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Abstract

Recent applied microeconometrics research proposes various difference-in-differences
(DiD) estimators for the problem of dynamic heterogeneous treatment effects. We
show that the problem can be resolved by the local projection (LP) estimators of the
sort used in applied macroeconometrics. Our proposed LP-DiD estimator provides
an overarching toolkit with several advantages. First, the method is clear, simple, easy
to compute, and transparent and flexible in its handling of treated and control units.
Second, it is quite general, including its ability to control for pre-treatment values of
the outcome and of other covariates, as under conditional common trends. Third, the
LP-DiD can nest other estimators, providing a framework that is not only rigorous but
also encompassing. The LP-DiD estimator does not suffer from the negative weighting
problem, and indeed can be implemented with any weighting scheme the investigator
desires. Simulations demonstrate the good performance of the LP-DiD estimator in
common settings. Two empirical applications illustrate how LP-DiD addresses the
bias of conventional fixed effects estimators, leading to potentially different results.
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1 Introduction

In applied microeconomics, and in quantitative social science more broadly, mimicking
an experimental research design via differences-in-differences (DiD) has become a widely-
used statistical technique for event studies and, with appropriate identification, for
estimating causal impacts with observational data. In its canonical form, with only two
time periods, only two groups of which one is treated, and with suitable assumptions
(e.g., no anticipation and parallel trends) the DiD estimator can identify the average
treatment effect (on the treated).

Yet, as the scale and scope of DiD applications have widened over time and expanded
into multi-period settings, its underpinnings have been stretched and doubts about the
generality of its underlying assumptions have proliferated as highlighted in many notable
recent studies. Some of the central matters of concern here have been the appropriate
implementation of DiD in an expanded set of situations where the investigator studies
multiple treatments (not a single wave), where the treatment effects are heterogeneous,
or where the object of interest is the (multi-period) dynamic response of the outcome
to treatment as, for example, in Callaway and Sant’Anna (2020); de Chaisemartin and
D’Haultfœuille (2020); Sun and Abraham (2020); Goodman-Bacon (2021). What was once
a seemingly simple tool of general application increasingly appears to need bespoke
adjustments to suit a specific situation in more expanded settings.

In this paper we take a different angle on this problem, drawing out a potentially
important link to a broader, flexible, encompassing family of alternative statistical tech-
niques close at hand. Put simply, we bring to the fore an essential congruity between the
concerns of applied microeconomists who encounter the challenge of estimating dynamic,
heterogeneous, staggered treatment effects, and the concerns of applied macroeconomists
who have long faced the task of estimating dynamic impulse-responses in time-series
or panel data. Once understood this way, the scope for fertile interaction between these
two strands of empirical work might seem obvious, despite its failure to happen quite
yet. To prompt such a conversation, here we will argue that the lens which best allows
us to see the key equivalence is to re-frame the expanded set of DiD problems from
the perspective of estimation via local projections, or LP, where the latter is the statistical
technique introduced in a time-series context in Jordà (2005). We take these LP techniques
from macroeconometrics in conjunction with the potential outcomes approach of microe-
conometrics to derive results for a wide range of DiD settings, seeking to develop a more
general toolkit for expanded settings.

Admittedly, a natural skeptical reaction we can imagine hearing at this point is: why
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do we need yet another expanded DiD technique? We have three main responses as to
why a local projection DiD (LP-DiD) framework makes sense and offers some useful
benefits. First, the method is direct, clear, simple, easy to code and compute, and is
transparent and flexible in its handling of treated and control units. Second, it is not
specific, but extremely general, including notably its ability to control for pre-treatment
values of the outcome and of other covariates, e.g., making it straightforward to work
with only conditional common trends and address situations with endogenous treatment
or selection. Third, the LP-DiD can nest other estimators, providing a framework that is
not only rigorous but also encompassing.

Our proposed LP-DiD approach employs local projections (Jordà, 2005) to estimate
dynamic effects and a flexible ‘clean control’ condition (Cengiz, Dube, Lindner, and
Zipperer, 2019) to accommodate the possibility of heterogeneous effects, which could
otherwise introduce bias (de Chaisemartin and D’Haultfœuille, 2020; Goodman-Bacon,
2021; Callaway and Sant’Anna, 2020; Sun and Abraham, 2020). As we will show, under the
usual DiD assumptions, the LP-DiD estimator identifies a weighted average of potentially
heterogeneous cohort-specific treatment effects, with weights that are always positive
and depend on treatment variance and subsample size. As we will explain, however,
it is easy to implement a different weighting scheme within LP-DiD – including an
equally-weighted average effect or any other desired scheme.

Evidence from two Monte Carlo simulations suggests that the LP-DiD estimator
performs well in staggered difference-in-differences settings, also in comparison with
other estimators that have recently been proposed. Our simulations consider a binary
staggered treatment with dynamic and heterogeneous effects. In the first simulation
treatment timing is exogenous. Under this scenario, LP-DiD performs as well as the
Sun and Abraham (2020) and Callaway and Sant’Anna (2020) estimators, while being
computationally simpler and faster. In our second simulation, the probability of entering
treatment depends on lagged outcome dynamics. In this second scenario, the ability of
LP-DiD to match on pre-treatment outcomes allows it to outperform other estimators. The
purpose of these simulations is not mainly that of performing a horse race between LP-
DiD and other estimators, but to show that LP-DiD performs well in plausible scenarios
and that there is a class of settings – those in which matching on pre-treatment outcome
dynamics or other pre-determined covariates is appropriate and important – in which
LP-DiD could become the ‘go-to’ approach. We also note that in the exogenous treatment
timing case, the LP-DiD estimate is identical to the estimate from a stacked regression
approach as implemented in Cengiz, Dube, Lindner, and Zipperer (2019). However, the
LP-DiD implementation is simpler (as it does not require stacking the data by events),
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and can be more easily generalized (e.g., conditioning on past outcomes).
Our two empirical applications employ LP-DiD to estimate the impact of banking

deregulation on the labor share (replicating Leblebicioğlu and Weinberger 2020) and the
effect of democratization on economic growth (replicating Acemoglu, Naidu, Restrepo,
and Robinson 2019). These are two examples of important empirical settings in which
conventional dynamic panel estimates are potentially subject to bias because of previously
treated units being effectively used as controls, and matching on pre-treatment outcomes
and other covariates is likely to be important.

The rest of this paper will be structured as follows. A short Section 2 provides a
brief overview of the LP-DiD approach. A long Section 3 gives a full exposition of the
statistical methods. In Section 4 we use simulations to compare the performance of our
LP-DiD approach with other new methods in the recent literature. In Section 5 we apply
the methods to two empirical applications in the form of a replication and robustness
exercise, illustrating how established results can potentially be change when we employ
the LP-DiD method. Section 6 concludes.

2 A preview of the LP-DiD approach

This section provides a preview of our proposed local projections estimator for difference-
in-differences studies, which we dub LP-DiD.

The LP-DiD estimator combines the local projections approach for estimating dynamic
effects with a ‘clean control’ condition to avoid the bias that fixed-effects estimators can
suffer from when treatment adoption is staggered.

Important features of our proposed LP-DiD approach are the simplicity of its imple-
mentation, its ability to control for pre-treatment values of the outcome and of other
covariates, and the flexibility it offers in the definition of the appropriate sets of treated
and control units.

2.1 Estimating equation

Consider a setting in which N units are observed for T time periods. The researcher is
interested in estimating the effect of a binary treatment. Different groups of units enter
treatment at different points in time; treatment might or might not be absorbing. Assume
that the no anticipation and parallel trends assumptions hold, at least conditional on a
set of observable exogenous and pre-determined covariates.1

1We will make these assumptions more precise later in Section 3.
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The LP-DiD estimator can be implemented through least squares regression in two
equivalent ways: by imposing a simple sample restriction, or by including a set of
interaction terms.

LP-DiD implemented via sample restriction LP-DiD can be implemented through the
following estimating equation, with βk the parameter of interest at horizon k:

yi,t+k – yi,t–1
= βk∆Dit } treatment indicator

+ ∑P
p=1

γk
0,p∆yi,t–p } outcome lags

+ ∑M
m=1 ∑P

p=0
γk

m,p∆xm,i,t–p } covariates

+ δk
t } time effects

+ ek
it ; for k = 0, . . . , K ,

(1)

where the sample is restricted to observations that satisfy either of two conditions: treatment

clean control

∆Dit = 1 ,

∆Di,t+h = 0 for h = –H, . . . , k ,
(2)

where t indexes time and i indexes units; y is the outcome of interest, D is a binary
treatment indicator, xm is the m-th covariate, δk

t is a common time-specific effect, P is the
number of lags of the outcome and of other covariates that are included, M is the number
of covariates, and K is the time horizon over which dynamic effects are estimated.

