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Research question

How to estimate Difference-in-Differences with multiple
treated groups & treatment periods?

• Recent literature shows that the TWFE implementation of DiD

(static or distributed lags) can be severely biased.

• Estimate is an average with possibly negative weights. Bad!

• A new regression-based framework: LP-DiD.

• Basically, local projections (Jordà 2005) + clean controls (Cengiz et

al 2019).

• We derive weights placed on each treatment event

• No negative weights. Good!

• Simple reweighting to recover ATT

• Simulation evidence to assess its performance.

• Empirical applications:

1. The effect of banking deregulation on the wage share.

2. Democracy & growth.
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Research question

Why do we need yet another DiD estimator?

Advantages of LP-DiD:

• Simpler, more transparent, easier to code, and faster to compute

than other recent DiD estimators.

• With exogenous treatment, the estimates are identical to the

increasingly popular ”stacked regression” approach of Cengiz et al.

(2019), but easier to implement, and to generalize.

• Flexible: offers a general framework that can easily accommodate

different settings.

• Allows matching on pre-treatment outcomes and other time-varying

covariates.
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Background

Difference-in-Differences (DiD)
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(Visual examples from Goodman-Bacon, 2021)
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Background

The conventional (until recently) DiD estimator: TWFE

• Static TWFE

yit = αi + δt + βTWFEDit + ϵit

• Event-study (distributed lags) TWFE

yit = αi + δt +
M∑

m=−Q

βTWFE
m Dit−m + ϵit

• OK in the 2x2 setting, or when treatment occurs at the same time.

• Biased even under parallel trends with staggered treatment, if

treatment effects are dynamic and heterogeneous.
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Background

The problems with TWFE in the staggered setting

• TWFE as weighted-average of 2x2 comparisons (Goodman-Bacon 2021)

1. Newly treated vs Never treated;

2. Newly treated vs Not-yet treated;

3. Newly treated vs Earlier treated.
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Background
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• TWFE as weighted-average of 2x2 comparisons (Goodman-Bacon 2021)

1. Newly treated vs Never treated;

2. Newly treated vs Not-yet treated;

3. Newly treated vs Earlier treated.

• Bias formula for TWFE (Goodman-Bacon 2021)

p limN→∞ β̂TWFE = VWATT+VWCT−∆ATT

• TWFE as a weighted-average of cell-specific ATTs (de Chaisemartin &

D’Haultfoeuille 2020)

E
[
β̂TWFE

]
= E

 ∑
(g ,t):Dgt=1

Ng ,t

N1
wg ,t∆g ,t


o Weights can be negative!
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LP-DiD Estimator

A Local Projections Diff-in-Diff Estimator (LP-DiD)
No Covariates, Outcome Lags

yi,t+k − yi,t−1 = βk LP−DiD∆Dit } treatment indicator

+ δkt } time effects

+ ekit ; for k = 0, . . . ,K .

restricting the sample to observations that are either:{
treatment

clean control

∆Dit = 1 ,

∆Di,t+h = 0 for h = −H, . . . , k .

Key advantage of LP over distributed lags TWFE formulation of DiD: the

differencing is in outcomes, and not treatments. Allows for easy use of

the clean control sample restriction.
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LP-DiD Estimator

A Local Projections Diff-in-Diff Estimator (LP-DiD)
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k
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LP-DiD Estimator

An equivalent specification to implement LP-DiD

• Instead of restricting the sample, we can use interaction terms to

rule out unclean controls.

yi,t+k − yi,t−1 = βk LP−DiD∆Dit } treatment indicator

+ θkUCi,t } UC indicator

+
∑P

p=1 γ
k
0,p(1 + ρk0,pUCi,t) ∆yi,t−p } outcome lags × UC

+
∑M

m=1

∑P
p=0 γ

k
m,p(1 + ρkm,pUCi,t)∆xm,i,t−p } covariates × UC

+ δkt (1 + ϕk
tUCi,t) } time effects × UC

+ ekit ; for k = 0, . . . ,K .

• UCit =1 if previously treated.

• With absorbing treatment, UCit =
∑k

j=−H(j ̸=0) ∆Di,t+j
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LP-DiD Estimator

What does LP-DiD identify?

• A variance-weighted average effect:

E (β̂k LP−DiD) =
∑
g ̸=0

ωLP−DiD
g ,k τg (k)

o τg (k) = k-periods forward ATT for treatment-cohort g .

• Weights are always positive and depend on subsample size &

treatment variance

ωLP−DiD
g ,k =

NCCSg,k
[ngk(nc,g ,k)]∑

g ̸=0 NCCSg,k
[ng ,k(nc,g ,k)]

,

where

• CCSg,k is a subsample including group g and its ‘clean controls’.

