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Abstract

We present a tractable dynamic macroeconomic model of self-ful�lling bank runs. A bank

is vulnerable to a run when a loss of investors’ con�dence triggers deposit withdrawals and

leads the bank to default on its obligations. We analytically characterize how the vulnerability

of an individual bank depends on macroeconomic aggregates and how the number of banks

facing a run a�ects macroeconomic aggregates in turn. In general equilibrium, runs can be

partial or complete, depending on aggregate leverage and the dynamics of asset prices. Our

normative analysis shows that the e�ectiveness of credit easing and its welfare implications

depend on whether a �nancial crisis is driven by fundamentals or by self-ful�lling runs.
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1 Introduction

Most �nancial crises involve bank runs. O�en, the runs occur simultaneously in multiple �nancial

institutions and emerge a�er a deterioration of banks’ balance sheets. �e Great Depression

and the 2008 Global Financial Crisis are two notable examples (Friedman and Schwartz, 1963;

Bernanke, 2013).

Diamond and Dybvig (1983) spurred a vast literature analyzing whether a fundamentally

solvent bank may be subject to a self-ful�lling run. During a run, investors rush to withdraw

deposits from the bank, anticipating that others will do so as well. �e run may thus cause a

severe liquidity problem and leave the bank unable to meet the withdrawals, making the run

self-ful�lling. As highlighted by Gorton (1988), bank runs are not isolated events. �ey tend

to happen in many banks at the same time and are more likely when aggregate fundamentals

are weak. �is observation suggests that self-ful�lling bank runs may be the result of general

equilibrium forces and that runs in turn may a�ect general equilibrium outcomes. Understanding

this feedback and the potential implications for policy requires a dynamic general equilibrium

model.

In this paper, we present a tractable dynamic macroeconomic model of �nancial crises in

which banks may be subject to self-ful�lling runs. We analytically characterize how a bank’s

vulnerability depends on individual and aggregate fundamentals and how the number of banks

facing a run a�ects aggregate fundamentals in turn. Our normative analysis demonstrates that the

interplay between self-ful�lling beliefs and general equilibrium feedbacks has distinct implications

for policy. We establish that the desirability of credit easing depends on whether a �nancial crisis

is driven by fundamentals or self-ful�lling bank runs. While credit easing helps reduce fragility in

a run-driven crisis—as banks facing a run bene�t from the rise in asset prices—we show that it

may actually back�re in a fundamentals-driven crisis.

We build a dynamic model where banks have limited commitment and trade capital in com-

petitive markets. �e possibility of default gives rise to an endogenous borrowing limit, which

depends on future asset returns and the tightness of future borrowing limits. In turn, asset prices

are determined in general equilibrium and are themselves a�ected by banks’ current and future

borrowing limits.

Because of limited commitment, every bank may face the possibility of a self-ful�lling run.

When investors panic and refuse to roll over deposits from a bank, the bank must raise liquidity

by either cu�ing equity payouts or selling its assets holdings. If the liquidity problem is severe, it

becomes optimal for the bank to default, making the run a self-ful�lling equilibrium outcome. An

individual investor’s decision to not roll over is optimal considering that others refuse to roll over.

�e bank may also default because of fundamentals. �is occurs when the bank �nds it optimal to
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default regardless of whether investors are willing to roll over.

Preview of results. �e starting point of our analysis is a complete analytical characterization

of banks’ policies in partial equilibrium. Using closed-form solutions for banks’ optimal decisions

for equity payouts and portfolios, we �rst obtain the endogenous borrowing limit when the

possibility of default emerges only due to fundamentals. We show that the borrowing limit is

unique and provide comparative statics with respect to key parameters, including asset prices,

productivity, and the risk-free interest rate. We then introduce the possibility of runs and show

how this tightens borrowing limits and makes repayment today more costly. Relative to previous

contributions, such as Cole and Kehoe (2000), a new result that emerges is that investment and asset

returns play a key role in determining the vulnerability. For example, we show that when there is

no spread between asset returns and the risk-free rate, banks are not vulnerable to a rollover crisis.

In e�ect, access to a spot liquid market for capital renders the presence of runs irrelevant. On the

other hand, low asset prices (and high asset returns) can increase the vulnerability to a run.

Our second set of results concerns the general equilibrium characterization, which generalizes

the analysis in Kehoe and Levine (1993) and Alvarez and Jermann (2000) for the possibility of

initial defaults in equilibrium. We characterize the two possible stationary equilibrium outcomes,

default and repayment, and show that transitional dynamics can be separated into three regions.

When aggregate leverage is low, the economy converges to a stationary equilibrium in which all

banks repay at all times. In this region, asset prices are high, re�ecting banks’ high productivity

and collateral values. When aggregate leverage is high, all banks default, and asset prices are

depressed. For intermediate values of leverage, we show that a degenerate equilibrium does not

exist. However, we are able to construct competitive equilibria in mixed strategies where some

banks repay and some banks default, and thus the economy features partial runs. Furthermore,

we show that the convergence to the stationary equilibrium is a dynamic process by which capital

is reallocated from defaulting to repaying banks.

Our third set of results regards the normative analysis. We start by examining the e�ciency

properties of a policy that directly controls the share of defaulting banks. Perhaps surprisingly,

in the absence of runs, increasing the share of defaulting banks may increase banks’ welfare, a

result that arises from a general equilibrium e�ect operating through asset prices that e�ectively

redistributes resources within the banking sector. When banks demand more capital, they raise the

price of capital, hurting those banks that are net buyers of assets. Because repaying banks are net

buyers of capital and have higher marginal valuation of funds, increasing the share of defaulting

banks reduces the market clearing price of capital and increases banks’ overall welfare. When

the economy is subject to runs, lowering the share of defaulting banks relative to the competitive

equilibrium may increase banks’ welfare. �is is so because defaults are driven by a coordination
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problem: banks are defaulting even though they will strictly prefer to repay if they had access to

credit. In this case, a policy of reducing defaults would generate a Pareto improvement, as it also

bene�ts lenders; a result that highlights the ine�ciency of the competitive equilibrium.

Finally, we study credit easing, a policy that has become part of the conventional policy toolbox

during periods of �nancial stress. We model credit easing as government purchases of capital

and ask, How does credit easing a�ect the number of defaulting banks and the level of welfare?

As it turns out, the implications are very di�erent depending on whether a crisis is driven by

fundamentals or by runs.

�e logic for this result can be understood by tracing which banks are the net sellers of capital

and which banks are the net buyers, depending on the origin of the crisis. Consider �rst a crisis

driven by fundamentals and assume an initial aggregate leverage in the intermediate region (such

that a fraction of banks repays and the remaining fraction defaults). In this situation, banks that

repay are net buyers—they are more productive and hence have higher valuation—while the banks

that default are net sellers. �us, when the government purchases assets, it raises asset prices

and bene�ts defaulting banks at the expense of repaying banks. �e outcome is that more banks

default.

Consider now the role of credit easing when a crisis is driven by self-ful�lling runs. �e critical

di�erence is that banks facing a run are net sellers of capital—they need to sell assets to meet

repayments of deposits. �us, by increasing asset prices, credit easing raises the value of repaying

for banks facing a run and reduces investors’ incentives to run. A su�ciently large intervention,

in fact, can deter investors from running and make the banking system run-proof. �e outcome is

that fragility is reduced.

Literature. �is paper is related to the literature on the role of �nancial factors in macroeco-

nomic �uctuations. Building on the seminal contributions by Bernanke and Gertler (1989) and

Kiyotaki and Moore (1997), many studies have presented models in which balance sheet losses

on �rms or �nancial intermediaries can trigger contractions of output and asset prices.
1

Unlike

this literature, our paper considers a source of �nancial fragility induced by liquidity factors and

self-ful�lling runs.

Our paper belongs to an extensive literature on bank runs. One strand of the literature, starting

with Diamond and Dybvig (1983), considers bank runs that are the outcome of a self-ful�lling

prophecy in the presence of a liquidity mismatch. A di�erent strand of the literature studies

models of runs based on fundamentals, following Bryant (1980). In this alternative paradigm,

individual investors who have a sudden need for liquidity �nd it optimal to run, even if nobody else

1
A few examples include Gertler and Kiyotaki (2010), Mendoza (2010), Jermann and �adrini (2012), He and

Krishnamurthy (2013), Brunnermeier and Sannikov (2014), and Bianchi and Mendoza (2018).
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does. Allen and Gale (2000) and Uhlig (2010) are notable examples in this class of models studying

contagion through interbank market linkages and asset prices.
2

�e interplay between runs and

asset prices is also at the heart of our analysis, but we consider self-ful�lling runs, as in the �rst

strand of the literature. Overall, a contribution of our paper is to analyze the role of credit easing

and to show that its desirability depends on whether a crisis is driven by fundamentals or self-

ful�lling beliefs. We also di�er from much of this literature by taking a dynamic macroeconomic

perspective.

Gertler and Kiyotaki (2015) develop a macroeconomic model of systemic bank runs where a

good equilibrium with �nancial intermediation may coexist with a bad equilibrium where asset

prices are low, aggregate banks’ net worth turns negative and banks are forced into liquidation.
3

In their model, when an individual bank’s net worth turns negative, it is unable to continue

operations. �is implies that an individual investor would not roll over the deposits regardless

of whether other investors are rolling over.
4

By contrast, we present a model with self-ful�lling

runs on individual banks. In our model, the condition for an individual bank to default is dynamic

and depends critically on whether investors are willing to roll over the deposits, a feature that

leads to distinctive implications for the e�ectiveness of policies such as lender of last resort.
5

In addition to many other di�erences in the modeling setups, we conduct a normative analysis

and provide two main results. First, we analyze whether banks’ individual default decisions are

socially optimal and establish that the decentralized equilibrium generates too few defaults in the

absence of runs, while too many defaults in the presence of runs. Second, we show that credit

easing can be desirable when a crisis is triggered by self-ful�lling runs, but it back�res if a crisis is

triggered by fundamentals.

Keister and Narasiman (2016) also tackle the question of how policy prescriptions di�er

depending on the origin of the crisis. �ey focus on prudential policies in an environment

featuring moral hazard due to bailouts, and they conclude that prudential policies are optimal

regardless of whether crises are caused by self-ful�lling beliefs. Farhi and Tirole (2012) show

how ex-post non-targeted interventions can lead to an excessive leverage equilibrium. Our paper

2
See also Angeloni and Faia (2013) for a dynamic model with two-period lived banks and Allen and Gale (2009)

for a review of much of this literature.

3
An active literature builds on their framework to study quantitative policy counterfactuals (see, e.g., Gertler,

Kiyotaki and Prestipino (2016, 2020a, 2020b) and Roba�o, 2019). A related literature studies �nancial fragility

and multiplicity in di�erent contexts (e.g., Gu, Ma�esini, Monnet and Wright, 2013; Benhabib and Wang, 2013;

Brunnermeier and Sannikov, 2015; Boissay, Collard and Smets, 2016; Bocola and Lorenzoni, 2020; Ben-Ami and

Geanakoplos, 2020; Schmi�-Grohé and Uribe, 2021; and Boissay, Collard, Galı́ and Manea, 2022).

4
To the extent that the value of the bank is �nite, the bank has incentives to divert assets when its net worth

is negative. �ere is no solution to the bank problem that satis�es the incentive compatibility constraint, even if

investors were willing to roll over the deposits.

5
For example, a policy of liquidity provision or freezing deposits is e�ective in our setup to prevent a run, but it

does not rule out defaults in Gertler and Kiyotaki (2015). In their model, because these policies do not alter banks’ net

worth, banks remain prone to divert funds for personal use and default.
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emphasizes how credit easing can be welfare reducing in the absence of runs, but from an ex ante

point of view.

�e bank-run literature has considered several ex-post policy interventions, including deposit

insurance, deposit freezes, bailouts and lender of last resort (e.g., Diamond and Dybvig, 1983;

Cooper and Ross, 1998; Ennis and Keister, 2009a; Dávila and Goldstein, 2020). �ese studies show

how these policies can be desirable to avoid a run in a single bank. While we also emphasize how

policies can have di�erent implications depending on the source of the crisis, the mechanism in

our model operates entirely through general equilibrium channels. Speci�cally, we demonstrate

that credit easing can make the banking system run-proof by raising asset prices and, in this way,

a�ecting the incentives to default. By a�ecting hidden trades, general equilibrium e�ects also

play a crucial role in the analysis of banking liquidity regulation by Farhi, Golosov and Tsyvinski

(2009).
6

Our paper also speaks to historical studies on the origins of banking crises, especially the

debate on whether banking crises occur because of fundamentals or self-ful�lling reasons (see,

among others, Friedman and Schwartz, 1963; Gorton, 1988; Calomiris and Mason, 2003; Baron,

Verner and Xiong, 2021). Our theory predicts credit easing has opposite e�ects on bank failures

depending on the origin of the crisis, thereby providing a testable implication that can be used to

distinguish empirically whether crises are driven by fundamentals or self-ful�lling runs.

Our paper is also related to a literature on credit easing that has �ourished since the 2008

�nancial crisis (see, e.g., Gertler and Karadi, 2011; Curdia and Woodford, 2011, Kiyotaki and

Moore, 2019). A common theme in this literature is how a central bank that is not balance sheet

constrained can reduce risk premia by purchasing private assets when there are asset �re sales. In

our model, if the portfolio return for the government does not exceed the one for investors, the

welfare e�ects of the intervention are negative in a crisis driven by fundamentals, but they can

become desirable when a crisis is driven by runs.

Our environment without runs is related to the literature on investment under limited commit-

ment, and in particular, the papers of �omas and Worrall (1994) and Alburquerque and Hopenhayn

(2004). Using an optimal contract approach, those papers solve the investment problem of an

individual �rm (or government) that lacks commitment to repay its debts.
7

Our assumption of a

linear technology leads to a violation of the compactness of the choice set in the associated optimal

contract problem. Because of this, we rely instead on a more direct equilibrium characterization of

borrowing limits that turns out to be tractable also for the case with runs. Our general equilibrium

characterization of an economy with limited commitment frictions has direct antecedents in the

6
See also Di Tella (2019).

7
�is optimal contract approach is followed by several other papers in this area that also focus on investment

under limited commitment (e.g., Aguiar, Amador and Gopinath, 2009 and Kehoe and Perri, 2002).
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work of Kehoe and Levine (1993) and the solvency constraints introduced by Alvarez and Jermann

(2000) in particular.
8

For the environment with runs, we build on the formulation of rollover crises

by Cole and Kehoe (2000), which has been used to study the individual problem of a government.
9

We adopt the canonical game, extend it with investment, embed it into a general equilibrium

model, and draw implications for macroeconomic policy

Outline. Section 2 presents the environment and analyzes the model without runs. Section 3

introduces bank runs. Section 4 conducts the normative analysis. Section 5 concludes. All proofs

are in the Appendix.

2 Model

Time is discrete and in�nite, C ∈ {0, 1, 2, ...}. �ere is a single �nal consumption good and no

aggregate shocks. �e economy is populated by a continuum of �nancial institutions, which we

refer to as banks, and creditors, both of measure one. In what follows, we use small variables to

denote individual variables and capital le�ers to denote aggregate variables.

Technology. �ere production of the �nal consumption good uses capital, : , as a single input.

We assume that banks have direct access to the production technology, in line with the most

recent strand of macro-�nance models. A bank with : units of capital produce ~ = I: units of

consumption. Capital does not depreciate, and it is in �xed supply.

Preferences. Banks’ preferences over a sequence of dividend payments {2C } are given by

∞∑
C=0

VCD (2C )

where V ∈ (0, 1) and D = log.
10

Banks’ creditors are risk neutral and discount payo�s at a rate '. Given these assumptions,

the risk-free rate will be constant and equal to '.

8
See Jeske (2006) for another paper that studies limited commitment and external borrowing in decentralized

environments.

9
See, for example, Aguiar, Cha�erjee, Cole and Stangebye (2016), Roch and Uhlig (2018), Bocola and Dovis (2019),

and Bianchi and Mondragon (2022) for models in sovereign debt using that formulation.

10
As is standard in the literature, the curvature in the utility function over dividends (or equity payouts) captures

the fact that issuing equity is costly.
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2.1 Banks’ Problem and Borrowing Limits

We describe now the problem of an individual bank in partial equilibrium. Banks choose bond

issuances, investment, dividend payments and whether to repay the existing deposits. In this

section, we consider banks’ defaults only due to fundamentals. We introduce bank runs in Section

3.

Banks issue one-period bonds that promise a payment of ' next period. A bank starts a period

C with : units of capital and 1 units of maturing bonds, and decides whether to repay or to default.

If the bank chooses to repay, it produces using a linear technology with productivityI, and chooses

its new holding of capital for the next period :′ ≥ 0, the new amount of bonds to issue, 1′, and

how many dividends to pay, 2 . �e bank faces a price schedule @C (1′, :′) for its bonds, that depends

on its individual choices for new bonds and capital, as well as other aggregate variables which we

summarized in C . �ese variables determine the incentives to default in the next period and hence

alter the price at which creditors are willing to lend.

In case of repayment, the bank’s budget constraint is

2 = (I + ?C ): − '1 + @C (1′, :′)1′ − ?C:′, (1)

where ?C denotes the price of capital in period C .

If the bank chooses to default, it is permanently excluded from bond markets and can only

invest in capital.
11

In addition, the bank’s productivity is reduced to to I < I. In the case of default,

the budget constraint is

2 = (I + ?C ): − ?C:′. (2)

�e problem of the individual bank that is in good credit standing solves

+C (1, :) = max{+ 'C (1, :),+ �
C (:)}, (3)

where the value of default is given by

+ �
C (:) = max

: ′≥0,2
log(2) + V+ �

C+1(:′), (4)

subject to

2 = (I + ?C ): − ?C:′,
11

�e restriction that the bank cannot hold bonds a�er default is without loss of generality if the rate of return to

capital in equilibrium for a bank that has defaulted is higher than '. �is is guaranteed in the general equilibrium in

which all banks default discussed in Section 2.4.
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and the value of repayment is

+ 'C (1, :) = max

: ′≥0,1 ′,2
log(2) + V+C+1(1′, :′) (5)

subject to

2 = (I + ?C ): − '1 + @C (1′, :′)1′ − ?C:′.

We will also make sure that the bond price schedule @C is consistent with a No-Ponzi condition for

the bank, which we discuss below.

Using 3 = 0 to represent a repayment decision, and 3 = 1, a default, we have that the optimal

default rule is

3C (1, :) =


1 if + 'C (1, :) < + �

C (:),

0 if + 'C (1, :) > + �
C (:),

0 if + 'C (1, :) = + �
C (:) for C > 0,

(6)

where we assume, without loss of generality, that the bank repays if indi�erent for C > 0. However,

we do not restrict the default policy in period 0 when the bank is indi�erent. �at is, we allow for

the bank to default in period 0 even if indi�erent. �is �exibility is important for the existence of

a general equilibrium, as we will see below.

Noting that+ 'C (1, :) is strictly decreasing in1, we have that for every: , there exists a borrowing

limit 1C such that + �
C (:) > + 'C (1, :) if and only if 1 > 1C . �is means that the optimal default rule

can be expressed with a debt threshold (which we assume to be �nite for every : ≥ 0):

3C (1, :) =


1 if 1 > 1C (:),

0 if 1 ≤ 1C (:),

for C > 0. It thus follows that the equilibrium price schedule for bonds is going to be of the form

@C (1′, :′) =


0 if 1′ > 1C+1(:′),

1 if 1′ ≤ 1C+1(:′),

for C > 0. �at is, creditors lend at a zero price when they expect a default and lend at a price of

1 when they expect repayment. Note that because banks will never issue bonds at a zero price,

default can only occur in equilibrium in the initial period.

Given a sequence of the price of capital, we de�ne the return to capital when the bank repays
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as

':C+1 ≡
I + ?C+1
?C

,

for all C . Similarly, we de�ne the return to capital when the bank defaults as

'�C+1 ≡
I + ?C+1
?C

,

for all C . Note that our assumptions about a productivity loss a�er default imply that ':C+1 > '�C+1.