The parameter H in condition 2 determines the time-window employed to define
admissible (‘clean’) control units. Specifically, a unit is considered an admissible control
for units that enter treatment in period t only if it has experienced no change in treatment
status for at least H periods before t (as well as for k periods after t). The time-window
H should thus be selected by the researcher based on the application. It should be such
that treatment effect dynamics can be assumed to have stabilized after H periods. With
absorbing treatment, it is possible to use only not-yet treated units as controls (H = ∞), in
which case the clean control group in 2 is simply defined by the condition Di,t+k = 0.
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LP-DiD implemented via interaction terms An alternative and equivalent way to
implement LP-DiD is through the following estimating equation:

yi,t+k – yi,t–1
= βk∆Dit } treatment indicator

+ θkUCi,t } UC indicator
+ ∑P

p=1
γk

0,p(1 + ρk
0,pUCi,t) ∆yi,t–p } outcome lags × UC indicator

+ ∑M
m=1 ∑P

p=0
γk

m,p(1 + ρk
m,pUCi,t)∆xm,i,t–p } covariates × UC indicator

+ δk
t (1 + ϕk

t UCi,t) } time effects × UC indicator
+ ek

it ; for k = 0, . . . , K ,

(3)

where the ‘unclean control’ indicator UCi,t is a binary variable equal to 1 if unit i fails to
satisfy the clean control condition 2 at time t, and 0 if it satisfies it. The time-window H
plays the same role as in the sample restriction specification.

With absorbing treatment, the unclean control indicator is equal to UC = ∑k
j=–H(j ̸=0) ∆Di,t+j.

2.2 Main features

Under the relevant parallel trends assumption, we will show that the LP-DiD estimator
identifies a weighted average of potentially heterogeneous cohort-specific treatment effects,
with weights that are always positive and depend on treatment variance and subsample size.2

Intuitively, the clean control condition (equation 2) prevents previously treated units,
which might still be experiencing time-varying treatment effects, to be used as controls
for newly-treated units. The clean control condition thus prevents the ‘negative weights’
problem of the two-way fixed-effects (TWFE) estimator highlighted by de Chaisemartin
and D’Haultfœuille (2020) and other recent contributions.

We can also see that in basic form the LP-DiD estimator follows the OLS regression
logic of assigning weights proportional to treatment variance and subsample size and this
is generally efficient. But in some settings the researcher might prefer other weighting
schemes. However, this is perfectly compatible with the LP-DiD estimator and is trivially
easy to implement. This can be done simply by re-weighting observations as in weighted
OLS regression. For example, one can obtain an equally-weighted ATET by simply
reweighing observations from each group (i.e., treatment cohort) g by 1/(ωLP–DiD

g /Ng),
where Ng is the number of treated observations belonging to group g and ωg is the weight

2This will be shown formally in Section 3 and Appendix A, where we make explicit the parallel trends
assumption and characterize formally the weights assigned by the LP-DiD estimator to each group-specific
effect.
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assigned by LP-DiD to group g, which we characterize explicitly in Section 3.
A key feature of the LP-DiD approach is the ability to control for pre-treatment

values of the outcome variable and of other covariates. This important feature is made
possible by the structure of the local projection specification. That is, unlike a standard
event-study TWFE specification or most alternative estimators proposed in the recent
literature, the local projection specification implies that any lagged variable included
in the estimating equation is measured before treatment. Of course, controlling for
pre-treatment outcome dynamics (as well as any other exogenous or pre-determined
covariate) will be appropriate in some applications with a few exceptions.3 But what has
to be said is that the LP-DiD estimator offers the virtue of flexibility in this respect: the
researcher can decide whether to control for lagged outcomes and other covariates based
on the application.

While the clean control condition outlined in equation 2 is generally appropriate for
difference-in-differences settings in which multiple units receive a binary treatment at
different points in time, the condition can be adapted flexibly based on the application.
As mentioned above, if treatment is absorbing, the researcher can choose to use only
not-yet treated units as controls, in which case the clean control set definition simplifies
to Di,t+k = 0. Another possible example is the continuous treatment setting. This could
be dealt with by adapting the clean control condition to define clean controls as ‘stayers’
(or alternatively ‘quasi-stayers’), in the terminology of de Chaisemartin, D’Haultfœuille,
Pasquier, and Vazquez-Bare (2022). With several different treatments, one can consider
units which enter one treatment but not the others as the treated units, and units who
do not receive any treatment as the control group, following de Chaisemartin and
D’Haultfoeuille (2022).

3 Estimation of treatment effects with LP-DiD

This section provides a formal discussion of our proposed LP-DiD approach. We consider
a binary treatment with staggered adoption: multiple units can receive treatment at
different points in time. We start from a simple setting with dynamic but homogeneous
effects (Section 3.1), and then allow for heterogeneous effects across units (Section 3.2).
We show that, under heterogeneous treatment effects, the LP-DiD estimator of equations
1 and 2 (or, equivalently, equation 3) produces a weighted average of the various group-

3For example, Chabé-Ferret (2017) shows that in some circumstances conditioning on pre-treatment
outcomes in a difference-in-differences study can be problematic. On the issue of whether to control for
pre-treatment outcomes or not, see also REFERENCES.
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specific effects, with weights that are always positive and depend on subsample size and
treatment variance.

3.1 Dynamic but homogeneous treatment effects

We introduce the main ideas of our approach by building from a simple setting. A sample
of data on an outcome yit is available for i = 1, . . . , N units observed across t = 1, . . . , T
periods. All units are untreated in the first period. They may then receive a binary
treatment, measured by the indicator Dit, equal to 1 if unit i in period t is treated or
previously treated, and 0 otherwise. Treatment is an absorbing state: once a unit enters
treatment, it remains treated in all subsequent periods. The treatment indicator Dit is
thus a step function that jumps permanently from 0 to 1 when a unit receives treatment.
Hence, the variable ∆Dit = Dit – Dit–1

takes the value of 1 when the unit first receives
treatment, and is zero everywhere else. It also follows that Dit = ∑t

s=1
∆Dis.

Some units may never be treated during the observed t = 1, . . . , T periods in the
sample. Further, we assume that the effect of treatment is homogenous across units, an
assumption that we will relax later on.

The effect of the treatment may manifest over several periods. Moreover, the effect
of the treatment could potentially differ from one period to the next. That is, treatment
induces a dynamic response on the outcome.4

We denote yi,t(j) for j = 0, 1 the potential outcomes without and with treatment. We
often omit the index i when we discuss the random variable itself as opposed to the
sample observation. Thus yt(j) for j = 0, 1 are latent, unobservable random variables
whose relation to the observed yit is given by the mixture yit = yit(0)(1 – Dit) + yit(1)Dit.

We assume that the data-generating process (DGP) conforms to the assumptions of no
anticipation and parallel trends, which are needed to justify a difference-in-differences
(DiD) approach. Formally, we assume:

Assumption 1. No anticipation
Suppose treatment is administered at time s. Then,

E[yt(1) – yt(0)|Dt; Dt–1, . . . , Dt–J] = 0 ; for t < s ,

where the lag index runs all the way to J = t – 2.

4This dynamic response is related to the concept of an impulse response in macroeconometrics. Indeed,
the two ideas are equivalent when treatment is a one-off occurrence. However, in macroeconomics it is
more common for treatment to be administered over several periods and with varying doses, a scenario
that presents its own complications, as we shall see (Section 3.2.4).
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The statement of the assumption differs slightly from typical statements found in the
literature in that we condition on the past history of previous treatments. The assumption
essentially says that, conditional on the history of previous treatments, units do not
change their behavior before treatment in anticipation of such treatment.5

Assumption 2. Common trends
Also known as the parallel trends assumption, it can be stated in our setting as:

E[yt(0) – y1(0)|Dt; Dt–1, . . . , Dt–J] = E[yt(0) – y1(0)|Dt–1, . . . , Dt–J]; for t = 2, . . . , T ,

again with J = t – 2.

3.1.1 Conventional static fixed-effects estimator

Under these assumptions, it may seem natural to estimate the average treatment effect on
the treated, that is, τ ≡ E(yt(1) – yt(0)|Dt = 1), from the following two-way fixed effects
(TWFE) regression:

yit = ci + αt + βTWFEDit + uit , (4)

where β̂TWFE might seem a natural estimate of τ.
However, as highlighted by several recent contributions, the TWFE regression specifi-

cation of equation 4 can suffer from serious bias in the staggered treatment setting when
treatment effects are dynamic.6 The bias comes from the fact that previously treated units
are effectively used as controls for newly treated units.

The intuition is as follows. Since previously treated units might still be experiencing a
delayed dynamic response to treatment, these treatment effect dynamics are effectively
subtracted from the TWFE treatment effect estimate (Goodman-Bacon, 2021). That is,
delayed dynamic responses to treatment can enter the TWFE estimate with a negative
weight (de Chaisemartin and D’Haultfœuille, 2020).

5A common way of relaxing this assumption is to discard periods in a small neighborhood around
treatment. We do not elaborate on that here.

6Heterogeneous effects, that we consider below in Section 3.2, would exacerbate the issue. Moreover,
while as we will see dynamic but homogeneous effects can be effectively dealt with by using a event-study
version of the TWFE regression with a sufficient number of lags of the treatment variable, heterogeneous
effects can produce bias also in the event-study TWFE specification (Sun and Abraham, 2020).
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3.1.2 Event-study two-way fixed-effects estimator

How should the fixed-effects regression specification of equation 4 be modified to address
this source of bias?

It might seem natural to just control for these lagged effects and indeed Sun and
Abraham (2020) show that if treatment effects are dynamic but homogeneous across units,
inclusion of a sufficient number of lags of the treatment indicator would eliminate the
bias. Intuitively, the lagged treatment indicators control for the lagged dynamic effects of
previous treatments.7 Therefore, under homogeneity, a event-study version of the TWFE
estimator, that includes lags of the treatment indicators, is sufficient to obtain unbiased
estimates.

