus deferred taxes and investment tax credit (TXDITCQ), minus preferred Fama and French (1992) Q
stock (PSTKQ). SH is shareholders’ equity (SEQQ). If missing, SH is the sum of common equity (CEQQ) and preferred
stock (PSQ). If missing, SH is the difference between total assets (ATQ) and total liabilities (LTQ). The market value
of equity (PRC*SHROUT) is as of the current month.
Beta_d CAPM Beta Product of correlations between the excess return of stock i and the market excess return and the ratio of volatilities. Frazzini and Pedersen (2014) M
We calculate volatilities from the standard deviations of daily log excess returns over a one-year horizon requiring
at least 120 observations. We estimate correlations using overlapping three-day log excess returns over a five-year
period requiring at least 750 non-missing observations.
Beta_m Market Beta Coefficient of the market excess return from the regression on excess returns in the past 60 months (24 months Fama & MacBeth (1973) M
minimum)
C2A Ratio of cash and short- Ratio of cash and short-term investments (CHEQ) to total assets (ATQ) Palazzo (2012) Q
term investments to to-
tal assets
CF2B Free Cash Flow to Book Cash flow to book value of equity is the ratio of net income (NIQ), depreciation and amortization (DPQ), less change Hou et al. (2011) Q
Value in working capital (WCAPCH), and capital expenditure (CAPX) over the book-value of equity (defined in B2M)
CF2P Cashflow to price Cashflow over market capitalization (PRC*SHROUT) as of currrent month. Cashflow is defined as income before Desai, Rajgopal & Venkatachalam Q
extraordinary items (IBQ) plus depreciation and amortization (DPQ) plus deferred taxes (TXDBQ). (2004)
CTO Capital turnover Ratio of net sales (SALEQ) to lagged total assets (ATQ) Haugen and Baker (1996)
D2A Capital intensity Ratio of depreciation and amortization (DPQ) to total assets (ATQ) Gorodnichenko and Weber (2016)
D2P Dividend Yield Total dividends (DIVAMT) paid from July of t-1 to June of t per dollar of equity (ME) in June of t Litzenberger and Ramaswamy M
(1979)
DPI2A Change in property, Changes in property, plants, and equipment (PPEGTQ) and inventory (INVTQ) over lagged total assets (ATQ) Lyandres, Sun, and Zhang (2008) Q
plants, and equipment
E2P Earnings to price The earnings used in months (t, t+1, t+2) are the earning from the quarter reported at time t (IBQ). P (actually ME) Basu (1983) Q
is price times shares outstanding at the end of current month.
FC2Y Fixed costs to sales Ratio of selling, general, and administrative expenses (XSGAQ), research and development expenses (XRDQ), and D’ooAcunto, Liu, Pflueger, and We- Y
advertising expenses (XADQ) to net sales (SALEQ) ber (2016)
HIGH52  Closeness to past year The ratio of stock price at the end of the current calendar month and the highest daily price in the past year George and Hwang (2004) M
high
IdioVol Idiosyncratic volatility "Standard deviation of the residuals from a regression of excess returns on the Fama and French three-factor model” Ang, Hodrick, Xing, and Zhang M
(2006)
INV Investment Change in total assets (ATQ) from the fiscal quarter ending in month t-12 to the fiscal quarter ending in t, divided Cooper, Gulen, and Schill (2008) Q
by t-12 total assets
LEV Leverage Ratio of long-term debt (DLTTQ) and debt in current liabilities (DLCQ) to the sum of long-term debt, debt in current Lewellen (2015) Q
liabilities, and stockholders’on equity (SEQQ)
ME Size Total market capitalization at the end of the current month defined as price times shares outstanding Fama and French (1992) M
LT_Rev Long-term reversal Cumulative return from 60 months before the return prediction to 13 months before Jegadeesh and Titman (2001)
TURN Turnover Turnover is last month’oos volume (VOL) over shares outstanding (SHROUT) Datar, Naik, and Radcliffe (1998)
NI Net Share Issues The change in the natural log of split-adjusted shares outstanding (CSHO*AJEX) from the fiscal yearend in t-2 to the Pontiff and Woodgate (2008) M
fiscal yearend in t-1
NOA Net operating assets Difference between operating assets minus operating liabilities scaled by lagged total assets (ATQ). Operating assets Hirshleifer, Hou, Teoh, and Zhang Q
are total assets (ATQ) minus cash and short-term investments (CHEQ), minus investment and other advances (IVAOQ). (2004)
Operating liabilities are total assets (ATQ), minus debt in current liabilities (DLCQ), minus long-term debt (DLTTQ),
minus minority interest (MIBQ), minus preferred stock (PSTKQ), minus common equity (CEQQ).
OA Operating accruals Changes in non-cash working capital minus depreciation (DPQ) scaled by lagged total assets (ATQ). Non-cash working Sloan (1996) Q
capital is defined in Accrual (AC)
OL Operating leverage Sum of cost of goods sold (COGSQ) and selling, general, and administrative expenses (XSGAQ) over total assets (ATQ) Novy-Marx (2011) Q
opP Operating profitability Annual revenues (REVTQ) minus cost of goods sold (COGSQ), interest expense (TIEQ), and selling, general, and Fama and French (2015)
administrative expenses (XSGAQ) divided by book equity (defined in B2M)
PCM Price to cost margin Difference between net sales (SALEQ) and costs of goods sold (COGSQ) divided by net sales (SALEQ) Bustamante and Donangelo (2016)
PM Profit margin Operating income after depreciation (OIADPQ) over net sales (SALEQ) Soliman (2008)

Note: Continued on next page.