�e value of default. For a given sequence of prices, {?C }∞C=0
, we can solve for the value of

default, exploiting the log-utility and the linearity of production. We introduce the following

condition (which guarantees the boundedness of the value of default).

Condition 1. �e sequence of (strictly positive) prices {?C }∞C=0
is such that

lim

C→∞
VC log

(
'�C+1

)
= 0.

We have the following result:

Lemma 1 (�e value of default). Suppose that Condition 1 holds. �en the value of default, + �
C (:)

in period C is �nite and such that

+ �
C (:) = � +

1

1 − V log((I + ?C ):) +
V

1 − V
∑
g≥C

Vg−C log

(
'�g+1

)
, (7)

with
� ≡ 1

1 − V

[
log(1 − V) + V

1 − V log(V)
]
.

Proof. See Appendix A.1. �

Condition 1 is a su�cient condition for the value function of default to be �nite, and it requires

that the returns of capital do not grow at a faster rate than the discount factor.

�e value function is log-linear in wealth and the discounted future returns on capital. �e

associated policy function for capital, K�
C+1(:), and dividend payout, C�C+1(:), are given by,

K�
C+1(:) = V

(I + ?C ):
?C

,

C�C (:) = (1 − V)
(
I + ?C

)
:.
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Because of log preferences, the optimal policy is independent of future returns. In particular, the

bank consumes a fraction (1− V) of its net worth, which equals (I +?C ): , and invest the remaining

amount in capital. Under this investment policy, the evolution of net worth is given by

=′ = V'�C+1=.

�e value of repayment. Given a sequence of prices {?C }∞C=0
, we can express the value function

of repayment as follows:

Lemma 2 (�e repayment problem). �ere exists a function +̂ 'C such that +̂ 'C (=) = +C (1, :), where

= = (I + ?C ): − '1,
and +̂ ' solves

+̂ 'C (=) = max

: ′≥0,1 ′,2
log(2) + V+̂ 'C+1(=′), (8)

subject to

2 = = + 1′ − ?C:′,
=′ = (I + ?C+1):′ − '1′,
1′ ≤1C+1(:′).

Proof. In Appendix A.2. �

Note that relative to Problem (5), we have used that we can summarize the individual state

variables in net worth = = (I + ?C ): − '1.

We refer to this problem as partial equilibrium, since it takes as given the path of prices {?C }∞C=0
.

However, the problem does incorporate the equilibrium bond price function for an individual

bank. �at is, the last constraint of Problem (8) uses that a bank never issues bonds at a zero price,

and e�ectively the equilibrium bond price schedule imposes a borrowing limit.
12

�is borrowing

limit takes for now the role of a No-Ponzi condition (in that it helps guarantee that the budget set

is not unbounded), but we will re�ne this later on.

We now guess that the value function under repayment (if �nite) will be log-linear in net worth.

In particular, we guess that +̂ 'C+1(=) =
1

1−V log(=) + constant. Given that1C+1(:) is determined by

the equality of default and repayment values, + �
C+1(:′) = +̂ 'C+1(=′), at =′ = (I + ?C+1):′ − '1C+1(:′),

12
�ese constraints are the equivalent of the “not too tight” solvency constraints introduced by Alvarez and

Jermann (2000), although an important di�erence with their environment is the presence of capital, production, and

default cost in ours. In this environment without risk, the borrowing constraints also coincide with the endogenous

borrowing constraints used by Zhang (1997).
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it follows then that there exists a WC such that1C+1(:′) = WC?C+1:′.13
�us, the bank will be subject

to a borrowing constraint

1C+1 ≤ WC?C+1:C+1,

where WC is an endogenous object representing an individual bank’s ability to leverage at time C ,

which it will itself be a�ected by the sequence of prices of capital.

Note that in Problem (8), it is always feasible for a repaying bank to choose 1′ = 0, as long as

(I + ?): − '1 = = ≥ 0. Hence, the borrowing limit1C cannot be negative; that is, WC ≥ 0 for all C .

�e next lemma characterizes the demand for capital:

Lemma 3. Consider a repaying bank in period C with strictly positive net-worth.

(i) If WC?C+1 ≥ ?C , and ':C+1 > ', the bank’s demand for capital in period C and its value function
are in�nite.

(ii) If WC?C+1 < ?C and ':C+1 > ', the bank’s demand for capital in period C is �nite and is such that
the borrowing constraint binds.

(iii) If ':C+1 < ', the bank’s demand for capital in period C is 0.

Proof. In Appendix A.3. �

�e �rst result of this lemma concerns the case where the return to capital is higher than

', and the bank ability to leverage is su�ciently large. When WC?C+1 > ?C , a repaying bank can

invest any amount simply by borrowing and investing. �is result follows because when a bank

borrows one unit and purchases capital, the borrowing capacity increases by WC?C+1/?C . When

this ratio is larger than 1, it is feasible for the bank to purchase an unlimited amount of capital

while still paying positive dividends. To the extent that the return on capital exceeds the return

on bonds, the bank will �nd it optimal to invest an in�nite amount, and the value of the bank will

be unbounded.
14

When WC?C+1 = ?C , a similar result applies, but only if networth of the bank is

strictly positive (which guarantees a strictly positive dividend).

Part (ii) of the lemma covers the case where the return to capital is strictly higher than ', but

WC?C+1 < ?C . In that case, the borrowing limit binds.

�e last result of the lemma is for ':C+1 < '. In this case, investing in capital is dominated in

rate of return by holding the bond.

13
Note that in e�ect, we have scaled the value of the borrowing limit by ?C+1. �is is without loss of generality and

will become useful in what follows.

14
�us, the result also holds if the bank has negative equity at the beginning of the period and WC?C+1 > ?C . Negative

equity is not su�cient to prevent a bank from operating. �e condition is also necessary: that is, for a bank to be able

to operate with negative networth, it must be the case that WC?C+1 > ?C .

11



Let us de�ne the levered return on equity as

'4C+1 ≡ ':C+1 + (':C+1 − ')
WC?C+1

?C − WC?C+1
, (9)

which corresponds to the sum of the return on capital plus the excess return (of capital over

bonds) times a leverage factor.
15

We need to impose as well a condition on '4C to guarantee the

boundedness of the value of repayment for an individual bank, similar to Condition 1 for the case

of a defaulting bank. Taking the above lemmas together, and anticipating the general equilibrium,

we restrict a�ention to sequences of prices and borrowing limits that satisfy the following.

Condition 2. �e sequences of prices {?C }∞C=0
and {WC }∞C=0

are such that

(i) ':C+1 ≥ ' for all C ,

(ii) WC?C+1 < ?C for every C such that ':C+1 > ',

(iii) lim

C→∞
VC log

(
'4C

)
= 0.

Note that part (iii) of this condition implies Condition 1 as '4C ≥ ':C > '�C > 0.

We can now solve for the value function of repayment (con�rming that it is log-linear in net

worth) as well as characterizing the associated policy functions.

Lemma 4 (�e value of repayment). Consider a sequence of (strictly positive) prices, {?C }∞C=0
and

(non-negative) borrowing limits, {WC }∞C=0
, that satisfy Condition 2. �en, the value of repayment +̂ 'C (=)

and associated policy functions in period C for = > 0 are such that:

(i) Value function:

+̂ 'C (=) = � +
1

1 − V log(=) + V

1 − V
∑
g≥C

Vg−C log('4g+1), (10)

with � as in Lemma 1.

(ii) Policy functions:
C'C (=) = (1 − V)=,

for all C ≥ 0 and where K'
C+1(=) and B'C+1(=), satisfy

?CK'
C+1(=) − B'C+1(=) =V=, B'C+1(=) ≤ WC?C+1K'

C+1(=), K'
C+1(=) ≥ 0

15
If the bank has an additional unit of net worth and buys capital, it can borrow an additional WC?C+1/?C by pledging

the capital as collateral. In turn, the increase in borrowing allows for further purchases of capital. If WC?C+1 < ?C , the

amount it can borrow is WC?C+1/(?C − WC?C+1). �e return per unit of leverage is ':C − ', thus leading to (9).

12



for all C ≥ 0. And

K'
C+1(=) =

V=

?C − WC?C+1
, B'C+1(=) = WC?C+1

(
V=

?C − WC?C+1

)
for all C ≥ 0 such that ':C+1 > '.

Proof. In Appendix A.4. �

�us, under repayment, the problem also features a value function that is log-linear in net

worth, con�rming our previous guess. �e value is also log-linear in the discounted future returns

of the portfolio. In addition, the dividend payout is given by a fraction of the net worth. Note that

the problem is quite similar to the default one, except that we use the net worth (which requires

subtracting the beginning of period debt) from the gross return on investment. On the other hand,

the problem under repayment features higher returns, both because there is a higher productivity

level, and thus ': > '� , and because the bank can lever up if ': > ' and W > 0.

Regarding the portfolio, the solution distinguishes between the case in which ': = ' and

': > '. If the return on capital is equal to the return on debt, the bank is indi�erent between

bonds and capital and chooses any portfolio as long as it is consistent with the dividend policy

and the leverage constraint. If the return on capital exceeds the one on debt, the bank borrows to

the limit.

Using the results of Lemma 4, we can express the evolution of net worth as

=′ = V'4C+1=

for all C ≥ 0. Hence, next-period net worth is given by the amount of net worth that is not

consumed, V=, times the return on equity. Note that this is the same law of motion for equity

under default, but it uses the rate of return on equity '4 under repayment rather than the return

on capital '� under default.

Default decision. Having characterized the values of repayment and default, we can now

examine the default decision. �e following proposition establishes the value of the leverage

threshold, W , at which the bank is indi�erent between repaying and defaulting.

Proposition 1 (Default decision). Consider a sequence of (strictly positive) prices, {?C }∞C=0
, and a

sequence of (non-negative) borrowing limits, {WC }∞C=0
that satisfy Condition 2. �en, the value of WC

13



that makes a bank indi�erent between repayment and default at C + 1 is such that

I + ?C+1(1 − WC')
I + ?C+1

=

(
1 − WC+1

?C+2
?C+1

)V
for all C ≥ 0. (G)

Proof. In Appendix A.5. �

�e sequence for default thresholds {WC } depends on preference, productivity parameters, and

the sequence for {?C }.16
One can see, in particular, that a higher WC+1 in the future implies a higher

WC today. Because a higher WC+1 increases the continuation value of repayment, this also makes the

bank more willing to repay today.

�e above suggests that there could be potentially many sequences of borrowing limits, {WC },
that would be consistent with a partial equilibrium given a sequence of capital prices. For an

equilibrium to be consistent with creditors’ optimality, we also require a no-Ponzi game condition.

�at is,

lim

C→∞
'−C1C ≤ 0

where {1C } is a feasible sequence of debt issuances. �is condition says that creditors in the limit,

do not provide new loans to �nance the repayment of old ones. Using that 1C+1 ≤ WC?C+1 V=C
?C−WC?C+1 ,

together with the evolution of net worth, we impose the no-Ponzi condition as an additional

restriction to the sequence of {WC }:

Condition 3. �e sequence of prices {?C }∞C=0
and {WC }∞C=0

are such that

lim

C→∞

[
C∏
g=0

(
V'4C

'

)] (
VWC?C+1

?C − WC?C+1

)
≤ 0

As we will see below, this condition uniquely pins down the sequence of {WC } given a sequence

of prices {?C }. E�ectively, if ?C converges and WC remains bounded away from 0, the condition

above imposes that the growth rate of net worth cannot be higher than the interest rate ' in the

limit.

With this, we can characterize the sequence of WC that are consistent with bank’s and creditor’s

optimality conditions, given a sequence of prices:

De�nition 1. Given a sequence of (strictly positive) prices {?C }∞C=0
, we say a sequence of (non-

negative) borrowing limits {WC }∞C=0
is equilibrium-consistent if Conditions 2 and 3 hold and equation

(G) is satis�ed for all C ≥ 0.

16
Note that once W0 has been determined, equation (G) determines a W−1 that can be used to characterize the default

decision in the �rst period.
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Note that if we have found a sequence of (non-negative) borrowing limits, {WC }, that satisfy the

above de�nition, we can construct the evolution of net worth, debt, and capital holdings consistent

with a bank’s optimality condition by using the results of Lemmas 4 for a given initial net worth,

=0 > 0.

A useful case is the one where the sequence of prices {?C } is constant. We proceed to analyze

this case next.

2.2 Equilibrium-Consistent Borrowing Limits under a Constant Price

We now focus on the case in which the price of capital is constant at some level ? > 0. In that

case, the return to capital, ': = (I + ?)/? is constant as well. Note that Condition 1 is immediately

satis�ed. We also require that ': ≥ ' to satisfy the �rst inequality in Condition 2. Note that this

last condition imposes an upper bound on ? (as ' > 1).

Let us focus on the equation described in Proposition 1, equation (G). For the constant price

case, the equation is:

WC+1 = 1 −
(
':/' − WC
'�/'

) 1

V

≡ � (WC ) (11)

where '� is the return to capital under default with a constant price (that is, '� = (I + ?)/?).

�e function � describes the value of the value of next-period borrowing limit, WC+1, that

is consistent with a current borrowing limit, WC , when the price of capital is constant. So for

any initial guess of W0, we can use this di�erence equation WC+1 = � (WC ) to trace out all of the

subsequent values for WC . Notice that if the sequence for {WC } converges to a constant value, this

value must be a �xed point of � .

Fixed points of N . �e function � is well de�ned, continuous, di�erentiable and strictly

concave in [0, 1]. In addition, � (0) < 0 and � (1) ≤ 1. Using that ': > '� , the following lemma

characterizes the �xed points of � :
17

Lemma 5. �e following holds for � :

(i) If V':/' < V + (1 − V)
(
V'�/'

) 1

1−V and V'�/' < 1 then there are two solutions to W = � (W)
for W ∈ [0, 1].

17
In the case in which ': = '� (which we do not consider) so that there is no productivity loss a�er a default, it

can be shown that W = 0 (that is, no borrowing is possible) is a solution to W = � (W). �e result for this case can be

seen as a corollary of a well-known result for sovereign debt (Bulow and Rogo�, 1989).
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(b) No roots
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Figure 1: Borrowing Limits with a Constant Price

Notes: �e solid curved line represents the � function. �e dashed line is the 45
◦

line. Panel (a) shows the

case with two roots to W = � (W). �e point W★ represents the valid stationary solution. �e point Ŵ is the

stationary root that violates the no-Ponzi condition. Any sequence {WC } that starts from a value di�erent

from W★ eventually either induces a negative WC or the sequence approaches Ŵ . Panel (b) shows the case

with no roots.

(ii) If V':/' = V + (1− V)
(
V'�/'

) 1

1−V and V'�/' < 1 then there is only one solution to W = � (W)
for W ∈ [0, 1].

(iii) If V':/' > V + (1 − V)
(
V'�/'

) 1

1−V or V'�/' ≥ 1, then � (W) < W for all W ∈ [0, 1].

Proof. In Appendix A.6 �

Lemma 5 states that equation (11) could have two �xed points, only one �xed point or no

�xed points. �e precise solution depends on the relative return of capital under repayment and

default. When the return of capital under default is not too low compared to the return of capital

under repayment, there are two �xed points. On the other hand, when the return of capital under

default is very low, there is no �xed point solution. Finally, at an exact intermediate threshold,

there is one �xed point solution to � .

Let us provide some intuition for these results. First, why could there be two stationary

solutions for W? �is feature arises because of the complementarity of borrowing constraints over

time. When the bank faces a loose borrowing constraint at C + 1 (i.e., a high WC+1), this implies that

tomorrow a repaying bank can a�ain high pro�ts by leveraging up. �is in turn implies that the

borrowing constraints at time C is relatively loose (i.e., a high WC ). �is complementarity opens the

door to multiple �xed points. �e lemma shows, in particular, that there are at most two �xed

points. As we argue next, however, only the smallest �xed point is equilibrium-consistent, as

16



the largest �xed point violates the no-Ponzi condition. At the largest �xed point, the bank never

repays any interest from the debt to creditors, violating Condition 3.
18

Lemma 5 also points to the possibility that equation (11) admits no �xed-point, which implies

that there is no constant value of W that makes banks indi�erent between repaying and defaulting

for given prices. In this case, there exists no �nite borrowing limit for the bank.

Figure 1 illustrates the results of Lemma 5. Panel (a) considers case (i): a parameter con-

�guration such that there are two �xed points of � . Panel (b) considers case (iii) a parameter

con�guration such are no �xed points of � .

Solution for WC and comparative statics. Before characterizing the solution for WC , it is helpful

�rst to consider the largest stationary value of W that would be consistent with the no-Ponzi

condition. We denote this value by W#% . Note that in a stationary environment, the no-Ponzi

condition will be violated for any W < 1 if V'4 ≥ '.
19

Using this result, we obtain that

W#% ≡ ' − V':
'(1 − V) (12)

Note that if V': > ', then any stationary solution for W > 0 violates Condition 3. �e reason

is that, even with no access to borrowing, a bank’s net worth necessarily grows faster than the

discount rate '.

In this stationary environment, we next argue that WC must be equal to the smallest �xed point

at all times, a value we denote by W★. To understand the argument, consider �rst the possibility

that WC < W
★

. In this case, the borrowing constraint is relatively tight today and equation (11) tells

us that to justify a “low” WC today, one needs an expectation of an even lower WC+ tomorrow. In

other words, to keep banks indi�erent from repaying and defaulting at relatively low leverage

levels, it must be that borrowing constraints will keep tightening in the future. However, iterating

forward on equation (11) will lead eventually to a negative value of W (a result displayed in panel

(b) of the �gure), a violation of the equilibrium requirement that the borrowing limit must be

non-negative.
20

�is rules out WC < W
★

.

Consider now the possibility that WC > W
★

. Tracing again the dynamics using equation (11), we

can see in panel (a) of Figure 1 that WC converges to the largest �xed-point of � . �is �xed-point

turns out to be inconsistent with the no-Ponzi game condition (that is, for this case W converges to

a value larger than W#% , hence ruling out the possibility that WC > W
★

.

18
Notice that even though the bank is running a Ponzi scheme, the bank’s value remains �nite.

19
�is follows because under this condition, debt would grow at a faster rate than the interest rate, violating the

transversality condition for creditors.

20
Recall that a bank with positive networth can always choose not to issue debt while investing in capital, and thus

a negative borrowing limit is inconsistent with an equilibrium .
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We summarize these results in the following lemma:

Lemma 6 (Borrowing limits under a constant price). Consider a constant price of capital ? > 0

such that ': ≥ '.

(i) If V':/' < V + (1 − V)
(
V'�/'

) 1

1−V and V'�/' < 1. �en, the unique equilibrium-consistent
sequence of borrowing limits {WC }∞C=0

is such that WC = W★ for all C where W★ is the smallest
solution to W = � (W) for W ∈ [0, 1].

(ii) Otherwise, there exists no equilibrium-consistent sequence of �nite borrowing limits.

Proof. In Appendix A.7. �

�e lemma above also shows that when V':/' = V + (1 − V)
(
V'�/'

) 1

1−V
, then there is also

no equilibrium-consistent sequence of borrowing limits even though there is a �xed-point to

W = � (W) in [0, W]. �e reason is that, in this case, such a W corresponds exactly to the case in

which banks’ net worth (and as a result, its debt level) grows at rate ', implying a violation of the

no-Ponzi condition.

We proceed now to describe some comparative statics:

Corollary 1 (Comparative Statics). Consider a constant price of capital ? > 0 such that ': > ' and
V':/' < V + (1 − V)

(
V'�/'

) 1

1−V . �en W★ as de�ned in part (i) of Proposition 6 is strictly decreasing
in I, ', and ? , and strictly increasing in I and V .

Proof. In Appendix A.8. �

�is corollary provides comparative statics with respect to key parameters. Regarding the

productivity parameters, we have that W★ is increasing in I and decreasing in I. �ese results are

intuitive: the value of repayment for the bank is increasing in I and independent of I, while the

value of default is increasing in I and independent of I. Graphically, this result can be seen in

panel (a) of Figure 1 by noting that an increase in I, or a decrease in I, shi�s down the � curve and

moves its �rst intersection with the 45 degree line (which represents the equilibrium-consistent

borrowing limit) towards a higher value.

