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Abstract

We propose a new algorithm for estimating treatment effects in contexts where the
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random variation from the observed shock. We examine our algorithm’s performance in a
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1 Introduction

Changes in aggregate variables are commonly used to evaluate economic policies. The most

popular design of this type is an “event study”, where a one-time aggregate shock, e.g., a new

law, affects some population of units but not others, and we observe both over time. To quantify

the effects of these shocks, practitioners use either difference in differences or, more recently, syn-

thetic control methodology (e.g., Ashenfelter and Card, 1984; Card and Krueger, 1993; Abadie

and Gardeazabal, 2003; Bertrand et al., 2004; Abadie et al., 2010). Often, when both outcome

and treatment variables are at the individual level, this approach is used as a first stage, and

the aggregate change effectively plays the role of an instrument. In the absence of a single

aggregate shock, researchers often employ more general time-series variation to establish causal

links between unit-specific policy and outcome variables. In a typical application, outcomes

and treatments are observed at some geographical level over time (e.g., Duflo and Pande, 2007;

Dube and Vargas, 2013; Nakamura and Steinsson, 2014; Nunn and Qian, 2014; Guren et al.,

2020b; Dippel et al., 2020; Barron et al., 2021). To address a potential endogeneity problem,

researchers use aggregate time-series shocks as instruments. A standard econometric tool em-

ployed to analyze such data is a two-stage least-squares (TSLS) regression with unit and time

fixed effects.1

Specifically, let Yit be the outcome variable, Wit the endogenous regressor, and assume that

we observe a balanced panel with n units and T periods. To establish a causal link between Yit

and Wit, the following regression is estimated by TSLS:

Yit = αi + µt + τWit + εit, (1.1)

using DiZt as an instrument. Here, Zt is an aggregate shock, Di is a measure of “exposure” of

unit i to this aggregate shock, and τ is the parameter of interest. For example, in Nunn and

Qian (2014), Wit is the amount of food aid that country i received, and Yit is a measure of local

conflict, Zt is the amount of wheat produced in the United States in the previous year, and Di

is a share of periods when country i received food aid.

In this paper, we propose a new estimator for the causal effects in applications with aggregate

instruments. Using simulations, we demonstrate that our method dominates the conventional

1See Arellano (2003) for a textbook treatment of TSLS with panel data.
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TSLS approach in statistical models that approximate real data. We prove that our estimator

remains consistent in situations where the TSLS method fails. Finally, we show how to use

our method to conduct robust inference. To understand the motivation behind our algorithm,

consider a generalization of (1.1):

Yit = αi + µt + τWit + θiHt + εit, (1.2)

where Ht is an unobserved aggregate shock with unobserved exposure θi, and all other variables

are the same as before. The danger of unobserved aggregate confounders with heterogeneous

exposures for TSLS identification strategy is well-recognized in applied work (Nunn and Qian,

2014; Nakamura and Steinsson, 2014; Guren et al., 2020b; Chodorow-Reich et al., 2021). For

example, in Nakamura and Steinsson (2014) the authors are interested in the effect of local

military procurement spending (Wit) in the United States on the regional output growth (Yit),

and use the national military spending as an instrument (Zt). In this case, Ht can represent

fiscal and monetary policy changes or the general political and business cycle in the United

States.

To justify TSLS regression (1.1) practitioners need to assume that either Di is uncorrelated

with θi, or Zt is uncorrelated with Ht. Both of these assumptions are questionable for different

reasons. In applications, Di is rarely randomly assigned; instead, it is either a fixed characteristic

of a unit or a quantity constructed directly from the data. As a result, we cannot expect it to

be uncorrelated with θi. Similarly, aggregate instrument Zt can be correlated with Ht for two

different reasons. Either both of these variables share common trends, or their innovations are

correlated. Our algorithm deals with all of these problems. First, to address potential spurious

correlation caused by common trends, we use a demeaned version of Zt. Second, we use the

data to construct “exposures” ωi and employ them instead of Di. We design our exposures so

that they are correlated with Di but are approximately orthogonal to θi.

To understand the logic behind our construction of ωi it is useful first to explain the mechanics

of (1.1). The TSLS algorithm uses Di to aggregate outcomes over units and then uses Zt to

construct a time-series IV estimator. In particular, we show that τ̂TSLS is a ratio of two OLS
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coefficients in the following time-series regressions:

Yt = α(y) + δZt + ε
(y)
t ,

Wt = α(w) + πZt + ε
(w)
t ,

(1.3)

where Wt and Yt are weighted averages of Wit and Yit, with the weights proportional to Di−D.

Representation (1.3) is the starting point of our analysis. If unobserved Ht affects Yit and Wit

in a way that is correlated with Di, then the aggregate errors (ε
(y)
t , ε

(w)
t ) should be relatively

large. Alternatively, if we construct Yt and Wt using the weights that are uncorrelated with

exposures to Ht, then the aggregate errors should be relatively small. Crucially, we need these

weights to be correlated with Di, otherwise, we can eliminate Zt as well. To this end, we use

a part of the data (the first third of the periods) to construct weights ωi in such a way that

the aggregate errors ε
(w)
t , ε

(y)
t are small, but the covariance between ωi and Di is large. The

underlying identification assumption is that the variation in Di cannot be fully explained by θi,

and Ht and Zt are not perfectly correlated.

To provide an interpretation of our estimator, we develop a parsimonious causal model that

captures common problems researchers might face in applications. Importantly, our model

allows for aggregate shocks – both observed and unobserved – to be determined in equilibrium

together with the unit-level outcomes as long as they are affected by aggregate noise. This

is crucial for applications in macroeconomics and related fields where it is rarely possible to

find completely exogenous aggregate variables. Our setup also incorporates situations where

both outcome and treatment variables are determined in a local equilibrium and are affected by

unobserved aggregate shocks. An example of this problem is a study of housing wealth effects

by Guren et al. (2020b). Our model features generalized fixed effects that go far beyond the

standard two-way structure imposed in (1.1) and (1.2).

We analyze the properties of our method in a high-dimensional regime where n is similar in

size to T . This choice is motivated by the applications where n and T are often comparable. We

prove that our algorithm delivers consistent and
√
T -convergent estimators even in the presence

of confounding aggregate shocks. We also show that our method can be used to conduct valid

inference, as long as the variance of the idiosyncratic unit-level errors is small. We demonstrate

the benefits of our approach using a data-driven simulation based on Nakamura and Steinsson’s

(2014) study of fiscal multiplier in the US. We show that our estimator remains competitive
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when the model (1.1) holds and TSLS is the best estimator, and is a clear winner in more

realistic situations with unobserved aggregate shocks.

We use data on past outcomes and treatments to construct the unit weights ωi, which makes

our method connected to the recent literature on synthetic control and related methods (Abadie

and Gardeazabal, 2003; Abadie et al., 2010; Hsiao et al., 2012; Doudchenko and Imbens, 2016;

Firpo and Possebom, 2018; Ben-Michael et al., 2018; Arkhangelsky et al., 2019). Our proposal

allows researchers to apply these ideas to much broader contexts with endogenous unit-level

variables. Our analysis is based on the combination of the design-based assumptions and a

particular model for the outcomes. The benefits of considering both outcome and assignment

models have been emphasized recently in Arkhangelsky and Imbens (2021) in the context of

strictly exogenous treatments. Finally, our demeaning procedure is directly related to the cor-

rection proposed in Borusyak and Hull (2020) for general applications with quasi-experimental

shocks.

Our method is related to the literature in empirical macroeconomics that explicitly constructs

Di using the data. Recent examples of this approach include Nakamura and Steinsson (2014),

and Guren et al. (2020b) (see also Guren et al. (2020a)). In this work, the authors construct Di

by running unit-specific regressions of Wit on aggregate shocks and possibly other individual-

specific variables. Our algorithm and its analysis are quite different from these proposals. We

find the weights by looking at how well they balance aggregate variation instead of looking

at unit-level responses to shocks. At the same time, our method requires Di as an input,

thus making it complementary to the methods proposed in Nakamura and Steinsson (2014),

and Guren et al. (2020b). Notably, our estimator remains consistent even in the presence of

correlated unobserved shocks with heterogeneous exposures.

Our model is also related to the recent econometric literature on shift-share designs (Jaeger

et al., 2018; Borusyak et al., 2018; Adao et al., 2019; Goldsmith-Pinkham et al., 2020). Similar

to this literature, we consider situations where an instrument has a particular product struc-

ture. Our focus, however, is quite different: we propose and analyze a new estimator, while the

literature has been focused on the properties of the standard IV estimator under alternative as-

sumptions. We also relax the standard exogeneity assumption made in the shift-share literature

and allow for unobserved aggregate shocks that affect different units differently. Our estimator

is designed for a case with a single aggregate shock, and thus it does not directly apply to a

classical shift-share setup with multiple industry-level shocks (e.g., Autor et al., 2014). However,
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we believe that our ideas can be extended to these applications, potentially allowing researchers

to flexibly use both time and industry dimensions.

Our setup, while being reasonably general, has its limitations. Like most recent literature

on causal panel data methods, we make a strict exogeneity assumption, which renders the ag-

gregate shocks (observed and unobserved) independent of the unit-level outcomes, at least after

conditioning on the fixed effects (e.g., Athey et al., 2017; Borusyak and Jaravel, 2017; Callaway

and Sant’Anna, 2020; Arkhangelsky and Imbens, 2021). We also abstract from dynamic treat-

ment effects and assume that only the policy variable’s current level matters for the outcomes.

Finally, we postulate a linear relationship between outcomes, policy variables, and aggregate

shocks. These choices are motivated by the empirical practice where similar restrictions are

imposed to justify (1.1).

The paper proceeds as follows: in Section 2, we discuss the mechanics of TSLS regression

(1.1) in more detail, present our algorithm, and show its performance in a simulation exercise.

In Section 3, we introduce the causal model along with statistical restrictions and demonstrate

the formal properties of our algorithm. We discuss inference in Section 3.4. Section 4 discusses

possible extensions of our algorithm, connections to literature in empirical macroeconomics, and

shift-share designs. Finally, Section 5 concludes.

2 Algorithm

This section starts by summarizing purely algebraic (algorithmic) properties of the conventional

TSLS estimator. We then propose an alternative algorithm with a similar structure and illustrate

its performance in a simulation based on Nakamura and Steinsson (2014). We tie our method

to a particular econometric model in Section 3 where we establish its theoretical properties.

