A Macroeconomic Perspective on Taxing Multinational Enterprises

Sebastian Dyrda

Guangbin Hong

Joseph B. Steinberg

University of Toronto

NBER Summer Institute

Macro Public Finance

July 21, 2022

Tax planning strategies of **Multinational Enterprises (MNE)** that exploit gaps in tax rules to:

- artificially shift profits to low or no-tax locations with little or no economic activity
- erode tax bases through deductible payments such as interest or royalties

Tax planning strategies of **Multinational Enterprises (MNE)** that exploit gaps in tax rules to:

- artificially shift profits to low or no-tax locations with little or no economic activity
- erode tax bases through deductible payments such as interest or royalties

The magnitude of BEPS:

- **OECD estimate: \$100-\$240 billion** global revenues annually, equivalent of **4-10 percent** of global corporate income tax revenues
- Tørsløv, Wier, and Zucman (2020): 36% of multinational profits were shifted to tax havens globally in 2015
- Guvenen et al. (2021): 37% of income recorded by US multinationals' foreign affiliates was shifted out of the US

Two ways of reallocation to the affiliates in low-tax jurisdictions:

- **IP** sale: parent loans affiliate money to buy IP outright
- Cross licensing: affiliate pays for portion of parent's R&D expenses

Reallocation often occurs at price **below IP's "market value**", violating **arm's length principle**.

Source: Neubig and Wunsh-Vincent (2017)

An agreement to address BEPS problem:

- signed in October 2021 by 137 countries and tax jurisdictions
- signatories account for 90% of global GDP
- to be implemented in 2023

Two-Pillar Solution:

- 1. **Pillar One**: Profit allocation and nexus.
 - **25%** of profits above a set profit margin (residual profits) would be reallocated to the market jurisdictions where the MNE's **users and customers** are located
- 2. Pillar Two: Global minimum taxation.
 - minimum effective corporate profits tax rate of 15%

- 1. Analytically characterize the impact of transfer pricing and profit shifting on production inputs in simplified model.
- 2. Develop a general-equilibrium macroeconomic framework that reflects the key features of the current international tax regime.
- 3. Quantify the effects of Two-Pillar Solution proposed by the OECD.

- 1. **Analytically characterize** the impact of transfer pricing and profit shifting on production inputs in simplified model.
- 2. Develop a general-equilibrium macroeconomic framework that reflects the key features of the current international tax regime.
- 3. Quantify the effects of Two-Pillar Solution proposed by the OECD.

Findings:

- 1. **Key trade-off**: profit shifting erodes high-tax countries' tax bases, but incentivizes the MNEs to invest in the intangible capital.
- Shutting down profit shifting: increases corporate tax revenue by 0.18% of GDP and reduces GDP by 0.41% in North America.
- 3. Global Minimum Corporate Tax: increases corporate tax revenue by 0.11% of GDP and reduces GDP by 0.12% in North America.

- 1. Simple model of profit shifting.
- 2. Quantitative model.
- 3. Taking the model to the data.
- 4. Inspecting the economic mechanisms.
- 5. Quantifying the global minimum corporate income tax.

SIMPLE MODEL OF PROFIT SHIFTING

Environment

- MNE with its parent division in i operates in K locations.
- Location $k \in \{1, \dots, K\}$:
 - Population: N_k
 - Productivity: A_k
 - Corporate profit tax rate: au_k
 - Prices: p_k, w_k
- Technology:

$$F(z, l_k) = A_k \left(N_k \mathbf{z} \right)^{\phi} l_k^{\gamma}$$

- **z** is **non-rival**, intangible capital
- $-l_k$ is labor input
- DRS: $(\gamma + \phi) < 1$

Free Transfer (FT): z transferred at no cost across locations:

$$\pi_{i} = p_{i} \left(A_{i} \left(N_{i} z \right)^{\phi} l_{i}^{\gamma} \right) - w_{i} l_{i} - p_{i} z$$
$$\pi_{k} = p_{k} \left(A_{k} \left(N_{k} z \right)^{\phi} l_{k}^{\gamma} \right) - w_{k} l_{k}, \quad \forall k \neq i$$

Free Transfer (FT): z transferred at no cost across locations:

$$\pi_{i} = p_{i} \left(A_{i} \left(N_{i} z \right)^{\phi} l_{i}^{\gamma} \right) - w_{i} l_{i} - p_{i} z$$
$$\pi_{k} = p_{k} \left(A_{k} \left(N_{k} z \right)^{\phi} l_{k}^{\gamma} \right) - w_{k} l_{k}, \quad \forall k \neq i$$

Transfer pricing (TP): parent division retains legal ownership of z and licenses the rights to use it to its foreign affiliates.

$$\begin{aligned} \pi_i^{TP} &= \pi_i + \sum_{k \neq i} q_k z \\ \pi_k^{TP} &= \pi_k - q_k z \quad \forall k \neq i \end{aligned}$$

where

$$\boldsymbol{q_k} \equiv \underbrace{\phi p_k N_k \left(A_k \left(N_k z \right)^{\phi - 1} l_k^{\gamma} \right)}_{\boldsymbol{\gamma}}$$

Marginal Revenue Product of \boldsymbol{z}

Profit Shifting (PS):

$$\pi_{i}^{PS} = \pi_{i} + z \left[\varphi \lambda \sum_{k} q_{k} - \mathcal{C}(\lambda) \sum_{k} q_{k} \right]$$
$$\pi_{i^{*}}^{PS} = \pi_{i^{*}} + z \left[-\varphi \lambda \sum_{k} q_{k} \right]$$
$$\pi_{k}^{PS} = \pi_{k} \quad \forall k \neq i, i^{*}$$

- $\lambda \in [0, 1]$ a fraction of intangible capital z transferred to the tax haven
- $\mathcal{C}(\lambda)$ is the cost of shifting the fraction λ
- $\varphi \leq 1$ is a markdown below the competitive price of z
- i^* is the tax haven i.e. : $\tau_{i^*} = \min \{\tau_1, ..., \tau_K\}$