Formally, given the usual potential outcomes expression yt = yt(0) + Dt(yt(1) – yt(0)),
we can take expectations on both sides of the expression conditional on Dt–1, . . . , Dt–J:

E[yt|Dt; Dt–1, . . . , Dt–J]

= E[yt(0)|Dt; Dt–1, . . . , Dt–J] + DtE[yt(1) – yt(0)|Dt; Dt–1, . . . , Dt–J].

Given that treatment is absorbing and treatment effects are homogeneous across units,
the average treatment effect on the treated, conditional on treatment history, is given by:

τt ≡ E[yt(1) – yt(0)|Dt = 1; Dt–1, . . . , Dt–J] = β0 +
J

∑
j=1

βjDt–j, (5)

where β0 is the contemporaneous effect of treatment– that is, β0 = E[yt(1) – yt(0)|Dt =
1, Dt–1 = ... = Dt–J = 0]; and ∑k

j=0
βj is the effect of having been treated for k periods. By

the Law of Iterated Expectations, τ ≡ E(yt(1) – yt(0)|Dt = 1) = E[τt].
Based on Equation 5 and the law of iterated expectations, we have

E[yt|Dt; Dt–1, . . . , Dt–J] = E[yt(0)|Dt; Dt–1, . . . , Dt–J] + Dtτt .

Next, write yt(0) = y1(0) + gt(0) fot t = 2, . . . , T. The current value of the potential outcome
without treatment is the sum of the initial value y1(0) and the gain gt(0). Hence, without

7If treatment effects were instead heterogeneous across treatment cohorts, the coefficients on the lags of
the treatment indicator could be contaminated by lagged effects from previous periods’ treatments, leading
to bias (Sun and Abraham, 2020). As we shall see, this is not an insurmountable problem. Indeed, as we
show below, in that case it will just be necessary to extend the estimating equation with a set of appropriate
interaction terms.
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loss of generality, we can write:

E[yt(0)|Dt; Dt–1, . . . , Dt–J]

= E[y1(0)|Dt; Dt–1, . . . , Dt–J] + E[gt(0)|Dt; Dt–1, . . . , Dt–J].

Next, based on the common trends Assumption 2,

E[gt(0)|Dt; Dt–1, . . . , Dt–J] = E[gt(0)|Dt–1, . . . , Dt–J] ,

therefore:

E[yt|Dt; Dt–1, . . . , Dt–J] = E[y1(0)|Dt; Dt–1, . . . , Dt–J] + E[gt(0)|Dt–1, . . . , Dt–J] + Dtτt

At this stage, it is convenient to assume linearity (and to reintroduce the i subscript)
and hence write:

E[yi1(0)|Dit; Di,t–1
, . . . , Di,t–J] = ci , (6)

E[git(0)|Di,t–1
, . . . , Di,t–J] = αt , (7)

τit = β0 +
J

∑
j=1

βjDi,t–j . (8)

Hence, the dynamic response to treatment can be estimated through the βES–TWFE
j

coefficients in the following event-study TWFE regression:8

yit = ci + αt +
J

∑
j=0

βES–TWFE
j Di,t–j + uit , (9)

where β̂(k)ES–TWFE = ∑k
j=0

β̂ES–TWFE
j could then be constructed to provide an unbiased

estimate of the average effect of having been treated for k periods.
Summarizing, under parallel trends and dynamic but homogeneous treatment effects,

an event-study specification with lags of the treatment indicator is needed (and sufficient)
to account for the lagged dynamic effect of previous treatments.

8Equations 6-8 imply E[yit] = ci + αt + Dit[β0 + ∑J
j=1

βjDi,t–j]. Absorbing treatment implies that Dit[β0 +

∑J
j=1

βjDi,t–j] = ∑J
j=0

βjDi,t–j.

11



3.1.3 A local projections estimator

Consider the following k-periods forward treatment effect:

τt(k) ≡ E[yt+k(1) – yt+k(0)|∆Dt = 1] . (10)

Given the assumption of homogeneous effects, this object depends only on k and not
on t, so we can just write τt(k) = τ(k). Moreover, for each given unit, homogeneity implies
yi,t+k(1) – yi,t+k(0) = τ(k)

Observed outcomes are thus given by

yt+k = yt+k(0) + ∆Dtτ(k) +
J

∑
j=1

∆Dt–jτ(k + j) +
k
∑
j=1

∆Dt+jτ(k – j)

Taking expectations conditional on Dt and Dt+k, . . . , Dt+1; Dt–1, . . . , Dt–J,

E[yt+k|Dt; Dt+k, . . . , Dt+1; Dt–1, . . . , Dt–J] =
E[yt+k(0)|Dt; Dt+k, . . . , Dt+1; Dt–1, . . . , Dt–J]+

∆Dtτt(k) + ∑J
j=1

∆Dt–jτ(k + j) + ∑k
j=1

∆Dt+jτ(k – j) ,
(11)

Note that we have expanded the conditioning set to include values of the treatment
indicator referring to future periods. This is to soak up variation in the outcome not
related to the current treatment, but to a possible future treatment that might occur
between t + 1 and t + k, just as including lagged values is meant to soak up variation in
the outcome due to previous treatments.

The parallel trends assumption implies that:

E[yi,t+k(0)|Dit; Di,t+k, . . . , Di,t+1
; Di,t–1

, . . . , Dt–J] =

E[yi,t+k(0)|Di,t+k, . . . , Di,t+1
; Di,t–1

, . . . , Dt–J] = ci + αt+k.

The natural estimating equation is then easily seen to be:

yi,t+k = ci + αt+k + βk LP–DiD∆Di,t +
J+k

∑
j=0

γk
j ∆Di,t+k–j × 1{j ̸= k} + ui,t+k; for k = 0, 1, . . . , K ,

(12)

where 1{j ̸= k} = 0 if j = k. This additional notation plays no role but is convenient
because it allows us to single out βk, which is an estimator of τt(k), as the parameter of
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interest.
This regression therefore controls not only for previously treated units, but also for

units that are treated anytime between t + 1 to t + k and which could pollute estimation
of τ(k). Based on this regression, βk LP–DiD provides a natural estimate of τ(k) under
linearity. It is important to highlight that here we are assuming that treatment of one unit
does not affect outcomes or treatment likelihood in other units.

As is well known from the literature on local projections, starting from Jordà (2005), the
error term ui,t+k may very well be serially correlated (and possibly heterogeneous across
units). However, depending on the setting, two-way clustering, or the Driscoll-Kraay
heteroscedasticity and autocorrelation robust estimator will adjust standard errors for
quite general variance structures.

In applications of the local projections estimator, it is common to employ the long
difference ∆kyit ≡ yi,t+k – yi,t–1

on the left side of the estimating equation, especially
when yit is expressed in logs. A reason is that 100 × βk can then be interpreted as an
approximate percentage change in the outcome at time t + k due to treatment at time t,
facilitating interpretation of effect sizes. This transformation also has the advantage of
mechanically removing unit-specific fixed effects.

From Equation 12 then, we the arrive at the ‘long difference’ expression for the LP-DiD
estimator:

∆kyit =δk
t + βk LP–DiD∆Dit +

J+k

∑
j=0

θk
j ∆Di,t+k–j × 1{j ̸= k} + vk

it ; for k = 0, 1, . . . , K , (13)

where δk
t = αt+k – αt–1 and vk

it = uit+k – uit–1
, while unit-fixed effects ci cancel out as

mentioned earlier. Given the homogeneous treatment effects assumption, the coefficients
θk

j are sufficient to soak up the effect of any “unclean” controls on the long difference.

3.1.4 Adding covariates

Equation 12 and Equation 13 can be easily extended to include exogenous or pre-
determined covariates. In fact, in applications of the local projections estimator, it
is common to include lags of the outcome variable since they soak up serially correlated
variation due to unobservables.

To discuss the role of covariates, we start by stating conditional versions of the no
anticipation and common trends assumptions, where xt is a vector of predetermined and
exogenous variables, possibly including lags of the outcome variable.

Assumption 3. Conditional no anticipation
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As before, suppose treatment is administered at time s. Then:

E[yt(1) – yt(0)|Dt; Dt–1, . . . , Dt–J, xt] = 0, t < s.

Assumption 3 states that treatment at time t is unexpected, given the information available
today, as it does not lead to behavior modification by units before it is administered.

Assumption 4. Conditional common trends

E[yt(0) – y1(0)|Dt; Dt–1, . . . , Dt–J, xt] =

E[yt(0) – y1(0)|Dt–1, . . . , Dt–J, xt]; t = 2, . . . , T.

With the introduction of covariates, the LP-DiD estimating equation becomes:

∆kyit = δk
t + βk LP–DiD∆Dit+

∑J+k
j=0

θk
j ∆Di,t+k–j × 1{j ̸= k} + ρk∆xit + vk

it; for k = 0, 1, . . . , K ,
(14)

where once again τt(k) = τ(k) = βk under linearity. Note that here the assumption of
homogeneous effects allows us to omit interaction terms between the covariates and the
treatment indicator.