2.1 TSLS mechanics

A common algorithm for estimating causal effects with aggregate shocks is a TSLS regression:

Yit = α
(y)
i + µ

(y)
t + τWit + ε

(y)
it , (2.1)
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with DiZt as an instrument. Here Wit is the policy variable of interest, Yit is the outcome, Zt

is the aggregate shock (instrument) and Di is an available measure of exposure of unit i to Zt.

Regression (2.1) can be split into two parts – the reduced form and the first stage:

Yit = α̃
(y)
i + µ̃

(y)
t + δDiZt + ε̃

(y)
it ,

Wit = α
(w)
i + µ

(w)
t + πDiZt + ε

(w)
it ,

(2.2)

where α̃
(y)
i := α

(y)
i + τα

(w)
i , µ̃

(y)
t := µ

(y)
t + τµ

(w)
t , ε̃it := ε

(y)
it + τε

(w)
it , and δ = τπ. Standard logic

implies that a TSLS estimator is a ratio of two OLS estimators with two-way fixed effects:

τ̂TSLS =
δ̂

(fe)
OLS

π̂
(fe)
OLS

. (2.3)

Alternatively, one can represent the same estimator as a ratio of two OLS estimators from the

following time-series regressions:

Yt = α̃(y) + δZt + ε̃
(y)
t , Wt = α(w) + πZt + ε

(w)
t , (2.4)

that is τ̂TSLS =
δ̂
(ts)
OLS

π̂
(ts)
OLS

. Here the aggregate variables are defined as follows:

Yt :=
1

n

∑
i≤n

Yit(Di −D)

V̂[Di]
, Wt :=

1

n

∑
i≤n

Wit(Di −D)

V̂[Di]
, ε̃

(y)
t :=

1

n

∑
i≤n

ε̃it(Di −D)

V̂[Di]
,

ε
(w)
t :=

1

n

∑
i≤n

uit(Di −D)

V̂[Di]
, α(w) :=

1

n

∑
i≤n

α
(w)
i (Di −D)

V̂[Di]
, α̃(y) :=

1

n

∑
i≤n

α̃
(y)
i (Di −D)

V̂[Di]
.

(2.5)

We aggregate Yit,Wit with weights that sum up to zero, and thus time fixed effects are not

present in (2.4). We collect these statements in the following straightforward Lemma.

Lemma 1. (Representation) Suppose that (2.1) is estimated by TSLS regression with DiZt

as an instrument. Then the following numerical equivalence holds:

δ̂
(fe)
OLS = δ̂

(ts)
OLS, π̂

(fe)
OLS = π̂

(ts)
OLS, τ̂TSLS =

δ̂
(fe)
OLS

π̂
(fe)
OLS

=
δ̂

(ts)
OLS

π̂
(ts)
OLS

. (2.6)

This result can be trivially extended to cases with time-invariant covariates (e.g., the state-
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level time fixed effects). The lemma’s primary purpose is to demonstrate two distinct aspects

of the TSLS algorithm: unit weights are used to aggregate the outcomes, and time-series IV

regression is used to estimate τ . The algorithm that we propose next has a similar structure

but implements both steps differently.

2.2 Description of the algorithm

Our algorithm has two steps. We use the initial part of the sample (observations from t ≤ T0,

where T0 is selected by the researcher) to construct the unit weights ωi. We then use these weights

to construct aggregate outcomes and estimate the reduced form and first stage coefficients by

running OLS regressions.

2.2.1 Time-series model

A key input for our algorithm is the model for the mean of Zt. To understand the need for this

object consider a general decomposition:

Zt = µ
(z)
t + ε

(z)
t ,

E[ε
(z)
t ] = 0.

(2.7)

We saw that the TSLS estimator can be represented as a time-series regression of the aggregate

variables Yt,Wt on Zt. In applications it is common to assume that Zt is exogenous, and

thus regressions (2.4) seem reasonable. However, because Yt,Wt, Zt are time-series we need to

acknowledge the possibility of the spurious correlation caused by similar trends in Zt and Yt,Wt.

This is a particular instance of a more general problem analyzed in Borusyak and Hull (2020).

Our solution to this problem is similar in spirit to Borusyak and Hull (2020). We do not

assume that µ
(z)
t is known, but instead assume that researchers have access to functions ψt =

(1, . . . , ψpt) that span µ
(z)
t :

µ
(z)
t = η>z ψt. (2.8)

Here ψt can include different kinds of deterministic trends, or additional strictly exogenous

aggregate variables that can explain the variation in Zt. In the absence of any additional
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information and knowledge about Zt, a natural choice for ψt is ψt ≡ 1 – a constant mean.

In practice, Zt might be observed at a higher frequency then the unit-level data, and this

additional information can be used to construct ψt. For example, one can use filtering and

related procedures (e.g., Hamilton (2018)) for this purpose.

2.2.2 Unit weights

Given ψt, the first step of our algorithm focuses on the unit weights that are later used to ag-

gregate the outcomes. We construct these weights by solving a quadratic optimization problem:

(ω, η̂
(w)
ψ , η̂(w)

z , η̂
(y)
ψ , η̂(y)

z ) =

= arg min
{w,η(w)

ψ ,η
(w)
z ,η

(y)
ψ ,η

(y)
z }

{
ζ2T0

n2
‖w‖2

2 +

∑T0
t=1

(
1
n

∑n
i=1wiYit − (η

(y)
ψ )>ψt − η(y)

z Zt

)2

σ̂2
Y

+

∑T0
t=1

(
1
n

∑n
i=1wiWit − (η

(w)
ψ )>ψt − η(w)

z Zt

)2

σ̂2
W

}
subject to:

1

n

n∑
i=1

wiDi = 1,
1

n

n∑
i=1

wi = 0,

(2.9)

where σ̂2
k are scaling factors:

σ̂2
Y =

1

nT0

∑
it

(Yit − Y t − Y i + Y )2, σ̂2
W =

1

nT0

∑
it

(Wit −W t −W i +W )2, (2.10)

and ζ is a user-specified regularization parameter. By construction ω is invariant with respect

to rescaling of Wit and Yit, and addition of two-way fixed effects.

The optimization problem (2.9) is not quite standard and to gain intuition it is useful to

consider an edge case. If ζ is equal to infinity, then the last two parts of the optimized function

do not matter and it is straightforward to show that ωi = Di−D
V̂[Di]

. In other words, we get the

same unit weights that were used in Lemma 1. Once we start to decrease ζ the second two
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terms start to play a role, thus forcing the following approximate equalities (for t ≤ T0):

1

n

n∑
i=1

ωiYit ≈
(
η̂

(y)
ψ

)>
ψt + η̂(y)

z Zt,

1

n

n∑
i=1

ωiWit ≈
(
η̂

(w)
ψ

)>
ψt + η̂(w)

z Zt.

(2.11)

The motivation for enforcing (2.11) comes from applications in which (2.1) is estimated.

The common concern in practice, is that while Zt is an exogenous shock, it might not be the

only aggregate variable that affects both the outcome and the endogenous policy variable. The

conventional assumption is that such unobserved shocks, if present, either do not affect units

differently – and thus are captured by time fixed effects – or affect them in a way that is unrelated

to Di. In either of these situations, one should expect (2.11) to be satisfied for ωi = Di−D
V̂[Di]

. In this

case, our algorithm should produce the unit weights that are similar to those that are currently

used.

In practice, Di is a characteristic of a unit, and one cannot expect it to be randomly assigned

across units. As a result, a priori, there is no reason to believe that the unobserved shocks affect

units in a way that is unrelated to Di. However, it is natural to assume that these shocks do not

entirely mimic Zt and ψt, and there is a combination of units that it is affected by Zt, ψt, and

nothing else. An empirical manifestation of such combination is a property like (2.11), where

most of the variation in aggregate variables can be attributed to observed variables. As a result,

by using the unit weights that enforce (2.11) we might hope to balance out the unobserved

shocks. This is the motivation behind the optimization problem (2.9). In the coming sections,

we formalize this intuition and provide formal statistical guarantees for this property of the unit

weights ω.

2.2.3 Aggregate regressions

The second step of our algorithm consists of two time-series regressions. To this end we construct

aggregate variables for t > T0:

Yt =
1

n

n∑
i=1

Yitωi, Wt =
1

n

n∑
i=1

Witωi, (2.12)
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and use them to estimate the first stage and reduced form coefficient by OLS. In particular, we

run the following regressions for t > T0:

Yt = β(y) + (η
(y)
ψ )>ψt + δZt + ε

(y)
t ,

Wt = β(w) + (η
(w)
ψ )>ψt + πZt + ε

(w)
t ,

(2.13)

and use δ̂, π̂ either to construct the usual IV ratio τ̂ := δ̂
π̂
, or conduct inference (see Section 3.4).

One can immediately see that our estimator has three important differences compared to

the conventional algorithm described in Section 2.1. The critical difference is that we construct

the unit weights by solving (2.9) and use these weights to aggregate the outcomes. The second

difference is that we include functions ψt in the aggregate regressions (2.13) to address potential

spurious correlation. Finally, we use sample splitting and estimate (2.13) only using the data

for t > T0.

Our algorithm has two tuning parameters ζ and T0. Theoretical results in Section 3 show how

the resulting error depends on T0 if ζ2 is of constant order. In practice, we recommend setting

T0 to T
3
, i.e., using a third of the available data to learn the weights and the rest to estimate the

parameters. We use the following expression to choose the regularization parameter:

ζ :=
min

{
σT/2(Y ), σT/2(W )

}
√
n+ T

, (2.14)

where σk(·) corresponds to the k-th largest singular value of the matrix.

2.3 Illustration

We illustrate the performance of our algorithm in a Monte-Carlo experiment. To construct

this simulation, we rely on the data and analysis from Nakamura and Steinsson (2014), where

the authors investigate the relationship between government spending and state GDP growth.

They use state data on total military procurement for 1966 through 2006 and combine it with

U.S. Bureau of Economic Analysis state GDP and state employment datasets. The authors

complement these data with the oil prices data from the St. Louis Federal Reserve’s FRED

database and state-level inflation series constructed by Del Negro (1998) and their inflation

calculations for after 1995.
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Algorithm 1: Estimation algorithm

Data: {Yit,Wit}it, {Di}ni=1, {Zt, ψt}Tt=1, T0, ζ
Result: First-stage and reduced form estimates (π̂, δ̂)

1 Construct the unit weights {ωi}ni=1 by solving optimization problem (2.9);
2 for t← T0 + 1 to T do
3 Construct Yt = 1

n

∑n
i=1 Yitωi, and Wt = 1

n

∑n
i=1 Witωi.