Acronym Name Definition Reference Freq
PROF Profitability Gross profit (GP) divided by the book value of equity (defined in B2M) Ball, Gerakos, Linnainmaa, and Y
Nikolaev (2015)
Q Tobin’s Q "Tobin’s Q is total assets (ATQ), the market value of equity (SHROUT times PRC) minus cash and short-term invest- Kaldor (1966) Q
ments (CEQQ), minus deferred taxes (TXDBQ) scaled by total assets (ATQ)"”
R12_2 Momentum To be included in a portfolio for month t (formed at the end of month t-1), a stock must have a price for the end of Fama and French (1996) M
month t-13 and a good return for t-2. In addition, any missing returns from t-12 to t-3 must be -99.0, CRSP’s code
for a missing price. Each included stock also must have ME for the end of month t-1.
R12_7 Intermediate momen- Cumulative return from 12 months before the return prediction to seven months before Novy-Marx (2012) M
tum
R36_13 Long-term reversal Cumulative return from 36 months before the return prediction to 13 months before De Bondt and Thaler (1985) M
R2_1 Short-term reversal Lagged one-month return Jegadeesh and Titman (1993) M
RNA Return on net operat- Ratio of operating income after depreciation (OIADPQ) to lagged net operating assets. Net operating assets are the Soliman (2008) Q
ing assets difference between operating assets minus operating liabilities. (defined in NOA)
ROA Return on assets Income before extraordinary items (IBQ) to lagged total assets (ATQ) Balakrishnan, Bartov, and Faurel Q
(2010)
ROE Return on equity Income before extraordinary items (IBQ) to lagged book-value of equity (defined in B2M) Haugen and Baker (1996) Q
RVAR Residual Variance Variance of the residuals from a regression of excess returns in the past two months on the CAPM model Ang, Hodrick, Xing, and Zhang M
(2006)
S2P Sales to price Ratio of net sales (SALEQ) to the market capitalization (ME) Lewellen (2015) Q
SGA2S Selling, general and ad- Ratio of selling, general and administrative expenses (XSGAQ) to net sales (SALEQ) Freyberger, Neuhierl, Weber (2017) Q
ministrative expenses
to sales
SPREAD Bid-ask spread The average daily bid-ask spread in the current month Chung and Zhang (2014) M
SUV Standard unexplained Difference between actual volume and predicted volume in the current month. Predicted volume comes from a Garfinkel (2009) M
volume regression of daily volume on a constant and the absolute values of positive and negative returns. Unexplained
volume is standardized by the standard deviation of the residuals from the regression
VAR Variance Variance of daily returns in the past 60 days Ang, Hodrick, Xing, and Zhang M

(2006)

Note: This table summarizes the information about the 45 characteristics. We report the abbreviation, name, definition, reference and

updating frequency.



Table B.12: CRSP and Compustat dependencies in the construction of characteristics

Characteristic CRSP Dependencies Compustat Dependencies
Monthly Daily Quarterly Yearly
A2ME prc, shrout atq
AC actq, atq, ceqq, cheq, dlcq, Ictq, 1tg, pstkq, pstkq, seqq, txditcq, txpq
AT atq
ATO atq, atq, ceqq, cheq, dlcq, dlttq, ivaoq, mibq, pstkq, saleq
B2M prc, shrout atq, ceqq, ltq, pstkq, pstkq, seqq, txditcq
BETA_d ret ret
BETA_m ret
C2A atq, cheq
CF2B atq, capxy, ceqq, dpq, ltq, niq, pstkq, pstkq, seqq, txditcq, wcapchy
CF2P prc, shrout dpq, ibq, txdbq
CTO atq, saleq
D2A atq, dpq
D2P divamt, prc, shrout
DPI2A atq, invtq, ppegtq
E2P prc, shrout ibq
FC2Y saleq, xrdq, xsgaq xad
HIGHS52 prc prc
INV atq
IdioVol ret ret
LEV dlcq, dlttq, seqq
ME prc, shrout
NI ajexq, cshoq
NOA atq, atq, atq, ceqq, cheq, dlcq, dlttqg, ivaoq, mibg, pstkq
OA actq, atq, cheq, dlcq, dpq, Ictq, txpq
OL atq, cogsq, xsgaq
op atq, ceqq, cogsq, ltq, pstkaq, pstkq, revtq, seqq, tieq, txditcq, xsgaq
PCM cogsq, saleq
PM oiadpq, saleq
PROF atq, ceqq, ltq, pstkq, pstkq, seqq, txditcq gp
Q prc, shrout atq, ceqq, txdbq
R12_2 prc, prc, ret, shrout
R12_7 ret
R2_1 ret
R36_13 ret
R60_13 ret
RNA atq, atq, ceqq, cheq, dlcq, dlttq, ivaoq, mibq, oiadpq, pstkq
ROA atq, ibq
ROE atq, ceqq, ibq, ltq, pstkq, pstkq, seqq, txditcq
RVAR ret ret
S2P prc, shrout saleq
SGA2S saleq, xsgaq
SPREAD ret askhi, bidlo
SUV ret ret, vol
TURN shrout, vol
VAR ret ret