In applications, researchers have to choose carefully which variables to include in
xt, as the inclusion of ‘bad controls’ can introduce bias (eg Angrist and Pischke 2009,
pp.64–68). It is generally a good idea to include lagged values of the covariates, i.e., dated
t – 1 or earlier, which are predetermined relative to treatment. Any control variable dated
at time t must be fully exogenous. In general, this will seldom be the case in economic
applications, when variables are jointly determined. Variables dated t + 1 to t + k are
usually not recommended for the same reason. Their values could respond to treatment
and future values of the outcome, which could easily bias estimation. For this reason, we
stick to the notation xt.

When xt includes the lag of the outcome, Nickell (1981) bias can arise from the
presence of yi,t–1

both as a regressor and in the error term, which is equal to ui,t+k – ui,t–1
.

However, two simultaneous conditions must be met for this bias to be problematic. First,
the autoregressive coefficient on the lagged outcome variable must be high. Second, the
time dimension of the dataset must be relatively small. If either of these two conditions
fails, the bias is negligible as Alvarez and Arellano (2003) show. In applications in which
‘Nickell bias’ is a concern, the researcher can nevertheless correct for it by using a simple
split-sample correction, following Chen et al. (2019).
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3.2 Heterogeneous treatment effects

Up to this point we have assumed homogeneous treatment effects, i.e., that the treatment
effect is the same across different treatment cohorts. In this section we extend the analysis
to allow for heterogeneous treatment effects which may vary from one cohort to another.
This case has been the main focus of a growing recent literature (e.g., de Chaisemartin and
D’Haultfœuille 2020; Sun and Abraham 2020; Callaway and Sant’Anna 2020; Goodman-
Bacon 2021).

Define groups (or treatment cohorts) g ∈ {0, 1, . . . , G} as exhaustive, mutually exclu-
sive sets of units. Groups are defined so that all units within a group enter treatment
at the same time. Group g = 0 is the never treated group. The group-specific k-periods
forward average treatment effect for group g is denoted as τg(k). We denote the time
period in which group g enters treatment as pg.

3.2.1 Staggered absorbing treatment with dynamic heterogeneous treatment effects

In this setting units enter treatment at most once and treatment is permanent, but
treatment effects can vary from one group to another and treatment can affect the
outcome over several periods.

For simplicity, we start by abstracting from covariates, imposing assumptions 1 and 2.
Under heterogeneous group-specific effects, equation 11 no longer holds, and instead we
have:

E[yt+k|Dt; Dt+k, . . . , Dt+1; Dt–1, . . . , Dt–J] = E[yt+k(0)|Dt; Dt+k, . . . , Dt+1; Dt–1, . . . , Dt–J]
+ ∑G

g=1
∆Dtτg(k) × 1{t = pg}

+ ∑G
g=1 ∑J

j=1
∆Dt–jτg(k + j) × 1{t = pg + j}

+ ∑G
g=1 ∑k

j=1
∆Dt+jτg(k – j) × 1{t = pg – j} .

(15)
where 1{t = pg} is an indicator equal to 1 if group g enters treatment at time t. Again,
parallel trends implies that E[yt+k(0)] is independent of D and equal to ci + αt+1.

The main insight from Equation 15 is that interaction terms between time indicators
and the leads and lags of the treatment indicator are necessary and sufficient to ‘clean’ the
estimated counterfactual from the bias coming from the influence of previously treated
units.

Hence, an unbiased estimate of each group-specific effect can be obtained from an
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estimate of βk
g for g = 1, ..., G in the following regression:9

∆kyigt = βk
g∆Dgt

+ δk
t

+ ∑J+k
j=0

θk
j ∆Dg,t+k–j × 1{j ̸= k}

+ ∑J+k
j=0

δ
k,j
t ∆Dg,t+k–j × 1{j ̸= k}

+ vk
i,g,t ;

for k = 0, 1, . . . , K .

(17)

If one is not interested in each single group-specific effect, however, it is possible to
estimate an average effect by estimating βLP–DiD

k from the following regression

∆kyit = βk LP–DiD∆Dit
+ δk

t
+ ∑J+k

j=0
θk

j ∆Dit+k–j × 1{j ̸= k}

+ ∑J+k
j=0

δ
k,j
t ∆Dit × 1{j ̸= k}

+ vk
it ;

for k = 0, 1, . . . , K .

(18)

For a given unit (or, equivalently, group), the leads and lags of ∆D are either all
zero (if the unit either enters treatment at t or is not yet treated at t + k) or they are all
zero except one (if the unit has entered treatment before period t or between t + 1 and
t + k). Therefore, what the estimating equation 18 does is to estimate βk LP–DiD using only
observations that are either entering treatment (∆Dit = 1) or ‘clean controls’ (Di,t+k = 0).
Observations that have been treated before t or between t + 1 and t + k do not contribute
to the no-treatment counterfactual change δk

t and do not affect the estimate of βk LP–DiD.
The exact same βk LP–DiD coefficient can thus be estimated from the following simpler

9Sun and Abraham (2020) and Gardner (2021) offer two alternative regression based-solutions that
modify the conventional TWFE specification to address heterogeneity and dynamics. Sun and Abraham
(2020) extend the TWFE event-study specification of equation 9 with a set of interactions terms between the
lags of the treatment indicator and group-specific indicators:

yit = ci + αt +
G

∑
g=1

J

∑
j=0

γg,j

(
1{gi = g} × Dit–j

)
+ uit. (16)

Gardner (2021) proposes a two-stages approach: first one estimates the unit and period effects in the
sample from observations with Dit = 0. The estimated unit and period effects from the first stage are then
subtracted from the outcome, and this ‘adjusted’ outcome is regressed on Dit
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estimating equation:

yi,t+k – yi,t–1
= βk LP–DiD∆Dit } treatment indicator

+ θkUCi,t } UC indicator
+ δk

t (1 + ϕk
t UCi,t) } time effects × UC indicator

+ ek
it ; for k = 0, . . . , K ,

(19)

where UCit is a binary variable equal to one if a unit has either been previously treated
(Di,t–1

= 1) or will be treated between t + 1 and t + k (Dit = 0, Di,t+k = 1), and equal to zero
if the unit is either untreated (Di,t+k = 0) or newly treated (∆Di,t = 1). In other words,
UCit is a binary variable that identifies ‘unclean controls’, that is, units with ∆Dit = 0 but
that have previously entered treatment or will enter it between t + 1 and t + k.

Finally, the same estimate of βLP–DiD
k can also be obtained from the following equiva-

lent regression:

yi,t+k – yi,t–1
= βk LP–DiD∆Dit } treatment indicator

+ δk
t } time effects

+ ek
it ; for k = 0, . . . , K ,

(20)

restricting the sample to observations that are either: treatment

clean control

∆Dit = 1 ,

Di,t+k = 0

(21)

3.2.2 What does LP-DiD identify?

Under the common trends assumption, each βk
g from equation 17 provides an unbiased

estimate of the treatment effect for group g at horizon k. Furthermore, βk LP–DiD from
equations 20-21 (or, equivalently, equations 18 or 19) provides some weighted average of
these group-specific effects.

Indeed, the Frisch-Waugh-Lovell theorem implies that the LP-DiD estimator βk LP–DiD

is a weighted average of all cohort-specific treatment effects, with weights that are always
positive and depend on treatment variance and subsample size. Here we present this
result; a detailed formal derivation is in Appendix A.

First, we need to introduce some further definitions. Recall that we denoted the time
period in which group g enters treatment as pg. For each treatment group g > 0, define
the clean control sample (CCS) for group g at time horizon k (denoted as CCSg,k) as the
set of observations for time t = pg that satisfy condition 21. Therefore CCSg,k includes the

17



observations at time pg for all units that either enter treatment at pg or are still untreated
at pg + k. In other words, CCSg,k includes observations at pg for group g and its clean
controls.

Under the assumption of parallel trends, the LP-DiD estimator βk LP–DiD identifies
the following weighted-average effect:

E(β̂k LP–DiD) = ∑
g ̸=0

ωLP–DiD
g,k τg(k) (22)

where τg(k) is the ATET for treatment-cohort g at the the k-periods horizon.
The weight attributed to each group-specific effect is given by:

ωLP–DiD
g,k =

NCCSg,k
[ngk(nc,g,k)]

∑g ̸=0
NCCSg,k

[ng,k(nc,g,k)]
, (23)

where NCCSg,k
is the number of observations in the clean control sample for group g at

time-horizon k; ng,k = Ng/NCCSg,k
is the share of treated units in the CCSg,k subsample;

and nc,g,k = Nc,g,k/NCCSg,k
is the share of control units in the CCSg,k subsample. See

Appendix A for the formal derivation of these weights.

3.2.3 Introducing covariates under heterogeneous effects

The introduction of covariates, under the conditional version of the no-anticipation and
parallel trends assumptions (Assumptions 3 and 4) means that Equation 19 has to be
expanded once more. Using the same logic of the Kitagawa-Oaxaca-Blinder decompo-
sition, treatment can affect how observables influence the outcome, so that the baseline
regression now becomes:10

yi,t+k – yi,t–1
= βLP–DiD

k ∆Dit } treatment indicator
+ θkUCi,t } UC indicator
+ ρk∆xit } covariates
+ γk (∆xitUCit) } covariates × UC indicator
+ δk

t (1 + ϕk
t UCi,t) } time effects × UC indicator

+ ek
it ; for k = 0, . . . , K .