Profit Shifting (PS):

$$\pi_{i}^{PS} = \pi_{i} + z \left[\varphi \lambda \sum_{k} q_{k} - \lambda q_{i} - \mathcal{C} (\lambda) \sum_{k} q_{k} \right]$$
$$\pi_{i^{*}}^{PS} = \pi_{i^{*}} + z \left[\lambda \sum_{k \neq i^{*}} q_{k} - \varphi \lambda \sum_{k} q_{k} \right]$$
$$\pi_{k}^{PS} = \pi_{k} - \lambda q_{k} z \quad \forall k \neq i, i^{*}$$

- $\lambda \in [0, 1]$ a fraction of intangible capital z transferred to the tax haven
- $\mathcal{C}(\lambda)$ is the cost of shifting the fraction λ
- $\varphi \leq 1$ is a markdown below the competitive price of z
- i^* is the tax haven i.e. : $\tau_{i^*} = \min \{\tau_1, ..., \tau_K\}$

Profit Shifting (PS):

$$\pi_i^{PS} = \pi_i + z \left[\varphi \lambda \sum_k q_k - \lambda q_i + (1 - \lambda) \sum_{k \neq i} q_k - \mathcal{C}(\lambda) \sum_k q_k \right]$$
$$\pi_{i^*}^{PS} = \pi_{i^*} + z \left[\lambda \sum_{k \neq i^*} q_k - (1 - \lambda) q_{i^*} - \varphi \lambda \sum_k q_k \right]$$
$$\pi_k^{PS} = \pi_k - q_k z \quad \forall k \neq i, i^*$$

- $\lambda \in [0, 1]$ a fraction of intangible capital z transferred to the tax haven
- $\mathcal{C}(\lambda)$ is the cost of shifting the fraction λ
- $\varphi \leq 1$ is a markdown below the competitive price of z
- i^* is the tax haven i.e. : $\tau_{i^*} = \min \{\tau_1, ..., \tau_K\}$

Consider after-tax MNE's profit maximization problem for each case:

$$\Pi^{j} \equiv \max_{z, \{l_k\}_{k=1}^K} \sum_{k=1}^K (1 - \tau_k) \pi_k^j$$

- $j \in \{FT, TP, PS\}$
- denote allocations of intangible capital accordingly by: z^{FT} , z^{TP} , z^{PS}
- For j = PS, MNE chooses also λ

Assumption Let $C(\lambda) \equiv \lambda - (1 - \lambda) \log(1 - \lambda)$, implying $C'(\lambda) = -\log(1 - \lambda)$, C(0) = 0, C(1) = 1, and $\lambda \in [0, 1]$.

The share of shifted intangible capital:

$$\lambda = 1 - \exp\left(-\frac{(1-\varphi)(\tau_i - \tau_{i^*})}{1-\tau_i}\right)$$

Lemma

Under the Assumption, the share of shifted intangible capital λ is:

1. Decreasing in φ .

2. Decreasing in τ_{i^*} with elasticity given by

$$\varepsilon_{\tau_{i^*}}^{\lambda} = -\frac{1-\lambda}{\lambda} \left(\frac{1-\varphi}{1-\tau_i}\right) \tau_{i^*}$$

Lemma The following hold: 1. If $\tau_i = \max{\{\tau_k\}_{k=1}^K \text{ then } z^{TP} < z^{FT}.}$ 2. $z^{PS} > z^{TP} \iff \varphi < 1 \text{ and } z_{PS} = z_{TP} \iff \varphi = 1.$ 3. z^{PS} is decreasing in φ . 4. z^{PS} is decreasing in $\tau_{i^*}.$

Lemma The following hold: 1. If $\tau_i = \max{\{\tau_k\}_{k=1}^K}$ then $z^{TP} < z^{FT}$. 2. $z^{PS} > z^{TP} \iff \varphi < 1$ and $z_{PS} = z_{TP} \iff \varphi = 1$. 3. z^{PS} is decreasing in φ . 4. z^{PS} is decreasing in τ_{i^*} .

We show

$$z^{TP} = \left(\frac{\sum_{k=1}^{K} \phi \Lambda_k}{p_i}\right)^{\frac{1-\gamma}{1-\phi-\gamma}} < \left(\frac{\sum_{k=1}^{K} (1-\tau_k) \phi \Lambda_k}{(1-\tau_i)p_i}\right)^{\frac{1-\gamma}{1-\phi-\gamma}} = z^{FT}$$

where Λ_k is a function of A_k , p_k , N_k , w_k . Then z^{PS} is

$$z^{PS} = z^{TP} \left(\left(1 - \mathcal{C} \left(\lambda \right) \right) + \frac{\lambda (1 - \varphi) (\tau_i - \tau_{i^*})}{(1 - \tau_i)} \right)^{\frac{1 - \gamma}{1 - \phi - \gamma}}$$

Lemma

The following hold: 1. If $\tau_i = \max\{\tau_k\}_{k=1}^K$ then $z^{TP} < z^{FT}$. 2. $z^{PS} > z^{TP} \iff \varphi < 1$ and $z^{PS} = z^{TP} \iff \varphi = 1$. 3. z^{PS} is decreasing in φ . 4. z^{PS} is decreasing in τ_{i^*} .

with the following elasticities:

$$arepsilon^{z^{TP}}_{ au_{i^*}}=0$$

and

$$\varepsilon_{\tau_{i^*}}^{z^{PS}} = \frac{1-\gamma}{1-\phi+\gamma} \bigg(\frac{-\tau_{i^*}}{\tau_i-\tau_{i^*}}\bigg) \frac{1}{\left[1+\frac{1-\mathcal{C}(\lambda)}{\mathcal{C}'(\lambda)}\right]} < 0$$

Pillar 1: profit allocation rule

The MNE's tax base in jurisdiction k as:

where:

- $\pi_k^r = \mu p_k y_k$
- $\pi_k^R = \pi_k^{PS} \pi_k^r$
- $\Pi^R = \sum_k \pi^R_k$

with two policy parameters:

- μ is the routine profit margin
- θ is the fraction of global residual profits allocated to jurisdiction k according to the sales share

Lemma

- The following hold: 1. $\hat{\lambda} < \lambda$ and $\hat{z}^{PS} < z^{PS}$. 2. $\hat{\lambda}$ and \hat{z}^{PS} are decreasing in θ .
- 3. The economy is less responsive to changes in τ_{i^*} :

$$\left|arepsilon_{ au_{i^{st}}}^{\hat{z}^{PS}}
ight|<\left|arepsilon_{ au_{i^{st}}}^{z^{PS}}
ight|$$

$$\lambda = 1 - \exp\left(-\frac{(1-\varphi)(\tau_i - \tau_{i^*})}{1-\tau_i}\right)$$

Lemma

- The following hold: 1. $\hat{\lambda} < \lambda$ and $\hat{z}^{PS} < z^{PS}$. 2. $\hat{\lambda}$ and \hat{z}^{PS} are decreasing in θ .
- 3. The economy is less responsive to changes in τ_{i^*} :

$$\left|arepsilon_{ au_{i^{st}}}^{\hat{z}^{PS}}
ight|<\left|arepsilon_{ au_{i^{st}}}^{z^{PS}}
ight|$$

$$\hat{\lambda} = 1 - \exp\left(-\frac{\left(1 - \varphi\right)\left(1 - \theta\right)\left(\tau_i - \tau_{i^*}\right)}{1 - \left(\left(1 - \theta\right)\tau_i + \theta\hat{\tau}\right)}\right).$$

$$\widehat{\tau} \equiv \sum_{i} \tau_i \cdot \frac{p_i y_i}{\sum_k p_k y_k}.$$

QUANTITATIVE MODEL

Model environment

- Helpman, Melitz, and Yeaple (2004) meets McGrattan and Waddle (2020) + transfer pricing and profit shifting
- *I* productive regions
 - Representative consumer, gov't, and measure of firms
 - Differ in size, TFP, trade/FDI openness, corporate taxes
- 1 unproductive region ("tax haven")
 - Gov't earns revenue by taxing profits of foreign MNEs' affiliates

Model environment

- Helpman, Melitz, and Yeaple (2004) meets McGrattan and Waddle (2020) + transfer pricing and profit shifting
- *I* productive regions
 - Representative consumer, gov't, and measure of firms
 - Differ in size, TFP, trade/FDI openness, corporate taxes
- 1 unproductive region ("tax haven")
 - Gov't earns revenue by taxing profits of foreign MNEs' affiliates
- Firms in productive regions:
 - heterogeneous in productivity, compete monopolistically a là Melitz
 - choose whether to export and/or operate foreign affiliates
 - invest in nonrival intangible capital in parent division, charge foreign affiliates for rights to use it
 - shift profits to lowest-tax productive region and/or tax haven

Each firm ω in region *i* chooses:

- \bullet markets:
 - export destinations J_X , subject to fixed cost κ_{ij}^X . algebra
 - foreign affiliates J_F , subject to fixed cost κ_{ij}^F .
- R&D and employment:
 - intangible capital investment z. (algebra)
 - local factors ℓ_j . Algebra
- profit shifting:
 - the share of intangible capital λ to shift algebra

to maximize after-tax global profit:

$$\max_{J_{X},J_{F},z,\lambda,\ell} \left\{ (1-\tau_{i}) \left[\pi_{i}^{PS}(\omega) - \sum_{j \in J_{X}} W_{i} \kappa_{ij}^{X} - \sum_{j \in J_{F}} W_{i} \kappa_{ij}^{F} \right] + \sum_{j \in J_{F}} (1-\tau_{j}) \pi_{ij}^{PS}(\omega) \right\}$$

• Shifted profits by firm ω from region j

$$ilde{\pi}_{ij}(\omega) = \pi^{TP}_{ij}(\omega) - \pi^{PS}_{ij}(\omega).$$

- $-\pi_{ij}^{PS}(\omega)$: profit booked in region *j* by firm ω based in region *i* $-\pi_{ij}^{TP}(\omega)$: the same object for TP scenario
- Total shifted profits from region *j* is

$$ilde{\mathsf{\Pi}}_j = \sum_{i=1}^I \int_{\omega \in \Omega_i, j \in J_F(\omega)} ilde{\pi}_{ij}(\omega) d\omega.$$

• Shifted profits by firm ω from region j

$$ilde{\pi}_{ij}(\omega) = \pi^{TP}_{ij}(\omega) - \pi^{PS}_{ij}(\omega).$$

where:

- $-\pi_{ij}^{PS}(\omega)$: profit booked in region *j* by firm ω based in region *i* $-\pi_{ij}^{TP}(\omega)$: the same object for TP scenario
- Total shifted profits from region *j* is

$$ilde{\mathsf{\Pi}}_j = \sum_{i=1}^I \int_{\omega\in\Omega_i, j\in J_F(\omega)} ilde{\pi}_{ij}(\omega) \, d\omega.$$

These measures can be defined in GE or PE:

• **PE**: hold fixed allocations of factors and measure how profitable each division would be if it was not allowed to profit-shift.

TAKING THE MODEL TO THE DATA

Calibration

- **Five regions**: North America, Europe, Rest of the World, Low Tax and Tax Haven.
 - Low Tax: Belgium, Switzerland, Netherlands, Ireland etc.
 - Tax Haven: Antigua, Aruba, the Bahamas, Barbados etc.
- Non-country-specific params from McGrattan and Prescott (2010).

Calibration

- **Five regions**: North America, Europe, Rest of the World, Low Tax and Tax Haven.
 - Low Tax: Belgium, Switzerland, Netherlands, Ireland etc.
 - Tax Haven: Antigua, Aruba, the Bahamas, Barbados etc.
- Non-country-specific params from McGrattan and Prescott (2010).
- Discipline profit shifting φ_i by matching lost profit data measured by Tørsløv, Wier, and Zucman (2020).
 - Lost profit/GDP: 0.6% for North America, 1.4% for EU and 0.7% for RoW.