This table shows the CRSP and Compustat dependencies in the construction of characteristics. We report for each characteristic,

which CRSP and Compustat variables are used in the construction and the corresponding updating frequency.



Appendix C. Figures

Figure C.1: Missing Observations by Characteristic Pooled by Stocks

(a) Pooled Mean across Stocks (Equally-weighted)
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(b) Pooled Mean across Stocks (Value-weighted)
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Note: This figure shows the average percentage of missing observations for each characteristic. The means are pooled by
stocks, which are equally weighted in the top panel and value-weighted in the bottom panel. We decompose the missing values
in those missing at the start (no previous observations), the middle (some previous and future observations), the end (no further
observations) and completely missing.



Figure C.2: Heatmap of Pairwise Correlation from 1967-1976
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Note: This figure shows the pairwise correlations across time and stocks for each characteristic. The time period is the early
sample from 1967-1976.



(b) Factor 2

Composition of Latent Factors by Characteristic Categories

(a) Factor 1

Figure C.3
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Note: This figure shows the global factor loadings on the characteristics for the first 6 factors. The loadings are colored by the

category to which the characteristic belongs.



Composition of Latent Factors Grouped by Frequencies

Figure C.4

(b) Factor 2

(a) Factor 1
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(f) Factor 6

(e) Factor 5
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Note: This figure shows the global factor loadings on the characteristics for the first 6 factors. The loadings are colored by the

frequency at which the characteristic is updated.



Figure C.5: Imputation Error For Individual Characteristics

Panel A: In-Sample
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Note: This figure shows the imputation RMSE by imputation method across individual characteristics. The characteristics are
sorted in ascending order based on the time-series standard deviation of characteristics. We report the imputation error in-
sample evaluated over all observed data, and out-of-sample for masked characteristics from the fully present subset of the data.
For the out-of-sample analysis we mask 10% of the data missing at random.



Figure C.6: Global and Local Imputation For Individual Characteristics
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Note: This figure shows the imputation RMSE by imputation method across individual characteristics. The characteristics are
sorted in ascending order based on the time-series standard deviation of characteristics. We report the imputation error in-

sample evaluated over all observed data, and out-of-sample for masked characteristics from the fully present subset of the data.
For the out-of-sample analysis we mask 10% of the data missing at random.



Figure C.7: Information used for Imputation for BF-XS model
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Note: This figure shows the regression coefficients on the cross-sectional factor model and the time-series information. The

XS weight denotes the sum of absolute values of the coefficients on the cross-sectional factor model. The characteristics are
sorted in ascending order based on their autocorrelation.



Figure C.8: In-Sample Imputation Error Over Time
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Note: This figure shows in-sample time series RMSE, for different imputation methods. This is evaluated over all observed data
in the sample.



Figure C.9: In-Sample Imputation Error Over Time
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Note: This figure shows in-sample time series RMSE, for different imputation methods. This is evaluated over all observed data
in the sample.



Figure C.10: Out-Of-Sample Missing at Random Imputation Error Over Time
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Note: This figure shows out-of-sample time series RMSE, for different imputation methods. This is evaluated over the masked
out of sample characteristics from the fully present subset of the data.



Figure C.11: Out-Of-Sample Missing at Random Imputation Error Over Time
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Figure C.12: Out-Of-Sample Block Missing Imputation Error Over Time
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Figure C.13: Out-Of-Sample Block Missing Imputation Error Over Time
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Note: This figure shows out-of-sample time series RMSE, for different imputation methods. This is evaluated over the masked
out of sample characteristics from the fully present subset of the data.



	Introduction
	Missing values
	Data
	How much data is missing?
	What is the structure of missingness?
	Characteristics Dependency

	Model
	Cross-Sectional Information
	Time-Series Information
	Distribution of Missingness
	Discussion
	Look-ahead bias

	Rank normalization vs. raw characteristics
	Evaluation metrics

	Factor Structure in Characteristics
	Number of factors
	Local vs. global factors
	Structure of factors
	Rank normalization vs. raw characteristics

	Imputation
	Aggregate comparison between methods
	Imputation results for different types of missingness
	Which information matters?

	Asset Pricing
	Market strategy with observables
	Conditional sorts

	Conclusion
	Model
	Tables
	Figures