(24)

10We do not directly investigate the Kitagawa-Oaxaca-Blinder decomposition based on Equation 14 since
it has been described in great detail in the review article by Fortin, Lemieux, and Firpo (2011) and for local
projections in Cloyne, Jorda, and Taylor (2020).
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Or, in the (equivalent) version with the ‘clean controls’ sample restriction,

yi,t+k – yi,t–1
= βLP–DiD

k ∆Dit } treatment indicator
+ ρk∆xit } covariates
+ δk

t } time effects
+ ek

it; for k = 0, . . . , K ,

(25)

restricting the sample to observations that respect condition 21.
Of course, the same remarks made in Section 3.1.4 about the choice of control variables,

their timing, and the possibility of (and possible remedies to) Nickell bias when outcome
lags are included, apply here too.

Appendix A shows that, under linearity assumptions, the inclusion of covariates does
not change the weights of the LP-DiD estimator, which remain the ones of equation 23.
In more general settings, the weights are proportional to the residuals of a regression of
the treatment indicator on time effects and the covariates, as detailed in Appendix A.

3.2.4 Repeated treatment

In many settings, treatment is not absorbing: units can enter and exit treatment multiple
times. Although we will not investigate this case in much detail here, it is useful to briefly
discuss how this situation complicates the analysis.

Our key point here is that the LP-DiD framework offers flexibility to accommodate
the different definitions of the causal effect of interest and the different identification
assumptions that might be appropriate in settings in which treatment can turn on and off.
By appropriately modifying the ‘clean control’ condition (equation 21), the researcher can
implement the approach that is considered most appropriate to the specific application.

First, consider a simple setting, in which the parallel trends assumption holds uncon-
ditionally (Assumption 2) and treatment assignment is not serially correlated. Specifically,
suppose that pit ≡ E(Dit) ⊥ Dit–1

, . . . , Dit–J, where pit is the propensity score. Receiving
treatment at time t does not alter the probability of receiving treatment at times t + 1, ..., T.

In this setting one can recover, for example, the effect of entering treatment for the first
time and staying treated, relative to a counterfactual of remaining untreated, by using the
LP-DiD specification of Equation 20 and defining the clean control condition as treatment

clean control

Dit = Di,t+j = ... = Di,t+k = 1; Di,t–1
= ... = Di,1 = 0 ,

Di,t+k = .... = Dit = Di,t–1
= ... = Di,1 = 0

(26)

In some settings there might not be enough units that have never received treatment
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in each period t, making it impossible to implement condition 26. However, it might
be possible to assume that treatment effect dynamics stabilize after H periods (formally,
τit(H) = τit(H + j) for j ≥ 0) and employ the following clean control condition:

 treatment

clean control

∆Dit = 1, ∆Di,t+k = ... = ∆Dt+1 = ∆Di,t–1
= ... = ∆Di,t–H = 0

∆Di,t+h = 0 for h = –H, . . . , k
(27)

Now consider a more complicated setting, in which treatment assignment is serially
correlated. Specifically, suppose that the propensity score is such that pt(ΩD, x) ≡
P(Dit|Dit–1

, . . . , Dit–J; xt) ̸= P(Dit|xt) = pt(x).
This situation presents the researcher with two choices, neither one more correct

than the other, as Alloza, Gonzalo, and Sanz (2019) highlight. If interest is in isolating
the direct effect of a single treatment, without taking into account any ‘indirect’ effects
through the probability of future treatments, then one must condition on such future
treatments. If interest is in characterizing the overall effect of receiving treatment at t,
inclusive of possible effects through inducing (or discouraging) future treatments, no
such conditioning is necessary. The latter would be a more accurate description of what
is likely to happen in practice, the former is a more accurate description of the treatment
effect as generally conceived in the policy evaluation literature.

Formally, the treatment effect on the treated conditional on subsequent treatments is
defined as:

τit(k) ≡ E
[
yi,t+k(1) – yi,t+k(0)|∆Dit = 1; Di,t+1

, . . . , Di,t+k
]

; for k = 0, . . . , K , (28)

This can be recovered by using a clean control condition like 26 or 27.
Instead, the treatment effect on the treated inclusive of indirect effects through the

probability of future treatment is:

Tit(k) ≡ E[yi,t+k(1) – yi,t+k(0)|∆Dit = 1] for k = 0, . . . , K . (29)

This can be recovered by using a clean control condition that does not condition on
subsequent treatments, for example: treatment

clean control

∆Dit = 1, ∆Di,t–1
= ... = ∆Di,t–H = 0

∆Di,t+h = 0 for h = –H, . . . , 0

(30)
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4 Simulations

We conduct two Monte Carlo simulations to illustrate the performance of the LP-DiD
estimator. We consider a binary staggered treatment, with dynamic and heterogeneous
treatment effects. In the first simulation, treatment is exogenous; the parallel trends
assumption holds and the conventional TWFE model only fails because of heterogeneous
dynamic effects, which lead to the ‘negative weighting’ problem. In the second simulation,
treatment is endogenous; specifically, the probability of receiving treatment depends on
previous outcome dynamics.

We compare the performance of our LP-DiD estimator with (a) a conventional event-
study TWFE specification; (b) the Sun-Abraham estimator; and (c) the Callaway-Sant’Anna
estimator. Results suggest that, unlike the conventional TWFE specification, LP-DiD tracks
well the true effect path even in the presence of heterogeneity. With exogenous treatment,
LP-DiD performs as well as the Sun-Abraham and Callaway-Sant’Anna estimators. When
the probability of treatment depends on lagged outcome dynamics, the ability of LP-DiD
to match on pre-treatment outcomes makes it outperform other estimators.

Setting

Our simulated dataset includes N = 500 units, observed for T = 50 time periods. The
counterfactual outcome Y

0it that a unit would experience if not treated is given by

Y
0it = ρY

0,i,t–1
+ λi + γt + ϵit , (31)

with –1 < ρ < 1, and with λi, γt, ϵit ∼ N(0, 25).
Treatment is binary and staggered (treatment is an absorbing state). The treatment

effect is positive and grows in time for 20 time periods, after which it stabilizes. Moreover,
early adopters have larger treatment effects. Specifically, treatment effect is given by:

βit =


0

α0(t – τi) + α1(t – τi)
2 + α2

(t–τi)2

(τi/τ1)2

α020 + α120
2 + α2

20
2

(τi/τ1)2

if t – τi < 0

if 0 ≤ t – τi < 20

if t – τi ≥ 20 ,

(32)

where τi is the period in which unit i enters treatment (with τi > T if unit i is never
treated during the sample period) and τ1 is the treatment period for the ‘earliest adopter’
in the sample. We set α0 = 2; α1 = 0.05 ; α2 = 0.95.
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Observed outcomes Yit are therefore given by

Yit = Y
0it + βit (33)

Simulation 1: Exogenous treatment timing In simulation 1, we assume that treatment
is exogenous. Specifically, units are randomly assigned to 10 groups, each of size N/10.
One group never receives treatment; the other nine groups receive treatment respectively
at time τ = 11, 13, 15 . . . , 27.

Simulation 2: Endogenous treatment timing In simulation 2, treatment timing is
endogenous: the probability of receiving treatment depends on past outcome dynamics.
Specifically, unit i enters treatment in the first period that satisfies that following condition:

ψ∆Yi,t–1
+ (1 – ψ)ui ≤ θ and 11 ≤ t ≥ 30,

with ψ = 0.6, ui ∼ N(0, 25) and θ = –σ∆Y
0it

. The probability of entering treatment
is therefore higher for untreated units that experience a large negative change in the
outcome variable.

Results

We perform 200 replications of each of our two simulations. We apply four estimators to
our synthetic data:

• A conventional two-way-fixed-effects model, using an event-study specification with
leads and lags of a treatment indicator.

• Our LP-DiD estimator.

• The Sun-Abraham estimator.

• The Callaway-Sant’Anna estimator.

For each estimator, we compare the distribution of the estimated ATE with the
(equally-weighted) true ATE.

Results from the simulation with exogenous treatment timing (Simulation 1) are
presented in Figure 1 and Table 1. The conventional event-study TWFE specification does
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an extremely poor job in our setting, due to the heterogeneity of treatment effects.11 Our
LP-DiD estimator, instead, tracks quite well the average true effect (Figure 1). Table 1,
which reports the Root Mean Squared Error of each estimator at different time horizons,
shows that in this setting the LP-DiD estimator does at least as well as the Sun-Abraham
and Callaway-Sant’Anna estimators.

Results from the simulation with endogenous treatment timing (Simulation 2) are
reported in Figure 2 and Table 2. In applying our LP-DiD estimator in this setting, we
include one lag of the change in the outcome variable as a control. While the Sun and
Abraham (2020) and Callaway and Sant’Anna (2020) estimators do allow for the inclusion
of time-invariant control variables, there is no straightforward way to control for lags of
the outcome in their specification, as these estimators are not designed to condition on
pre-determined time-varying covariates.

The ability of the LP-DiD estimator to match on pre-treatment outcome dynamics in
a straightforward way, allows it to outperform other estimators in the presence of this
particular failure of the parallel-trends assumption. The LP-DiD estimator tracks quite
well the true dynamic effect also in this setting (Figure 2) and it also has the lowest RMSE
(Table 2).