In addition, we have thatW★ is decreasing in '. A bank in default does not save/borrow in bonds,

and hence the value of default is independent of '. On the other hand, the value of repayment is

decreasing in ' because banks are borrowers. As a result, the borrowing constraint becomes less

tight with a lower '. Moreover, a higher V also raises W★ because a higher patience increases the

present discount value of the productivity losses upon default.

18



�e e�ects of the price of capital on W★ are more subtle because the price of capital a�ects both

the value of repayment and default. In both cases, a decline in today’s price of capital increases

the return of investment. What is important to recognize, however, is that a bank in repayment

can lever up and have a larger increase in the return on the overall portfolio compared to a bank

in default. As a result, an increase in the return on capital increases more the value of repayment

than the value of default. Hence, the partial equilibrium default threshold W★ is decreasing in the

price of capital.

2.3 Discussion on the Environment

Before we turn to a general equilibrium characterization, let us discuss some features of the

environment.

In terms of mapping banks in the model within the current institutional setup, it is also

important to highlight that banks in our model are unregulated �nancial institutions without

access to deposit insurance. In this regard, the model corresponds best to the �nancial conditions

of investment banks or shadow banks. �ese institutions played a central role during collapse of

the �nancial system in 2008 (see, e.g., Bernanke, 2013; Brunnermeier, 2009). At the same time, we

also note that to the extent that deposit insurance on commercial banks is limited or imperfect in

practice, creditors would still impose borrowing limits to banks.

�e debt contract in the model is assumed to be one period. In the model so far (that is, in

the absence of runs), this assumption is without loss of generality. However, this is not the case

in the version with runs that we will study in Section 3. �ere are several well-studied reasons,

however, why non-state contingent short-term debt is prevalent in the banking system—for

example, incentive reasons (Diamond and Rajan, 2000; Calomiris and Kahn, 1991) or liquidity

bene�ts (Stein, 2012). As in much of the literature, we take as given that debt contracts are

non-state contingent.
21

We also note that linearity of the creditors’ payo� function is assumed for

simplicity, and doing so allows us to focus on the determination of only one general equilibrium

price (per period), the price of capital. Moreover, a low interest rate on banks, relative to their

discount rate, can be seen as capturing implicitly the liquidity services of banks’ liabilities.

A departure that we make from most of the literature is to allow for equity injections and to

model default as a strategic decision (c.f. Diamond and Dybvig, 1983; Gertler and Kiyotaki, 2015),

two features that will play a central role in the general equilibrium and the normative charac-

terization. We note that while we do not incorporate the institutional details of the bankruptcy

procedure, the key takeaway is that through their decisions on dividends, raising additional equity,

21
�ere are also papers dealing with the optimal contracts and how they prevent, or do not prevent, bank runs

(Green and Lin, 2003; Ennis and Keister, 2009b).
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and the riskiness of their asset portfolio, banks face a choice in practice, as in our model, between

repaying and defaulting.

In terms of the default decision, we have considered an outside option for banks such that a

defaulting bank keeps operating the capital at lower productivity. �is assumption is consistent

with the fact that we in e�ect consolidate �nancial and non-�nancial �rms into a single entity by

allowing banks to manage the capital stock directly, as is common in the literature, and by the

empirical evidence that bank failures cause dislocations for �rms that hold lending relationships

with the failing banks (see, e.g., Chodorow-Reich, 2014). We also assume that banks continue

to pay dividends under default. While this assumption is made partly for simplicity, it captures

the fact that banks that are on the verge of default continue to pay signi�cant dividends. In fact,

investment banks that either failed or were bailed out in the 2008 �nancial crisis, such as Lehman

Brothers or Bear Stearns, paid almost as many dividends in the run-up to the crisis as in the years

preceding the crisis. As observed by Acharya, Gujral, Kulkarni and Shin (2011) and Acharya, Le

and Shin (2017), paying dividends in such circumstances constitutes a transfer of resources from

the bondholders to the shareholders. Furthermore, o�en when a bank is close to going bankrupt,

the government, perhaps wary about adverse consequences, ends up arranging a sale so that

shareholders recover a positive amount that is increasing in the value of the asset holdings.
22,23

As we saw, these modelling assumptions generate endogenously a borrowing constraint on

banks similar to those in the literature where �rms or banks can walk away from their obligations

and abscond with funds from creditors or shareholders (e.g., Gertler and Kiyotaki, 2010). Next, we

turn our a�ention to analyzing the general equilibrium implications.

2.4 General Equilibrium

In the previous section, we described the problem of an individual bank in partial equilibrium

for a given price of capital {?C }. As we just saw, the price of capital is key to determine banks’

policies and the borrowing limit faced by banks. In this section, we close the model by showing

how the market price of capital is determined and characterize equilibria.

22
Two examples are Bear Stearns and Merrill Lynch in 2008. �e former was acquired by JP Morgan in the face

of extensive con�icts between bondholders and shareholders about who would face the burden of the losses (see

Landon �omas Jr., “It’s Bondholders vs. Shareholders in a Race to Buy Bear Stearns Stock,” New York Times, March

19, 2008). In the case of Merrill Lynch, investors lost con�dence in its sustainability during the same week Lehman

�led for bankruptcy, and Bank of America acquired it through the active intervention of the Federal Reserve (see, e.g.,

Gretchen Morgenson, “�e Reckoning: How the �undering Herd Faltered and Fell,” New York Times, Nov 8, 2008).

Extensive cross-country evidence about resolution of banking crises is collected in the series of case studies in the

Journal of Financial Crises.
23

An alternative interpretation of the dividend payments a�er default in the model hinges on the consolidation

of �nancial and non-�nancial �rms and the presence of common shareholders between �nancial and non-�nancial

�rms.

20

https://www.nytimes.com/2008/03/19/business/19bear.html
https://www.nytimes.com/2008/11/09/business/09magic.html


Market clearing requires that the aggregate demand for capital from banks equals . Because

all banks are assumed to be identical at the beginning of time, and there is a measure one of banks,

each bank owns :0 = units of the capital stock and has a debt level 10 = �0 in period 0.

Even though banks are ex-ante identical, we allow for di�erent initial default decisions if they
are indi�erent between default or not at time 0. Allowing for this heterogeneity will turn out to be

important to guarantee existence of a general equilibrium. We denote by q ∈ [0, 1] the fraction of

defaulting banks in the initial period. Note that the value of q must be consistent with the optimal

decisions of banks, so

q =


1 if �0 > W−1?0 ,

0 if �0 < W−1?0 ,

∈ [0, 1] otherwise.

(13)

where W−1 is as discussed in footnote 16.

We let  �C and  'C denote the capital holdings (per bank) of defaulting and non-defaulting

banks in period C . Using that a bank either defaults in the initial period, or it never does, we have

the following market clearing condition for capital

q �C + (1 − q) 'C = (14)

for all C > 0, with initial condition  �
0
=   

0
= .

Given a sequence of prices {?C }∞C=0
and a sequence of borrowing limits {WC }∞C=−1

, let BC andK'
C+1

be the policy functions for the repaying banks; and K�
C+1 be the policy function for the defaulting

banks. �en, we have the following law of motion for the debt and capital levels:

�C+1 = BC+1((I + ?C ) 'C − '�C ) (15a)

 'C+1 = K'
C+1((I + ?C ) 'C − '�C ) (15b)

 �C+1 = K�
C+1((I + ?C ) �C ) (15c)

for all C ≥ 0. We can now proceed to de�ne a competitive general equilibrium.

De�nition 2 (General Equilibrium). A competitive equilibrium given identical initial debt levels,

�0, and capital holdings, , is a sequence of prices of capital, {?C }∞C=0
, a sequence of borrowing

limits, {WC }∞C=−1
, a sequence of debt and capital holdings (per bank), {�C ,  'C ,  �C }∞C=0

, and an initial

share of defaulting banks, q , such that

(i) �e evolution of debt and capital holdings follow equations (15) where BC and K'
C+1 and

K�
C+1 represent the policy functions that solves the banks problem in repayment and default
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respectively given the sequence of prices and borrowing limits;

(ii) �e borrowing limits (given the sequence of prices) are equilibrium consistent, that is,

De�nition 1 is satis�ed;

(iii) Markets clear, that is equation (14) holds for all C ; and

(iv) �e share of defaulting banks, q is consistent with bank’s optimality. �at is, equation (13)

holds.

Before moving on to characterize general equilibrium given any initial condition, we �rst

discuss stationary equilibria, that is, where the capital price and the borrowing limit are constant.

2.5 Stationary Competitive Equilibrium

We de�ne a stationary equilibrium as a competitive equilibrium where ?C = ? , WC−1 = W ,  �C+1 =  
�

,

 'C+1 =  
'

and �C+1 = � for all C ≥ 0.

Given a stationary price ? , let ': (?) ≡ I+?
?

and '� (?) ≡ I+?
?

de�ne the returns to capital under

repayment and default as before, but this time we make explicit the dependence on the capital

price ? . Similarly, let � (W, ?) be rede�ned as:

� (W, ?) ≡ 1 −
(
': (?)/' − W
'� (?)/'

) 1

V

. (16)

�e following proposition establishes that there are two types of stationary equilibria.

Proposition 2 (Types of Stationary Equilibria). Stationary equilibria can be of the following two
types:

(i) Default equilibrium. Let (?� , W�) be a pair such that

W� = � (W� , ?�) (17)

?� =
V

1 − V I (18)

where W� is lowest solution in [0, 1] to (17) given ?� .

Such a solution exists (and is unique) if and only if

I

I
<

' − 1

V−1 − 1

+ '−
V

1−V .
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If this condition is satis�ed and �0 ≥ W�?� , there exists a stationary equilibrium where q = 1,
 �C+1 = ,  

'
C+1 = 0, �C+1 = 0, ?C = ?� and WC−1 = W

� for all C ≥ 0. Banks’ dividend payouts are
given by 2C = I .

(ii) Repayment equilibrium. Let (?', W') be a pair such that

W' = � (W', ?') (19)

?' =
VI

1 − V − (1 − V')W'
(20)

where W' is lowest solution in [0, 1] to (19) given ?' . Such a solution always exists and is
unique.

If �0 = W
'?' , then there exists a stationary equilibrium in which q = 0,  'C+1 = , �C+1 = �0,

 �C+1 = 0, ?C = ?' and WC−1 = W' for all C ≥ 0. Banks’ dividend payouts are given by
2C = I − (' − 1)�0.

Proof. In Appendix B.1 �

�is proposition says that under one condition on the productivity di�erence between re-

payment and default, if the initial level of debt is above some threshold, there is a stationary

equilibrium in which all banks default. Likewise, there is a level of debt such that there is a

stationary equilibrium in which all banks repay. In this second type of equilibria, the price of

capital is higher because it re�ects the higher productivity of capital under repayment and the

ability to leverage in equilibrium.

�e proposition also establishes that for some parameter values, a stationary default equilibrium

may fail to exist. �is occurs because if all banks were to default, the price of capital would be

so low that the return to equity for a bank that did not default would be large enough that there

would be no �nite borrowing limit and therefore banks would prefer repayment. On the other

hand, a repayment stationary equilibrium always exists.

Comparison of stationary equilibria. Let us now compare the two potential stationary out-

comes. Note �rst that ?' > ?� , a result that follows immediately from V' ≤ 1, W' ≥ 0, and I > I.

Intuitively, the demand for capital in the repayment stationary equilibrium is higher than under

the default one, as banks have higher productivity and capital serves, in e�ect, a role as collateral.

Notice also that if V' = 1, we have ': = ' and the borrowing constraint does not bind. In this

case, the steady state price re�ects only the productivity return and is the same as the one that

would prevail in the absence of the limited commitment friction.
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By Corollary 1, the result that ?' > ?� implies that W� > W' . However, we would like to

compare the total amount of borrowing that a bank can make per unit of the value of its capital, W? .

Towards this end, let us de�ne the debt threshold levels implicit in Proposition 2 that characterize

the two types of equilibria. Given (W� , ?�) and (W', ?') as de�ned in Proposition 2, we let

�
� ≡ ?�W� ,
�
' ≡ ?'W' .

�at is,�
�

denotes the debt level at which banks are indi�erent between repaying and defaulting

when the equilibrium price is constant at ?� . By the same token, �
'

denotes the debt level at

which banks are indi�erent between repaying and defaulting when the price of capital is constant

at ?' .

We now examine whether the debt level that makes a bank indi�erent between repaying and

defaulting is higher in the stationary equilibrium with repayment or in the stationary equilibrium

with default. We have the following result

Proposition 3. If the default stationary equilibrium exists, then�� > �
' .

Proof. In Appendix B.2. �

In a repayment equilibrium, the debt threshold must be lower than in a default equilibrium.

Intuitively, since the return on capital for a repaying bank is lower in the repayment equilibrium,

banks must have a lower debt to keep them indi�erent between repaying and defaulting.

Ruling out multiplicity. �e result that�
�
> �

'
is important because if the inequality was

reversed, the economy will necessarily feature multiple equilibria (even absent bank runs). In

particular, if�
�
< �0 < �

'
, the default equilibrium and the repayment equilibrium would both be

possible outcomes. �at is, if all banks were to repay, asset prices would be high, and an individual

bank would choose to repay, while if all banks were to default, asset prices would be low, and an

individual bank would choose to default.

We highlight that the fact that default is a dynamic strategic choice is critical to generate a

unique equilibrium in our setup. An alternative setup in which default is determined exclusively

by the value of the net worth—in particular by whether net worth is positive or negative—would

lead to multiplicity as long as the price under repayment is higher than the price under default.

�is occurs because for a range of debt levels, net worth would be positive under the repayment

price but negative under the default price.
24

Instead, in our setup, the default decision depends

not only on net worth but also on the sequence of returns.

24
�at is, there exists a debt level 10 such that (I + ?� ) − 10 < 0 < (I + ?') − 10.
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�e absence of multiplicity in this version of the model helps to distinguish our framework

from the one in Gertler and Kiyotaki (2015). �ere, a good equilibrium where banks repay coexist

with a bad equilibrium where asset prices fall, net worth turns negative and banks are unable

to continue operating.
25

(In terms of our model, this is a scenario where �
'
> �

�
and there is

a switch of the two thresholds in Figure 2.) Under this situation, the run is fundamental. An

individual investor does not have incentives to roll over deposits knowing that the bank will

default, regardless of the decision of other investors. �e key di�erence with the runs we will

consider in the Section 3 is that the bank runs we consider are self-ful�lling at the level of the
indivual bank. As will see, this has distinctive implications for policies.

2.6 Transitional Dynamics

W'?' W�?� 

Repayment eqm. Mixed eqm. Default eqm

�0

Figure 2: Types of equilibrium depending on �0

Until now, we have examined stationary equilibrium. �e question we address now is how

the economy evolves when it does not start at the levels of debt that belong to the two stationary

equilibria.

We can distinguish three distinct cases of convergence depending on the initial values of debt

relative to�
'
,�
�

.

1. Convergence to repayment equilibrium if �0 < �
'
. We start by considering the case in

which the economy starts with a low level of debt. Speci�cally, we consider an initial value of

debt that is below the stationary values for the repayment and default equilibrium.

Let us consider the case in which V' < 1. When debt is below �
'
, we conjecture that the

dynamics are as follows. For ) periods, the return to capital is exactly ', aggregate net worth

decreases at rate V', and the borrowing constraint does not bind. In period ) , the borrowing

constraint binds, the return to capital is higher than ', and the economy remains at the stationary

repayment equilibrium therea�er. Appendix D.1 describes how the value of) and the sequence of

prices and debt levels are determined.

Figure 3 illustrates the transition dynamics for �C and ?C . �e note in the �gure describes the

parameter values used. Panel (a) shows the transition map for �C . �e vertical lines correspond

25
One can show that a bank cannot satisfy the incentive compatibility constraint when net worth is negative under

the assumption that the portfolio returns do not lead to an in�nite value of the bank.
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to the di�erent debt threshold levels. �e solid blue line shows the corresponding �C+1 given a

�C in the horizontal axis. �e dashed line shows a particular initial point �0 and its transition

towards the steady state level�
'
. In this case, convergence is achieved in three periods, and debt

is increasing along the path. Although not shown, net worth is decreasing too. Panel (b) displays

how the price of capital is decreasing in the debt level.

(a) Transition map for �C

�̄'�̄',0�̄',1�̄',2�̄',3 �0

�C

�
C+

1

(b) Associated price ?C

�̄'�̄',0�̄',1�̄',2�̄',3

?'

�C

?
C

Figure 3: Transition Dynamics in General Equilibrium

Note: �is simulation was generated with the following parameters: ' = 1.01, V = 0.95, I = 1.5, I = 1.1, and = 1.

2. Convergence to default equilibrium if �0 > �
�

. �is case is already covered in Proposition

2 and there are, in e�ect, no transitional dynamics. �at is, we have ?C = ?
�

for all C ≥ 0, and all

banks default in the initial period.

3. Transition if�
�
> �0 > �

'
. Consider now the case in which debt is above the stationary

level for the repayment equilibrium but below the threshold for the default equilibrium. We argue

that in this case, the equilibrium must be non-degenerate. Why does a degenerate equilibrium fail

to exist? Under a price consistent with repayment by all banks, an individual bank would �nd it

optimal to default. Conversely, under a price consistent with default by all banks, an individual

bank would �nd it optimal to repay.

We can construct, however, equilibrium where banks are indi�erent between defaulting and

repaying and such that a fraction q of banks default in the initial period. �at is,

+ �
0
( ) = + '

0
((I + ?0) − �0), (21)

where + �
0

and + '
0

are de�ned respectively in (7) and (10). Recall that + �
0

is a function of the

sequence of {?C }, and + '
0

is a function of the sequence of {?C } and {WC }.
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As it turns out, it is possible to characterize this mixed equilibrium in a dynamic system with

two variables, given q . �e two variables are the fraction of capital owned by banks in repayment,

and the debt of banks in repayment as a fraction of the capital shock. Proposition 4 presents the

dynamic system, establishes uniqueness and characterizes the resulting allocations (imposing that

the borrowing constraint binds along the transition).

Proposition 4 (Characterization of dynamic system for�0 > �0 > �'). Suppose that in a general
equilibrium ':C+1 > ' for all C ≥ 0 and q ∈ (0, 1). Let ˜:C =

(1−q) 'C
 

and ˜1C =
(1−q)�C
 

. �en,

' ˜1C > (I− I) ˜:C and ?C > ?� for all C ≥ 0. �e evolution of ( ˜:C , ˜1C ) is uniquely determined starting
from ( ˜:0, ˜10) by

˜:C+1 = 1 − V
(
I + ?C
?C

)
(1 − :C ) ,

˜1C+1 = ?C:C+1 − V=̃C ,

where =̃C = (I + ?C ) ˜:C − ' ˜1C and ?C is the unique solution to:[
(I + ?C ) ˜:C − '1C

]
1−V [

?C − V (I + ?C ) (1 − ˜:C )
]V

VV (I + ?C ) ˜:C
= 1.

In addition:

(i) Capital holdings of a repaying bank increase over time. �at is, ˜:C+1 > ˜:C for all C ≥ 0, thus
implying that  'C+1 >  �C+1 for all C ≥ 0.

(ii) And 2�
0
> 2'

0
where 2'

0
and 2�

0
represent the dividend payout at C = 0 for repaying and defaulting

banks respectively.

Proof. In Appendix B.3 �

Proposition 4 uniquely characterizes the behavior of the economy for a given initial condition

in which
˜:0 = (1 − q), ˜10 = (1 − q)�0/ . However, for arbitrary values of q , some of the

solutions will eventually become invalid, and thus q needs to be chosen as to be consistent with

an equilibrium.
26

In an equilibrium,
˜:C is increasing over time. �is implies that repaying banks are net buyers of

capital while defaulting banks are net sellers. Moreover, given that :C ∈ [0, 1], this monotonicity

implies that
˜:C must converge. If :C were to converge to a value less than 1, the dynamic system

above requires that ?C converges to ?� . Now, from the system, we have that
˜1C+1 − V' ˜1C =

26
�is requires that ?C > ?