4 end
5 Using the data for t > T0 estimate two regressions by OLS:

Yt = β(y) + (η
(y)
ψ )>ψt + δZt + ε

(y)
t ,

Wt = β(w) + (η
(w)
ψ )>ψt + πZt + ε

(w)
t

and report δ̂, π̂;

A crucial quantity that Nakamura and Steinsson (2014) want to capture by estimating

growth-spending relationship is an open economy relative multiplier. They compare differ-

ent U.S. states and study their reaction to aggregate military spending fluctuations in a panel

setting. They argue that this strategy allows them to control for common shocks (such as mon-

etary policy). It also allows them to account for the potential endogeneity of local procurement

spending.

To illustrate their approach, we introduce some notation — also used in our simulations

below. For a generic observation – a state i, and a generic period t, denote per capita output

growth in state i from year t − 2 to t by Yit.
2 Similarly, denote two-year growth in per capita

military procurement spending in state i and year t, normalized by output, in year t − 2, by

Wit. Finally, let Zt be the change in total national procurement from year t− 2 to t. This leads

to a dataset with n = 51 states and T = 39 periods.

In their baseline specification, the authors interact state fixed effects with the fluctuations

in aggregate military spending and use this interaction as an IV for state-level military procure-

ment. This exercise is equivalent to running state-by-state regressions to estimate the exposures

and then use the weights based on these estimated exposures in a TSLS. More preciesly, the

authors first construct Di by estimating the regression for every unit i:

Wit = αi + πiZt + uit, (2.15)

2The authors advocate for using two-year changes instead of one-year changes together with leads and lags.
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and then estimate equation

Yit = βi + µt + τWit + εit (2.16)

by TSLS using π̂iZt as an instrument.

In our experiments we try to capture the spirit of this empirical exercise and investigate

how different features of the data generating process affect the performance of the algorithms.

Formally, our simulations are based on the following model:

Yit = β
(y)
i + µ

(y)
t + L

(y)
it + τWit + θ

(y)
i Ht + ε

(y)
it ,

Wit = β
(w)
i + µ

(w)
t + L

(w)
it + πiZt + θ

(w)
i Ht + ε

(w)
it .

(2.17)

Here parameters {β(y)
i , β

(w)
i , µ

(y)
t , µ

(w)
t , L

(y)
it , L

(w)
it , τ, πi, θ

(w)
i , θ

(y)
i }i,t are fixed, while ε

(y)
it , ε

(w)
it and

{Zt, Ht}Tt=1 are random (see Section 3 for the discussion of this model). For our simulation to

be realistic we use the data described above to construct {L(y)
it , L

(w)
it , πi}it, and the models for

{Zt}Tt=1 and {ε(y)
it , ε

(w)
it }it.3 The data are not directly informative about Ht and {θ(w)

i , θ
(y)
i }i and

we need to make ad hoc choices that we describe below.

First, we eliminate the time fixed effects from both the outcome and the policy variables by

demeaning the data for each period t:

W̃it := Wit −
1

n

n∑
i=1

Wit, Ỹit := Yit −
1

n

n∑
i=1

Yit. (2.18)

Then we run the following regressions for each unit using all the periods:

Ỹit = α
(y)
i + δiZt + ε

(y)
it ,

W̃it = α
(w)
i + π

(0)
i Zt + ε

(w)
it ,

(2.19)

define πi := π̂
(0)
i , and use it in (2.17).

For k ∈ {y, w} let E(k) be the n × T matrix of residuals from (2.19): (E(k))it := ε̂
(k)
it . We

3There is no need to construct {β(y)
i , β

(w)
i , µ

(y)
t , µ

(w)
t }it because the algorithms we consider are invariant with

respect to unit and time fixed effects.
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Design 1 Design 2 Design 3 Design 4
Estimator RMSE Bias RMSE Bias RMSE Bias RMSE Bias

π̂ 0.014 -0.000 0.038 0.000 0.026 0.008 0.122 0.072
π̂TSLS 0.010 0.000 0.044 -0.001 0.286 0.249 0.259 0.219

δ̂ 0.067 -0.000 0.329 -0.005 0.109 0.023 0.297 0.019

δ̂TSLS .050 0.001 0.371 -0.000 0.201 0.173 0.389 0.149
τ̂ 0.063 -0.000 0.348 -0.001 0.103 0.022 0.337 0.026

τ̂TSLS 0.047 0.001 0.414 0.007 0.177 0.157 0.446 0.160

Table 1: Each simulations has 2000 replications, τ = 1.43; first design: no generalized FE,
no unobserved shock; second design: generalized FE, no unobserved shock; third design: no
generalized FE, unobserved shock; fourth design: generalized FE, unobserved shock.

construct L
(k)
it by solving the following problem:

L(k) := arg min
M,rank(M)=11

∑
it

(
E

(k)
it −Mit

)2

(2.20)

which implies that L(k) simply sets all but 11 largest singular values of E(k) to zero. We use the

residuals E(k) − L(k) to construct the covariance matrix:

Σ :=
1

nT

∑
it

 (
E

(y)
it − L(y)it

)2 (
E

(y)
it − L(y)it

)(
E

(w)
it − L

(w)
it

)
(
E

(y)
it − L(y)it

)(
E

(w)
it − L

(w)
it

) (
E

(w)
it − L(w)it

)2

 , (2.21)

and generate (ε
(y)
it , ε

(w)
it ) fromN (0,Σ). Finally, we estimate the model for Zt by fitting an ARIMA

model to the data {Zt}Tt=1 using the automatic model selection package in R.

We construct Ht as a linear combination of Zt and an independent random process that has

the same distribution as Zt. We set θ
(w)
i to be equal to a linear combination of π̂i and an inde-

pendent standard normal variable, and do the same for θ
(y)
i . Parameters of these combinations,

elements of matrix Σ, and parameters of the model for Zt are presented in Appendix C. We

choose these parameters to make the corresponding unobserved components similar in size to

πiZt and τπiZt.

We compare the performance of our estimator (as described by Algorithm 1) with the stan-

dard TSLS algorithm from Section 2.1. In both cases we use the data to construct Di by running
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the following regressions using for t ≤ T
3
:

Wit = αi + πiZt + εit, (2.22)

and set Di = π̂i. We consider four different designs. In the first design we drop L
(w)
it , L

(y)
it , as

well as Ht from the model (2.17). In this case, TSLS algorithm should perform better than

ours, because it uses the optimal weights. With the second design we start to increase the

complexity and add L
(w)
it , L

(y)
it back to the model. One can think of this design as a DGP for the

data from Nakamura and Steinsson (2014) under which the TSLS approach is justified. Here we

should expect both algorithms to perform well in terms of bias, but potentially differ in terms

of variance. In the third design we drop L
(w)
it , L

(y)
it but add Ht, finally in the fourth case we have

both components.

In Table 1 we report results over 2000 for simulations for the case of τ = 1.43 that corresponds

to the point estimate obtained in Nakamura and Steinsson (2014). The results confirm the

intuition discussed above: in the simplest case, our estimator for τ is less precise than τ̂TSLS,

although the difference is small. We see sizable gains in RMSE (18%) for the second design.

Notably, all parts of this design come directly from data and are not driven by our choices. In

the third case our estimator eliminates most of the bias, while the TSLS error is dominated by

it. Finally in the most general design our estimator is nearly unbiased and dominates the TSLS

in terms of RMSE. In Figure 1 we plot the densities of τ̂ − τ over the simulations for the second

and the fourth design. These plots demonstrate the gains in both variance and bias and show

the estimator’s overall behavior. Once again, we see that even when TSLS is approximately

unbiased, there are gains from using our approach that come from the increase in precision.

3 Theoretical analysis

We observe n units (i being a generic one) over T periods (t is a generic period). For each unit,

we observe an outcome variable Yit, an endogenous policy variable (treatment) Wit, an aggregate

shock Zt, and a measure of exposure of unit i to this shock Di. Our goal is to estimate a causal

relationship between Yit and Wit. We abstract away from additional unit-specific time-invariant

covariates, but they can be incorporated in a straightforward way.
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Figure 1: Distribution of errors τ̂ − τ for the second and the fourth design of Table 1.

3.1 Causal model

In this section, we present a causal model that we will later use to interpret the output of

our algorithm. We view this model as a parsimonious framework that allows us to discuss the

central problems researchers face in applications in the simplest possible form. We start with a

model of potential outcomes. In addition to wt (potential value of Wit) and zt (potential value

of Zt), we also introduce ht – an unobserved aggregate shock that causally affects both the

outcome and the treatment variable. We define wt := (. . . , w1, . . . , wt), z
t := (. . . , z1, . . . , zt),

and ht := (. . . , h1, . . . , ht), and make the following assumption:

Assumption 3.1. (Potential outcomes)

Potential outcomes are generated as follows:

Yit(w
t, ht) = α

(y)
it + τwt + θ

(y)
i ht,

Wit(h
t, zt) = α

(w)
it + πizt + θ

(w)
i ht.

(3.1)

As a result, the observed outcomes behave in the following way:

Yit = α
(y)
it + τWit + θ

(y)
i Ht,

Wit = α
(w)
it + πiZt + θ

(w)
i Ht.

(3.2)

16



The critical part of this assumption and our setup overall is the unobserved aggregate variable

Ht. The danger such shocks present for identification is well-recognized in applied work (e.g.,

Chodorow-Reich et al. (2021)). The typical restriction made in the literature is to assume that

all units are affected by unobserved variables in the same way, or, in other words, assume that

θ
(w)
i , θ

(y)
i do not vary over i or at least are unrelated to πi. We do not make this assumption and

instead allow for rich heterogeneity in exposures (see also a discussion in Section 4). Following

most empirical applications, we focus on contemporaneous treatment effects and assume that

only current quantities affect the outcomes. Finally, we assume away heterogeneity in treatment

effects mainly to simplify the exposition. As we discuss in Appendix D, our theoretical results

can be extended to allow for such heterogeneity, and under additional assumptions, the resulting

estimand can be interpreted as a weighted average of individual treatment effects.

Our next assumption describes the relation between the aggregate shocks and the potential

outcomes:

Assumption 3.2. (Independence)

Aggregate shocks are independent of potential outcomes:

{Zt, Ht}Tt=1 ⊥⊥ {α
(w)
it , α

(y)
it , θ

(y)
i , θ

(w)
i , πi}it. (3.3)

To interpret this restriction we consider two different scenarios where it might hold: appli-

cations with exogenous aggregate shocks, and equilibrium models.