Computational speed

We also employ our simulated dataset to assess quantitatively the computational advan-
tage of LP-DiD relative to other recently proposed estimators. We record the computation
time required for estimating the treatment effect path in a single simulation of our syn-
thetic dataset with exogenous treatment timing. We use the STATA software on a laptop
with 2.80 GHz Quad-core Intel i7 Processor and 16 GB of Ram. The LP-DiD estimator
runs in 1.2 seconds, similar to the (biased) event-study TWFE estimator (1.04 seconds) and
more than 100 times faster than the Callaway and Sant’Anna (2020) and Sun and Abraham
(2020) estimators, that in our setting require respectively 144.6 and 198.5 seconds.

5 Empirical Applications

To illustrate the use of the LP-DiD estimator in practice, we present two empirical ap-
plications. In the first, we use the LP-DiD estimator to estimate the effect of banking

11The fact that in our simulated DGP the size of the effect is a function of the date of treatment makes the
‘negative weighting’ problem particularly severe, and therefore the performance of the TWFE specification
particularly poor. We choose this DGP in order to test the performance of our estimator in a setting in
which the flaws of the conventional estimator are particularly severe.
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deregulation laws on the labor share in US States, replicating Leblebicioğlu and Wein-
berger (2020). In the second, we replicate the Acemoglu, Naidu, Restrepo, and Robinson
(2019) country-panel study of the effect of democracy on economic growth.

5.1 Credit and the labor share

We replicate the Leblebicioğlu and Weinberger (2020) analysis of the effect of banking
deregulation on the labor share in US states.

Starting in the late 1970s, US states began removing restrictions on the ability of out-of-
state banks to operate in the state (interstate banking deregulation) and on the ability of
in-state banks to open new branches (intra-state branching deregulation). Leblebicioğlu
and Weinberger (2020) estimate the effect of both inter-state and intra-state banking
deregulation laws on the labor share of value added. They conclude that inter-state
banking deregulation has a sizable negative effect on the labor share, while they find no
effect of intra-state branching deregulation.

The dataset covers the 1970–1996 period. (In 1997, inter-state banking deregulation was
imposed in all states by federal law.) Figure 3, which reproduces Figure 1 in Leblebicioğlu
and Weinberger (2020), displays the share of US states with a liberalized banking sector.

5.1.1 Conventional TWFE specifications

We first consider the following static TWFE specification for the effect of banking deregu-
lation laws, which replicates Leblebicioğlu and Weinberger (2020)’s baseline specification:

LSst = βBankBankst + βBranchBranchst + ηXst + αs + αt + ϵst , (34)

where s indexes states, t indexes years, and LS is the labor share. Branchst and Bankst are
binary indicators equal to one if a state has adopted intrastate branching or interstate
banking deregulation.

To assess possible pre-trends and lagged effects, Leblebicioğlu and Weinberger (2020)
also estimate the following event-study TWFE specification:

LSst =
9

∑
q=–9

βBank,t+q∆Banks,t+q +
9

∑
q=–9

βBranch,t+q∆Branchs,t+q + ηXst + αs + αt + ϵst . (35)
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5.1.2 Forbidden comparisons in the TWFE specifications

Given the staggered rollout of banking deregulation laws across US states, the TWFE
specifications of equations 34 and 35 suffer from the issues highlighted by recent studies
(Goodman-Bacon, 2021; de Chaisemartin and D’Haultfœuille, 2020). Earlier liberalizers
are used as controls for states that liberalize later on. Specifically, the specifications in
equations 34 and 35 produce a weighted average of two types of comparisons: (1) newly
treated states vs. not-yet treated states and (2) newly treated states vs. earlier treated
states (Goodman-Bacon, 2021).

We employ the Goodman-Bacon (2021) diagnostic to decompose the TWFE estimate
from equation 34 into these two types of comparisons. While ‘unclean’ 2x2 comparisons
with earlier treated units as controls contribute to (and potentially bias) the TWFE
estimates of both the policies studied, the estimates of the effect of intrastate branching
deregulation are affected most severely. The static TWFE estimator of the effect of
interstate banking deregulations assigns a overall weight of 63% to ‘clean’ comparisons of
earlier treated versus not-yet treated states, and 36% to ‘unclean’ comparisons that use
earlier treated units as controls. For the estimates of the effect of intrastate branching
deregulations, the problem is much more severe: ‘clean’ comparisons receive a weight
of only 30%. The remaining 70% is accounted for by two types of unclean comparisons:
later treated units versus earlier treated units (23%) and treated units versus units that
are already treated in the first period of the panel (47%).

Figure 4 displays the results of the Goodman-Bacon (2021) decomposition diagnostic.
The figure plots each constituent 2x2 comparison that contributes to the static TWFE
estimates of equation 34, with its weight on the horizontal axis and its estimate on
the vertical axis. The graph suggests that the estimates of the effects of branching
deregulations are driven by a few ‘unclean’ comparisons – those involving states that
deregulated before 1970 – that receive a very large weight. Notably, for both types of
policies, clean comparisons produce overwhelmingly negative coefficients, while the
unclean ones tend to bias the coefficients upwards.

5.1.3 LP-DiD specification

In order to avoid the biases of the conventional TWFE specifications, and to allow for
matching based on pre-treatment outcome dynamics, we re-estimate the effect of banking
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deregulation laws using the following LP-DiD specification:12

LSs,t+k – LSs,t–1 = αt + βLP–DiD
k ∆Banks,t +

M
∑

m=1

γk
m∆LSs,t–m +

M
∑

m=1

ηk
mXs,t–m + es,t+k (36)

restricting the sample to observation that are either: treatment

control

∆Banks,t = 1

Banks,t+k = 0

(37)

5.1.4 Results

Figure 5 displays results from the static TWFE specification of equation 34, while Figure
6 displays results from the event-study TWFE specification of equation 35. These results
replicate the estimates reported in Table 2 and Figure 2 of Leblebicioğlu and Weinberger
(2020). They suggest that the liberalization of inter-state banking has a sizable negative
effect on the labor share, although they also show some (relatively small) pre-treatment
trend. Instead, the estimated effects of intra-state branching deregulation on the labor
share are positive, small and very imprecise.

Figure 7 displays results from the LP-DiD estimator with clean controls. The negative
effect of inter-state banking deregulation on the labor share is confirmed, including when
controlling for pre-treatment outcome dynamics. Estimates of the effect of intra-state
branching deregulation, instead, change dramatically. After addressing the bias of the
TWFE estimator by excluding ‘unclean’ comparisons, the estimated effect of inter-state
branching deregulation on the labor share is negative and of similar size as that of
inter-state banking deregulation.

5.2 Democracy and economic growth

Our second empirical application estimates the effect of democracy on economic growth,
replicating the analysis in Acemoglu, Naidu, Restrepo, and Robinson (2019).

The dataset covers 175 countries from 1960 to 2010. The treatment indicator is a
binary measure of democracy, which Acemoglu, Naidu, Restrepo, and Robinson (2019)
build from several datasets to mitigate measurement error. The main outcome variable

12Given that treatment is absorbing in this data, and there is a sufficient number of not-yet treated States
at all points in time, we employ the version of the clean control condition which uses only untreated units
as controls.
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of interest is the log of GDP per capita, obtained from the World Bank Development
Indicators.

Three features of this application make it particularly meaningful and interesting.
First, there is potential for negative weighting: fixed effects regression would use older
democracies as controls for new democracies. Second, treatment is non-absorbing:
democracies can slide back into autocracy, and there are indeed multiple instances of
reversals in the data. Third, controlling for pre-treatment outcome dynamics is crucial,
since there is evidence of selection: Acemoglu, Naidu, Restrepo, and Robinson (2019)
show that democratisation tends to be preceded by a dip in GDP per capita.

5.2.1 Dynamic panel specifications

The baseline results in Acemoglu, Naidu, Restrepo, and Robinson (2019) are obtained
from the following dynamic fixed effects specification:

yct = βDct +
p

∑
j=1

γjyc,t–j + αc + δt + ϵct , (38)

where c indexes countries, t indexes years, y is the log of GDP per capita and D is the
binary measure of democracy.

Lags of GDP per capita are included to address selection bias, and in particular the
fact that democratizations tend to be preceded by a decline in GDP per capita.

Estimated coefficients from eq. 38 are then used to build a impulse response function
for the dynamic effect of GDP. These estimates also allow to derive the cumulative

long-run effect of a permanent transition to democracy, given by β̂

1–∑
p
j=1

γ̂j
.

This dynamic fixed effects specification, however, might suffer from bias if treatment
effects are dynamic and heterogeneous, as highlighted in the recent literature.

5.2.2 LP-DiD specifications

Consider the following LP-DiD specification for estimating the effect of democracy on
growth:

yc,t+k – yc,t–1 = βk∆Dct + δk
t +

p

∑
j=1

γk
j yc,t–j + ϵct . (39)
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restricting the sample to: democratizations

clean controls

Dit = 1, Di,t–1
= 0

Di,t+h = 0 for – H ≤ h ≤ k .
(40)

In words, for all years t and for each time-horizon k, treated units are countries that de-
mocratize at t, and control units are countries that have been non-democracies continually
from t – H to t + k.