Calibration

- **Five regions**: North America, Europe, Rest of the World, Low Tax and Tax Haven.
 - Low Tax: Belgium, Switzerland, Netherlands, Ireland etc.
 - Tax Haven: Antigua, Aruba, the Bahamas, Barbados etc.
- Non-country-specific params from McGrattan and Prescott (2010).
- Discipline profit shifting φ_i by matching lost profit data measured by Tørsløv, Wier, and Zucman (2020).
 - Lost profit/GDP: 0.6% for North America, 1.4% for EU and 0.7% for RoW.
- We calibrate
 - **TFP** (A_i) and **prod. dispersion** (σ_a) : GDP and firm size dist.
 - Trade costs (κ^X, ξ): export participation and trade data.
 - **FDI costs** (κ^{F} , σ): Domestic MNEs' and foreign MNEs' VA shares

targets

lost profit

QUANTITATIVE EXPERIMENTS

Free Transfering $(FT) \rightarrow$ Transfer Pricing (TP)

- On impact:
 - − **MNEs:** after-tax marginal revenue product $z \downarrow +$ corporate revenues $\uparrow ->$ intangible capital $z \downarrow ->$ output, employment, exports \downarrow
 - **Non-MNEs**: no direct effect
 - Extensive margin: MNEs less profitable -> % of MNEs ↓, % of exporters ↑ -> less MNEs with subsidiaries in both LT and TH jurisdictions

Free Transfering $(FT) \rightarrow$ Transfer Pricing (TP)

- On impact:
 - − **MNEs:** after-tax marginal revenue product $z \downarrow +$ corporate revenues $\uparrow ->$ intangible capital $z \downarrow ->$ output, employment, exports \downarrow
 - **Non-MNEs**: no direct effect
 - Extensive margin: MNEs less profitable -> % of MNEs ↓, % of exporters ↑ -> less MNEs with subsidiaries in both LT and TH jurisdictions
- **GE**:
 - **Non-MNEs:** Wages \downarrow –> employment, output and exports \uparrow

Transfer Pricing (TP) -> Profit Shifting (PS): opposite direction

				Tech. ca	pital
Region	GDP	Emp.	Total	MNEs	non MNEs
(a) Free transfe	er (FT)	-> tran	nsfer pri	cing (TP	<i>י</i>)
North America	-0.57	-0.07	-0.29	-1.20	1.32
Europe	0.46	0.06	-0.04	-0.07	0.01
Low tax	-0.55	-0.12	0.95	1.51	0.08
Rest of world	0.08	0.01	0.01	0.01	0.02
(b) Transfer pric	ing (TP	$) \rightarrow pro$	ofit shifti	ng (PS)	
North America	0.41	0.13	0.10	0.18	-0.04
Europe	0.16	0.07	0.16	0.30	-0.03
Low tax	-2.42	-0.48	0.98	2.31	-1.11
Rest of world	0.24	0.10	0.15	0.24	-0.05

				Tech. ca	pital
Region	GDP	Emp.	Total	MNEs	non MNEs
(a) Free transfe	r (FT)	-> tran	nsfer pri	cing (TP)
North America	-0.57	-0.07	-0.29	-1.20	1.32
Europe	0.46	0.06	-0.04	-0.07	0.01
Low tax	-0.55	-0.12	0.95	1.51	0.08
Rest of world	0.08	0.01	0.01	0.01	0.02
(b) Transfer pric	ing (TP	$) \rightarrow pro$	ofit shifti	ng (PS)	
North America	0.41	0.13	0.10	0.18	-0.04
Europe	0.16	0.07	0.16	0.30	-0.03
Low tax	-2.42	-0.48	0.98	2.31	-1.11
Rest of world	0.24	0.10	0.15	0.24	-0.05

				Tech. ca	pital
Region	GDP	Emp.	Total	MNEs	non MNEs
(a) Free transfe	r(FT)	-> tran	sfer prie	cing (TP)
North America	-0.57	-0.07	-0.29	-1.20	1.32
Europe	0.46	0.06	-0.04	-0.07	0.01
Low tax	-0.55	-0.12	0.95	1.51	0.08
Rest of world	0.08	0.01	0.01	0.01	0.02
(b) Transfer pric	ing (TP)	$) \rightarrow pro$	fit shiftir	ng (PS)	
North America	0.41	0.13	0.10	0.18	-0.04
Europe	0.16	0.07	0.16	0.30	-0.03
Low tax	-2.42	-0.48	0.98	2.31	-1.11
Rest of world	0.24	0.10	0.15	0.24	-0.05

Inspecting the mechanism: MNEs & lost profits

	%	MNEs/Fir	rms	% Lost profits/GDP		ns % Lost profits/GDP % Corp.		% Corp. tax.
Region	Total	LT	TH	Total	TH	revenue/GDP		
(a) Free transfer	· (FT) ->	• transfer	pricing (1	TP)				
North America	-0.27	-0.23	_	_	-	12.69		
Europe	-0.03	-0.12	-	_	_	-7.37		
Low tax	0.15	_	_	_	_	4.36		
Rest of world	0.26	-0.51	-	_	_	-1.38		
(b) Transfer pri	cing (TP) -> profi	it shifting	(PS)				
North America	-0.06	0.04	0.88	79.34	32.88	-17.60		
Europe	0.09	-0.14	7.95	62.55	42.65	-10.83		
Low tax	0.16	_	0.01	-453.61	2.41	51.07		
Rest of world	-0.20	-0.52	26.03	83.05	54.58	-14.33		

Notes: All columns report changes in **basis points**.