Models with exogenous shocks. The most natural case for Assumption 3.2 arises in ap-

plications where Zt, Ht can be plausibly considered exogenous, i.e., determined outside of the

relevant model for the unit-level outcomes. Such situations are common in development litera-

ture, where these aggregate shocks emerge in developed countries and then directly or indirectly

affect the outcomes in the developing countries (Nunn and Qian, 2014).

More generally, in such applications one can interpret Assumption 3.2 as a strict exogeneity

assumption (e.g., Arellano (2003)) that is routinely made in the difference-in-differences applica-

tions. This assumption implies that one can safely condition on the aggregate variables without

being concerned that such variables are affected by past, present or future outcomes.
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Equilibrium models. In some applications, e.g., in macroeconomics, Zt, Ht are determined

in general equilibrium and cannot be treated as exogenous. To explain how our framework can

fit such situations, we consider stylized examples. First, we put restrictions on the potential

outcomes:

α
(y)
it = α̌

(y)
it + ε

(y)
it ,

α
(w)
it = α̌

(w)
it + ε

(w)
it .

(3.4)

Here we treat {α̌(y)
it , α̌

(w)
it }it as fixed numbers (condition on them) while the variables {ε(y)

it , ε
(w)
it }it

are random. We interpret them as measurement errors. Similarly, we treat individual loadings

{θ(w)
i , θ

(y)
i , πi}ni=1 as fixed.

In the first example we consider situations where Zt and Ht are policy variables that are

determined in the equilibrium:

Zt =
n∑
i=1

φ
(z)
i (α̌

(w)
it + πiZt + θ

(w)
i Ht) + ε̌

(z)
t ,

Ht =
n∑
i=1

φ
(h)
i (α̌

(w)
it + πiZt + θ

(w)
i Ht) + ε̌

(h)
t ,

(3.5)

where coefficients {φ(z)
i , φ

(h)
i }i are fixed and aggregate errors (ε̌

(z)
t , ε̌

(h)
t ) are random. Solving these

equations we express Zt, Ht in the following way:

Zt = µ
(z)
t + ε

(z)
t ,

Ht = µ
(h)
t + ε

(h)
t ,

(3.6)

where now ε
(z)
t and ε

(h)
t are correlated. It is immediate that once we assume that aggregate errors

(ε
(z)
t , ε

(h)
t ) are independent of {ε(w)

it , ε
(y)
it }it Assumption 3.2 holds despite the fact that Zt, Ht are

endogenous.

Our setup also allows for local equilibrium models of the type considered in Guren et al.

(2020b). Let the outcomes and the treatments be determined by the following equations:

Yit = α̌
(y)
it + τWit + θ

(y)
i Ht + ε

(y)
it ,

Wit = α̌
(w)
it + γYit + θ

(w)
i νt + ε

(w)
it .

(3.7)
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In the typical example Yit can be the retail employment in location i, period t, while Wit

is the house price. The aggregate shocks νt, Ht are exogenous and unobserved (and possibly

correlated). Following Guren et al. (2020b) define two aggregate variables:

Wt = γYt +
1

n

n∑
i=1

(
α̌

(w)
it + θ

(w)
i νt

)
,

Yt = τWt +
1

n

n∑
i=1

(
α̌

(y)
it + θ

(y)
i Ht

)
.

(3.8)

Substituting the value for Yit in the equation for Wit, the value for Yt in the equation for Wt,

and rearranging the terms, we get the representation for Wit and Wt:

Wit =
1

1− γτ

(
α̌

(w)
it + γα̌

(w)
it

)
+

γθ
(y)
i

1− γτ
Ht +

θ
(w)
i

1− γτ
νt +

1

1− γτ

(
ε

(w)
it + γε

(y)
it

)
,

Wt = µ
(w)
t + θ(y)Ht + θ(w)νt,

(3.9)

where θ(y) and θ(w) are averages of
γθ

(y)
i

1−γτ and
θ
(w)
i

1−γτ respectively, and µ
(w)
t is an average of

1
1−γτ

(
α̌

(w)
it + γα̌

(w)
it

)
. Observe that in this model Wt and Ht are correlated by construction

unless θ(y) is equal to zero and νt and Ht are uncorrelated.

Expressing νt in terms of Ht and Wt and going back to the original equation for Yit we get

a particular version of (3.1):

Yit = α̌
(y)
it + τWit + θ

(y)
i Ht + ε

(y)
it ,

Wit = α̃
(w)
it + πiWt + θ̃

(w)
i Ht +

1

1− γτ

(
ε

(w)
it + γε

(y)
it

)
,

(3.10)

where α̃
(w)
it = 1

1−γτ

(
α̌

(w)
it + γα̌

(w)
it

)
− 1
θ(w)(1−γτ)

θ
(w)
i µ

(w)
t , πi = 1

θ(w)(1−γτ)
θ

(w)
i , and θ̃

(w)
i = 1

1−γτ (γθ
(y)
i −

θ(y)

θ(w) θ
(w)
i ). Crucially, unlike Guren et al. (2020b), we would not assume that πi and θ

(y)
i are

uncorrelated. We return to this example in Section 4.

3.2 Econometric model

This section describes the key statistical restrictions we impose on the causal model from the

previous section. In our formal analysis, we derive asymptotic properties as n, T0, and T1 go to
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infinity. Formally, all objects in our analysis are allowed to change with n and T0, T1, and thus

they should be indexed with n and T0, T1. For brevity, we omit these indices.

We start with the model for the baseline outcomes:

Assumption 3.3. (Outcome Model) Assume that {(θ(y)
i , θ

(w)
i , πi)}i are deterministic, and

α
(y)
it , α

(w)
it have the following decomposition:

α
(y)
it = β

(y)
i + µ

(y)
t + L

(y)
it + ε

(y)
it ,

α
(w)
it = β

(w)
i + µ

(w)
t + L

(w)
it + ε

(w)
it ,

(3.11)

where {(β(y)
i , µ

(y)
t , β

(w)
i , µ

(w)
t , L

(y)
it , L

(w)
it )}it are deterministic, and for any (i, t) the idiosyncratic

shocks are jointly normal:ε(w)
it

ε
(y)
it

 ∼ N
0,

 σ2
w ρidσwσy

ρidσwσy σ2
y

 , (3.12)

independent over units and periods, and max{σy, σw} < cσ for some constant cσ > 0.

This assumption generalizes the conventional two-way fixed effects model, allowing for addi-

tional fixed effects captured by L
(y)
it and L

(w)
it . As a simple example, one can think of interactive

fixed effects (e.g., Holtz-Eakin et al. (1988); Chamberlain (1992); Bai (2009); Moon and Weidner

(2015, 2017)):

L
(w)
it = a

(w)
i b

(w)
t , L

(y)
it = a

(y)
i b

(y)
t . (3.13)

In our analysis, we allow this part to be much more general; in particular, we do not require

the rank of corresponding matrices to be fixed and all its singular values to be large. This is

practically important, because in applications (L
(w)
it , L

(y)
it ) can have a complicated structure (see

Arkhangelsky et al. (2019) for a related discussion).

We impose normality of the errors to simplify exposition; similar results would hold for sub-

gaussian noise under additional technical assumptions. Independence over time might appear

at odds with the empirical practice that emphasizes the danger of persistence in errors (e.g.,

Bertrand et al. (2004)). In our setup, we attribute such persistence to generalized fixed effects

L
(w)
it , L

(y)
it (condition on it). Our analysis can be generalized to account for finite dependence in
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idiosyncratic errors.

Our next assumption restricts the distribution of both observed and unobserved time shocks.

Since these shocks essentially provide quasi-experimental variation in our setup, we call this

assumption a design model.

Assumption 3.4. (Design model) The aggregate shocks (Zt, Ht) have the following repre-

sentation for known vectors {ψt}Tt=1:

Zt = η>z ψt + ε
(z)
t ,

Ht = η>h ψt + ε
(h)
t ,

(3.14)

where the first component of each ψt is equal to 1, and dim{ψt} = p < cp for some constant

cp > 0. For k ∈ {z, h} define ε(k) := (ε
(k)
T , . . . , ε

(k)
1 ); there exist T -dimensional vectors ν(z), ν(h),

two upper-triangular matrices Λ(z),Λ(h) with non-zero diagonal elements, and ρag ∈ (−cag, cag)
for cag < 1 such that the following holds:

ε(z) = Λ(z)ν(z),

ε(h) = Λ(h)(ρagν
(z) +

√
(1− ρ2

ag)ν
(h)).

(3.15)

Vectors ν(z), ν(h) are independent, have independent components with uniformly bounded sub-

gaussian norm, and E
[
(ν

(z)
t )2

]
= E

[
(ν

(h)
t )2

]
= 1.

This assumption describes a rich class of linear time series models. We do not impose

stationarity of the errors ε
(z)
t , allowing coefficients of matrices Λ(z),Λ(h) to vary over time in

a general way. For example, the variance in each period can be different. In Appendix A.2

we impose additional technical restrictions on matrices Λ(z),Λ(h) that exclude very persistent

cases (e.g., random walks), but still allow for other forms of non-stationarity. The dependence

between ε
(z)
t and ε

(h)
t arises from the correlation between the underlying shocks. Notably, the

correlation coefficient ρag is bounded away from one, implying that there is variation in ε
(h)
t that

is not entirely explained by ε
(z)
t (and vice versa). We assume that the means of Zt and Ht are

equal to linear combinations of vectors ψt. This is without loss of generality for Ht, because its

mean can be treated as a part of L
(w)
it and L

(y)
it .

Our final assumption describes the size and the complexity of the fixed effects L
(w)
it , L

(y)
it and
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their connection with θ
(w)
i , θ

(y)
i and πi. To state it we introduce additional notation:

L̃
(y)
it := τL

(w)
it + L

(y)
it ,

θ̃
(y)
i := τθ

(w)
i + θ

(y)
i .