�
, ' ˜1C > (I− I) ˜:C , and

˜:C ∈ [0, 1] for all C .
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?C ˜:C+1 − V (I + ?C ) ˜:C , which converges to −V (I− I) ˜: < 0. And thus
˜1 must eventually be negative,

a contradiction. So it must be the case that in an equilibrium, :C converges to 1, the level where

all the capital is owned by repaying banks. Note that this requires that ?C converges to ?' . �e

economy must converge to the stationary repayment equilibrium.
27

Proposition 4 also states an additional result that is useful below: the dividend payout of

repaying banks is strictly lower than that of defaulting banks.

It is somewhat surprising that general equilibrium requires partial default for intermediate

levels of initial aggregate debt. A�er all, the equilibrium characterizations in Kehoe and Levine

(1993) and Alvarez and Jermann (2000) impose that default is not an equilibrium outcome. We

highlight, in addition to the di�erence in environments we have noted before, that the existence

proof in Kehoe and Levine (1993) for debt constrained economies rely on the assumption that all

agents are initially endowed with strictly positive assets; an assumption that is violated in our

environment. As we will see below, the presence of equilibrium default has stark implications for

policy.

Numerical illustrations. In Figure 4, we use the results from Proposition 4 to simulate the

model under a mixed equilibrium. We consider an initial value of debt 5 percent above the debt

threshold �
'
. Given this initial value of debt, we have q = 0.36 (i.e., 36% of banks default in

equilibrium). Panel (a) shows that the price of capital is low initially, but higher than ?� , and then

increases monotonically over time until it reaches ?' , the stationary price under repayment. (�e

two horizontal dashed lines denote the stationary values of the price). Meanwhile, panel (b) shows

that the leverage threshold WC is high initially and then decreases over time until it reaches W' .

�e bo�om panels in Figure 4 illustrate the di�erences between repaying and defaulting banks,

represented respectively by the straight and dashed red lines. Panel (c) shows that repaying

banks invest more capital than defaulting banks panel, as characterized in part (i) of Proposition

4. Despite having lower initial net worth, as shown in panel (d), repaying banks’ ability to lever

imply that they invest more. �anks to their higher portfolio return, their holdings of capital and

net worth increase over time and relative those of defaulting banks. In the long-run, defaulting

banks’ holdings of capital converge to zero. Asymptotically, repaying banks take over the entire

capital stock and the economy converges to the repayment stationary equilibrium.

In Figure 5, we present results on the transitional dynamics for a range of initial debt levels

using the same parameter values as in the previous �gure. �ere are four panels in the �gure:

(a) the fraction of banks that default q ; (b) the initial price of capital ?0; (c) the initial demand of

capital for repaying and defaulting banks; and (d) the initial dividend payout for repaying and

27
Note also that the multiplicity and cycles uncovered by Gu et al. (2013) in Kehoe-Levine economies is not a

feature of our environment.
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(a) Price of Capital ?C (b) Leverage �reshold WC

(c) Capital Allocation (d) Net Worth

Figure 4: Transition dynamics in a mixed equilibrium

Notes: �e simulation was generated using ' = 1.1, V = 0.97/', I = V/(1 − V), I = 1.15I, = 1 and �0 = 0.191.

�e x-axis represent periods. �e horizontal dashed lines in panels (a) and (b) denote the stationary levels.

In panel (c), capital of repaying and default banks is given respectively by (1 − q) 'C and q �C . In panel (d),

networth of repaying and default banks is given respectively by (I + ?C ) 'C − '�C and (I + ?C ) 'C .

defaulting banks. For low values of debt, lower than�
'
, denoted with a vertical dashed line, all

banks repay (q = 0). Recall that if �0 = �
'
, the price is equal to the stationary price ?' and banks

are indi�erent between repaying and defaulting. As debt increases beyond�
'
, we reach the region

characterized by the mixed equilibrium and q increases until �0 = �
�

at which point all banks

default and the price becomes equal to ?� , the price in the stationary default equilibrium.
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(a) Fraction of defaulting banks q (b) Price of Capital ?0

(c) Capital Allocation
(d) Dividend Payout

Figure 5: Initial values in transitional dynamics for a range of values of �0

Notes: �e simulation was generated using ' = 1.1, V = 0.97/', I = V/(1 − V), I = 1.15I, and = 1 . �e

vertical dashed lines denote the stationary borrowing thresholds. In panel (c), capital of repaying and default

banks is given by (1 − q) '
1

and q �
1

.

3 Bank Runs

In the version of the model we have considered so far, we have abstracted from liquidity consid-

erations. As long as a bank has future cash �ows that guarantee repayment, it is able to obtain

funding. We now introduce the possibility that banks face a run on deposits and go bankrupt as a

result.

We model bank runs as an outcome of a rational expectations equilibrium. We consider a
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situation in which an individual investor may �nd it optimal to refuse to roll over deposits when

she expects the rest of the investors to do so as well. �e details of the game are closest to those

in Cole and Kehoe (2000), a workhorse model in the sovereign default literature.
28

We will say

that a bank is vulnerable to a run whenever a “panic” by investors that refuse to lend to the bank

makes it optimal for the bank to default. We focus on the case under which if a bank is vulnerable

to a run, the bank run always takes place.
29

3.1 Banks’ Problem and Borrowing Limits under Bank Runs

As in Section 2, consider a bank that enters the period with good credit standing, : units of capital,

and 1 units of maturing bonds. Given a sequence of prices of capital, the bank’s value of default,

+ �
C (:), continues to be given by equation (4).

We now introduce the possibility of runs. We use + 'D=C (1, :) to denote the value to the bank if

it is unable to issue new debt (that is, it su�ers a run) and it decides to repay its existing creditors.

We will say that a bank is “safe” if even under a run, it chooses to repay its debts rather than

default, that is, if+ 'D=C (1, :) ≥ + �
C (:). We use the term safe because if banks do not �nd it optimal

to default upon a run, investors do not have incentives to run. On the other hand, a bank is

“vulnerable” if it �nds optimal to default under a run; that is, if + 'D=C (1, :) < + �
C (:).

�us, given an initial state (1, :), if the bank is safe this period, it cannot su�er a run, and we

denote its value by +
(05 4

C (1, :). If the bank is vulnerable, then we assume that it su�ers a run with
probability one, and thus it defaults (justifying the creditors’ beliefs) and a�ains a value of + �

C (:).
�e value of repayment under a run, + 'D=C (1, :), is obtained as follows. Given that the bank

cannot issue any new debt, its payments to existing creditors need to come entirely from sales

of existing holdings of capital. �e bank’s dividend payout is therefore given by its net worth

minus purchases of new capital. Next period, the bank starts without any debt, and as a result, the

continuation value is given by the “safe” value function (as a bank with no liabilities cannot su�er

a run).
30

In particular, under a run, the value of repaying for a bank with capital : and debt 1 can be

wri�en as before as just of a function of the net worth. �at is, + 'D=C (1, :) = +̂ 'D=C ((I + ?C ): − '1)
28

Unlike the Diamond and Dybvig model, Cole and Kehoe does not feature a sequential service constraint. In

Cole and Kehoe, investors are atomistic. If all investors refuse to lend and this leads to a default, then an individual

investor does not have incentives to lend.

29
An alternative is to allow for an equilibrium selection involving sunspots as in Cole and Kehoe (2000). In this case,

it is possible to have defaults for C > 0. However, our assumption allows us to obtain an analytical characterization of

the default thresholds.

30
A bank with no liabilities can always choose to issue no debt in the future and invest the same amount as a bank

that has defaulted at the same level of capital. Because its productivity is strictly higher than a defaulting bank, it

follows that + 'D=C (0, :) > +�C (:), and thus a bank without current liabilities is naturally safe.
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and we have that

+̂ 'D=C (=) = max

: ′≥0,2
log(2) + V+ (05 4

C+1 (0, :
′) , (22)

subject to

2 = = − ?C:′.

Note that the constraint set in the above problem is non-empty as long as = ≥ 0 and +
(05 4

C+1 (0, :) is

de�ned for any non-negative level of : .

Let us consider the problem of a bank that is safe and decides to repay its debt. Just as in our

previous analysis, the bank can issue new bonds as long as its value of repaying tomorrow is

higher than or equal to the value of default. Crucially, the next-period value of repayment now

needs to be weakly higher than that of default also in the case in which the bank is subject to a

run. �at is, the bank is subject to the borrowing constraint:

+̂ 'D=C+1 ((I + ?C+1):′ − '1′) ≥ + �
C+1(:′),

�e bank chooses a portfolio that guarantees that a run does not occur in the future. Note that if

= < 0, the bank is necessarily vulnerable to a run.

�us, when the bank is safe and can obtain funding, it solves a problem analogous to (5), with

the di�erence that to obtain a positive bond price, the bank needs to make sure that it will be

safe next period. As in (5), the value of being safe can be wri�en as a function of net worth,

+
(05 4

C (1, :) = +̂ (05 4C ((I + ?C ): − '1), where +̂
(05 4

C is given by

+̂
(05 4

C (=) = max

=′,1 ′,: ′≥0,2
log(2) + V+̂ (05 4

C+1 (=
′) (23)

subject to

2 = = + 1′ − ?C:′

=′ = (I + ?C+1):′ − '1′ ≥ 0

+̂ 'D=C+1 (=′) ≥ + �
C+1(:′)

for = > 0, and where we have introduced the constraint =′ ≥ 0, which is a necessary and

su�cient condition for a feasible repaying allocation to exist under a run. �e last constraint is

the borrowing constraint, which as before, also plays the role of the No-Ponzi condition until a

further re�nement.
31

31
We do not need to impose the constraint +̂

(05 4

C+1 (=′) ≥ +̂�C+1 (: ′) in Problem (23). From a simple inspection of the

value functions, it is clear that +̂
(05 4

C+1 (=′) ≥ +̂ 'D=C+1 (=′) and hence the constraint is satis�ed if +̂ 'D=C+1 (=′) ≥ +̂�C+1 (: ′).
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If for a given portfolio, +̂
(05 4

C < + �
C , we say that a bank defaults due to fundamentals. Instead,

if +̂ 'D=C < + �
C < +̂

(05 4

C , we say that a bank defaults due to runs.
32

Solution to value functions. �e value of default is the same as in Lemma 1. Meanwhile,

we can proceed, in a similar fashion to Section 2, to characterize the policy functions and value

functions of the bank when it is safe and when it is vulnerable to a run. When the bank is safe and

has access to borrowing, we guess that the borrowing constraint in Problem (23) can be wri�en as

a linear borrowing constraint 1′ ≤ WC?C+1:′ for some sequence of {WC }. Given a sequence of {WC , ?C },
the value function +̂

(05 4

C has the same form as +̂ 'C , described in Lemma 4. Note that in equilibrium,

however, the sequence {WC } that the bank faces is determined by the condition +̂ 'D=C+1 (=′) = + �
C+1(:′)

and thus could be di�erent from the sequence of borrowing limits without runs. Indeed, as we

will see below, this implies a tighter borrowing constraint.

We now proceed, accordingly, to characterize the value of repayment under a run.

Lemma 7 (�e value of repayment in a run). Consider a sequence of (strictly positive) prices {?C }∞C=0

and (non-negative) borrowing limits, {WC }∞C=0
. that satisfy Condition 2. �en the value of repayment

under a run, +̂ 'D=C (=), and associated policy functions in period C for = > 0 are such that:

(i) Value function:

+̂C
'D= (=) = � + 1

1 − V log(=) + V

1 − V

[
log

(
':C+1

)
+

∑
g≥C+1

Vg−C log('4g+1)
]

;

where � is as in Lemma 1.

(ii) Policy functions:

C'D=C (=) = (1 − V)=, K'D=
C+1 (=) = V

(
=

?C

)
.

Proof. In Appendix C.1. �

�e value function is again log-linear in net worth. �e di�erence relative to +̂
(05 4

C is that

the inability to obtain new deposits lowers the return on net worth in the �rst period from

'4C+1 to ':C+1, thereby reducing the value from repaying.
33

As long as WC > 0 and ':C+1 > ', then

32
�is result contrasts with Gertler and Kiyotaki (2015) and Gertler et al. (2020b) where a bank defaults when net

worth is negative irrespective of whether creditors of the individual bank are willing to roll over or not.

33
If one imposes arti�cially that WC = 0 in the value function +̂ 'C , while making all other subsequent W ’s the same,

we reach the same value as in +̂ 'D=C .
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+̂
(05 4

C (=) > +̂ 'D=C (=). In addition, the bank continues to consume a fraction 1 − V of net worth and

invest the rest in capital.

We have the following proposition characterizing the default condition when the bank is

subject to a run.

Proposition 5 (Default decision under runs). Consider a sequence of (strictly positive) prices,
{?C }∞C=0

, and a sequence of (non-negative) borrowing limits, {WC }∞C=0
that satisfy Condition 2. �en, the

value of WC that makes a bank indi�erent between repayment and default at C + 1 is such that

V log

(
I + ?C+2(1 − WC+1')

I + ?C+2

)
− V2

log

(
I + ?C+3(1 − WC+2')

I + ?C+3

)
+

+ V2
log

(
1 − WC+2

?C+3
?C+2

)
= log

(
I + ?C+1(1 − WC')

I + ?C+1

)
(G-run)

for all C ≥ 0.

Proof. In Appendix C.2 �

Using the above, we now can de�ne the equilibrium-consistent borrowing limits with runs

given a sequence of prices:

De�nition 3. Given a sequence of (strictly positive) prices {?C }∞C=0
, we say a sequence of (non-

negative) borrowing limits {WC }∞C=0
is equilibrium-consistent with runs if Conditions 2, and 3 hold

and equation (G-run) is satis�ed for all C ≥ 0.

3.2 General Equilibrium with Runs

�e de�nition of general equilibrium follows exactly the de�nition in Section 2, except that the

borrowing limits must be equilibrium-consistent with runs. �at is, given initial debt levels and

capital holdings, an equilibrium is a sequence of prices of capital {?C }∞C=0
, a sequence of borrowing

limits, {WC }∞C=−1
, a sequence of (per-bank) aggregate debt and capital levels, {�C ,  'C ,  �C }∞C=0

, and

an initial share of defaulting banks, q , such that (i) the evolution of aggregate debt and capital

are consistent with banks’ policies (ii) banks optimize, (iii) the market for capital clears, and (iv)

borrowing limits are equilibrium-consistent with runs (i.e., eq. (G-run) holds).

Stationary equilibria with runs. We de�ne stationary competitive equilibria as before: a

situation in which ?C , WC , capital allocations and debt are constant for all C ≥ 0.

We characterize stationary equilibria with runs in a manner similar to that in Proposition 2.

Using equation (G-run), we �rst de�ne a condition that the stationary value of W must satisfy. �at
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is, W = � A (W, ?) where

� A (W, ?) ≡ 1 −
(
1 − '

': (?)
W

)
1+ 1−V

V2

(
': (?)
'� (?)

) 1

V2

Notice that we have emphasized the dependence of the returns on the price of capital by writing

': (?) and '� (?).
�e function � A

has similar properties to � , de�ned in (16). In particular, � A
is increasing and

strictly concave in W in [0, 1), � A (1, ?) ≤ 1, and � A (0, ?) < 0 given that ': > '� . And thus, � A

features at most two �xed points in [0, 1]. We have the following result, a version of Lemma 6 for

the case with runs:
34

Lemma 8 (Stationary borrowing limits under a constant price). Consider a constant price of capital
? > 0 such that ': ≥ '.

(i) If V':/' < V+ (1−V) (V'�/')
1

1−V (V':/')−V and V'�/' < 1, then there is a unique stationary
(equilibrium-consistent under a run) borrowing limit W★ where W★ is the smallest solution to
W = � A (W, ?) for W ∈ [0, 1).

(ii) Otherwise, there exists no stationary (equilibrium-consistent under a run) borrowing limit.

Proof. In Appendix C.3 �

Note that the condition for existence in part (i), although quite similar to the condition in

Lemma 6 is in e�ect a weaker one. �at is, the economy with runs admits a higher return on

capital owing to the fact that the borrowing constraint is tighter.

With this existence result at hand, we can then proceed to characterize the stationary equilibria.

Proposition 6 (Types of stationary equilibria with runs). Stationary equilibria with runs can be of
the following two types:

(i) Default equilibrium. Let (?A� , WA�) be given by a solution to

WA� = � A (WA� , ?A�) (24)

?A� =
V

1 − V I (25)

34
Di�erently from Lemma 6, in this case we cannot show that all equilibrium consistent borrowing limits are

stationary. Part of the di�culty arises from characterizing the dynamics of the system described by (G-run), a

second-order di�erence equation that makes the analysis signi�cantly more complex. However, the results in Lemma

8 su�ce for characterizing the general equilibrium, as we will see below.
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where W� is lowest solution in [0, 1] to (24), given ?A� . Such a solution exists (and is unique) if
and only if

I

I
<

' − 1

V−1 − 1

+ '
− V

1−V

G
V

0

where G0 is the unique solution in (V, 1) to GV
0
(G0 − V) = (1 − V)'−

1

1−V .

If �0 ≥ WA�?A� , there exists a stationary equilibrium in which q = 1,  �C+1 =  ,  �C+1 = 0,
�C+1 = 0, ?C = ?A� , and WC−1 = W

A� for all C ≥ 0. Banks’ dividend payouts are given by 2C = I .

(ii) Repayment equilibrium. Let (?A', WA') be given by the solution to

WA' = � A (WA', ?A') (26)

?A' =
VI

1 − V − (1 − V')WA'
(27)

where W� is lowest solution in [0, 1] to (26) given ?A' . Such a solution always exists and is
unique.

If �0 = W
A'?A' , then there exists a stationary equilibrium in which q = 0,  'C+1 = , �C+1 = �0,

 �C+1 = 0, ?C = ?A� , and WC−1 = WA' for all C ≥ 0. Banks’ dividend payouts are given by
2C = I − (' − 1)�0.

Proof. In Appendix C.4 �

It is useful to de�ne again the threshold debt levels implicit in Proposition 6. �at is, given

(WA� , ?A�) and (WA', ?A'), we let

�
A� ≡ ?A�WA� ,
�
A' ≡ ?A'WA' 

Let us analyze how the debt thresholds and prices di�er between the case without runs and

the case with runs. First note that the price in the stationary default equilibrium is the same with

and without runs, ?A� = ?� = VI/(1 − V). Using this result, we can show that the debt threshold

determining the default stationary equilibrium is lower with runs.

To examine�
A'

, it is useful to distinguish two cases. If V' = 1, just as in the economy without

runs, the borrowing constraint is not binding in the stationary repayment equilibrium, and the

price is such that the return to capital and the interest rate are equalized: ': = '. In this case,

interestingly, we have that WA' = W' and thus�
A'

= �
'
. Hence the presence of runs does not a�ect
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the threshold for the repayment stationary equilibrium when V' = 1.
35

If V' < 1, this result no

longer holds. In fact, we can show that W is strictly lower under runs and therefore the stationary

price and the debt threshold is lower under runs. We summarize these results in the following

lemma:

Lemma 9. �e following holds:

(i) If a default equilibrium without runs exists, then a default equilibrium with runs exists, and
WA� < W� and�A� < �

� .

(ii) If V' = 1, then WA' = W' , ?A' = ?' and �A' = �
' . If V' < 1, then WA' < W' , ?A' < ?' and

�
A'

< �
' .

Proof. In Appendix C.5. �

Intuitively, the presence of runs makes the borrowing constraints tighter and this expands the

conditions for existence of a stationary default equilibrium expands. �e presence of runs leads to

borrowing limits that are tighter than the “not too tight” limits of Alvarez and Jermann (2000)

that emerged in the case without runs.

Having characterized the potential stationary outcomes in the economy with runs, we now

discuss brie�y the transitional dynamics.