Inspecting the mechanism: MNEs & lost profits

	%	MNEs/Fir	ms	% Lost profits/GDP		% Corp. tax.
Region	Total	LT	TH	Total	TH	revenue/GDP
(a) Free transfer	· (FT) ->	transfer	pricing (T	'P)		
North America	-0.27	-0.23	_	_	-	12.69
Europe	-0.03	-0.12	_	_	-	-7.37
Low tax	0.15	_	_	_	_	4.36
Rest of world	0.26	-0.51	-	_	_	-1.38
(b) Transfer pri	cing (TP)) -> profi	t shifting	(PS)		
North America	-0.06	0.04	0.88	79.34	32.88	-17.60
Europe	0.09	-0.14	7.95	62.55	42.65	-10.83
Low tax	0.16	_	0.01	-453.61	2.41	51.07
Rest of world	-0.20	-0.52	26.03	83.05	54.58	-14.33

Notes: All columns report changes in **basis points**.

				Tech. ca	pital
Region	GDP	Emp.	Total	MNEs	non MNEs
(a) Free transfer	(FT) –	> transfe	er pricin	g(TP)	
North America	-0.57	-0.07	-0.29	-1.20	1.32
Europe	0.46	0.06	-0.04	-0.07	0.01
Low tax	-0.55	-0.12	0.95	1.51	0.08
Rest of world	0.08	0.01	0.01	0.01	0.02
(b) Transfer pr	icing (1	(P) -> :	profit sh	ifting (P	(S)
North America	0.41	0.13	0.10	0.18	-0.04
Europe	0.16	0.07	0.16	0.30	-0.03
Low tax	-2.42	-0.48	0.98	2.31	-1.11
Rest of world	0.24	0.10	0.15	0.24	-0.05

				Tech. ca	pital
Region	GDP	Emp.	Total	MNEs	non MNEs
(a) Free transfer	(FT) –	> transfe	er pricin	g (TP)	
North America	-0.57	-0.07	-0.29	-1.20	1.32
Europe	0.46	0.06	-0.04	-0.07	0.01
Low tax	-0.55	-0.12	0.95	1.51	0.08
Rest of world	0.08	0.01	0.01	0.01	0.02
(b) Transfer pr	icing (1	$P \to p$	profit sh	ifting (P	(S)
North America	0.41	0.13	0.10	0.18	-0.04
Europe	0.16	0.07	0.16	0.30	-0.03
Low tax	-2.42	-0.48	0.98	2.31	-1.11
Rest of world	0.24	0.10	0.15	0.24	-0.05

				Tech. ca	pital
Region	GDP	Emp.	Total	MNEs	non MNEs
(a) Free transfer	(FT) ->	> transfe	r pricing	T(TP)	
North America	-0.57	-0.07	-0.29	-1.20	1.32
Europe	0.46	0.06	-0.04	-0.07	0.01
Low tax	-0.55	-0.12	0.95	1.51	0.08
Rest of world	0.08	0.01	0.01	0.01	0.02
(b) Transfer pr	icing (T)	$P) \rightarrow p$	orofit sha	ifting (P)	S)
North America	0.41	0.13	0.10	0.18	-0.04
Europe	0.16	0.07	0.16	0.30	-0.03
Low tax	-2.42	-0.48	0.98	2.31	-1.11
Rest of world	0.24	0.10	0.15	0.24	-0.05

	%	MNEs/Fir	, , , , , , , , , , , , , , , ,		% Corp. tax.	
Region	Total	LT	TH	Total	TH	revenue/GDP
(a) Free transfer	· (FT) -2	> transfer	pricing (TP)		
North America	-0.27	-0.23	_	_	_	12.69
Europe	-0.03	-0.12	_	_	_	-7.37
Low tax	0.15	_	_	_	_	4.36
Rest of world	0.26	-0.51	_	_	_	-1.38
(b) Transfer pric	ing (TP)	-> profit	shifting (PS)		
North America	-0.06	0.04	0.88	79.34	32.88	-17.60
Europe	0.09	-0.14	7.95	62.55	42.65	-10.83
Low tax	0.16	_	0.01	-453.61	2.41	51.07
Rest of world	-0.20	-0.52	26.03	83.05	54.58	-14.33

Notes: All columns report changes in **basis points**.

	%	MNEs/Fir	INEs/Firms % Lost profits/GDP % Corp		% Lost profits/GDP	
Region	Total	LT	TH	Total	TH	revenue/GDP
(a) Free transfer	· (FT) -2	> transfer	pricing (TP)		
North America	-0.27	-0.23	_	_	_	12.69
Europe	-0.03	-0.12	_	_	_	-7.37
Low tax	0.15	_	_	_	_	4.36
Rest of world	0.26	-0.51	_	_	_	-1.38
(b) Transfer pric	cing (TP)	-> profit	shifting ((PS)		
North America	-0.06	0.04	0.88	79.34	32.88	-17.60
Europe	0.09	-0.14	7.95	62.55	42.65	-10.83
Low tax	0.16	_	0.01	-453.61	2.41	51.07
Rest of world	-0.20	-0.52	26.03	83.05	54.58	-14.33

Notes: All columns report changes in **basis points**.

			Tech. capital			
Region	GDP	Emp.	Total	MNEs	non MNEs	
North America	-0.12	-0.07	-0.19	-0.35	0.07	
Europe	-0.09	-0.06	-0.24	-0.44	0.04	
Low tax	1.17	0.11	0.80	1.30	-0.01	
Rest of world	-0.14	-0.08	-0.22	-0.36	0.07	

			Tech. capital			
Region	GDP	Emp.	Total	MNEs	non MNEs	
North America	-0.12	-0.07	-0.19	-0.35	0.07	
Europe	-0.09	-0.06	-0.24	-0.44	0.04	
Low tax	1.17	0.11	0.80	1.30	-0.01	
Rest of world	-0.14	-0.08	-0.22	-0.36	0.07	

				Tech. ca	pital
Region	GDP	Emp.	Total	MNEs	non MNEs
North America	-0.12	-0.07	-0.19	-0.35	0.07
Europe	-0.09	-0.06	-0.24	-0.44	0.04
Low tax	1.17	0.11	0.80	1.30	-0.01
Rest of world	-0.14	-0.08	-0.22	-0.36	0.07