This is an example of how the LP-DiD framework can be easily adapted to a setting
in which treatment is not absorbing, and treatment reversals (in this case, democracies
sliding back into autocracy) are possible.13

In a section of their analysis, Acemoglu, Naidu, Restrepo, and Robinson (2019) employ
a semiparametric local projections specification that can be seen as a special version of
the LP-DiD estimator above. Specifically, they estimate equation 39 with the following
condition for the control group: Dit = Di,t–1

= 0. Their specification can thus be seen as an
LP-DiD specification, in which the time-window for defining admissible (‘clean’) control
units is only one period (H = 1 in equation 40), and treatment status between t + 1 and
t + k is not constrained.

Seeing the Acemoglu, Naidu, Restrepo, and Robinson (2019) semiparametric specifi-
cation as a version of LP-DiD provides a useful novel perspective on their analysis and
what possible deviations from their specification should be considered. Acemoglu, Naidu,
Restrepo, and Robinson (2019) exclude from the control group continuing democracies
and countries that transition out of democracy at time t. Countries that experience a
transition to autocracy at time t – 1 or earlier are still used as controls. Moreover, also
countries that democratize between time t + 1 and t + k are included in the control group.

This perspective suggests testing robustness to stricter definitions of the control group.
For example, consider Argentina, which democratized in 1973 and became a dictatorship
again in 1976. The Acemoglu, Naidu, Restrepo, and Robinson (2019) approach means
that Argentina contributes to the counterfactual for measuring the effect of (among
others) the 1978 democratization of Spain. It seems natural to consider an alternative
specification that excludes Argentina from the counterfactual for countries that (like
Spain) democratize shortly after 1973–1976, reflecting the concern that the country might
have experienced prolonged dynamic effects from the 1973–1976 transitions in and out

13A different possible choice would have been to define the control group as ∆Di,t+h = 0 for – H ≤ h ≤ k.
This would have meant allowing countries that have been continually a democracy from t – H to t + k in
the control group, under the assumption that dynamic effects of democratization have stabilized for those
countries, and therefore their democracy status affects the level but not the dynamics of output.
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of democracy. Moreover, in measuring the effect of the 1978 democratization of Spain
on GDP growth in the subsequent 10 years, Acemoglu, Naidu, Restrepo, and Robinson
(2019) allow Ecuador, which was a nondemocracy in 1977 and 1978 but democratized in
1979, to be part of the control group. It appears useful to test robustness to exclusion of
countries that democratize between t + 1 and t + k from the control group.

5.2.3 Results

Figure 8 displays the impulse response function from the estimation of the dynamic panel
model of equation 38. This reproduces the baseline results of Acemoglu, Naidu, Restrepo,
and Robinson (2019). The implied long-run effect of democracy on growth is 21 percent
with a standard error of 7 percent.

Figure 9 displays results from LP-DiD specifications (equation 39). We present four
LP-DiD specifications: The first follows Acemoglu, Naidu, Restrepo, and Robinson (2019)
in setting a time-window of just one period for defining clean controls (H = 1) and
not constraining treatment status between t and t + k in the control group; the other
three apply the clean-control condition in equation 40, respectively with time-windows
H = 1, 20 and 40.

Broadly speaking, the result of a positive effect of democracy on GDP per capita
appears robust to stricter definitions of the control group. However, at longer time
horizons (25 to 30 years after democratization), the effect declines more and is much more
uncertain in the specifications with a stricter definition of the control group. Interestingly,
the time-window H makes little difference in this application, while what makes some
difference (at least at longer time horizons) is excluding from the control group countries
that democratize between t and t + k. This difference emerges at long time horizons
because with large k the number of countries that democratize between t + 1 and t + k can
become substantial, making the trade-off between a cleaner control group and statistical
power more important.

6 Conclusion

We propose a simple, transparent, easy and fast technique for difference-in-differences
estimation with dynamic heterogeneous treatment effects. Our LP-DiD estimator has
several advantages and nest many existing estimators. It does not suffer from the negative
weighting problem, and indeed can be implemented with any weighting scheme the
investigator desires. Simulations demonstrate the good performance of the LP-DiD
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estimator and empirical exercises illustrate its use.
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Figure 1: Results from Montecarlo simulation – Exogenous Treatment Scenario
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Notes: Average estimates and 95% and 5% percentiles from 200 replications.
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Figure 2: Results from Montecarlo simulation – Endogenous Treatment Scenario

-50

0

50

100

150

Tr
ea

tm
en

t E
ffe

ct

-5 0 5 10
Event Time

Full Range of Treatment Effects
Equally-weighted ATE
TWFE Estimate
5th and 95th pct of TWFE Estimate

-50

0

50

100

150

Tr
ea

tm
en

t E
ffe

ct

-5 0 5 10
Event Time

Full Range of Treatment Effects
Equally-weighted ATE
LP-DiD Estimate
5th and 95th pct of LP-DiD Estimate

-50

0

50

100

150

Tr
ea

tm
en

t E
ffe

ct

-5 0 5 10
Event Time

Full Range of Treatment Effects
Equally-weighted ATE
Callaway-Sant'Anna Estimate
5th and 95th pct of C-S Estimate

-50

0

50

100

150

Tr
ea

tm
en

t E
ffe

ct

-5 0 5 10
Event Time

Full Range of Treatment Effects
Equally-weighted ATE
Sun-Abraham Estimate
5th and 95th pct of S-A Estimate

Notes: Average estimates and 95% and 5% percentiles from 200 replications. To filter out variation in
estimates due to variation in the true treatment effect across replications, we subtract from each estimate
the true effect, and then add back the average true effect across all replications. This adjustment is in order
because in the ‘endogenous treatment’ setting, the average treatment effect is not deterministic.
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Figure 3: Banking deregulation in US States

0

.2

.4

.6

.8

1

%
 o

f S
ta

te
s 

w
ith

 P
ol

ic
y

1970 1975 1980 1985 1990 1995
Year

% of States that deregulated inter-state banking
% of States that deregulated intra-state branching

33



Figure 4: Goodman-Bacon (2021) decomposition diagnostic for the static TWFE specifica-
tion of equation 34
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Figure 5: Effect of banking deregulation on the labor share: static TWFE estimates
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Figure 6: Effect of banking deregulation on the labor share: event-study TWFE estimates
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Figure 7: Effect of banking deregulation on the labor share: LP-DiD Estimates with clean
controls
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Figure 8: Effect of democracy on growth - dynamic panel estimates
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Figure 9: Effect of democracy on growth - LP-DiD estimates
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Table 1: Root Mean Squared Error (RMSE) – Exogenous Treatment Scenario

Event time Event-Study
TWFE

LP-DiD Sun-Abraham Callaway-
Sant’Anna’

-5 15.34 2.21 2.24 1.54

-4 9.67 2.08 2.35 1.56

-3 7.85 1.76 1.7 1.52

-2 3.32 1.55 1.78 1.49

0 6.2 1.58 1.82 1.61

1 8.43 1.88 1.8 1.92

2 14.46 2.14 2.37 2.29

3 17.44 2.3 2.21 2.41

4 23.18 2.56 2.6 2.62

5 27.14 2.72 2.61 2.87

6 32.49 2.92 3.16 3.17

7 38.03 3.19 3.35 3.45

8 42.33 3.67 3.94 3.91

9 49.61 4.15 4.2 4.23

10 52.65 4.39 4.7 4.7

Notes: RMSE from 200 replications.

Table 2: Root Mean Squared Error (RMSE) – Endogenous Treatment Scenario

Event time Event-Study
TWFE

LP-DiD Sun-Abraham Callaway-
Sant’Anna’

-5 40.29 2.15 24.94 3.28

-4 36.6 1.99 28.28 4.99

-3 38.27 1.73 34.47 7.86

-2 46.07 0 45.87 13.21

0 9.73 1.81 11.15 12.05

1 13.17 2.01 16.36 16.39

2 13.38 2.32 19.05 18.5
3 12.18 2.41 20.26 19.48

4 10.63 2.4 20.74 20.01

5 10.31 2.82 21.18 20.28

6 11.3 3.24 21.53 20.61

7 14.59 4.29 21.45 20.68

8 19.73 5.61 21.37 20.69

9 26.82 7.37 21.37 20.81

10 34.36 9.37 21.37 20.8

Notes: RMSE from 200 replications.
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Appendix

A Weights of the LP-DiD estimator
This appendix derives the weights assigned to each group-specific ATE by the LP-DiD estimator,
first in a baseline version without control variables (equations 22 and 23 in the main text) and
then in more general specifications with control variables.

A.1 Baseline version without control variables
Assumptions about the DGP

Assume that parallel trends and no anticipation hold unconditionally (Assumptions 1 and 2 in the
main text). Specifically, assume that the DGP satisfies

E(yit|Dit = 0) = αi + αt , (1)

where i indexes units, t indexes time, D is a binary treatment indicator, αi is a unit-specific fixed
effect, and αt is a common time-varying effect.

Therefore actual outcomes are equal to

yit = αi + αt + τitDit + uit , (2)

where τit = E(yit(1) – yit(0)) is the treatment effect for unit i at time t and E(ui|i, t, D) = 0. Treatment
is binary, staggered and absorbing. All units are untreated in the first period.