(3.16)

Define two n× T0 matrices L(w),(0), L(y),(0), such that for k ∈ {y, w}
(
L(k),(0)

)
it

= L
(k)
it . The next

assumption requires that there exists a vector of weights that approximately eliminates the fixed

effects and the unobserved shocks and is correlated with πi:

Assumption 3.5. (Complexity and size of fixed effects) There exist ω̌ and constants

cω̌, cL such that as n and T0 go to infinity the following holds for some cfe = o(1):

1

n

n∑
i=1

ω̌i = 0,
1

n

n∑
i=1

ω̌iπi = 1, ‖ω̌‖2 ≤ cω̌
√
n,

min
η
(y)
ψ ,η

(y)
z


T0∑
t=1

E

[
1

n

n∑
i=1

ω̌i(L̃
(y)
it + θ̃

(y)
i ε

(h)
t )− η(y)

ψ ψt − η(y)
z ε

(z)
t

]2
 ≤ c2

fe,

min
η
(w)
ψ ,η

(w)
z


T0∑
t=1

E

[
1

n

n∑
i=1

ω̌i(L
(w)
it + θ

(w)
i ε

(h)
t )− η(w)

ψ ψt − η(w)
z ε

(z)
t

]2
 ≤ c2

fe.

(3.17)

Also, the following is satisfied for some fixed constant cL:

max
i,t

∣∣∣L(w)
it

∣∣∣ ≤ cL, max
i,t

∣∣∣L̃(y)
it

∣∣∣ ≤ cL,

max
i

∣∣∣θ(w)
i

∣∣∣ ≤ cL, max
i

∣∣∣θ̃(y)
i

∣∣∣ ≤ cL,

(3.18)

and max{rank(L(w),(0)), rank(L(y),(0))} = o (min{n, T0}).

This assumptions allows for very general L
(w)
it , L

(y)
it , in particular it imposes only a mild rank

restriction compared with those commonly assumed in the literature (e.g., Bai (2009); Moon

and Weidner (2015, 2017)). Alternatively, one can formulate this restriction in terms of approx-

imate rank (number of sufficiently large singular values) to allow for non-degenerate matrices

L(w),(0), L(y),(0). We also require fixed effects to be bounded and restrict their relationship with

πi. To better understand this part, consider a simple situation where L
(w)
it and L̃

(y)
it are described

by interactive fixed effects as in (3.13). The first part of the Assumption 3.5 is satisfied as long
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as πi is bounded and is not spanned by (1, θ
(w)
i , θ(y), a

(w)
i , a

(y)
i ), or, in other words, R2 in the

following regression is bounded away from 1:

πi = c0 + cθ,wθ
(w)
i + cθ,yθ

(y)
i + ca,ya

(y)
i + ca,wa

(w)
i + ei (3.19)

Indeed, in this case, the normalized residuals from this regression can play the role of ω̌i and cfe

in (3.17) can be set equal to zero. The second part of the Assumption 3.5 is satisfied as long as

fixed effects (a
(w)
i , a

(w)
i , b

(w)
t , b

(y)
t ) are bounded. In more general models it might be infeasible to

set cfe in Assumption 3.5 to zero, but one can guarantee that it approaches zero as the size of

the data becomes larger.

3.3 Statistical guarantees

We start our analysis by looking at weights ω̃ that potentially depend on the data from the first

part of the sample – periods 1 to T0 – in a completely general way. For any such weights we can

construct the aggregate outcomes and estimate the first stage, and the reduced form coefficients.

We demonstrate that the error of such estimator has a deterministic component proportional

to the correlation between the weights and exposures to unobserved shocks. This component is

unaffected by T1 – the size of the second part of the sample. The additional random element of

the error is decreasing with T1. We then specialize these results for ω described in Section 2.2.2

and show the gains from using our weights. All the proofs are collected in the Appendix.

Let {ω̃i}ni=1 be the sequence of weights such that
∑n

i=1 ω̃i = 0. For t ∈ (T0, T ] define the

aggregate variables:

Yt(ω̃) :=
1

n

n∑
i=1

ω̃iYit,

Wt(ω̃) :=
1

n

n∑
i=1

ω̃iWit.

(3.20)

We then estimate coefficients by OLS in the following regressions:

Yt(ω̃) = β(y)(ω̃) + (η
(y)
ψ (ω̃))>ψt + δ(ω̃)Zt + ε

(y)
t ,

Wt(ω̃) = β(w)(ω̃) + (η
(w)
ψ (ω̃))>ψt + π(ω̃)Zt + ε

(w)
t ,

(3.21)
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and focus our attention on π̂(ω̃) and δ̂(ω̃) – the first stage, and the reduced form coefficient,

respectively.

To understand our first result, suppose that Yit and Wit satisfy the restrictions described in

Assumptions 3.1 and 3.3. Then we get the following aggregate series for t ∈ (T0, T ]:

Yt(ω̃) = β(y)(ω̃) + L
(y)
t (ω̃) + θ(y)(ω̃)Ht + τπ(ω̃)Zt + ε

(y)
t (ω̃),

Wt(ω̃) = β(w)(ω̃) + L
(w)
t (ω̃) + θ(w)(ω̃)Ht + π(ω̃)Zt + ε

(w)
t (ω̃).

(3.22)

Here aggregate quantities are weighted averages of the corresponding unit-level parameters, their

precise definition is given in Appendix A.1.

Since we condition on the first part of the sample, the aggregate trends L
(y)
t (ω̃), L

(w)
t (ω̃) are

deterministic and thus should be uncorrelated with innovations in Zt. As a result, they would

not attribute to the bias of the final estimator, only to its variance. The same, however, does not

hold for Ht that remains random and by assumption can be correlated with Zt. This correlation

would lead to a bias of the constant size, unaffected by T1. Finally, we expect the aggregate

idiosyncratic errors ε
(y)
t (ω̃), ε

(w)
t (ω̃) to be small (average of n idiosyncratic shocks).

We formalize this intuition for a simplified class of models described by the next assumption.

We impose these restrictions only to simplify the presentation of the results. General case is

presented in Appendix (Theorem B.1).

Assumption 3.6. (Autoregressive case) Assume that ψt ≡ 1, Λ(z) = Λ(h), and Λ
(z)
jl =

{l ≥ j}ρl−j, where |ρ| < c < 1.

This assumption says that the mean of both processes does not change over time and the

innovations follow an AR(1) process with autoregresion coefficient ρ. For k ∈ {y, w} define the

following quantities:

L̃
(k)
t (ω̃) :=

∑
T0<l≤T

(
L

(k)
l (ω̃)− 1

T1

∑
j>T0

L
(k)
j (ω̃)

)
{l ≥ t}ρl−t for t > T0,

l(k)(ω̃) :=

√
(1− ρ2

ag)
∑

t>0(L̃
(k)
t (ω̃))2

T1

.

(3.23)
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Define the correlation coefficient between L̃
(y)
t (ω̃), L̃

(w)
t (ω̃):

ρl(ω̃) :=

∑
t>0 L̃

(w)
t (ω̃)L̃

(k)
w (ω̃)

l(w)(ω̃)l(y)(ω̃)
, (3.24)

and two matrices:

Σ :=

(σ2
y + τ 2σ2

w + 2τρidσyσw) σw(ρidσy + τσw)

σw(ρidσy + τσw) σ2
w

 ,

Σag(ω̃) :=

 (
l(y)(ω̃)

)2
ρl(ω̃)l(y)(ω̃)l(w)(ω̃)

ρl(ω̃)l(y)(ω̃)l(w)(ω̃)
(
l(w)(ω̃)

)2

 .

(3.25)

We now are ready to state our first formal result.

Theorem 1. (Arbitrary weights) Suppose Assumptions 3.1,3.2,3.3,3.4,3.6 hold; Let the

weights {ω̃i}ni=1 be such that 1
n

∑n
i=1 ω̃i = 0, and for k ∈ {y, w} maxt

{
|L̃(k)

t (ω̃)|
}

= op
(
l(k)(ω̃)

)
.

Then as n and T1 approach infinity we have the following result:

δ̂(ω̃)− τ
n

∑n
i=1 ω̃iπi

π̂(ω̃)− 1
n

∑n
i=1 ω̃iπi

 =

 1
n

∑n
i=1 ω̃iθ̃

(y)
i

1
n

∑n
i=1 ω̃iθ

(w)
i

(ρag +Op
(

1√
T1

))
+

√
1− ρ2

T1

Σ
1
2
ag(ω̃)(ξz + op(1)) +

‖ω̃‖2

√
1− ρ2

n
√
T1

(ξcr + op(1)), (3.26)

where ξcr ∼ N (0,Σ), ξz is independent of ξcr, E[ξcr] = 0,V[ξz] = I2, and it converges in

distribution to a standard normal vector.

This result applies to any weights including those that depend on the first part of the

dataset as long as they average to zero and satisfy condition maxt

{
|L̃(k)

t (ω̃)|
}

= op
(
l(k)(ω̃)

)
for

k ∈ {y, w}. The latter simply requires the aggregate trends L̃
(y)
t (ω̃), L̃

(y)
t (ω̃) to be sufficiently

spread-out over time so that no single period dominates. For any such weights, the theorem
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states that the estimation error has three components:

bias :=

 1
n

∑n
i=1 ω̃iθ̃

(y)
i

1
n

∑n
i=1 ω̃iθ

(w)
i

(ρag +Op
(

1√
T1

))
,

aggregate noise :=

√
1− ρ2

T1

Σ
1
2
ag(ω̃)(ξz + op(1)),

cross-sectional noise :=
‖ω̃‖2

√
1− ρ2

n
√
T1

(ξcr + op(1)).

(3.27)

The bias is proportional to ρag and the covariance between the weights and exposures to un-

observed shocks. The latter can be of constant order, unless ω̌i are independent of θ
(w)
i , θ

(y)
i by

design. Thus the bias does not go away unless ρag is small (converges to zero). Similarly, we can

expect l(y)(ω̃) and l(w)(ω̃) to be of constant order making the aggregate noise behave as 1√
T1

. In

this case, the cross-sectional noise is dominated by the aggregate one for any bounded weighs

ω̃. This is natural because the fundamental exogenous variation comes from the time-series

dimension. Notably, the resulting variance directly depends on the properties of the aggregate

shocks.

With the weights that depend on the first part of the data in a systematic way, we can

hope to reduce the bias. To do so, we need to find the weights that “balance out” θ
(w)
i , θ

(y)
i .

Assumptions 3.1, 3.5 suggest that this might be possible – the exposures to Ht do not change

over time and the initial periods are informative about them. Our second formal result shows

that this is indeed possible, and describes the behavior of the estimator for the weights proposed

in Section 2.2.2. To state it we need to connect the variables {Di}ni=1 that we use to construct

ω to unobserved exposures πi. We make the following assumption:

Assumption 3.7. (Proportional exposures) There exist numbers (η0, ηπ) such that ηπ 6= 0,

and for every i we have that Di = η0 + ηππi.