				Tech. ca	pital
Region	GDP	Emp.	Total	MNEs	non MNEs
North America	-0.12	-0.07	-0.19	-0.35	0.07
Europe	-0.09	-0.06	-0.24	-0.44	0.04
Low tax	1.17	0.11	0.80	1.30	-0.01
Rest of world	-0.14	-0.08	-0.22	-0.36	0.07

- Sizeable macro effects despite small number of firms shifting profits – On average in high-tax regions, 0.3% of firms are MNEs and 0.06%
 - of firms have affiliates in the tax haven
- Similar magnitude to welfare effects of major trade liberalizations
 - U.S. gained 0.06% from NAFTA (Caliendo and Parro, 2014)
 - OECD gained 0.15% from China trade (di Giovanni et al., 2014)

	%	MNEs/Fin	rms	% Lost p	rofits/GDP	% Corp. tax.
Region	Total	LT	TH	Total	TH	revenue/GDP
North America	0.02	-0.24	-0.82	-45.72	-28.41	10.66
Europe	-0.04	-0.12	-7.90	-54.80	-41.46	9.74
Low tax	0.15	_	-0.01	211.44	-2.41	31.45
Rest of world	0.12	-0.70	-25.76	-71.01	-52.42	12.51

Notes: All columns report changes in **basis points**

	% MNEs/Firms			% Lost pr	ofits/GDP	% Corp. tax.	
Region	Total	LT	TH	Total	TH	revenue/GDP	
North America	0.02	-0.24	-0.82	-45.72	-28.41	10.66	
Europe	-0.04	-0.12	-7.90	-54.80	-41.46	9.74	
Low tax	0.15	_	-0.01	211.44	-2.41	31.45	
Rest of world	0.12	-0.70	-25.76	-71.01	-52.42	12.51	

Notes: All columns report changes in **basis points**.

- 1. We develop a model of international profit shifting in which MNEs can transfer ownership of intangible capital to low-tax countries.
- 2. The key **economic trade-off**: profit shifting erodes high-tax countries' tax bases, but incentivizes the MNEs to invest in the intangible capital.
- 3. Global minimum corporate income tax has **sizeable macroeconomic effects** despite very small number of firms being engaged in profit shifting.

Table: Common parameters

Parameter	Description	Value	Target or source
φ	Tech capital income share	0.07	McGrattan and Prescott (2010)
$ au_\ell$	Labor wedge	0.34	McGrattan and Prescott (2010)
$ au_d$	Dividend tax rate	0.28	McGrattan and Prescott (2010)
ρ	EoS between products	5	Standard

return

Region-specific parameters

(a) Multilateral paramet	ers			
Region	Pop. (N_i)	Corp. tax rate $(\tau_{\pi i})$	TFP (A_i)	markdown (φ_i)
North America	100	22.5	100	5
Europe	92	17.3	87	11
Low tax	11	11.4	136	-
RoW	1323	17.4	21	5
Tax haven	-	3.3	-	-
(d) Variable FDI costs ($\sigma_{ij})$			
Source/Destination	North America	Europe	Tax haven	RoW
North America	-	0.55	0.60	0.49
Europe	0.47	-	0.60	0.49
Low tax	0.47	0.55	-	0.49
RoW	0.47	0.55	0.60	-
(e) Fixed FDI costs (κ_{ij}^F)			
Source/Destination	North America	Europe	Tax haven	RoW
North America	-	1.00	1.00	1.00
Europe	1.00	_	1.00	1.00
Low tax	0.80	0.80	-	0.80
RoW	2.00	2.00	2.00	-

roturn

Calibration targets

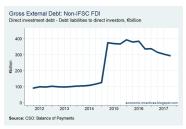
(a) Region-level stats	istics			
Region	Real GDP $(NA = 100)$	Export participation $(\%)$	Emp. share of firms w/ $<$ 100x avg.	Lost profits (% GDP)
North America	100	22.71	58.91	0.68
Europe	80.78	35.51	58.91	1.40
Low tax	14.57	35.51	58.91	-11.53
RoW	297.10	16.43	58.91	0.70
(b) Bilateral imports	/GDP			
Destination/Source	North America	Europe	Low tax	RoW
North America	-	1.70	0.35	6.15
Europe	1.28	-	2.98	7.96
Low tax	1.77	12.39	-	6.78
RoW	1.74	3.78	0.59	-
(c) Value added shar	res by firm type(%))		
Region	Non-MNE	Domestic MNE	Foreign MNE	
North America	68.71	20.17	11.12	
Europe	68.41	11.77	19.82	
Low tax	60.71	10.56	28.73	
RoW	72.52	17.93	9.55	

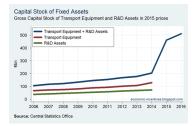
(a) Region-level statistics

Sources: Real GDP: World Bank WDI. Export participation: World Bank Exporter Dynamics Database and EFIGE. Employment distribution: U.S. Census. Lost profits: Tørsløv, Wier, and Zucman (2020). Bilateral imports: WIOD. Value added shares: OECD AMNE. Tørsløv et al. (2020) computes missing profits by country:

• The thought experiment is that 1) absent profit shifting and 2) keeping total global profits fixed, how much more profit should be booked in non tax-haven countries.

The computation is done in two steps:


- 1. Computes excess profits in each tax haven:
 - Compare profit-to-wage ratio of foreign-owned affiliates and local firms in tax havens.
 - Purge out capital intensity differences; obtain total shifted profits of a tax haven from the profit-to-wage ratio gap.
- 2. Reallocated excess profits to non tax haven countries to:
 - Source countries, based on bilateral excess-risk services exports.
 - Parent countries, based on ownership.