• ng,k = Ng/NCCSg,k is the share of treated units in CCSg,k .

• nc,g,k = Nc,g,k/NCCSg,k is the share of control units in CCSg,k .
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LP-DiD Estimator

LP-DiD as a ‘swiss knife’
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LP-DiD Estimator

LP-DiD as a ‘swiss knife’

1. Flexibility in defining the treatment & control units
Some examples:

• absorbing treatment: can use Di,t+k = 0 to define clean controls.

• repeated treatment: select an appropriate time-window H.

• continuous treatment: can define clean controls as ‘stayers’ or

‘quasi-stayers’ (as in deChaisemartin et al., 2022)

2. Flexibility in choosing a weighting scheme
• Can apply any desired weights through weighted regression.

• Equally-weighted ATT: reweight observations by 1/(ωLP−DiD
g /Ng ).

• ωLP−DiD
g easy to compute empirically from ‘residualized’ treatment

indicator.

• Can use p-score reweighting instead of regression adjustment for

covariates and lagged outcomes
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LP-DiD Estimator

Uses (a Very Simple) Regression to Solve the TWFE
Regression’s Problems
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Simulation Evidence

Simulation

• N=500 units; T=50 time periods.

• DGP:

Y0it = ρY0,i,t−1+λi +γt + ϵit ; −1 < ρ < 1; λi , γt , ϵit ∼ N(0, 25)

• Binary staggered treatment.

• TE grows in time for 20 periods, and is stronger for early adopters.

1 Exogenous treatment

o Units randomly assigned to 10 groups of size N/10

o One group never treated; others treated at τ = 11, 13, 15 . . . , 27.

2 Endogenous treatment

o Probability of treatment depends on past outcome dynamics.

o Negative shocks increase probability of treatment.

o Parallel trends holds only conditional on outcome lag.

14



Simulation Evidence

Simulation

• N=500 units; T=50 time periods.

• DGP:

Y0it = ρY0,i,t−1+λi +γt + ϵit ; −1 < ρ < 1; λi , γt , ϵit ∼ N(0, 25)

• Binary staggered treatment.

• TE grows in time for 20 periods, and is stronger for early adopters.

1 Exogenous treatment

o Units randomly assigned to 10 groups of size N/10

o One group never treated; others treated at τ = 11, 13, 15 . . . , 27.

2 Endogenous treatment

o Probability of treatment depends on past outcome dynamics.

o Negative shocks increase probability of treatment.

o Parallel trends holds only conditional on outcome lag.

14



Simulation Evidence

Simulation

• N=500 units; T=50 time periods.

• DGP:

Y0it = ρY0,i,t−1+λi +γt + ϵit ; −1 < ρ < 1; λi , γt , ϵit ∼ N(0, 25)

• Binary staggered treatment.

• TE grows in time for 20 periods, and is stronger for early adopters.

1 Exogenous treatment

o Units randomly assigned to 10 groups of size N/10

o One group never treated; others treated at τ = 11, 13, 15 . . . , 27.

2 Endogenous treatment

o Probability of treatment depends on past outcome dynamics.

o Negative shocks increase probability of treatment.

o Parallel trends holds only conditional on outcome lag.

14



Simulation Evidence

Simulation results – exogenous treatment scenario
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Average estimates and 95% and 5% percentiles from 200 replications.
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Simulation Evidence

Simulation results – endogenous treatment scenario
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Simulation Evidence

Computational speed

Estimating the treatment effect path in a single simulation of the

synthetic dataset with exogenous treatment timing:

• TWFE: 1.04 seconds

• LP-DiD: 1.2 seconds

• Callaway-Sant’Anna (2020): 144.6 seconds

• Sun-Abraham (2020): 198.5 seconds

(using a laptop with 2.80 GHz Quad-core Intel i7 Processor and 16 GB of

Ram)
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Simulation Evidence

News from The Trenches
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Empirical Applications (1)

Application: Banking Deregulation and the Labor Share

1970-1996: staggered introduction

of (inter-state & intra-state)

banking deregulation in US states.
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• Leblebicioglu & Weinberger (2020) use static & event-study TWFE

to estimate effects on the labor share.

• Negative effect of inter-state banking deregulation (≈ −1p.p.).

• No effect of intra-state branching deregulation.
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Empirical Applications (1)

Effect of banking deregulation
on the labor share:

TWFE estimates -.02
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(b) Intra-state Branching
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Empirical Applications (1)

Forbidden comparisons in the TWFE specification

• TWFE uses ‘forbidden’ comparisons: earlier liberalizers are controls

for later liberalizers.

• We employ Goodman-Bacon (2021) decomposition to assess their

influence.