This DGP implies that the observed long-difference ∆yi,t+k = yi,t+k – yi,t–1
is equal to

∆yi,t+k = δk
t + τi,t+kDi,t+k – τi,t–1

Di,t–1
+ vk

i,t , (3)

where δk
t = αt+k – αt and vk

it = ui,t+k – ui,t–1
.

LP-DiD specification

Consider the following LP-DiD specification with clean controls:

∆yi,t+k = δk
t + βk LP–DiD∆Dit + ϵk

it , (4)

restricting the sample to observations that are either:{
treated

clean control
∆Dit = 1 ,
Di,t+k = 0 .

(5)

Here, βk LP–DiD is the LP-DiD estimate of the average k–periods treatment effect.

Derivation of the weights
As in the main text, we define groups (or treatment cohorts) g ∈ {0, 1, 2, ..., G} as exhaustive
and mutually exclusive sets of units. Groups are defined so that all units within a group enter
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treatment in the same period; two units belonging to different groups enter treatment in two
different periods; group g = 0 is the never-treated group. Denote the time period in which group
g enters treatment as pg.

For each treatment group g > 0, define the clean control sample (CCS) for group g at time
horizon k (denoted as CCSg,k) as the set of observations for time t = pg that satisfy condition 5.
Therefore CCSg,k includes the observations at time pg for all units that either enter treatment at pg
or are still untreated at pg + k. In other words, CCSg,k includes observations at pg for group g and
its clean controls.

By definition of groups and CCSs, each observation that satisfies condition 5 enters into one
and only one CCS. Therefore, the unbalanced panel dataset defined by the clean control condition
in 5 can always be reordered as a ‘stacked’ dataset, in which observations are grouped into
consecutive and non-overlapping CCSs.

Moreover, for any observation {i, t} ∈ CCSg,k, we have ∆Di,t = ∆Di,pg = Di,pg . This follows
from the fact that for any {i, t} ∈ CCSg,k, we have Di,t–1

= Di,pg–1
= 0 by virtue of the clean control

condition.
Define event indicators as a set of G binary variables that identify the CCS that an observation

belongs to. For each treatment group g > 0, the corresponding event indicator is equal to 1

if {i, t} ∈ CCSg,k and 0 otherwise. By definition of treatment groups and CCCs, these event
indicators are fully collinear with time indicators.

By the Frisch-Waugh-Lovell theorem,

E
(

βk LP–DiD
)

=
∑G

j=1
∑i∈CCSj,k

[
∆̃Di,pj

E
(

∆yi,pj+k

)]
∑G

j=1
∑i∈CCSj,k

∆̃D
2

i,pj

, (6)

where ∆̃Di,pg is the residual from a regression of ∆D on time indicators in the sample defined by
condition 5.

This residualized treament dummy for unit i at time pg is equal to

∆̃Di,pg = ∆Di,pg –
∑i∈CCSg,k

∆Di,pg

NCCSg,k

= Di,pg –
∑i∈CCSg,k

Di,pg

NCCSg,k

= Di,pg –
Ng

NCCSg,k

, (7)

where NCCSg,k
is the number of observations belonging to CCSg,k, and Ng is the number of

observations belonging to group g. For all observations belonging to the same group g > 0, we

have ∆̃Di,pg = ∆̃Dg,pg = 1 – Ng
NCCSg,k

The first equality in 7 follows from the full collinearity between time indicators and event
indicators (defined as above); the second and third equalities follow from the definitions of groups
and CCCs.
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Given the parallel trends assumption of equations 1 and 2, we have

E
(

βk LP–DiD
)

=
∑G

j=1
∑i∈CCSj,k

[
∆̃Di,pj

E
(

∆yi,pj+k

)]
∑G

j=1
∑i∈CCSj,k

∆̃D
2

i,pj

=
∑G

j=1
∑i∈CCSj,k

[
∆̃Di,pj

E
(

τi,pj+kDi,pj+k

)]
∑G

j=1
∑i∈CCSj,k

∆̃D
2

i,pj

=
∑G

j=1
∑i∈CCSj,k

[
∆̃Di,pj

E
(

τi,pj+kDi,pj

)]
∑G

j=1
∑i∈CCSj,k

∆̃D
2

i,pj

= ∑G
j=1

∑i∈CCSj,k

∆̃Di,pj

∑G
j=1

∑i∈CCSj,k
∆̃D

2

i,pj

E
(

τi,pj+kDi,pj

)

= ∑G
j=1

∑i∈j
∆̃Di,pj

∑G
j=1

∑i∈j ∆̃D
2

i,pj

τi,pj+k

= ∑g ̸=0

Ng∆̃Dg,pg

∑g ̸=0
Ng∆̃D

2

g,pg
τg,pg+k

= ∑g ̸=0
ωLP–DiD

g,k τg(k) ,

where the weights are given by

ωLP–DiD
g,k =

Ng∆̃Dg,pg

∑g ̸=0
Ng∆̃D

2

g,pg

=
Ng

(
1 – Ng

NCCSg,k

)
∑g ̸=0

Ng

(
1 – Ng

NCCSg,k

) =
NCCSg,k

[ngk(nc,g,k)]

∑g ̸=0
NCCSg,k

[ng,k(nc,g,k)]
, (8)

where ng,k = Ng
NCCSg,k

is the share of treated units in the CCSg,k subsample; and nc,g,k =
Nc,g,k

NCCSg,k
is the

share of control units in the CCSg,k subsample. Recall that τg(k) was defined in the main text as
the group-specific k-periods forward average treatment effect for group g.

A.2 Weights with control variables
What are the weights of the LP-DiD estimator in a more general specification that includes
exogenous and pre-determined control variables? If covariates have a linear and homogenous
effect on the outcome, and parallel trends holds conditional on covariates, it is possible to show
that the weights assigned to each group-specific effect by the LP-DiD estimator are unchanged by
the inclusion of exogenous or pre-determined covariates. In more general settings, the weights
are proportional to the residuals of a regression of the treatment indicator on time effects and the
covariates.

To explore the role of covariates, we now assume that no anticipation and parallel trends hold
after conditioning on a set of observable exogenous or pre-determined covariates (Assumptions 3

and 4 in the main text).
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A.2.1 Covariates with linear and homogeneous effects

The DGP Assume that covariates have a linear and homogeneous effect on the outcome.
Specifically, assume the following DGP:

∆yi,t+k = δk
t + ρk∆xit + τi,t+kDi,t+k – τi,t–1

Di,t–1
+ vk

i,t , (9)

LP-DiD specification with covariates The LP-DiD estimating equation with clean controls
and control variables is

yi,t+k – yi,t–1
= βLP–DiD

k ∆Dit } treatment indicator
+ ρk∆xit } covariates
+ δk

t } time effects
+ ek

it; for k = 0, . . . , K ,

(10)

restricting the sample to observations that respect condition 5.

Weights derivation All the definitions of groups and clean control subsamples and indicators,
and the results related to those, that have been described in Section A.1 above, still hold.

The LP-DiD specification of Equation 10 can be rewritten as

∆yi,t+k – ρk∆xit = βLP–DiD
k ∆Dit + δk

t + ek
it;

Therefore, by the Frisch-Waugh-Lovell theorem, we have

E
(

β̂ LP–DiD
k

)
=

∑G
j=1

∑i∈CCSj,k

[
∆̃Di,pj

E
(
∆yi,t+k – ρ̂k∆xit

)]
∑G

j=1
∑i∈CCSj,k

∆̃D
2

i,pj

, (11)

where ∆̃Di,pg is the residual from a regression of ∆D on time indicators in the sample defined
by condition 5.

The equivalence of eq. 7 above still holds; therefore, for all observations belonging to the same

group g > 0, we have ∆̃Di,pg = ∆̃Dg,pg = 1 – Ng
NCCSg,k

Given the assumptions about the DGP, we have

E
(

β LP–DiD
k

)
=

∑G
j=1

∑i∈CCSj,k

[
∆̃Di,pj

E(∆yi,t+k–ρ̂k∆xit)
]

∑G
j=1

∑i∈CCSj,k
∆̃D

2

i,pj

=
∑G

j=1
∑i∈CCSj,k

[
∆̃Di,pj

E
(

τi,pj+kDi,pj+k

)]
∑G

j=1
∑i∈CCSj,k

∆̃D
2

i,pj

This is the same expression as in the case of unconditional parallel trends and no covariates
analyzed above, and it therefore leads to the same result:

E
(

β LP–DiD
k

)
= ∑g ̸=0

ωLP–DiD
g,k τg(k)

where the weights are given by equation 8 above.
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A.2.2 More general setting

Now consider a more general setting, in which Assumptions 3 and 4 from the main text hold,
but we do not restrict the effect of covariates to be linear or homogeneous. In this more general
setting, the Frisch-Waugh-Lovell theorem implies

E
(

βk LP–DiD
)

=
∑G

j=1
∑i∈CCSj,k

[
∆̃D

c
i,pj

E
(

∆yi,pj+k

)]
∑G

j=1
∑i∈CCSj,k

(
∆̃D

c
i,pj

)
2

, (12)

where ∆̃D
c
i,pg = ∆̃D

c
g,pg is the residual from a regression of ∆D on time indicators and the control

variables xit in the sample defined by condition 5.
The weights are thus given by

ωc LP–DiD
g,k =

Ng∆̃D
c
g,pg

∑g ̸=0
Ng

(
∆̃D

c
g,pg

)
2

, (13)
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