Example: Apple return

Before 2015: Profits shifted to Ireland via cross-licensing scheme

...95 percent of Apple's R&D, the engine behind the success of Apple products, is conducted in the United States...[Apple Ireland] paid approximately \$5 billion to [Apple USA] as its share of the R&D costs. Over that same time period, [Apple Ireland] received profits of \$74 billion. The difference between [Apple Ireland's] costs and the profits, almost \$70 billion, is how much taxable income, in the absence of [Apple USA's] cost-sharing agreement with its own subsidiaries and its use of other tax loopholes, would otherwise have flowed to the United States. - Sen. Carl Levin, 2013

After 2015: Law changes forced Apple to sell IP to Irish affiliate, increasing Ireland's aggregate capital stock by 40% in one year

Ireland's Service Trade (return)

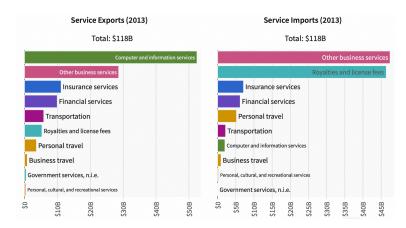


Figure: Ireland's serivce trade in 2013

s.t.

Consumers choose labor supply L and consumption C:

$$U(C_i, L_i) = \max_{C_i, L_i} \left[\log\left(\frac{C_i}{N_i}\right) + \psi \log\left(1 - \frac{L_i}{N_i}\right) \right]$$
$$P_i C_i = (1 - \tau_{i\ell}) W_i L_i + (1 - \tau_i) D_i$$

return				

Final Goods Producer

The final goods producer of region i combines intermediate goods with a CES technology:

$$Q_j = \left[\sum_{i=1}^J \int_{\Omega_{ji}} q_{ji}(\omega)^{\frac{\varrho-1}{\varrho}} d\omega\right]^{\frac{\varrho}{\varrho-1}}$$

- Ω_{ji} : the set of goods from *i* available in *j*.
- q_{ji} : quantity of inputs
- ϱ : elas. of sub. between varieties

Demand curves:

$$p_{ji}(\omega) = P_i Q_i^{\frac{1}{\varrho}} q_{iji}(\omega)^{-\frac{1}{\varrho}}, \qquad (1)$$

The price index is :

$$P_j = \left[\sum_{i=1}^J \int_{\Omega_{ji}} p_{ji}(\omega)^{1-\varrho} d\omega\right]^{\frac{1}{1-\varrho}}$$

return

Technology of firm ω in region

$$y_j(\omega) = \sigma_{ij} A_j a(\omega) \left(N_j z(\omega) \right)^{\gamma} \ell_j(\omega)^{\phi}.$$
⁽²⁾

where

- σ_{ij} is openness of j to FDI from i
- $-A_j$ is TFP in region j
- -a is the firm-specific productivity
- N_j is population in region j
- -z is firm's intangible capital
- $-\ell_j$ is labor hired in j
- γ and ϕ are returns to scale parameters

- Firms from region *i* can serve the domestic market freely.
- Two options for serving foreign markets:
 - Export domestically produced goods. Fixed cost: κ_{ijX}
 - Open a foreign affiliate and produce locally. Fixed cost: κ_{ijF}
- The firm's resource constraints

$$y_i = q_{ii} + \sum_{j \in J_X} \xi_{ij} q_{ij}^X$$
(3)
$$y_j = q_{ij}, \ j \in J_F$$
(4)

where

- $J_X \subseteq J \setminus i$: set of foreign destinations to which the firm exports - $J_F \subseteq J \setminus i$: set of foreign destinations in which the firm operates a subsidiary

We use non-exporting foreign affiliate as an example.

Given z, an affiliate of firm $\omega\in\Omega_i$ in region j chooses labor input l to maximize profit:

$$\pi_{ij}^{F}(a, z) = \max_{q, \ell} p_{ij}(q)q - W_{i}\ell$$
$$= \max_{\ell} P_{j}Q_{j}^{\frac{1}{\varrho}} \left(\sigma_{ij}A_{j}a\right)^{\frac{\varrho-1}{\varrho}} \left(N_{j}z\right)^{\gamma\frac{\varrho-1}{\varrho}} \ell^{\phi\frac{\varrho-1}{\varrho}} - W_{j}\ell$$

From the FOC, ℓ can be solved as:

$$\boldsymbol{\ell} = \left\{ \left[\frac{\phi(\varrho-1)}{\varrho} \right]^{\varrho} \left(P_j / W_j \right)^{\varrho} Q_j \left(\sigma_{ij} A_j a \right)^{\varrho-1} \left(N_j z \right)^{\gamma(\varrho-1)} \right\}^{\frac{1}{\varphi+\varrho-\varphi\varrho}}$$

return

R&D technology: number of workers required to produce 1 unit of intangible capital in country j is B_j

Under free transferability, the optimal choice of z is

$$z = \left\{ \left(\frac{\phi + \varrho - \phi_{\varrho}}{\gamma(\varrho - 1)} \right) \left[\frac{(1 - \tau_i) W_i B_i}{(1 - \tau_i) \left(\bar{R}_{ii} - \bar{C}_{ii} \right) + \sum_{j \in J_F} (1 - \tau_j) \left(\bar{R}_{ij} - \bar{C}_{ij} \right)} \right] \right\}^{\frac{\phi + \varrho - \phi_{\varrho}}{\gamma\varrho + \phi_{\varrho} - \gamma - \phi - \varrho}}$$

Within the square bracket (the exponent outside is negative):

- The numerator is the marginal cost of producing z.
- The denominator is the marginal benefit.
- Adding transfer pricing and profit shifting will change optimal z through the denominator.

return

From the FOC, optimal λ can be solved as (independent of z):

$$\lambda = \left(\mathcal{C}'\right)^{-1} \left[(1-\varphi) \frac{(\tau_i - \tau_{i^*})}{1-\tau_i} \right]$$

We can see that λ :

- decreases with the discount factor φ .
- decreases with lowest tax rate τ_{i^*} .

$$d_{i}^{FT}(\omega) = \max_{z,\ell,J_{X},J_{F},q} \left\{ (1-\tau_{i}) \left[p_{ii}(q_{ii})q_{ii} + \sum_{j \in J_{X}} \left(p_{ij}^{X}(q_{ij}^{X})q_{ij}^{X} - W_{i}\kappa_{ijX} \right) - W_{i}(\ell_{i} + B_{i}z) - W_{i} \sum_{J \in J_{F}} \kappa_{ijF} \right] + \sum_{j \in J_{F}} (1-\tau_{j}) \underbrace{\left[p_{ij}(q_{ij})q_{ij} - W_{j}\ell_{j} \right]}_{\text{Foreign subsidiary profits}} \right\}$$
(5)

subject to (1), (2), (3), and (4).