Transitional dynamics with runs. Just like the case without runs, we can distinguish three

distinct regions of convergence depending on the initial values of debt relative to�
A'
,�
A�

.

1. Convergence to repayment equilibrium with runs if �0 < �
A'

. �is case is analogous to

the economy without runs and is discussed in Appendix D.2.

2. Convergence with runs if �0 > �
A�

. All banks default immediately, q = 1,  �C =  , and

?C = ?
A�

for all C ≥ 0.

35
In this case, given that ': = ', '4 is independent of the value of W and also equals ', and thus +̂ ' (=) = +̂ 'D= (=).

A bank su�ering a run cannot leverage and needs to repay its debt. But given that ': = ', this is no di�erent from

a bank that does not su�er a run and decides to repay. To the extent that net worth is positive, such a bank could

also optimally have chosen to reduce its debt to zero and scale down its capital, as it is indi�erent between capital

and bonds. �is is quite di�erent from the sovereign debt results in Cole and Kehoe (2000), where the possibility of

a run does a�ect the default threshold when V' = 1. �e key is that in our model, when V' = 1, in the stationary

repayment equilibrium, the value of capital represents the present value of the future “endowments” of the bank.

Access to a spot liquid market for capital renders the presence of runs irrelevant.
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3. Transition with runs if�
A'

> �0 > �
A�

. As in the economy without runs, we have that the

equilibrium must be non-degenerate.
36

An interesting observation here regards the comparison

of the policies for a bank facing a run compared to a defaulting bank. Let 2'D=
0

and  'D=
1

denote

the initial dividend payout and capital choices for a bank that is facing a run and decides to repay.

We have the following result.

Lemma 10. Consider an equilibrium with runs where q is interior. �en, 2'D=
0

< 2�
0
and  'D=

1
<  �

1
.

Proof. In Appendix C.6 �

An implication of the lemma is that a repaying bank facing a run is a net seller of capital,

and in particular it sells more capital than a defaulting bank. As we will see in the next section,

through e�ects on the price of capital, government policies can have important implications for

the vulnerability of banks to self-ful�lling runs.

4 Policy Analysis

In this section, we turn to government policies. One objective is to compare the e�ects of policy

interventions when equilibrium defaults are driven by fundamentals or runs. We focus a�ention

to ex-post policies, that is, policies that take place at C = 0 for a given initial level of aggregate

debt that is maturing at that period.
37

One ine�ciency at play in our model emerges from the presence of an equilibrium price (the

price of capital) in the determination of a bank’s default option. As shown in Kehoe and Levine

(1993), this could lead to ine�ciencies in the market equilibrium. As we will see below, however,

equilibrium default and the presence of runs introduces another reason for policy intervention,

which is the main focus of the analysis in this section.

Before analyzing policies that will have e�ects on competitive equilibrium outcomes, it is

useful to consider brie�y a policy that is neutral. �at is, consider a subsidy on capital in the initial

period that is rebated lump sum.
38

Even though repaying and defaulting banks have di�erent

36
In this case, we solve the model numerically by searching for the sequence of {WC , ?C } and q that satisfy market

clearing condition (14), the initial indi�erence condition for repaying/defaulting+ 'D=
0

= +�
0

and the dynamic equation

for W , (G-run).

37
As mentioned in the literature review, many studies in the banking literature examine policies to deal with the

coordination failure driving runs, such as lender of last resort, freezing of deposits, or deposit insurance. �ere are

generally well-known tradeo�s associated with these policies. Although we will brie�y discuss these policies below,

our focus is on government policies that operate through general equilibrium e�ects. We also leave the issue of how

policies a�ect the ex-ante borrowing decisions and welfare for future work.

38
In the presence of this subsidy, the budget constraints of repaying and defaulting banks become 2'

0
= (I + ?0):0 −

10' + 11 − ?0 (1 − g):1 −)0 and 2�
0
= (I + ?0):0 − ?0 (1 − g):1 −)0 where the government budget constraint requires

that )0 = g?0 .
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demands for capital and therefore receive di�erent amounts of subsidies, this policy does not alter

allocations. �e logic is that because aggregate capital is in �xed supply and all banks start with

the same amount of capital, the a�er-tax price remains unchanged with the subsidy, leaving all

budget constraints and decisions unaltered.

We now turn to analyze two classes of policies that will have welfare implications.

4.1 Controlling the Default Decision

We start by considering a policy in which the government can directly control the default decision

of banks in period C = 0, but it does not intervene in the economy in any other way. One goal of

this exercise is to analyze the extent to which private repayment/default decisions are socially

optimal. From a practical standpoint, the analysis will shed light on whether policies like subsidies

or debt-forgiveness aimed at preventing defaults are desirable.

Consider starting from an equilibrium in which the share of defaulting banks is interior and

denote by q� the equilibrium share of defaulting banks and by {?�
0
, ?�

1
, ?�

2
, . . . } the sequence of

prices.

Suppose now that the government directly controls the share q of defaulting banks at C = 0

while banks retain their ability to choose dividends, issue new bonds (as long as the governments

commands them to repay) and buy/sell capital. In subsequent periods, we assume that the default

decision (and all future choices) are done by the banks. �at is, banks in subsequent periods

default if and only if the value function of default is lower than the value of repayment. �is

implies that the equilibrium consistency of borrowing limits remain as in our baseline economy.

�e problem of a repaying bank at time C = 0 starting with initial debt 10 = �0 and initial

capital holdings :0 = is

+ ' = max

: ′≥0,1 ′,2
{D (2) + V+ '

1

(
:′, 1′; {?1, ?2, . . . }

)
}, (28)

subject to

2 ≤ (I + ?0) − '�0 + 1′ − ?0:
′,

1′ ≤ W0({?1, ?2, . . . })?1:
′.

�e value for a defaulting bank is

+ � = max

: ′≥0,2
{D (2) + V+ � (:′; {?1, ?2, . . . })}, (29)

subject to

2 ≤ (I + ?0) − ?0:
′.
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Using these value functions, we denote total bank welfare by

, = (1 − q)+ ' + q+ �
(30)

Meanwhile, the welfare of creditors is given by (1−q)�0. �is follows simply because creditors

have linear utility and are indi�erent between lending to banks at rate ' and consuming all their

resources today.

4.1.1 A partial analysis.

�e government policy for q a�ects the demand for capital as defaulting and repaying banks have

di�erent demand for capital. �us, the policy potentially a�ects the market clearing capital prices

of capital in period C = 0 as well as subsequent periods.

To be able to obtain some analytical insights, let us consider a partial scenario in which the

changes in q do not a�ect the prices in periods C ≥ 1. �at is, we take those future prices as

given, but maintain that ?0 clears the capital market in C = 0. Notice that an implication of this

assumption is that we also take as given {WC }C≥0
. Let + ' (?0) ad + � (?0) denote the associated

repayment and default value functions, and :' (?0) and :� (?0) represent the demand for capital

of repaying and defaulting banks. Market clearing implies that

(1 − q):' (?0) + q:� (?0) = .

A key element that we turn next is how the initial asset price changes in response to the

government policy for q .

Let us consider a case where ':
1
> ', so that the borrowing constraint is binding in the �rst

period. Assuming di�erentiability of the policy functions with respect to ?0 (which we show

below), we have that

3?0

3q
=

:' (?0) − :� (?0)
(1 − q) 3:

' (?0)
3?0

+ q 3:
� (?0)
3?0

. (31)

At the starting competitive equilibrium allocation with ?�
0
, we have that :' (?�

0
) > :� (?�

0
)

by Proposition 4. �at is, repaying banks demand more capital than defaulting ones (and the

numerator in (31) is positive).

�e denominator in (31) corresponds to the change in the demand for capital in response to a

change in q . To see that the demand for capital is decreasing in ?0 notice that we have

m:� (?0)
m?0

= −V
 I

?2

0

< 0,
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and that

m:' (?0)
m?0

= −
V

[
(I + W0?1) − '�0

]
(?0 − W0?1)2

, (32)

which is negative evaluated at ?0 = ?
�
0

using the fact from Proposition 4 that :' (?�
0
) > .

39

With these two results on hand, we have that

3?0

3q

����
q=q�

< 0

�at is, a larger share of defaulting banks leads to a decrease in the price of capital. Intuitively,

by increasing the share of defaulting banks, the government shi�s the composition towards banks

with lower demand for capital. To the extent that the demand for capital is downward sloping,

market clearing requires an equilibrium reduction in ?0.

Let us now turn to banks’ welfare. Computing the derivative (30) with respect to q at the

competitive allocation, we obtain:

3,

3q

����
q=q�

= (+ � (?�
0
) −+ ' (?�

0
)) +

[
q
3+ � (?0)
3?0

����
?0=?

�
0

+ (1 − q)3+
' (?0)
3?0

����
?0=?

�
0

]
3?0

3q
.

�e second term in this expression involves the derivatives of the value functions with respect

to the initial asset price. Using the envelope condition on the repaying and defaulting bank

problems, we obtain

3+ ' (?0)
3?0

����
q=q�

= D′(2') ( − :' (?�
0
)), and

3+ � (?0)
3?0

����
q=q�

= D′(2�) ( − :� (?�
0
)).

where 2' and 2� denote the dividend payout of banks that repay and default at the equilibrium

allocation. Using these conditions and imposing the market clearing condition at C = 0, we obtain

that

3,

3q

����
q=q�

= (+ � (?�
0
) −+ ' (?�

0
)) − (1 − q�)

[
D′(2') − D′(2�)

]
(:' (?�

0
) − ) 3?0

3q

����
q=q�

. (33)

�is expression characterizes how banks’ welfare changes in response to a government policy of

39
To see formally that the numerator in (32) is positive, note that using the budget constraint we have

0 < 2'
0
= (I + ?0) − '�0 − (?0 − W0?1):' (?0) < (I + ?0) − '�0 − (?0 − W0?1) = (I + W0?1) − '�0,

where the second inequality follows from ?0 > W0?1, based on Lemma 3 and ?0 > ?� (the la�er implying that

:' (?0) >  ). E�ectively, repaying banks are net buyers of capital. Both income and substitution e�ects lead to a

reduction in their demand for capital when its price increases.
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varying the share of defaulting banks (while keeping future prices constant). We now distinguish

between an economy without runs and with runs.

�e case without runs. Starting from an equilibrium in which q� is interior, the �rst term in

(33) is zero. �at is, in the absence of runs, we have that banks are indi�erent between repaying and

defaulting and + � = + ' . Regarding the second term in (33), we have that D′(2') − D′(2�) > 0 by

Proposition 4. In addition, based on the arguments above, we have that (:' (?0) − ) 3?0

3q

���
q=q�

< 0.

�us, starting from the competitive equilibrium with q� ∈ (0, 1), the planner will �nd it optimal to
increase the share of defaulting banks.

�e intuition for this result is as follows. When the planner increases q , there are two e�ects

to consider, per equation (33). �e �rst is related to the di�erence in the value functions between

repaying and defaulting banks. In principle, this could generate a loss as increases in q force a

repaying bank to choose a sub-optimal decision. However, in the equilibrium without runs, this

e�ect is exactly zero at the margin, as banks are indi�erent between repaying and defaulting.

But there is an additional channel that arises through the impact on the equilibrium price

?0. When the planner increases q , the demand for capital falls, as defaulting banks have a lower

capital demand than repaying ones. �is requires that the price of capital falls to clear the market.

�is reduction in the price of capital redistributes from net sellers to net buyers—that is, from

defaulting to repaying banks. Because in equilibrium, defaulting banks have a higher dividend

payout level in the �rst period, this redistribution is bene�cial and increases banks’ welfare.

�e case with runs. �e key di�erence in the presence of runs is that the �rst term in (33) is no

longer zero. �e defaulting bank has a value that is strictly lower than that of a repaying bank. In

this case,+ 'D= does not correspond to the value function of a repaying bank in equilibrium. Rather,

the value of a repaying bank in equilibrium is+ (05 4 .40
We thus have that+ ' = + (05 4 > + 'D= = + �

and the �rst term is negative.

�e fact that the �rst term in equation (33) is strictly negative implies that there is a �rst-order

loss that arises from forcing a safe bank to default. In this case, banks are defaulting because of the

run, but would be otherwise be�er o� repaying if investors were willing to roll over the deposits.

�us, if the planner can reduce the share of defaulting banks, this would shi� the composition of

banks towards higher values and generate a �rst-order welfare gain. �us, it is possible that the

ine�ciency generated by the by the coordination failure between investors is enough to guarantee

that the planner would like to reduce the share of defaulting banks rather than to increase it, as

before. Notice that a lower share of defaulting banks increases also the welfare of creditors and so

40
Recall that + 'D=C < +

(05 4

C as long as ':C+1 > ' and WC > 0.
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the policy can be Pareto improving.
41

4.1.2 Numerical Results

In the above exercises, we have kept the capital prices from period C = 1 onward constant. In this

way, we were able to obtain analytical results highlighting how the planner’s policy of changing

the share of defaulted banks a�ected the capital price in the �rst period and banks’ welfare. In

general, however, this policy will also a�ect the capital prices in subsequent periods. To be able to

see what happens in this case, we turn to numerical simulations.

Fundamentals

(a) Banks’ Welfare (b) ?0 (c) W0?1

Self-Fulfilling Runs

(d) Banks’ Welfare
(e) ?0 (f) W0?1

Figure 6: Policy of Choosing Share of Defaulting Banks

Notes: �e simulation was generated using ' = 1.1, V = 0.97/', I = V/(1 − V), I = 1.15I, and = 1. �e values

for initial debt are given by �0 = U�
A' + (1 − U)�A� and �0 = U�

' + (1 − U)�� with U = 0.97, respectively for the

economies with and without runs. �e solid dot denotes the competitive outcome.

In Figure 6, we contrast the results of the government policy for the economy with fundamentals-

driven default and for the one with run-driven default. We consider a share of defaulting banks

ranging from 0% to 100% and illustrate the competitive outcome with a solid dot.

41
On the other hand, absent runs, a policy of increasing the share of defaulting banks improves banks’ welfare but

lowers the welfare of creditors.
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�e �gure shows that in the economy without runs, the maximum welfare is achieved with

a higher share of defaulting banks relative to the competitive outcome. One can also see in

panel (b) that the policy results in a lower equilibrium price, facilitating a transfer from the low

marginal utility defaulting banks to the high marginal utility repaying banks. Panel (c) shows a

result that is not highlighted in the analytical result in equation (33). A larger share of defaults

increases leveraged returns and raises the amount that banks can borrow. �e la�er is an e�ect

not internalized by banks, which leads the government to choose an even larger share of defaults.

On the other hand, under run-driven defaults, the government �nds it optimal to reduce the

share of defaulting banks. In this example, the optimal amount of defaults is zero, as illustrated by

panel (d).

4.2 Credit Easing

In this section, we analyze a policy of credit easing. Speci�cally, we consider a policy in which the

government purchases capital at C = 0, holds it for one period, and sells it at C = 1. A�er C > 1,

the government does not intervene. We consider a government that is less productive than a

defaulting bank: a unit of capital in the hands of the government has a productivity of I6 < I.

To �nance the purchases of capital, we assume that the government taxes in period C = 0 and

borrows at the international interest rate '. Note that in this exercise, the government is not

taxing banks in any period a�er C = 0: we are not granting the government the ability to bypass

the borrowing constraint of banks through its taxation power.

Let )0 denote the lump-sum tax that the government imposes on banks in period 0, and let  6

denote the units of capital that the government holds. Using that the government repays the debt

in period C = 1 by selling its holdings of capital, we can write the government budget as

?0 
6 −)0 =

1

'
(I6 + ?1) 6 .

In this exercise, we are granting the government the ability to hold the capital stock (albeit

unproductively). Yet, we have not allowed creditors to do the same up to now. Assuming that

the productivity of creditors is the same as the government, creditors will not hold the domestic

capital stock if their productivity, '6, is lower than ':

'6 ≡ I
6 + ?1

?0

< '. (34)

We are going to restrict a�ention to equilibria in which the above condition holds. �is condition

is important because it allows us to evaluate whether the government may want to purchase
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capital when investors are able but unwilling to do it.

Note that inequality (34) implies that the government loses resources by intervening, and as a

result, it needs to tax banks in order to �nance its capital purchases. We can see this by noticing

that the government’s budget constraint can be rewri�en as

)0 =
?0 

6

'
(' − '6) > 0,

where the inequality follows from (34).

So we have then narrowed our a�ention to a policy that is unpro�table for the government

(and undesirable for foreign investors) and requires the taxation of banks at time 0. Could such a

policy be welfare improving for banks?

4.2.1 �eoretical Analysis

�e values for repaying and defaulting banks are analogous to those in (28) and (29) with the

di�erence that now the budget constraints for repaying and defaulting banks incorporate the taxes

needed to �nance the purchases of capital. In particular, we modify the budget constraints to be

2 ≤ (I + ?0) − '� + 1′ − ?0:
′ −)0, and 2 ≤ (I + ?0) − ?0:

′ −)0.

�e market clearing condition for capital at time C = 0 now becomes

q �
1
+ (1 − q) '

1
+  6 = . (35)

In general, we can write the e�ect of credit easing on banks’ welfare as

3,

3 6
=

(
+ � −+ '

) 3q

3 6
+

[
q
3+ �

3 6
+ (1 − q)3+

'

3 6

]
(36)

Meanwhile, the change in creditors’ welfare is given by −(3q/3 6)�0. �at is, creditors’ welfare

depends entirely on how the share of defaulting banks changes in response to credit easing.

We proceed to analyze �rst the case without defaults and then turn to the case with defaults.

Equilibrium without defaults. Suppose that we start from an equilibrium where there are no

defaults, q� = 0. Observe �rst that the �rst term in (36) is negative. �is is because (+ � −+ ') ≤ 0

and 3q/3 6 ≥ 0 given that q� = 0.

To obtain the e�ects of credit easing on repaying banks, we totally di�erentiate the value of
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repayment. By the envelope condition, we obtain

3+ '

3 6
= D′(2')

[
( − :'

1
) 3?0

3 6
− 3)0

3 6

]
+

[
D′(2') − V'+̂ '′1

(='
1
)
]
:'

1

3W0?1

3 6

+ V
3+̂ '

1
(=)

3 6

�����
==='

1

+ V+̂ '′
1
(='

1
):'

1

3?1

3 6
(37)

where ='
1
= (I + ?1):'1 − '1'1 , :'

1
and 1'

1
represent the optimal choices for a repaying bank, and +̂ '

1

denotes next period’s value function as function of net-worth.

We also have that

3)0

3 6
= ?0

(
1 − '

6

'

)
+  6

[
3?0

3 6
− 1

'

3?1

3 6

]
(38)

If we ignore the e�ects on future prices, as in Section 4.1.1, and combine (37) and (38), we obtain

3+ '

3 6
= −D′(2')?0

(
1 − '

6

'

)
< 0 (39)

�at is, the losses faced by the government impose a welfare cost for repaying banks.

�is result makes clear that when there are no defaults in equilibrium, the losses incurred by

the government policy are translated into welfare losses to the banking sector. Notice that this

result holds even if banks are borrowing constrained in equilibrium while the government is not.

Equilibrium with defaults. Consider now an initial equilibrium with 0 < q� < 1. In this case,

it is essential to distinguish whether the economy faces runs or not.

In the absence of runs, the �rst term in (36) is zero. In addition, using that 3+ ' = 3+ �
and

ignoring the e�ects on future prices, we can use (39) evaluated at  6 = 0 to obtain that 3, /3 6 < 0.

�at is, welfare falls with credit easing in the absence of runs.

In the presence of runs, the �rst term in parenthesis, + � −+ ' , is not zero but strictly negative.