• Contribution of unclean comparisons to TWFE estimates:

o 36% for inter-state banking deregulation;

o 70% for intra-state branching deregulation.
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Empirical Applications (1)

Goodman-Bacon (2021) decomposition diagnostic for the
static TWFE estimate

(a) Inter-state banking deregulation
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Empirical Applications (1)

Effect of banking deregulation on the labor share:
LP-DiD estimates

(a) Inter-state banking deregulation
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(b) Intra-state branching deregulation
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• LP-DiD avoids unclean comparisons & allows controlling for y lags.

• Negative effect of inter-state branking deregulation is confirmed.

• But also intra-state branching deregulation has negative effect.
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Empirical Applications (2)

Application: Democracy and economic growth

• Acemoglu, Naidu, Restrepo and Robinson (2019).

• 1960-2010 panel on 175 countries & binary measure of democracy.

• Potential for negative weights.

• Non-absorbing treatment.

• Selection based on pre-treatment GDP dynamics.

GDP per capita around

democratization

24
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Empirical Applications (2)

Effect of democracy on growth: dynamic panel estimates

• Dynamic fixed effects specification:

yct = βDct +

p∑
j=1

γjyc,t−j + αc + δt + ϵct ,

• Long-run effect: β̂
1−

∑p
j=1 γ̂j

= 21pp (s.e. 7pp)

IRF from the dynamic

panel estimates
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Empirical Applications (2)

Effect of democracy on growth: LP-DiD specification

yc,t+k − yc,t−1 = βk∆Dct + δkt +

p∑
j=1

γk
j yc,t−j + ϵct .

restricting the sample to:{
democratizations

clean controls

Dit = 1,Di,t−1 = 0

Di,t+h = 0 for − H ≤ h ≤ k .

• Acemoglu et al. LP analysis: a version of this, but controls defined

by Dit = Di,t−1 = 0.

• They still include countries that slide into autocracy at or before

t − 1, and countries that transition between t and t + k.

26



Empirical Applications (2)

Effect of democracy on growth: LP-DiD specification

yc,t+k − yc,t−1 = βk∆Dct + δkt +

p∑
j=1

γk
j yc,t−j + ϵct .

restricting the sample to:{
democratizations

clean controls

Dit = 1,Di,t−1 = 0

Di,t+h = 0 for − H ≤ h ≤ k .

• Acemoglu et al. LP analysis: a version of this, but controls defined

by Dit = Di,t−1 = 0.

• They still include countries that slide into autocracy at or before

t − 1, and countries that transition between t and t + k.

26



Empirical Applications (2)

Effect of democracy on growth: LP-DiD estimates
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Takeaways

Conclusions

• LP-DiD offers a flexible overarching framework for DiD settings.

• Simpler and less computationally intensive than estimators that

aggregate many group-specific averages.

• Flexibility in defining the treatment and control units based on the

setting.

• Allows matching on pre-treatment outcomes and other time-varying

covariates.
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Additional Slides
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A1 - Other new DiD estimators

30



Alternative estimators: de Chaisemartin & D’Haultfoeiulle

de Chaisemartin & D’Haultfoeiulle estimator

• For a given time-horizon ℓ, it estimates the average effect of having

switched in or out of treatment ℓ periods ago.

• A weighted average, across time periods t and possible values of

treatment d , of 2x2 DiD estimators.

• The constituent 2x2 DiDs compare the t − ℓ− 1 to t outcome

change, in groups with a treatment equal to d at the start of the

panel and whose treatment changed for the first time in t − ℓ (the

first-time switchers) and in control groups with a treatment equal to

d from period 1 to t (not-yet switchers).
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Alternative estimators: Callaway-Sant’Anna

Callaway-Sant’Anna estimator

• Estimates each group specific effect at the selected time horizon.

• Take long-differences in the outcome variable, and compare each

treatment group g with its control group.

• To control for covariates, re-weight observations based on outcome

regression (OR), inverse-probability weighting (IPW) or

doubly-robust (DR) estimation.

• Aggregate group-time effects into a single overall ATT using some

weights.
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Alternative estimators: Sun-Abraham

Sun-Abraham interaction-weighted estimator

• Event-study DiD specification, with leads and lags of the treatment

variable.

• Includes a full set of interaction terms between relative time

indicators Dk
it (ie, leads and lags of the treatment variable) and

treatment cohort indicators 1{Gg = g} (dummies for when a unit

switches into treatment).

• Then calculates a weighted average over cohorts g for each time

horizon, in order to obtain a standard event-study plot.
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Alternative estimators: Borusyak-Jaravel-Spiess

Borusyak-Jaravel-Spiess imputation estimator

• Estimate unit and time FEs only using untreated sample.

• Take them out from Y to form counterfactual Y’.

• Then for any treatment group, just compare Y and Y ′ for treated

units around event time.

• Average these across events to get an average effect.
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