Simplify the notation:

$$\pi_{i}^{D}(a, z; J_{X}) = \max_{q_{ii}, \{q_{ij}^{X}\}_{j \in J_{X}}, \ell_{i}} \left\{ p_{ii}(q_{ii})q_{ii} + \sum_{j \in J_{X}} p_{ij}(q_{ij}^{X})q_{ij}^{X} - W_{i}\ell_{i} \right\}$$

s.t $q_{ii} + \sum_{j \in J_{X}} \xi_{ij}q_{ij} = y_{i} = A_{i}a(N_{i}z)^{\gamma}\ell_{i}^{\phi}$

and

$$\pi_{ij}^F(a,z) = \max_{q_{ij},\ell_j} p_{ij}(q_{ij})q_{ij} - W_j\ell_j.$$

Thus, the conglomerate's problem can be written more succinctly as

$$\begin{split} d_i^{FT}(\omega) &= \left\{ (1-\tau_i) \bigg[\pi_i^D(a,z;J_X) - W_i \bigg(B_i z + \sum_{J \in J_X} \kappa_{ijX} + \sum_{j \in J_F} \kappa_{ijF} \bigg) \bigg] \\ &+ \sum_{j \in J_F} (1-\tau_j) \pi_{ij}^F(a,z) \bigg\} \end{split}$$

Licensing fees

Building upon $d^{FT}(a)$, the TP version of the problem can be written as

$$\begin{split} d_i^{TP}(\omega) &= \max_{z,J_X,J_F} \bigg\{ (1-\tau_i) \bigg[\pi_i^D(a,z;J_X) - W_i \bigg(B_i z + \sum_{J \in J_X} \kappa_{ijX} + \sum_{j \in J_F} \kappa_{ijF} \bigg) + \underbrace{\sum_{j \in J_F} \vartheta_{ij}(z) z}_{j \in J_F} \bigg] \\ &+ \sum_{j \in J_F} (1-\tau_j) \bigg[\pi_{ij}^F(a,z) - \underbrace{\vartheta_{ij}(z) z}_{I \text{ logging for}} \bigg] \bigg\} \end{split}$$

Licensing fee

$$\begin{split} d_{i}^{PS}(\omega) &= \max_{z,J_{X},J_{F},\lambda_{LT},\lambda_{TH}} \left\{ (1-\tau_{i}) \left[\pi_{i}^{D}(a,z;J_{X}) - W_{i} \left(B_{i}z + \sum_{J \in J_{X}} \kappa_{ijX} + \sum_{j \in J_{F}} \kappa_{ijF} \right) \right. \\ &+ \underbrace{\sum_{j \in J_{F}} (1-\lambda_{LT} - \lambda_{TH}) \vartheta_{ij}(z)}_{\text{Licensing fee receipts}} + \underbrace{\operatorname{Proceeds from selling } z}_{(\varphi_{i}\lambda_{LT} + \varphi_{i}\lambda_{TH}) v_{i}(z)z} \\ &+ \underbrace{\sum_{j \in J_{F}} (1-\lambda_{LT} - \lambda_{TH}) \vartheta_{ij}(z)}_{-(\lambda_{LT} + \lambda_{TH}) \vartheta_{ij}(z)z} - \underbrace{\operatorname{Tax haven affiliate cost}}_{-(\lambda_{LT} + \lambda_{TH}) \vartheta_{ii}(z)z} - \underbrace{\operatorname{Tax haven affiliate cost}}_{-(\lambda_{LT} + \lambda_{TH}) \vartheta_{ii}(z)z} - \underbrace{\operatorname{Cost of shifting } z}_{-(\lambda_{LT} + C(\lambda_{LT})) \nu_{i}(z)z} \right] \\ &+ (1-\tau_{LT}) 1_{(LT \in J_{F})} \left[\pi_{i,LT}^{F}(a,z) + \underbrace{\sum_{j \in J_{F} \cup \{i\} \setminus \{LT\}} \lambda_{LT} \vartheta_{ij}(z)z}_{-(\sum O t of buying z)} \right] \\ &+ (1-\tau_{TH}) 1_{(\lambda_{TH} > 0)} \left[\underbrace{\sum_{j \in J_{F} \cup \{i\}} \lambda_{TH} \vartheta_{ij}(z)z}_{-(\sum O t of buying z)} - \underbrace{\vartheta_{i}\lambda_{TH} \vartheta_{ij}(z)z}_{-(\sum O t of buying z)} \right] \\ &+ \sum_{j \in J_{F} \setminus \{LT\}} (1-\tau_{j}) \left[\pi_{ij}^{F}(a,z) - \underbrace{\vartheta_{ij}(z)z}_{-(\sum O t of buying z)} \right] \right\} \\ \\ \end{array}$$

Under pillar 1, the tax base of a subsidiary in jurisdiction k is

$$T_k = \prod_k^r + (1 - s) \cdot \prod_k^R + s \cdot \frac{p_k y_k}{\sum_k p_k y_k} \cdot \prod^R$$

where routine profit is

$$\Pi_k^r = \mu p_k y_k$$

Residual profit in jurisdiction k is

$$\Pi_k^R = \pi_k^{PS} - \mu p_k y_k$$

and total global residual profit

$$\Pi^R = \sum_i \Pi^R_i$$

Hence the problem of the MNE with profit reallocation is

$$\max_{z, J_x, J_F, \lambda_{LT}, \lambda_{TH}} \left\{ \sum_j \left(\pi_j^{PS} - \tau_j T_j \right) - W_i \left(\sum_{j \in J_X} \kappa_{ijX} - \sum_{j \in J_F} \kappa_{ijF} + \kappa_{iTH} \mathbf{1}(\lambda_{TH} > 0) \right) \right\}$$