This restriction is motivated by the empirical work where it is commonly imposed (Nunn

and Qian, 2014). We make this assumption to simplify exposition and consider a more general

version in Appendix (Theorem B.2). We also discuss data-dependent Di in Section 4.

Theorem 2. (Systematic weights) Suppose Assumptions 3.1,3.2,3.3,3.4,3.5,3.6,3.7 hold,

and maxt

{
|L̃(k)

t (ω)|
}

= op
(
l(k)(ω)

)
; additionally, suppose that as T0, T1, and n approach infinity
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we have T0
n

= casp+o(1) for casp ∈ (0, 1), and ζ = cmax
{

max{σw, σy, cfe},
max{σ2

w,σ
2
y ,c

2
fe}√

casp

}
. Then

the following holds:

δ̂(ω)− τ
ηπ

π̂(ω)− 1
ηπ

 =
ξbias√
T0

(
ρag +Op

(
1√
T1

))
+

√
1− ρ2

T1

Σ
1
2 (ω)(ξz + op(1)) +

‖ω‖2

√
1− ρ2

n
√
T1

(ξcr + op(1)), (3.28)

where ξcr, ξz are the same as in Theorem 1, and ξbias is a tight two-dimensional random vector

independent of ξcr, ξz.

The first implication of this result is that with the weights ω, the estimator is consistent

as long as n, T0, T1 go to infinity, and n ∼ T0. The restriction for n and T0 is natural: we

are looking for n different weights ωi that are only required to satisfy two restrictions. Each

t ∈ [1, T0] provides additional information and it is intuitive that we require T0 that is similar

in size to n to find reasonable weights. In Section 4 we discuss practical means of reducing this

requirement.

There are two differences between Theorems 1 and 2. The first one is in the behavior of the

bias. With the weights ω the estimator is not only consistent, but also has the bias of the order

Op
(

1√
T0

)
. If T0 ∼ T1, this implies that the estimator is asymptotically normal, albeit biased.

The second difference is that both the first stage and the reduced form estimands are well-defined

deterministic objects that depend on the relationship between Di and πi (Assumption 3.7). We

view this result as the main theoretical justification for using the algorithm from Section 2.2

instead of the conventional TSLS regression.

To put Theorem 2 in context, it is useful to benchmark it against the ideal situation where πi

is completely random, and thus is uncorrelated with any of the fixed effects. In this case, if we use

weights ω̃ that are proportional to πi − π the resulting covariances 1
n

∑n
i=1 ω̃iθ

(w)
i , 1

n

∑n
i=1 ω̃iθ̃

(y)
i

are of the order 1√
n

and have zero mean. Theorem 2 delivers the same order (but not zero mean),

at the expense of using the first T0 periods to find the weights. The random weights also imply

that the variance coming from L
(w)
it , L̃

(y)
it is of the order 1√

nT
. Our construction cannot guarantee

that: the restrictions that we impose on L
(w)
it , L̃

(y)
it in Assumption 3.5 do not say anything about

periods beyond T0.
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Algorithm 2: Estimation of variance

Data: {Yit,Wit}it, {ωi}ni=1, {Zt, ψt}Tt=1, Λ̂
(z),(1), T0

Result: Variance estimate Σ̂(ω)
1 for t← T0 + 1 to T do
2 Construct Yt = 1

n

∑n
i=1 Yitωi, and Wt = 1

n

∑n
i=1 Witωi.

3 end

4 Construct OLS residuals {ε̂(y)
t , ε̂

(w)
t }Tt=T0+1 in the following regressions (for t > T0):

Yt = β(y) + (η
(y)
ψ )>ψt + δZt + ε

(y)
t ,

Wt = β(w) + (η
(w)
ψ )>ψt + πZt + ε

(w)
t ,

Zt = η0 + (η
(z)
ψ )>ψt + ε

(z)
t ,

and for k ∈ {y, w, z} define ε̂(k) := (ε̂
(k)
T , . . . , ε̂

(k)
T0+1);

5 Compute and report Σ̂(ω):

Σ̂(ω) :=

 ‖ε̂(y)Λ̂(z),(1)‖22
‖ε̂(z)‖42

ε̂(y)Λ̂(z),(1)(Λ̂(z),(1))>(ε(w))>

‖ε̂(z)‖42
ε̂(y)Λ̂(z),(1)(Λ̂(z),(1))>(ε(w))>

‖ε̂(z)‖42
‖ε̂(w)Λ̂(z),(1)‖22
‖ε̂(z)‖42



3.4 Inference

Theorem 2 cannot be immediately used for inference because we do not know the distribution

of ξbias and do not have an estimator for ρag. A standard theoretical tool to avoid this problem,

is to assume that T1
T0

= o(1). In this case, the bias is dominated by the variance that under

certain assumptions can be estimated leading to asymptotically valid inference. However, such

“undersmoothing” technique provides little guidance for empirical research.

In practice, we recommend setting T1 ∼ T0, estimating the variance, and using normal

approximation conditional on ω to conduct the inference. Variance can be computed in multiple

ways, Algorithm 2 provides a particular realization. It uses an estimated matrix Λ̂(z) as an input,

in particular its T1× T submatrix Λ̂(z),(1) that describes the distribution of (ε
(z)
T , . . . , ε

(z)
T0+1). Let

Σ̂(ω) be the resulting variance matrix. We suggest that users conduct inference using the

following approximation under H0 : τ = τ0:

(δ̂ − τ0π̂) ≈ N
(

0, (1,−τ0)Σ̂(ω)(1,−τ0)>
)
. (3.29)
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Practically this means that τ0 is rejected at level α by the following decision rule:

{τ0 is rejected} =

{∣∣∣δ̂ − τ0π̂
∣∣∣ ≥√(1,−τ0)Σ̂(ω)(1,−τ0)>z1−α/2

}
, (3.30)

where zα is a α-quantile of the standard normal distribution. The confidence set can be con-

structed by collecting all values of τ0 that are not rejected. This “Anderson-Rubin”-type con-

struction is robust to small first stage coefficients (see Andrews et al. (2019) for a recent survey).

Using (3.30) for inference is natural in our context, in fact, Borusyak and Hull (2020) rec-

ommend a similar, albeit non-asymptotic, procedure for a general class of causal problems with

exogenous shocks (see also references therein). Theorem 1 can be used to show that such infer-

ence is valid for arbitrary weights ω̃ as long as ρag = o
(

1√
T1

)
. This requirement reduces to a

much weaker condition ρag = o(1) if instead of generic weights researchers use ω and Theorem

2. Practically, this means that with our weights the inference based on (3.30) is accurate if the

correlation between Ht and Zt is small.

Condition ρag = o(1) is strong because it excludes the practically relevant case of strong

(but not perfect) correlation between the aggregate shocks. If T0 ∼ T1 Theorem 2 is not

helpful in this case. To deal with such situations we impose an additional assumption that the

idiosyncratic errors ε
(w)
it , ε

(y)
it are small. Similar assumption has been used extensively in the

non-linear measurement error literature (e.g., Chesher (1991); Evdokimov and Zeleneev (2016),

see also Schennach (2016)). It might be surprising that such a condition is helpful because in

Theorem 2 the error from the cross-sectional noise is dominated by the aggregate variation.

However, when the variance of ε
(w)
it , ε

(y)
it is small we can construct better weights ωi. Our next

theorem provides formal guarantees in the low-noise regime (for a general version see Theorems

B.2, B.3):

Theorem 3. (Inference) Suppose conditions of Theorem 2 hold; in addition, suppose that

the following restrictions are satisfied for some constants cl, cρl , cint ∈ (0, 1) as n, T0, T1 approach

infinity:

max{σy, σw} = o(1),
T0

T1

= cint + o(1),

min{l(y)(ω), l(w)(ω)} > cl > 0, |ρl(ω)| < cρl < 1.

(3.31)
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Design 1 Design 2 Design 3 Design 4
Size 0.015 0.004 0.045 0.081

Table 2: Rejection rates for H0 : τ = 1.43 using (3.30) with a nominal size 0.05, for the
simulation designs described in Section 2.3. Results are based on 2000 simulations.

Then the following holds:δ̂(ω)− τ
ηπ

π̂(ω)− 1
ηπ

 =

√
1− ρ2

T1

Σ
1
2 (ω)(ξz + op(1)) (3.32)

where ξz is the same as in Theorem 1 and converges in distribution to a standard two-dimensional

normal random vector. In addition, suppose that Λ̂(z) is constructed using an estimator ρ̂ =

ρ+ op(1). Then the test described in (3.30) is consistent.

This result provides an alternative to Theorem 2 and justifies the conventional inference

based on (3.30) in situations where the correlation between the unobserved shocks is strong.

This comes at a price: we need to believe that the variance of the idiosyncratic shocks is small.

Recall that the variables ε
(w)
it , ε

(y)
it represent measurement errors, and thus the small-variance

regime can be interpreted as saying that the outcomes are measured well. This assumption is

natural if the unit-level outcomes themselves are aggregates (e.g., averages of the individual-level

data). We believe that in such situations Theorem 3 can be practically useful.

We also investigate the properties of the test (3.30) using the simulations of Section 2.3.

Results are summarized in Table 2 and show the rejection rates for the four different designs

described in Section 2.3. We see that while the test based on (δ̂, π̂) is not perfect, its size

distortions are relatively small. Reasonable performance of our estimator in the last design

might be attributed to the fact that in this case the variance of the idiosyncratic noise is much

smaller than the size of the fixed effects.

4 Discussion

4.1 Constructed exposures

In applications Di often is not an observed fixed characteristic of a unit, but rather a data-

dependent quantity that is constructed to approximate πi. For each unit we can construct such
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proxy by running a regression of Wit on Zt and ψt separately for every i using the first part of

the data (t ∈ [1, T0]):

Wit = αi + η>i ψt + πiZt + εit. (4.1)

Let π̂i be the OLS estimator in this regression. Researchers frequently use Di = π̂i together with

the conventional TSLS weights described in Section 2.1. For example, Nakamura and Steinsson

(2014) do exactly that, albeit estimating π̂i using the data from all periods. In Nunn and Qian

(2014) the authors use a similar algorithm, but instead of running the regression (4.1) they

compute the average Wit over the first T0 periods.

Under Assumptions 3.3 and 3.4 π̂i has the following representation:

π̂i = πi + η̂H|Zθ
(w)
i + ui, (4.2)

where ui is a mean-zero error (correlated across i). This immediately shows the potential problem

of using the Di = π̂i together with the conventional weights. If the unobserved aggregate shocks

are present and have heterogeneous exposures, then π̂i is generically correlated with them. At the

same time, using π̂i together with our weights ω is completely natural, because they essentially

balance θ
(w)
i away. We do not provide formal results for this case, but we follow this strategy in

the simulation described in Section 2.3 and it performs well.