As discussed above, a bank that repays, obtains in equilibrium the value + (05 4 , which is larger

than+ �
. If the share of defaulting banks were to decrease with the policy, we would then have an

additional positive force for credit easing to raise welfare. To understand the welfare e�ects of

credit easing, we need to understand the sign of 3q/3 6.
Towards this, consider the market clearing condition (35). We can see that an increase in

 6 necessitates a reduction in the banks’ aggregate demand for capital: q �
1
+ (1 − q) '

1
. In

equilibrium, this could be achieved by an increase in q , as repaying banks have a lower demand

for capital than defaulting banks. So if anything, credit easing generates a force towards more
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defaults, that is, higher q . But this ignores two additional e�ects. �e �rst is the lump-sum tax

required to cover the loss generated by the government policy, )0 > 0. �is loss reduces net

worth of all banks and as a result, reduces their demand for capital. �is works as a force for

reducing q .
42

A second, and potentially more important channel, is the e�ect of the policy on ?0.

A su�ciently high increase in ?0 could reduce the demands for capital enough so as to induce a

reduction in the share of defaults, q .

Under no runs, we �nd numerically, as we will see below, that both q and ?0 increase. By

contrast, in the presence of runs, we �nd that only ?0 goes up while q falls. �e reason for this

result arises because repaying banks in a fundamentals-driven crisis are net buyers of capital,

while repaying banks facing a run in a self-ful�lling crisis are net sellers of capital. Let us explain.

It is important to recall that repaying banks have higher marginal utility than defaulting banks

and thus face a higher marginal disutility from the taxes necessary to cover the government losses.

�us, keeping banks indi�erent between repaying and defaulting in a fundamentals-driven crisis

rules out a large increase in ?0—otherwise, banks’ value of repayment would be strictly lower than

the value of default. In a run-driven crisis, instead, keeping banks indi�erent between repaying

under a run and defaulting requires a large increase in ?0—since they are net sellers of capital,

this compensates for the higher relative cost of the tax. As a result of the larger increase in initial

asset prices, it follows that it is therefore possible that market clearing for capital is restored with

a reduction in the share of defaulting banks.

�ese results indicate that credit easing is ine�ective in a fundamentals-driven crisis—causing

more defaults and reducing welfare—while it may be e�ective in a run-driven crisis.
43

4.2.2 Numerical Results

Figure 7 presents the numerical results. We show the initial asset prices and the share of banks

defaulting for the two economies, the one without runs and the one with runs, as a function of

the size of the government asset purchases. �e top panels show that credit easing leads to a rise

in asset prices on impact in both economies.
44

Panels (b) and (d) show that the fraction of banks

42
Note that if '6 is relatively close to ', this loss can be made arbitrary small at the margin. In addition, for a

defaulting bank, the reduction in demand as a fraction of  6 is less than one. �is implies that in an equilibrium with

q close to one, credit easing generates an excess demand for capital given prices.

43
Notice that even though we saw that the planner �nds it optimal to increase the share of defaulting banks in

Section 4.1, this does not mean here that the increase in defaults in the case of a crisis driven by fundamentals is

welfare improving when the government conducts credit easing. In fact, in the previous section, the increase in

defaults was a way to achieve low asset prices and redistribute toward repaying banks. However, this positive e�ect

is not present here as the value of repayment and default are equated, and asset prices rise with credit easing.

44
Note that for su�ciently large asset purchases, the return on capital becomes equal to the risk-free rate and

further increases in  6 lead to decline in asset prices. �is occurs because at that point banks are unconstrained and

the losses absorbed by the banks reduce the demand for capital.
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Fundamentals

(a) Initial asset price ?0 (b) Share of defaulting banks q

Self-Fulfilling Runs

(c) Initial asset price ?0 (d) Share of defaulting banks q

Figure 7: Credit Easing Policies

Notes: �e simulation was generated using ' = 1.1, V = 0.97/', I = V/(1− V), I = 1.15I,  = 1, and I6 = 0.8I.

�e values for initial debt are given by �0 = U�
A' + (1 − U)�A� and �0 = U�

' + (1 − U)�� with U = 0.93,

respectively for the economies with and without runs.

defaulting increases in the economy driven by fundamentals, whereas fewer banks default in the

economy driven by runs. Moreover, one can also see that for large asset purchase, there are no

defaults in the economy without runs. �e insight is that the increase in asset prices increase the

liquidity of banks facing a run and deter investors from running in the �rst place. Credit easing

can make the banking system run-proof.

In terms of welfare, the government faces a trade-o� between the bene�ts from the reduction

in runs and the losses from the intervention (recall equation (36)). Depending on parameter values,

it is possible to construct cases in which banks’ welfare goes up or down with credit easing and
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also cases in which it is optimal to eliminate all defaults. It is worth highlighting that creditor’s

utility goes up with credit easing when there are runs but fall in the absence of runs. Notably, this

implies that credit easing can be Pareto improving in the case of a run driven crisis.

4.3 Discussion

�e result that credit easing is undesirable in the absence of a run may be surprising in light

of much of the literature on unconventional policies that a�ributes a stabilizing role to asset

purchases during �nancial crises (e.g. Gertler and Karadi, 2011). Two features of our analysis

explain the di�erences in the results.

First, our model allows for equilibrium strategic default in response to the policy intervention.

When asset prices go up in response to the asset purchases, the share of defaulting banks go up in

the absence of runs. As mentioned above, the logic is that the value of repayment is reduced since

a repaying bank is a net buyer of assets. On the other hand, defaulting banks are net sellers, and

so the value of default goes up relative to the value of repayment, given everything else constant.

In equilibrium, the value of default and repayment are equated, but the share of defaulting banks

increases.

Second, we assume that the government makes losses with the intervention. By contrast, the

usual assumption in the literature following Gertler and Karadi (2011) is that the government is

less productive than banks, but still obtains pro�ts. As we showed, the fact that the government

purchases end up reducing resources available implies that welfare is reduced with credit easing.

�e other key result is that credit easing may be desirable during runs. �e key intuition

for this result is that repaying banks facing a run are net sellers of assets and thus bene�t from

increases in asset prices.
45

�is makes investors less prone to run, and in equilibrium the share of

defaulting banks decrease. Even though banks ultimately bear the losses from the government

purchases, the reduction in ine�cient defaults implies that credit easing may raise welfare.

Pu�ing these �ndings together suggests that in a �nancial crisis, the policy response of using

asset purchases may not necessarily be desirable. While it may indeed be di�cult for policymakers

to infer whether a crisis is driven by fundamentals or by self-ful�lling beliefs, a key takeaway is

that the e�ectiveness of credit easing cannot be taken for granted in general and may depend on

the source of the crisis.

Finally, we also note that the importance of considering general equilibrium e�ects is also

likely to be relevant to examine the e�ectiveness, or ine�ectiveness, of other policies. One example

45
Notice that the fact that repaying banks facing a run bene�t more than repaying banks that are safe is independent

of the speci�c assumptions about the outside option of the bank in case of default. In this sense, our model generically

predicts that credit easing is relatively more desirable if a crisis is driven by runs.
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is lender of last resort during runs. Our analysis suggests that for lender of last resort policies

to be e�ective, they must cover a signi�cant share of the �nancial system. To �x ideas, consider

an equilibrium where 20% of the banks will face a run and default. A government guarantee to

provide liquidity to this speci�c subset of institutions would be successful at protecting them from

runs. However, since q is determined in general equilibrium, other banks would now be facing

runs. �us, despite the government policy being successful at protecting this subset, there would

still be 20% of banks defaulting. �is result may indeed shed some light on why during the 2008

�nancial crisis, the �nancial system was vulnerable to runs despite many banks having access to

liquidity support from the Federal Reserve.

5 Conclusions

We developed a tractable dynamic general equilibrium model of self-ful�lling bank runs. �e

model features banks that face limited commitment and optimally choose portfolios, equity, and

default decisions. �ese decisions are dynamic and depend on the entire sequence of asset prices,

which are endogenously determined in equilibrium. We provide an analytical characterization

of when an individual bank defaults because of fundamentals, when it defaults because of a

self-ful�lling run, and when it is solvent and liquid and continues to operate. We then characterize

the evolution of asset prices and the fraction of banks that default in general equilibrium. For

intermediate values of debt, we �nd that the only equilibrium features a strictly interior fraction

of defaulting banks.

We showed that the interplay between bank runs and general equilibrium has distinctive policy

implications. A policy insight is that the e�ectiveness of credit easing during a crisis depends on

whether the crisis is driven by fundamentals or by self-ful�lling runs. When a crisis is triggered

by fundamentals, credit easing leads to more banks defaulting in equilibrium, as the increase in

asset prices reduces the value of repaying banks that are net buyers of the assets. When a crisis is

instead triggered by self-ful�lling runs, credit easing becomes stabilizing. Repaying banks facing

a run bene�t from the increase in asset prices and therefore become less vulnerable to a run.

�e results suggest several avenues for future research. A �rst avenue is quantitative and

requires enriching the model to provide a more complete description of the banking system. A

second avenue is to consider the anticipation e�ects of future credit easing policies. Finally, while

we have used the framework to explore the e�ects of credit easing policies, it is possible to extend

the model to consider other types of government policies, such as macroprudential policies.

50



References

Acharya, Viral V, Hanh T Le, and Hyun Song Shin, “Bank capital and dividend externalities,”

Review of Financial Studies, 2017, 30 (3), 988–1018.

, Irvind Gujral, Nirupama Kulkarni, and Hyun Song Shin, “Dividends and bank capital

in the �nancial crisis of 2007-2009,” 2011. Forthcoming, Journal of Financial Crises.

Aguiar, Mark, Manuel Amador, and Gita Gopinath, “Investment Cycles and Sovereign Debt

Overhang,” Review of economic studies, 2009, 76 (1), 1–31.

, Satyajit Chatterjee, Harold Cole, and Zachary Stangebye, “�antitative models of

sovereign debt crises,” in J. Taylor and H. Uhlig, eds., Handbook of Macroeconomics, Vol. 2,

Amsterdam Elsevier, 2016, pp. 1697–1755.

Alburquerque, Rui and Hugo Hopenhayn, “Optimal Lending Contracts and Firm Dynamics,”

Review of Economic Studies, 2004, 71 (2), 285–315.

Allen, Franklin and Douglas Gale, “Financial contagion,” Journal of Political Economy, 2000,

108 (1), 1–33.

and , Understanding �nancial crises, Oxford University Press, 2009.

Alvarez, Fernando and Urban J Jermann, “E�ciency, equilibrium, and asset pricing with risk

of default,” Econometrica, 2000, 68 (4), 775–797.

Angeloni, Ignazio and Ester Faia, “Capital regulation and monetary policy with fragile banks,”

Journal of Monetary Economics, 2013, 60 (3), 311–324.

Baron, Matthew, Emil Verner, and Wei Xiong, “Banking crises without panics,” �e�arterly
Journal of Economics, 2021, 136 (1), 51–113.

Ben-Ami, Yaniv and John Geanakoplos, “General Equilibrium Outside the Edgeworth Box:

Debt, Fragility, and Multiplicity,” 2020. Mimeo, Yale.

Benhabib, Jess and Pengfei Wang, “Financial constraints, endogenous markups, and self-

ful�lling equilibria,” Journal of Monetary Economics, 2013, 60 (7), 789–805.

Bernanke, Ben S, �e Federal Reserve and the �nancial crisis, Princeton University Press, 2013.

and Mark Gertler, “Agency costs, collateral, and business �uctuations,” American Economic
Review, 1989, 79 (1), 14–31.

51



Bianchi, Javier and Enrique G Mendoza, “Optimal time-consistent macroprudential policy,”

Journal of Political Economy, 2018, 126 (2), 588–634.

and Jorge Mondragon, “Monetary independence and rollover crises,” �e�arterly Journal
of Economics, 2022, 137 (1), 435–491.

Bocola, Luigi and Alessandro Dovis, “Self-ful�lling debt crises: A quantitative analysis,” Amer-
ican Economic Review, 2019, 109 (12), 4343–77.

and Guido Lorenzoni, “Financial crises, dollarization and lending of last resort in open

economies,” American Economic Review, 2020, 110 (8).

Boissay, Frédéric, Fabrice Collard, and Frank Smets, “Booms and banking crises,” Journal of
Political Economy, 2016, 124 (2), 489–538.

Boissay, Frederic, Fabrice Collard, Jordi Galı́, and Cristina Manea, “Monetary policy and

endogenous �nancial crises,” 2022. Mimeo, BIS.

Brunnermeier, Markus K, “Deciphering the liquidity and credit crunch 2007-2008,” Journal of
Economic perspectives, 2009, 23 (1), 77–100.

and Yuliy Sannikov, “A macroeconomic model with a �nancial sector,” American Economic
Review, 2014, 104 (2), 379–421.

and , “International credit �ows and pecuniary externalities,” American Economic Journal:
Macroeconomics, 2015, 7 (1), 297–338.

Bryant, John, “A model of reserves, bank runs, and deposit insurance,” Journal of banking &
�nance, 1980, 4 (4), 335–344.

Bulow, Jeremy and Kenneth Rogo�, “Sovereign debt: Is to forgive to forget?,” American Eco-
nomic Review, 1989, 79(1), 43–50.

Calomiris, Charles W and Charles M Kahn, “�e role of demandable debt in structuring

optimal banking arrangements,” American Economic Review, 1991, pp. 497–513.

and Joseph R Mason, “Fundamentals, panics, and bank distress during the depression,” Amer-
ican Economic Review, 2003, 93 (5), 1615–1647.

Chodorow-Reich, Gabriel, “�e employment e�ects of credit market disruptions: Firm-level

evidence from the 2008–9 �nancial crisis,” �e �arterly Journal of Economics, 2014, 129 (1),

1–59.

52



Cole, Harold L. and Timothy J. Kehoe, “Self-ful�lling debt crises,” Review of Economic Studies,
2000, 67(1), 91–116.

Cooper, Russell and �omas W Ross, “Bank runs: Liquidity costs and investment distortions,”

Journal of monetary Economics, 1998, 41 (1), 27–38.

Curdia, Vasco and Michael Woodford, “�e central-bank balance sheet as an instrument of

monetarypolicy,” Journal of Monetary Economics, 2011, 58 (1), 54–79.

Dávila, Eduardo and Itay Goldstein, “Optimal deposit insurance,” 2020. Mimeo, Yale.

Diamond, Douglas W and Philip H Dybvig, “Bank Runs, Deposit Insurance, and Liquidity,”

Journal of Political Economy, 1983, 91(3), 401–419.

and Raghuram G Rajan, “A theory of bank capital,” the Journal of Finance, 2000, 55 (6),

2431–2465.

Ennis, Huberto M and Todd Keister, “Bank runs and institutions: �e perils of intervention,”

American Economic Review, 2009, 99 (4), 1588–1607.

and , “Run equilibria in the Green–Lin model of �nancial intermediation,” Journal of Economic
�eory, 2009, 144 (5), 1996–2020.

Farhi, Emmanuel and Jean Tirole, “Collective moral hazard, maturity mismatch, and systemic

bailouts,” American Economic Review, 2012, 102 (1), 60–93.

, Mikhail Golosov, and Aleh Tsyvinski, “A theory of liquidity and regulation of �nancial

intermediation,” �e Review of Economic Studies, 2009, 76 (3), 973–992.

Friedman, Milton and Anna Jacobson Schwartz, A monetary history of the United States,
1867-1960, Princeton University Press, 1963.

Gertler, Mark and Nobuhiro Kiyotaki, “Financial intermediation and credit policy in business

cycle analysis,” in “Handbook of monetary economics,” Vol. 3, Elsevier, 2010, pp. 547–599.

and , “Banking, liquidity, and bank runs in an in�nite horizon economy,” American Economic
Review, 2015, 105 (7), 2011–2043.

and Peter Karadi, “A model of unconventional monetary policy,” Journal of monetary Eco-
nomics, 2011, 58 (1), 17–34.

53



, Nobuhiro Kiyotaki, and Andrea Prestipino, “Wholesale banking and bank runs in macroe-

conomic modeling of �nancial crises,” in “Handbook of Macroeconomics,” Vol. 2, Elsevier, 2016,

pp. 1345–1425.

, , and , “Credit booms, �nancial crises, and macroprudential policy,” Review of Economic
Dynamics, 2020, 37, S8–S33.

, , and , “A macroeconomic model with �nancial panics,” Review of Economic Studies, 2020,

87 (1), 240–288.

Gorton, Gary, “Banking panics and business cycles,” Oxford economic papers, 1988, 40 (4), 751–781.

Green, Edward J and Ping Lin, “Implementing e�cient allocations in a model of �nancial

intermediation,” Journal of Economic �eory, 2003, 109 (1), 1–23.

Gu, Chao, Fabrizio Mattesini, Cyril Monnet, and Randall Wright, “Endogenous credit cy-

cles,” Journal of Political Economy, 2013, 121 (5), 940–965.

He, Zhiguo and Arvind Krishnamurthy, “Intermediary asset pricing,” American Economic
Review, 2013, 103 (2), 732–70.

Jermann, Urban and Vincenzo �adrini, “Macroeconomic e�ects of �nancial shocks,” Ameri-
can Economic Review, 2012, 102 (1), 238–71.

Jeske, Karsten, “Private international debt with risk of repudiation,” Journal of political Economy,

2006, 114 (3), 576–593.

Kehoe, Patrick and Fabrizio Perri, “International Business Cycles with Endogenous Incomplete

Markets,” Econometrica, 2002, 70 (3), 907–928.

Kehoe, Timothy J and David K Levine, “Debt-constrained asset markets,” �e Review of Eco-
nomic Studies, 1993, 60 (4), 865–888.

Keister, Todd and Vijay Narasiman, “Expectations vs. fundamentals-driven bank runs: When

should bailouts be permi�ed?,” Review of Economic Dynamics, 2016, 21, 89–104.

Kiyotaki, Nobuhiro and John Moore, “Credit cycles,” Journal of political economy, 1997, 105
(2), 211–248.

and , “Liquidity, business cycles, and monetary policy,” Journal of Political Economy, 2019,

127 (6), 2926–2966.

54



Mendoza, Enrique G., “Sudden Stops, Financial Crises, and Leverage,” American Economic Review,

2010, 100(5), 1941–1966.

Robatto, Roberto, “Systemic banking panics, liquidity risk, and monetary policy,” Review of
Economic Dynamics, 2019, 34, 20–42.

Roch, Francisco and Harald Uhlig, “�e dynamics of sovereign debt crises and bailouts,” Journal
of International Economics, 2018, 114, 1–13.
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Online Appendix to “Bank Runs,

Fragility, and Credit Easing”

By Manuel Amador and Javier Bianchi

A Proofs for Section 2.1–2.2 (Partial Equilibrium)

A.1 Proof of Lemma 1

Proof. �e problem of a bank under default facing a sequence of prices {?C }∞C=0
is given by

+�C (:) = max

:′,2
log(2) + V+�C+1(: ′) (A.1)

subject to

2 = (?C + I): − ?C: ′

We conjecture that

+�C (:) = B�C +
1

1 − V log(: (I + ?C )) (A.2)

Replacing this conjecture into (A.1) and substituting out consumption from the budget constraint, we have

that

+�C (:) = max

:′
log(I: + ?C (: − : ′)) + V

[
1

1 − V log(: ′(?C+1 + I)) + B�C+1
]

(A.3)

�e �rst-order condition with respect to : ′ is given by

?C

I: + ?C (: − : ′)
=

(
V

1 − V

)
1

: ′

⇒ : ′ =
V (I + ?C )

?C
: (A.4)

By the method of undetermined coe�cients, we can now verify the conjecture and solve for B�C . We

substitute (A.4) into the right-hand side of (A.3) and replace the conjectured guess for +�C (:) on the

le�-hand side of (A.3).

B�C +
1

1 − V log((I + ?C ):) = log

(
(1 − V) (I + ?C ):

)
+ V

[
1

1 − V log

(
V'�C+1(I + ?C ):

)
+ B�C+1

]
where we have used the de�nition of '�C+1. Rearranging this equation, we can observe that the terms

multiplying log(:) cancel out. A�er simplifying, we obtain that the conjectured value function is veri�ed

when B�C satis�es:

B�C = log(1 − V) + V

1 − V log(V) + V

1 − V log

(
'�C+1

)
+ VB�C+1 (A.5)
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Iterating forward on this equation and imposing limg→∞ Vg log

(
'�g+1

)
= 0, as in Condition 1, we have

B�C =
1

1 − V

[
V

1 − V log(V) + log(1 − V)
]
+ V

1 − V
∑
g≥C

Vg−C log

(
'�g+1

)
(A.6)

Replacing (A.6) in (A.2), we obtain that the value under default is given by

+�C (:) = � +
1

1 − V log((I + ?C ):) +
V

1 − V
∑
g≥C

Vg−C log

(
'�g+1

)
where

� =
log(1 − V) + V

1−V log(V)
1 − V .