In applications, researchers can go beyond (4.1) and use more elaborate procedures. For

example, in Duflo and Pande (2007) the authors project π̂i on the set of available unit char-

acteristics Xi and argue that the resulting Di are as good as randomly assigned. The validity

of this approach depends on the nature of Xi. In Guren et al. (2020b) the authors propose an

alternative procedure for constructing the weights in the context of the local equilibrium model

described in Section 3. In particular, they suggest estimation of the panel regression by OLS

treating {(αi, πi)}ni=1 as fixed effects (using the notation from (3.8)):

Wit = αi + µt + γYit − πiWt − γπiYt + ε
(w)
it , (4.3)

and using π̂i to construct the instrument π̂iWt. Under additional assumptions π̂i converges to πi

as defined in (3.10). The authors emphasize that for this procedure to produce a valid estimator,
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πiWt should be uncorrelated with the unobserved term θ
(y)
i Ht in the outcome equation. This

does not hold in our setup, because Ht and Wt are correlated by construction, and θ
(y)
i is allowed

to be correlated with πi. Combination of this procedure with Algorithm 1 is promising and we

leave its formal analysis to future research.

4.2 Time heterogeneity in exposures

One of the restrictions of the causal model described by Assumption 3.1 is that both Zt and

Ht affect outcomes in a time-invariant way. Formally this means that πi and θ
(w)
i , θ

(y)
i do not

vary over t. The statistical analysis of Section 3 relies on this assumption in an important way

– it guarantees that if we find the weights that eliminate θ
(w)
i , θ

(y)
i using the first part of the

data, these weights “work” for the second part of the data. As a result, it cannot be completely

eliminated, but it can be relaxed. To understand why this is possible, consider a generalization

of the time-invariant exposures:

πit = πi + γ
(π)
i φ

(π)
t ,

θ
(w)
it = θ

(w)
i + γ

(w)
i φ

(w)
t ,

θ
(y)
it = θ

(y)
i + γ

(w)
i φ

(w)
t .

(4.4)

One can transform this setup to the one described by Assumption 3.1 at the expense of the

increased dimension of Ht. While our formal results are derived for one-dimensional Ht, they

can be adapted to the multi-dimensional case if the dimension is modest. We expect that as long

as φ
(k)
t do not concentrate on particular periods (e.g., second part of the data) the conclusions

of Theorems 2,3 would hold.

4.3 Prior knowledge

Algorithm 1 can be extended to accommodate additional knowledge that researchers might have

in a given application. It can be done by introducing additional constraints to the optimization

problem. A natural constraint can be defined in terms of covariates. For example, if we believe

that θ
(w)
i or θ

(y)
i are correlated with observed characteristics Xi, then we can incorporate the
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following constraint:

1

n

n∑
i=1

wiXi = 0. (4.5)

Depending on the application researchers might want to control the sign of ωi by imposing

the following constraint for all units i:

ωi(Di −D) ≥ 0 (4.6)

This is similar to the standard non-negativity constraint used in the synthetic control algorithm.

In Appendix D we discuss how this constraint can help in applications with heterogeneous

treatment effects. More generally, any prior information about the complexity and structure of

weights can be incorporated into our algorithm. As long as the resulting problem is convex, it

can be solved efficiently, delivering alternative unit weights.

There are different possible benefits from introducing restrictions, and in general, the es-

timator’s behavior depends on the nature of the constraints. The key part that is affected is

the number of unobservables n and periods T0 we can allow. In Theorem 2 we require n ∼ T0,

which can be demanding in applications. If additional, informative constraints hold, T0 can be

much smaller. Precise results of this nature can be derived using the general bound introduced

in Hirshberg (2021).

4.4 Shift-share Designs

In this section, we discuss the relationship between our model and models from the shift-share, or

“Bartik” instruments, literature (Adao et al., 2019; Borusyak et al., 2018; Goldsmith-Pinkham

et al., 2020). We start by considering an extension of our original framework. Assume that

instead of a single aggregate shock, we have |S| of them. In a typical application, these will

correspond to industry-level shocks. Potential outcomes are now determined by the following
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equations:

Yit = α
(y)
it + τWit +

∑
s∈S

θ
(y)
itsHts,

Wit = α
(w)
it +

∑
s∈S

πitsγitsZts +
∑
s∈S

θ
(w)
its Hts,

(4.7)

where s is a generic industry, and we observe {γits}i,t,s, {Wit, Yit}it, {Zts}t,s, and
∑

i γits = 1. It

is straightforward to see that our model is a special case of this with |S| = 1.

The model considered in the shift-share literature is a special case of (4.7) with T = 1, and

two additional assumptions: (a) for every s, {Hts}s∈S is uncorrelated with {Zts}s∈S, and (b)

E[Zts] = µ and Zts are uncorrelated over s. Identification is now achieved exploiting variation

over industries (see Borusyak et al., 2018). In applications, T is usually not equal to 1, and

often the model in differences is considered. At the same time, the identification argument does

not exploit the time dimension and focuses on the variation over industries.

One can immediately see that these two models are non-nested, both formally and concep-

tually: we are focusing on the case, with a single aggregate shock, motivated by the applications

in development and macroeconomics. In these applications, correlation between observed and

unobserved aggregate shocks is the key problem one has to deal with to make causal claims.

Shift-share literature, on the other hand, focuses on the case where the main source of endo-

geneity is the cross-sectional correlation between α
(y)
it and α

(w)
it that typically arises because of

simultaneity issues (e.g., when Yit is wage and Wit is a labor supply).

We believe that models of the type (4.7) can be promising, because they allow for a combi-

nation of two identification arguments: one that is based on the variation over time, and one

that is based on the variation over s. In applications, both |S| and T can be modest (especially,

if we want shocks to be independent over s), and thus it is natural to use both sources of varia-

tion. Also, using a time-series dimension, one can estimate correlations between Zs and adapt

inference to this case.

5 Conclusion

Aggregate shocks provide a natural source of exogenous variation for unit-level outcomes. As

a result, they are frequently used to evaluate local-level policies. We argue that this exercise
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has two conceptual steps: aggregation of unit-level data into a time series and analysis of the

aggregated data. We propose a new algorithm for constructing unit weights that are then used

to produce aggregate outcomes. In a rich statistical model, we show that our weights approxi-

mately eliminate potential unobserved aggregate shocks, leading to a consistent and asymptot-

ically normal estimator. After aggregation, we suggest that researchers use OLS regressions to

estimate first stage and reduced-form coefficients. Importantly these regressions should include

other variables that capture the underlying trend in the aggregate instrument. We illustrate the

performance of the resulting estimator in data-driven simulations that demonstrate its superi-

ority to the conventional TSLS estimator in a variety of practically relevant situations. We also

provide conditions under which one can use design-based techniques to conduct valid inference.

In our analysis, we abstract from several essential aspects of the problem. Our model is static

and does not allow for dynamic feedback from the policy variable’s past values. This can be a

limitation if we are interested in treatments that can produce long-term effects (e.g., aid policies

in developing countries). We also impose linearity on the potential outcomes (Assumption 3.1),

which can be restrictive in situations where policy variable takes extreme values (e.g., rainfall).

Finally, we ignore any measurement issues and say that both outcome and policy variables are

directly observed. We believe that these limitations can be addressed within our framework and

leave such developments for future research.
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ONLINE APPENDIX

A Preparations

A.1 Notation and definitions

We use ‖ · ‖2 to denote euclidean norm, ‖ · ‖HS to denote Hilbert-Schmidt norm, and ‖ · ‖op – the operator norm.

For deterministic sequences we say xn ∼ yn if limn
xn
yn

exists and is not equal to 0 or infinity. The same applies

for random sequences that converge in probability to a deterministic limit.

We use superscript (0) and (1) to distinguish data that belongs to periods [1, T0] and (T0 +1, T ], respectively.

For example, Y (0) corresponds to n × T0 matrix of outcomes from periods [1, T0] and L(w),(1) corresponds to a

sub-matrix with last (T0, T ] columns of matrix L(w). This convention applies to any n× T matrix. For a T × T

matrices Λ(z),Λ(h) we use Λ(k),(0) and Λ(k),(1) (k ∈ {z, h}) to denote sub-matrices with rows that correspond to

[1, T0] and (T0, T ], respectively. We also separate each matrix Λ(k),(j) into two parts: Λ
(k),(j)
0 and Λ

(k),(j)
1 such

that Λ(k),(j)ν(k) = Λ
(k),(j)
0 ν(k),(0) + Λ

(k),(j)
1 ν(k),(1).

Define the following projection matrices:

Π
(k)
f = I − ψ(k)((ψ(k))>ψ(k))−1(ψ(k))>

Π(0)
r = I − ε(z),(0)(ε(z),(0))>ε(z),(0))−1(ε(z),(0))>

Π(0) = Π
(0)
f Π(0)

r

Πα = In −
1

n
1n(1n)>

(1.1)

For k ∈ {0, 1} define the regression and correlation coefficients:

η
(k)
H|Z :=

ρagtrace
((

Λ(h),(k)
)>

Π
(k)
f Λ(z),(k)

)
‖Π(k)

f Λ(z),(k)‖2HS

ρ
(k)
H|Z =

ρagtrace
((

Λ(h),(k)
)>

Π
(k)
f Λ(z),(k)

)
‖Π(k)

f Λ(z),(k)‖HS‖Π(k)
f Λ(h),(k)‖HS

(1.2)

Define the following symmetric matrix that later plays a crucial role for the analysis of the bias:

Γ :=
1

σ̂2
W

L(w),(0)Π
(0)
f (L(w),(0))> +

1

σ̂2
Y

L̃(y),(0)Π
(0)
f (L̃(y),(0))>+

(1− (ρ
(0)
H|Z)2)‖Λ(h),(0)‖2HS

σ̂2
W

(θ(w))(θ(w))> +
(1− (ρ

(0)
H|Z)2)‖Λ(h),(0)‖2HS

σ̂2
Y

(θ̃(y))(θ̃(y))>. (1.3)

Define D − D ∈ Rn such that (D − D)i = Di − 1
n

∑n
i=1Di and similarly define π − π. For ζ > 0 define the
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following quantity that measures the correlation between Di and πi:

s(ζ) :=

∣∣∣∣∣∣∣
(D −D)>

(
ζ2In + 1

T0
ΠαΓΠα

)−1

(π − π)

(D −D)>
(
ζ2In + 1

T0
ΠαΓΠα

)−1

(D −D)

∣∣∣∣∣∣∣ (1.4)

Finally, for arbitrary weights ω̃ define the following objects:

β(y)(ω̃) :=
1

n

n∑
i=1

(β
(y)
i + τβ

(w)
i )ω̃i, β(w)(ω̃) :=

1

n

n∑
i=1

β
(w)
i ω̃i, θ(y)(ω̃) :=

1

n

n∑
i=1

(θ
(y)
i + τθ

(w)
i )ω̃i,

θ(w)(ω̃) :=
1

n

n∑
i=1

β
(w)
i ω̃i, π(w)(ω̃) :=

1

n

n∑
i=1

π
(w)
i ω̃i,

L
(y)
t (ω̃) :=

1

n

n∑
i=1

(L
(y)
it + τL

(w)
it )ω̃i, L

(w)
t (ω̃) :=

1

n

n∑
i=1

L
(w)
it ω̃i,

ε
(w)
t (ω̃) :=

1

n

n∑
i=1

ε
(w)
it ω̃i, ε

(y)
t (ω̃) :=

1

n

n∑
i=1

(ε
(y)
it + τε

(w)
it )ω̃i.