We thus arrived at equation (7), as stated in the lemma. �

A.2 Proof of Lemma 2

Proof. Using the de�nition of net worth, = = (I + ?C ): − '1, and replacing in the budget constraint of the

bank (1), we obtain

2 = = + @C (1 ′, : ′)1 ′ − ?C: ′ (A.7)

Updating the de�nition of net worth for the following period, we have

=′ = (I + ?C+1): ′ − (1 + A )1 ′. (A.8)

�e value function under repayment can then be wri�en with net worth as a single state variable with the

law of motion given by (A.8).

We also have that 1 ′ > 1C+1(: ′) cannot be a choice of the bank because this would imply @C = 0. As a

result, the bank faces the risk-free price @ = 1 as long as 1 ′ ≤ 1C+1(: ′).
Using (A.7), (A.8) and the equilibrium price and borrowing constraint, we arrive at (8). �

A.3 Proof of Lemma 3

Proof. For part (i). Let = > 0 be the current networth. Consider a policy such that 2 = = > 0. Let 1 ′ = ?C: ′

for some : ′ > 0. �is means that the budget constraint holds. Note that the borrowing constraint is:

1 ′ ≤ WC?C+1: ′⇔ ?C ≤ WC?C+1

which is satis�ed given the premise of part (i). Next period networth is =′ = (I + ?C+1): ′ − '?C: ′ =
(':C+1 − ')?C: ′ which is strictly positive and strictly increasing in : ′ given that ':C+1 > '. �us a bank can

make its next period networth arbitrarly large by having an arbitrarly large demand for capital. Given that

the +̂ 'C+1(=′) ≥ +�C (: ′), and +�C (: ′) goes to in�nity as : ′ goes to in�nity, it follows the the bank valuation

is in�nite.

For part (ii). Note that from the budget constraint, together with the borrowing limit, we have

2 = = + 1 ′ − ?C: ′ ≤ = + (WC?C+1 − ?C ): ′

And thus, given that WC?C+1 < ?C , a su�ciently large : ′ will generate a negative consumption. �us, the
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demand for capital is �nite.

Suppose now that the borrowing constraint is slack. �at is 1 ′ < WC?C+1: ′. Consider now an increase in

1 ′ by Δ > 0, small enough. with an associate increase in : ′ given by Δ/?C . Note that this change leaves

current consumption unchanged. In addition, Δ > 0 can be chosen su�ciently small to keep the borrowing

constraint holding. �e change in networth next period implied by this policy is given by (':C+1 − ')Δ > 0,

and thus we have found an improvement. It must be then that the borrowing constraint is binding.

For part (iii). Suppose that the demand for capital is strictly positive. Let (2, : ′, 1 ′) be a potential solution

to the bank problem with : ′ > 0. Consider the following alternative policy with zero investment in capital:

(2, ˜: ′, ˜1 ′) = (2̃, 0, 1 ′ − (I + ?C+1): ′/'). Using the law of motion for net worth, we can see that next-period

net worth is given by

=̃′ = (I + ?C+1): ′ − '1 ′

which is the same net worth as the original allocation. In addition, current consumption is higher with the

new policy:

2̃ = = + 1 ′ − ?C:
′

'
> = + 1 ′ − ?C:

′ = 2

So the alternative policy delivers same continuation value and higher current consumption. Hence, an

allocation with : ′ > 0 cannot be optimal. �

A.4 Proof of Lemma 4

We conjecture that the value function is

+̂ 'C (=) =
1

1 − V log(=) + B'C (A.9)

�e borrowing constraint must be such that the bank does not default at C + 1. �at is,

B'C+1 +
1

1 − V log(=′) ≥ B�C+1 +
1

1 − V log((I + ?C+1): ′)

Replacing =′ for the law of motion and manipulating this expression, we arrive to

1 ′ ≤

[
(I + ?C+1) − (I + ?C+1)4 (1−V) (B

�
C+1−B'C+1)

]
'

: ′

�erefore, the borrowing constraint takes a linear form, as conjectured. In particular,

1 ′ ≤ WC?C+1: ′

where WC is the leverage parameter and is given by

WC =
(I + ?C+1) − (I + ?C+1)4 (1−V) (B

�
C+1−B'C+1)

'?C+1
. (A.10)

We establish now that if ':C+1 > ', the borrowing constraint binds at time C .

Lemma A.1. If ':C+1 > ', then the bank is against the borrowing constraint.

Proof. �e proof is by contradiction. Denote (2∗C , :∗C+1, 1∗C+1) the solution to the bank problem with 1∗C+1 <
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WC?C+1:∗C+1. Consider the following alternative policy (2∗C , ˜:C+1 + Δ, ˜1C+1 + Δ?C ) with 0 < Δ <
WC?C+1 ˜:C+1− ˜1C+1
?C−WC?C+1 .

�e alternative allocation is feasible and delivers higher net worth since:

=̃C+1 = ( ˜:C+1 + Δ) (I + ?C+1) − ' ˜1C+1 + Δ?C )
= ˜:C+1(I + ?C+1) − ' ˜1C+1) + Δ(':C+1 − ')
> ˜:C+1(I + ?C+1) − ' ˜1C+1 = =

∗
C+1

where =̃C+1 and =∗C+1 are respectively the net worth under the alternative and original allocations.

Since the alternative allocation delivers the same consumption and higher net worth, this contradicts

that the original allocation with a slack borrowing constraint is optimal. �

We now proceed to �nish the proof of Lemma 4.

Proof. Consider �rst the case with ':C+1 > '. From Lemma A.1, we know that borrowing constraint binds,

and hence we can use 1 ′ = WC?C+1: ′. Replacing this in the law of motion for net worth and consumption,

we obtain:

=′ = : ′(I + ?C+1) − WC?C+1: ′',

and

2 = = − : ′(?C − WC?C+1) .

Replacing these two expressions and the conjectured value function (10) into (8), we have

+̂ 'C (=) = max

:′
log(= − : ′(?C − WC?C+1)) + V

[
1

1 − V log(: ′(I + ?C+1(1 − WC')) + B'C+1
]

(A.11)

�e �rst-order condition with respect to : ′ is

?C − WC?C+1
= − : ′(?C − WC?C+1)

=

(
V

1 − V

)
1

: ′

and yield

: ′ =
V=

?C − W?C+1
, (A.12)

2 = (1 − V)=, (A.13)

and

=′ =
V=

?C − WC?C+1
(I + ?C+1(1 − WC'))

Notice that by de�nition of '4 , we have that

'4C+1 =
I + ?C+1(1 − WC')
?C − WC?C+1

(A.14)
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Using (A.12), (A.14), and replacing (A.9) on the le�-hand side of (A.11)

B'C +
1

1 − V log(=) = log ((1 − V)=) + V
[

1

1 − V log(V='4C+1) + B'C+1
]

Rearranging this equation, we can observe that the terms multiplying log(=) cancel out. We therefore

obtain that the conjecture is veri�ed when the B'C satis�es:

B'C =
V

1 − V log(V) + log(1 − V) + V

1 − V log('4C+1) + VB'C+1 (A.15)

Iterating forward and imposing limC→∞ VCB'C = 0, we have

B'C =
1

1 − V

[
V

1 − V log(V) + log(1 − V)
]
+ V

1 − V
∑
g≥C

Vg−C log

(
'4C+1

)
(A.16)

so the value under default is given by

+ 'C (=) =
1

1 − V log(=) + B'C

where B'C is given by (A.16). Equivalently, using de�nition of '4 and �, we arrive to

+̂ 'C (=) = � +
1

1 − V log(=) + V

1 − V

∞∑
g≥C

Vg−C log('4g+1),

which is the expression (10).

Notice also from (A.12) and (A.13) and the fact that 1 ′ = WC?C+1: ′ that we have also veri�ed the policies

in item (ii) of the lemma for the case of ':C+1 > '.

Finally, it is straightforward to verify that in the case of ':C+1 = ', the conjectured value function (A.9)

solves the Bellman equation and that the bank is now indi�erent across 1 ′, : ′ while consumption remains

given by (A.13). �is completes the proofs of the three items in the lemma. �

A.5 Proof of Proposition 1

Proof. From the de�nition of WC in (A.10), we obtain

V

1 − V log

(
I + ?C+1(1 − WC')

I + ?C+1

)
= V (B�C+1 − B'C+1) (A.17)

To obtain an expression for the right-hand side of (A.17), we use (A.6) and (A.15), and obtain that the

di�erence in the intercepts in the value functions is given by

B�C − B'C = V (B�C+1 − B'C+1) +
V

1 − V
[
log('�C+1) − log('4C+1)

]
) (A.18)

Using the de�nition of '� and '4 and replacing (A.17)

B�C − B'C = V (B�C+1 − B'C+1) −
V

1 − V

[
log

(
I + ?C+1(1 − WC')
?C − WC?C+1

)
− log

(
I + ?C+1
?C

)]
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Using that using that log(?C − WC?C+1) = log

(
1 − WC ?C+1?C

)
+ log(?C ) and simplifying,

B�C − B'C = V (B�C+1 − B'C+1)−
V

1 − V

[
log (I + ?C+1(1 − WC')) − log

(
1 − WC

?C+1
?C

)
+ log(?C ) − log

(
I + ?C+1
?C

)]
Replacing (A.17) and simplifying, we arrive to

B�C − B'C =
V

1 − V

[
log

(
1 − WC

?C+1
?C

)]
(A.19)

Updating (A.19) one period forward and replacing in (A.17):

log

(
I + ?C+1(1 − WC')

I + ?C+1

)
= V log

(
1 − WC+1

?C+2
?C+1

)
Simplifying we arrive

I + ?C+1(1 − WC')
I + ?C+1

=

(
1 − WC+1

?C+2
?C+1

)V
which is the expression in the proposition. �

A.6 Proof of Lemma 5

Proof. We have already argued that � is continuous, strictly increasing and strictly concave in [0, 1] and

that � (0) < 0 and � (1) ≤ 1.

Note that

� ′(W) = '

'�

1

V

(
':/' − W
'�/'

) 1−V
V

Let W0 be such that � ′(W0) = 1. �is implies that

W0 =
':

'
− 1

V

(
V'�

'

) 1

1−V

� (W0) = 1 −
(
V'�

'

) 1

1−V

Note that if V'�/' ≥ 1 then ': > '� ≥ '/V > ' and thus � (1) < 1. Note that this implies that

� (W0) < 0, and thus, together with concavity, it also implies that there is no �xed point in [0, 1].
For the case where V'�/' < 1, we have that there are two solutions if � (W0) > W0. If � (W0) = W0, then

there is just one �xed point. Finally if � (W0) < W0, then there are no solutions. �is amount to checking the

condition

V':/' < V + (1 − V) (V'�/')
1

1−V

for two solutions, with equality for one, and with reverse inequality for none. �
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A.7 Proof of Lemma 6

Part (i):

Proof. Based on Lemma 5, we �rst show that of the two �xed points of (11), one of them violates the no-Ponzi

condition. For this is su�cient to check that only one of the two �xed points satis�es W < W#% =
'−V':
(1−V)' .

Note that it su�ces then to show that � (W#% ) > W#% , which is equivalent to:

1 −
(
': − '

'� (1 − V)

)1/V
>
' − V':
'(1 − V)

If ': > ', the inequality is equivalent to V':/' < V + (1 − V)
(
V'�/'

) 1

1−V
, and thus, the two �xed points

lie at opposite sides of W#% and only the smaller one is valid.

If ': = ', then W#% = 1 is a �xed point, and thus the other �xed point is necessary valid as it is less

than W#% .

Let W★ denote the valid �xed point. Note W★ is the “unstable” solution to the dynamic system implied by

WC+1 = � (WC ). �us if WC < W
★

, then eventually the subsequent sequence of W must become negative. On the

other hand, if WC > W
★

, then the subsequent sequence of W converges to the highest �xed point from above,

violating the no-Ponzi condition.

�us the only equilibrium consistent sequence of borrowing limits keeps WC = W
★

at all times. �

Part (ii):

Proof. If V'�/' ≥ 1, or V':/' > V + (1 − V) (V'�/')1/(1−V) , then, from Lemma 5, there are no �xed points

and � (W) < W for all W ∈ [0, 1]. �is implies that any sequence of W that satisfy WC+1 = � (WC ) must eventually

reach negative, a contradiction.

Note that if V':/' = V + (1 − V) (V'�/')1/(1−V) , there is unique �xed point, which corresponds exactly

to W#% . Given that � (W) < W for W < W#% , this implies that any sequence where WC < W
#%

for some C must

eventually reach a negative value. In addition if WC > W
#%

, then the sequence converges to W#% , violating

the no-Ponzi condition. �

A.8 Proof of Corollary 1

Proof. Note that the function � (W) = 1 − ((': − 'W)/'� )1/V is increasing in ', decreasing in ': (and thus

in I), and increasing in '� (and thus in I). �is immediately implies that the lowest �xed point is decreasing

in ' and I and increasing in I.

For the comparative statics with respect to V note that � is decreasing in V for values of W such that

� (W) > 0; the relevant domain range for the �xed points. It follows then that the lowest �xed point is

increasing in V .

For the comparative statics with respect to ? note that� can be wri�en as 1−
(

1−W'/':
'�/':

)
1/V

. An increase

in ? increases '�/': and decreases ': and thus increases � . �us the lowest �xed point decreases with

? . �
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B Proofs for Sections 2.4– 2.6 (General Equilibrium)

B.1 Proof of Proposition 2

Part (i): Default equilibrium.

Proof. If all banks default, we have that the �rst-order condition for banks in equilibrium is

?� = V (I + ?� ) (B.1)

⇒ ?� =
V

1 − V I (B.2)

Denoting by W� , the value of W in a stationary equilibrium with default, we have, by (16) that

W� = � (W� , ?� ) (B.3)

To ensure existence of a default equilibrium, we must have a solution of � given the value of ?� . Note

that by construction V'� = 1 and thus V'�/' < 1. Using the other condition in item (i) of Lemma 5 and

replacing the value from ?� from (18), we arrive at the condition in the text. �e fact that q = 1,  �C+1 = ,

 'C+1 = 0 and �C+1 = 0, ?C = ?
�

and WC−1 = W
�

for all C ≥ 0, 2 = I if �0 ≥ W�?� is immediate. �

Part (ii): Repayment equilibrium.

Proof. Taking �rst order conditions when the bank repays, we have that

`2 = 1 − V (1 + A ) (B.4)

`W2 = 1 − V
(
I + ?
?

)
(B.5)

Combining these two we obtain an equation for ?' as a function of W' :

?' =
VI

1 − V − (1 − V')W'

Using the this, we have that a �xed point W = � (W, ?) requires that

(1 − W) =
(

I(1 − W)
(1 − V)I + VI − (1 − V')IW

)
1/V

Ignoring the solution W = 1 (which is never valid), we have that we are looking for a root of ℎ(W):

ℎ(W) ≡ I(1 − W)1−V − [(1 − V)I + VI − (1 − V')IW] .

Note thatℎ(0) > 0 andℎ(1) < 0, soℎ has a root in (0, 1). Note also thatℎ′(W) = −(1−V)I(1−W)−V +(1−V')I
and that ℎ′′(W) < 0 for W ∈ (0, 1). Given that ℎ′(0) = −(1 − V) (I − I) − V (' − 1)I < 0 it follows that ℎ is

strictly decreasing in (0, 1) and thus has a unique root, W' .

Finally, note that

W#% =
' − V':
'(1 − V) = W

' + (' − 1) 1 − W'
'(1 − V) > W

'
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and thus, the unique root W' < W#% and is valid �xed point (it satis�es the no-Ponzi condition).

Starting from �0 = W'?' , this implies that it is an equilibrium that no banks default, q = 0 and the

economy remains stationary at ? = ?� . �

B.2 Proof of Proposition 3

Proof. We have that indi�erence at the stationary points imply

+� ((I + ?� ) ;?� ) = + ' ((I + ?� ) − ' W�?� ; {?� , W� })

and

+� ((I + ?') ;?') = + ' ((I + ?') − ' W'?' ; {?', W'})

where we highlight the dependence of the stationary values on the equilibrium prices and borrowing limits.

In the stationary equilibrium with default, we have that defaulting banks choose to invest and consume

2� = I forever. In the stationary repayment equilibrium, a bank that defaults could also choose to invest ,

consuming 2� forever. �us, the value for a bank that defaults in the stationary repayment equilibrium

must be weakly higher than in the default equilibrium:

+� ((I + ?') ;?') ≥ +� ((I + ?� ) ; ?� )

�is implies that the value of repayment in a stationary equilibrium in which banks repay must also be

larger. �at is, the three equations above imply that

+ ' ((I + ?') − '�', {?' ;W'}) ≥ + ' ((I + ?� ) − '�� ; {?� , W� }) (B.6)

Assume towards a contradiction of the Proposition that�
'
= W'?' > W�?� = �

�
. We can then show that

(B.6) is violated.

In the stationary repayment equilibrium, consumption of a repaying bank is:

2''C ≡ I − (' − 1)�'

for all C .

In the stationary default equilibrium, a repaying bank can achieve a policy of purchasing every period,

keep the same level of debt and consume 2'� :

2'� ≡ I − (' − 1)�� > I − (' − 1)�' = 2''

where the inequality follows from�
'
> �

�
.

Given that it is feasible for a repaying bank in a stationary default equilibrium to have higher consump-

tion than a repaying bank in a stationary repayment equilibrium, it’s value must be strictly higher. But

then this contradicts (B.6). �

B.3 Proof of Proposition 4

�e proof has several parts. Let us �rst state some preliminary results.

�e evolution of  �C , the level of capital in defaulting banks, is as follows. Let #�
C denote the net worth

of defaulting banks, #�
C = (I + ?C ) �C . In equilibrium, #�

C+1 = V ((I + ?C+1)/?C )#�
C . As a result,  �C evolves
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according to:

 �C+1 = V
I + ?C
?C

 �C .

So, given a sequence of ?C and a initial value of  0, we can determined the sequence of  �C for all C ≥ 1.

Note that this in equilibrium also determines the sequence of  'C as = (1 − q) 'C + q �C .

For repaying banks, let net worth be #'
C = (I+?C ) 'C −'�C . �en, #'

C+1 = V'
4
C+1#

'
C . �us, the evolution

of �'C is

�C+1 =
1

'

[
(I + ?C+1) 'C+1 − V'4C+1

(
(I + ?C ) 'C − '�C

)]
where recall '4C+1 was de�ned in equation (9).

�e sequence of prices and borrowing limits must also be consistent with the optimal capital decisions

of repaying banks. If ':C+1 > ' then

 'C+1 =
V ((I + ?C ) 'C − '�C )

?C − WC?C+1
.

Otherwise, ?C+1 = '?C − I. Finally, equation (G) imposes a restriction on the evolution of WC and ?C .

We now derive the dynamic system. Let us de�ne

˜1C =
(1 − q)�C

 
, ˜:C =

(1 − q) 'C
 

, =̃C =
(1 − q)=C

 

Using that  �C+1 = V
(I+?C ):
?C

from the bank problem under default and market clearing, (14), we arrive to

(1 − ˜:C+1) = V
(
I + ?C
?C

)
(1 − ˜:C ) (B.7)

Using the de�nitions, we also have

=̃C = (I + ?C ) ˜:C − ' ˜1C (B.8)

From the bank’s budget constraint:

?C ˜:C+1 − ˜1C+1 = V=̃C (B.9)

Recall the equilibrium consistent borrowing limits are given by

I + ?C+1(1 − WC')
I + ?C+1

=

(
1 − WC+1

?C+2
?C+1

)V
(G)

Note that above also holds at C = −1, as q is interior.

Consider the le�-hand side. Using that the borrowing constraint binds (as ':C+1 > ' by the hypothesis

of the proposition), and that
˜10 = W−1?0:0, we obtain that

I + ?C+1(1 − WC')
I + ?C+1

=
(I + ?C+1) ˜:C+1 − ' ˜1C+1

(I + ?C+1) ˜:C+1
(B.10)

for all C ≥ −1.
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Consider now the right-hand side of (G).(
1 − WC+1

?C+2
?C+1

)V
=

(
V=̃C+1

?C+1 ˜:C+2

)V
=

(V=̃C+1)V[
?C+1 − V (I + ?C+1) (1 − ˜:C+1)

]V (B.11)

where the �rst line used (B.9) together with the binding borrowing constraint, and the second line used

(B.7).

Combining (B.10) and (B.11), we obtain[
(I + ?C+1) ˜:C+1 − ' ˜1C+1

]
1−V [

?C+1 − V (I + ?C+1) (1 − ˜:C+1)
]V

VV (I + ?C+1) ˜:C+1
= 1 (B.12)

which is the expression in the proposition. Together with (B.7), (B.8), and (B.9) they conform the dynamic

system.

To establish uniqueness, we �rst establish the following result

Lemma B.1. In a mixed equilibrium with q ∈ (0, 1) and ':C+1 > ' for all C , we have that (i) ' ˜1C > (I − I) ˜:C ;
and (ii) ?C >

V

1−V I for all C ≥ 0.

Proof. Part (i) Suppose ' ˜1C ≤ (I − I) ˜:C for some C ≥ 0. �en,

=̃C = ˜:C (Ī + ?C ) − ' ˜1C ≥ (Ī + ?C ) ˜:C − (Ī − I) ˜:C = (I + ?C ) ˜:C .

Hence a repaying bank at some point will have net-worth such that #'
C > (I + ?C ) 'C . �e fact that

'4C+1 > '�C+1, for all C ≥ 0, implies that such a bank cannot be indi�erent between default and repayment (and

most strictly prefer to repay). �us violating the binding borrowing constraint that requires indi�erence

between default and repayment. �us ' ˜1C > (I − I) ˜:C .
Part (ii) Suppose towards a contradiction that ?C ≤ V

1−V I.

Now consider (B.12). Summing and subtracting I:C , we obtain:

" ≡

[
(I + ?C ) ˜:C − (' ˜1C − (I− I) ˜:)

]
1−V [

?C − V (I + ?C ) (1 − ˜:C )
]V

VV (I + ?C ) ˜:C
= 1

Using that ' ˜1C > (I − I) ˜:C we have

" <

[
(I + ?C ) ˜:C

]
1−V [

?C − V (I + ?C ) (1 − ˜:C )
]V

VV (I + ?C ) ˜:C

=

[(
?

V (I + ?) − 1

)
1

:
+ 1

]V
≤ 1

where the last inequality follows from the fact that
?

V (I+?) − 1 ≤ 0 if and only if ?C ≤ V

1−V I. We therefore
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reaching a contradiction that " < 1. We must have ?C >
V

1−V I. �

From (B.7), we have that

˜:C+1 =1 − V
(
I + ?C
?C

)
(1 − ˜:C ) (B.13)

>1 − (1 − ˜:C ) = ˜:C (B.14)

where the inequality follows from ?C > V
I

1−V . Using also that :0 = 1 − q , we obtain 1 − (1 − q) '
1
/ < q ,

and  '
1
> . Market clearing then implies that  �

1
< . It follows then that  'C+1 >  �C+1.

We now establish uniqueness of the dynamic evolution. �at, we show that for any
˜:, ˜1 such that

' ˜1 > (I− I) ˜: , there exists a unique value of ? such that

" (?) ≡

[
(I + ?) ˜: − (' ˜1 − (I− I) ˜:)

]
1−V [

? − V (I + ?) (1 − ˜:)
]V

VV (I + ?) ˜:
= 1

To see this note that

lim

?→∞
" (?) =

˜:1−V (1 − V (1 − ˜:))V

:VV
=

1/V − 1 + ˜:

˜:
> 1 (B.15)

In addition,

"

(
VI

1 − V

)
<
((I + ?):)1−V

(I + ?):VV

[(
?

V (I + ?) − 1

)
1

:
+ 1

]V �����
?=VI/(1−V)

= 1 (B.16)

So there exists a solution to " (?) = 1 with ? >
VI

1−V .

For uniqueness, we have that " ′(?) > 0 for ' ˜1 > (I− I) ˜: and ? > VI/(1 − V). �us, there is a unique

solution to " (?) = 1.

Finally, we show that 2'
0
< 2�

0
. Given the linear policy rules, it su�ces then to show that (I+?0) −'�0 <

(I + ?0) . But this follows immediately from ' ˜10 > (I− I) ˜:0.

C Proofs for Section 3 (Bank Runs)

C.1 Proof of Lemma 7

Proof. Consider problem (22). We know, based on Lemma 4, that the continuation value can be expressed as

+
(05 4

C+1 (=) = B
(05 4

C+1 +
1

1 − V log(=) (C.1)

where B
(05 4

C has the same form as B'C from (A.15) but WC will be di�erent as we will see.

B
(05 4

C =
V

1 − V log(V) + log(1 − V) + V

1 − V log('4C+1) + VB
(05 4

C+1
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Replacing (C.1) into (22) and taking �rst-order conditions in (22), we obtain

1

= − ?C: ′
?C =

V

1 − V
1

: ′

⇒ : ′ = V
=

?C
(C.2)

Plugging back (C.2) into the right hand side of (22) and using (C.1), we obtain

+̂ 'D=C (=) = log(=) + log(1 − V) + V
[

1

1 − V log

(
V':C+1=

)
+ B(05 4

C+1

]
A�er simplifying, we can express

+̂C
'D= (=) = B'D=C + 1

1 − V log(=) (C.3)

where

B'D=C =
V

1 − V log(V) + log(1 − V) + V

1 − V log

(
':C+1

)
+ VB(05 4

C+1 (C.4)

Replacing the value for B
(05 4

C+1 from (C.1) in (C.4) and iterating forward, we obtain

B'D=C = � + V

1 − V

[
log

(
':C+1

)
+

∑
g≥C+1

Vg−C log('4g+1)
]

(C.5)

�is completes the proof. �

C.2 Proof of Proposition 5

Proof. As in Proposition 1, we can use +̂ 'D=C instead of +̂ 'C and obtain that:

V

1 − V log

(
I + ?C+1(1 − WC')

I + ?C+1

)
= V (B�C+1 − B'D=C+1 ) (C.6)

To obtain an expression for the right-hand side of (C.6), we �rst use

B'D=C − B(05 4C =
V

1 − V

[
log

(
':C+1

)
− log('4C+1)

]
Using (C.5) and (A.5)

B�C − B'D=C =
V

1 − V

[
log

(
'�C+1

)
− log(':C+1)

]
+ V (B�C+1 − B

(05 4

C+1 )

Adding and substracting VB'D=C+1 , we get:

B�C − B'D=C =
V

1 − V

[
log

(
'�C+1

)
− log(':C+1)

]
+ V (B�C+1 − B'D=C+1 ) + V (B'D=C+1 − B

(05 4

C+1 ) (C.7)
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Combining (C.7) with (C.5) and (C.6):

B�C − B'D=C =
V

1 − V

[
log

(
'�C+1

)
− log(':C+1)

]
+ V

1 − V log

(
I + ?C+1(1 − WC')

?C+1 + I

)
+ V2

1 − V

[
log

(
':C+1

)
− log('4C+1)

]
Updating one period forward and replacing in (C.6):

1

1 − V log

(
I + ?C+1(1 − WC')

?C+1 + I

)
=

V

1 − V

[
log

(
'�C+2

)
− log(':C+2)

]
+

V

1 − V log

(
I + ?C+2(1 − WC')

?C+2 + I

)
+ V2

1 − V

[
log

(
':C+2

)
− log('4C+2)

]
A�er algebraic manipulations, we arrive to the expression (G-run) in the proposition. �

C.3 Proof of Lemma 8

Proof. Recall that W#% =
'−V':
' (1−V) , We have already argued that�A is strictly concave in W ∈ [0, 1]. In addition,

�A (0) = 1 −
(
':

'�

)
1/V2

< 0 given that ': > '� and �A (1) ≤ 1. Hence �A admits at most two �xed points.

We are looking for a stationary value of W such that W = �A (W, ?) and W < W#% .

For part (i). First, note that V'�/' < 1 implies V':/' < 1. To see this, note that if V':/' ≥ 1, then

V + (1 − V) (V'�/')
1

1−V (V':/')−V < 1, and thus the �rst condition in part (i) generates a contradiction.

Next, we have that V':/' < 1 implies that W#% > 0. In addition, that ': ≥ ' guarantees that W#% ≤ 1.

�e �rst condition in part (i) implies that �A (W#% ) > W#% . �us, there are two �xed points in (0, 1], but

only the lowest one is valid (that is, strictly less than W#% ).

For part (ii). If V'�/' ≥ 1, then V':/' > 1 and W#% ≤ 0. �us any stationary solution in (0, 1)
necessarily violates No Ponzi condition.

Suppose instead that V'�/' < 1 and

V':/' ≥ V + (1 − V) (V'�/')
1

1−V (V':/')−V (C.8)

Note that

� ′A (W) =
(
1 + 1 − V

V2

) (
1 − '

':
W

) 1−V
V2

(
':

'�

) 1

V2 '

':

Note that (C.8) implies that � ′A (W#% ) > 1. To see this, suppose not and � ′A (W#% ) ≤ 1. �en, we have that

'� ≥
(
1 − V + V2

V

)V2

(': )V (1−V)
(
'

V

)V2 (
': − '
1 − V

)1−V
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Given that
1−V+V2

V
≥ 1, the above implies by

'� > (': )V (1−V)
(
'

V

)V2 (
': − '
1 − V

)1−V

But this is equivalent to V':/' < V + (1 − V) (V'�/')
1

1−V (V':/')−V , a contradiction of (C.8). �us a

� ′A (W#% ) > 1.

Given that �A (W#% ) ≤ W#% (from the same argument in part i) and � ′A (W#% ) > 1, it follows that all

potential �xed points are such that W ≥ W#% , a violation of the no-Ponzi condition. �

C.4 Proof of Proposition 6

Proof. �e proof follows closely the proof of Proposition 2. Notice that, in fact, conditions (25) and (27) and

are identical to (18) and (20).

For part (i): the default equilibrium.

�e argument in the proof of Proposition 2 implies that ?� = VI/(1 − V). And the value of W� must be

a �xed point of �A given ?� .

Note that V'�/' < 1 as V'� = 1 given the value of ?� . �e condition that V':/' < V + (1 −
V) (V'�/')

1

1−V (V':/')−V can be rewri�en as requiring �at

G < V + (1 − V) G−V

'1/(1−V)

where G ≡ V':/'. �is is equivalent to

G1+V − VGV − 1 − V
'1/(1−V) < 0

�e le� hand side of the above inequality is strictly negative at G = V and strictly positive at G = 1. In

addition, ℎ is convex for G ∈ [V,∞) and thus there is a unique value G0 ∈ [V,∞) so that the le� hand side is

zero. �is value is such that G0 ∈ (V, 1), and G
V

0
(G0 − V) = (1 − V)'−1/(1−V)

.

For any value G < G0, then we have that

V':/' < V + (1 − V) (V'�/')
1

1−V (V':/')−V

and thus Lemma 8 implies that there is a valid stationary value of W given ?� .

Rearranging the condition that G < G0 we obtain the condition in part (i) of the Proposition.

For part (ii): the repayment equilibrium.

�e same argument as in the proof of Proposition 2 delivers that the stationary price must solve (27)

and that W must be a �xed point of �A given ? .

Plugging the price into the �xd point equation, and manipulating (and ignoring the W = 1 root, which

cannot be valid), we have that WA' must solve:

ℎ(W) ≡ I(1 − W)1−V (1 − (1 − V')W)V (1−V) − [(1 − V)I + VI − (1 − V')IW] = 0
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We note that ℎ(0) > 0 and ℎ(1) < 0. In addition ℎ is strictly convex in (0, 1), and thus it features a unique

root.

�e same argument as in the proof of Proposition 2 guarantees that such a root is strictly below the

associated W#% given the corresponding equilibrium price, completing the proof. �

C.5 Proof of Lemma 9

Proof. Part (i). Given that ?A� = ?� we dropped the dependence on the price in what follows.

We know that if a default equilibrium without runs exists, then

I

I
<

' − 1

V−1 − 1

+ '−
V

1−V .

But this implies that

I

I
<

' − 1

V−1 − 1

+ '
− V

1−V

G
V

0

as G0 ≤ 1. And thus, a default equilibrium with runs exists as well.

Consider now the following value of W :

WF ≡ '
:

'

[
1 −

(
'�

':

) 1

1−V
]

We have that W� ≥ WF . To see this note that

� (WF) = 1 −
(
': − 'WF

'�

) 1

V

= 1 −
(
'�

':

) 1

1−V
< WF

where the last inequality follows from ': > '� = 1/V ≥ '. Note also that

� ′(WF) = 1

V

(
': − 'WF

'�

) 1−V
V '

'�
=
'�

':
' =

'

V':

From the condition for the existence of a stationary equilibrium in Lemma 5, we know that V':/' < 1,

� ′(WF) > 1, and thus WF is a lower bound for the valid root W� as � is concave. �at is, W� > WF .

Now consider

�A (W� ) − W� = (1 − W� ) + (': − 'W� )1+
1−V
V2 (': )1/V−1('� )−1/V2

= (1 − W� ) − ('� (1 − W� )V )1+
1−V
V2 (': )1/V−1('� )−1/V2

= (1 − W� )
[
1 − (1 − W� )

(1−V )2
V (': )

1−V
V ('� )−

1−V
V

]
> (1 − W� )

[
1 − (1 − WF)

(1−V )2
V (': )

1−V
V ('� )−

1−V
V

]
> 0

where the second equality follows from � (W� ) = W� , the �rst inequality from W� > WF , and the last

inequality follows from the de�nition of WF and ': > '.
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�e above implies that�A (W� ) > W� , and thus the smallest �xed point of�A must be such thatWA� < W� .

�is also implies that�
A�

< �
�

as ?� = ?A� .

Part (ii). From the proof of Proposition 2, we have that W' is the unique solution to

ℎ(W) = I(1 − W)1−V − [(1 − V)I + VI − (1 − V')IW] = 0

while from the proof of Proposition 6, WA' is the unique solution to

ℎA (W) ≡ I(1 − W)1−V (1 − (1 − V')W)V (1−V) − [(1 − V)I + VI − (1 − V')IW] = 0

For the case V' = 1, note that both functions are the same, and so are their unique roots, implying the

same debt thresholds.

For the case V' < 1, note that ℎA (W) < ℎ(W) for W ∈ (0, 1). Note also that both functions cross zero from

above, and thus, it follows that their unique roots are strictly ordered: WA' < W' . �is implies that ?A' < ?' ,

as V' < 1 and the price is increasing in W . �at�
'
< �

A'
follows from their respective de�nitions. �

C.6 Proof of Lemma 10

Proof. A defaulting bank in period 0 chooses 2�
0
= (1− V) (I + ?0) . A repaying bank facing a run optimally

chooses 2'D=
0

= (1 − V) ((I + ?0) − '�0). So it su�ces to show that I + ?0 > (I + ?0) − '�0 (the net worth

under default is higher than under repayment facing a run). Suppose this were not the case. �en, it is

feasible for a repaying bank facing a run to select the consumption and capital choices of the defaulting

bank. �is guarantees the �rst period �ow utility for the repaying bank facing run is the same as that of

the defaulting bank. Because + (05 4 (0, :) > +� (:) for all : > 0, the continuation value for a repaying bank

facing a run will be strictly higher than that of a defaulting bank. �us, if I + ?0 ≤ (I+ ?0) −'�0, the value

of a repaying bank facing a run will be strictly higher than that of a defaulting bank, a contradiction of the

interiority of q .

Similarly, we know that the capital choices are ?0 
�
1

= V (I + ?0) and ?0 
'D=
1

= V ((I + ?0) − '�0).
�e previous result that ranks the net worth also implies that  'D=

1
<  �

1
. �

D Transitional dynamics

D.1 Case without bank runs: Convergence to the repayment equilib-

rium

In here we describe how the transition in the case of �0 < �
'

is obtained in the case without runs.

Recall that we consider in here the case of V' < 1. When debt is below�
'

, we conjecture that for )

periods, the return to capital is exactly ', aggregate net worth decreases at rate V', and the borrowing

constraint does not bind. In period ) , the borrowing constraint binds, the return to capital is higher than ',

and the economy remains at the stationary repayment equilibrium therea�er.
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To determine the value ) , we use the following thresholds, which are de�ned recursively:

? {)+1} =
I

'
+ 1

'
? {) } (D.1)

�
',)+1

=
1

'

[
(I + ? {)+1}) − 1

V'
(I + ? {) })

]
 + 1

V'
�
',)

(D.2)

with initial conditions ? {−1} = ?' , and�
',−1

= �
'

as de�ned above. �e idea behind the recursion above is

that the return to capital equals ' and the net worth decreases by a factor V'. �is occurs up to the point

where the economy hits the borrowing limit,�
'

, then the price equals ?' .

For any initial level of debt, �0, we locate the ) such that �0 ∈ [�',) ,�',)−1). A �nite value ) ≥ 0 exists

for any initial debt �0 < �
'

. Using this value of ) , we obtain the initial price of capital, ?0, by solving the

following system:

�) =
1

'

[
(I + ?) ) − (V'))

(
(I + ?0) − '�0

) ]
(D.3)

?0 =

)∑
9=1

I

' 9
+ ?)
')

(D.4)

?) = ?' + V'(�
' − �) )/ 
1 − V , (D.5)

where ?) and �) represent, respectively, the price and aggregate debt level in period ) , where ) is the

period right before the economy transitions to the stationary state.

�e price of capital in period ) , ?) , must guarantee that the aggregate demand for capital equals the

supply . Note that aggregate net worth in this period is #) = (I + ?) ) − '�) . Using the conjecture that

':
)
> ', the demand for capital from Proposition 4 is V#) /(?) − W'?'). Market clearing in this period then

implies

V [(I + ?) ) − '�) ]
?) − W'?'

= ,

which delivers, using the de�nition of �
'

and the value of ?' in the stationary repayment equilibrium,

equation (D.5). Using the conjectured evolution of net worth delivers equation (D.3). And �nally, using the

conjectured return equal to ' for the �rst ) periods delivers (D.4). Our threshold de�nition guarantees that

�) ∈ [�',0,�') and that ?) is such that (I + ?) )/?) ≥ '.

Having obtained an initial price ?0, we can determine ?C for all C < ) , using that the capital return is R.

�e sequence of {�C } can then be obtained using that

�C =
1

'

[
(I + ?C ) −

1

V'
(I + ?C+1)

]
 + 1

V'
�C+1, for any C < ) . (D.6)

Finally, we can obtain the associated WC for C ∈ {−1, 0, ..) } using equation (G), given the sequence of prices

and the terminal value of W) = W' .

D.2 Case with runs: Convergence to the repayment equilibrium

�e value of ) is determined in the same way as in the case without runs. �at is, we use equations (D.1)

and (D.2) but with initial conditions ?−1 = ?A' and�
',−1

= �
A'

. With these thresholds, we can locate the
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value of ) such that �0 ∈ [�',) ,�',)−1). Given this value of ) , we solve the system (D.3), (D.4), and (D.5),

which solves for the initial price ?0 and the price at ) , ?) . We can then use that the capital return equals '

for all C < ) to obtain all the prices for all C ∈ {1, . . . ,) − 1}. �e sequence of aggregate debt levels is then

obtained using equation (D.6). Finally, using that WC = W
A'

for all C ≥ ) , we can then use equation (G-run)

to obtain the sequence of WC for C < ) .
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