(1.5)
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A.2 Assumptions

Assumption A.1. (Universal constants) The following restrictions are satisfied for all n, T0, T1 for some

fixed universal constant cp, cag, ch|z, cσ, cτ :

dim{ψt} < cp, |ρag| < cag < 1, max
k∈{0,1}

{
|η(k)
H|Z |

}
< ch|z, max{σw, σy} < cσ,

|τ | < cτ .

(1.6)

Assumption A.2. (Alignment and size of times shocks) As T1, T0 go to infinity, the following restrictions

are satisfied for k ∈ {0, 1}:

max
j∈{z,h}

{
‖Λ(j),(k)‖op
‖Λ(j),(k)‖HS

}
≤ cop√

Tk
,

‖(Λ(h),(k))>Λ(z),(k)‖op
‖(Λ(h),(k))>Λ(z),(k)‖HS

= o(1),

‖Λ(z),(k)‖op ∼ ‖Λ(h),(k)‖op, ‖Λ(z),(k)‖HS ∼ ‖Λ(h),(k)‖HS

(1.7)

For a generic matrix A quantity
‖A‖2HS
‖A‖2op

generalizes the concept of rank, and thus the first part of this

assumption says that after projection most shocks are not aligned with respect to a small number of directions.

The second part simply says that the sizes of ε(h) and ε(z) are not very different.

Assumption A.3. (Behavior of post-treatment trends) As T1 go to infinity, there exists a sequence

sT1 →∞ such that the following restrictions hold:

sup
x 6=0,x>1n=0,α,β


‖x
(
αL(w),(1) + βL̃(y),(1)

)>
Π

(1)
f Λ

(z),(1)
1 ‖∞

‖x
(
αL(w),(1) + βL̃(y),(1)

)>
Π

(1)
f Λ

(z),(1)
1 ‖2

 ≤ 1

sT1

(1.8)

This assumption requires deterministic trends in L(w),(1) and L(y),(1) to be “well-spread” over time even after

projection and integration with Λ
(z),(1)
1 . For bounded deterministic trends and Λ

(z),(1)
1 generated by a stationary

process we would expect sT1
to behave as

√
T1.

Assumption A.4. (Size of predictable part) As T0, T1 go to infinity the following holds for sT1
from

Assumption A.3:

‖(Λ(z),(1)
1 )−1(Λ

(z),(1)
0 )ν(z),(0)‖1 = op(sT1

). (1.9)

This assumption restricts the size of the part of ε(z),(1) that is predictable using the past. In a stationary

auto-regressive model we have ‖(Λ(z),(1)
1 )−1(Λ

(z),(1)
0 )ν(z),(0)‖1 = Op(1) and thus the assumption is satisfied for

any diverging sequence sT1 . If ε(z) follow a random walk, then ‖(Λ(z),(1)
1 )−1(Λ

(z),(1)
0 )ν(z),(0)‖1 ∼

√
T0. Since sT1

cannot be larger than
√
T1, in this case, Assumption A.4 fails for the regime that we are mainly interested in

(T0 ∼ T1).
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Assumption A.5. (Order of the variances) The following holds as n, T0 approach infinity for a universal

constant cvar and deterministic κ2:

max
{
σ̂2
Y , σ̂

2
W

}
≤ κ2(1 + op(1)),

κ2

min{σ̂2
Y , σ̂

2
W }
≤ cvar(1 + op(1)). (1.10)

Assumption A.6. (Quality and size of Di) Let (D−D)i := Di− 1
n

∑n
i=1Di and assume that the following

holds:

‖D −D‖2 ∼
√
n (1.11)

For some universal constant cs > 0 the following holds:

inf
κζ>max{σw,

√
σ2
y+τσ2

w+2τρidσyσw}
|s(ζ)| > cs (1.12)
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A.3 Technical lemmas

Lemma A.1. Let Π be an orthogonal projector on p-dimensional subspace or RT and consider a T × n matrix

A such that
‖A‖op
‖A‖HS = o

(
1√
p

)
. Then the following holds:

‖(IT −Π)A‖HS
‖A‖HS

= 1 + o(1) (1.13)

Proof. The result follows from the chain of inequalities:∣∣∣∣‖(IT −Π)A‖HS
‖A‖HS

− 1

∣∣∣∣ ≤ ‖ΠA‖HS‖A‖HS
≤ ‖Π‖HS‖A‖op

‖A‖HS
=
√
p× o

(
1
√
p

)
= o(1) (1.14)

Lemma A.2. Suppose Assumptions 3.4,A.1,A.2 hold, then the following is true as T0, T1 goes to infinity for

k ∈ {0, 1}:

‖Π(k)
f ε(z),(k)‖2
‖Λ(z),(k)‖HS

= 1 + op(1),

(ε(h),(k))>Π
(k)
f ε(z),(k)

‖Π(k)
f ε(z),(k)‖22

= η
(k)
H|Z +Op

(
‖(Λ(h),(k))>Λ(z),(k)‖HS

‖Λ(z),(k)‖2HS

)
,

∥∥∥(IT0 − 1
‖ε(z),(0)‖22

ε(z),(0)(ε(z),(0))>
)

Π
(0)
f ε(h),(0)

∥∥∥2

2

‖Λ(h),(0)‖2HS
= 1− ρ2

ag

trace2
(
Λ(z),(0)(Λ(h),(0))>

)
‖Λ(z),(0)‖2HS‖Λ(h),(0)‖2HS

+ op(1)

(1.15)

Proof. We prove the first two claims for k = 1, the result for k = 0 follows in exactly the same way. Theorem

6.3.2 in Vershynin (2018) implies the following:

∣∣∣‖Π(1)
f ε(z),(1)‖2 − ‖Π(1)

f Λ(z),(1)‖HS
∣∣∣ = Op

(
‖Π(1)

f Λ(z),(1)‖op
)

(1.16)

which together with Assumptions A.1, A.2 and Lemma A.1 implies the first claim. We also have the following

decomposition:

(ε(h),(1))>Π
(1)
f ε(z),(1) = ρag(Λ

(h),(1)ν(z))>Π
(1)
f Λ(z),(1)ν(z) +

√
1− ρ2

ag(Λ
(h),(1)ν(h))>Π

(1)
f Λ(z),(1)ν(z) (1.17)

Applying Hanson-Wright inequality to the first part, Lemma 6.2.3 from Vershynin (2018), Assumption A.1,

Asssumption A.2, and Lemma A.1 we get he following:

∣∣∣(ε(h),(1))>Π
(1)
f ε(z),(1) − ηH|Z‖Π

(1)
f Λ(z),(1)‖2HS

∣∣∣ = Op
(
‖(Λ(z),(1))>Λ(h),(1)‖HS

)
(1.18)

proving the second claim. The third follows in the same way.
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B General results

B.1 General version of Theorem 1

The results in this subsection apply to a generic weights ω̃ that depend on the first part of the sample.

B.1.1 Expansion of the estimator

We focus on first stage and reduced form coefficients separately. We start with the decomposition of the first

stage:

π̂ =
1

n

ω̃>W (1)Π
(1)
f Z(1)

(Z(1))>Π
(1)
f Z(1)

=
1

n
ω̃>π + bias(w) + time noise(w) + cross noise(w)

bias(w) :=
1

n
ω̃>θ(w)

(H(1))>Π
(1)
f Z(1)

(Z(1))>Π(1)Z(1)

time noise(w) :=
1

n

ω̃>L(w),(1)Π
(1)
f Z(1)

(Z(1))>Π
(1)
f Z(1)

cross noise(w) :=
1

n

ω̃>E(w),(1)Π
(1)
f Z(1)

(Z(1))>Π
(1)
f Z(1)

(2.1)

Similar decomposition holds for the reduced form:

δ̂ =
1

n

ω̃>Y (1)Π
(1)
f Z(1)

(Z(1))>Π
(1)
f Z(1)

=
τ

n
ω̃>π + bias(y) + time noise(y) + cross noise(y)

bias(y) :=
1

n
ω̃>(θ̃(y))

(H(1))>Π
(1)
f Z(1)

(Z(1))>Π
(1)
f Z(1)

time noise(y) :=
1

n

ω̃>L̃(y),(1)Π
(1)
f Z(1)

(Z(1))>Π
(1)
f Z(1)

cross noise(y) :=
1

n

ω̃>Ẽ(y),(1)Π
(1)
f Z(1)

(Z(1))>Π
(1)
f Z(1)

(2.2)

B.1.2 Analysis of the error

Lemma B.1. Suppose Assumptions 3.3, 3.4, A.1, A.2 hold, then the following is true:cross noise(y)

cross noise(w)

 =
‖ω̃‖2

n‖Λ(z),(1)‖HS
(ξcr + op(1)) (2.3)

where ξcr ∼ N (0,Σ).

Proof. First, we condition on ω̃, Z and use the fact that idiosyncratic errors are independent over time and of
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ε(z), ε(h) and have a normal distribution. Then we use Lemma A.2 to go from ‖Π(1)
f ε(z),(1)‖2 to ‖Λ(z),(1)‖HS at

the expense of (1 + op(1)) factor.

Define the following objects:

ρ(ω̃) :=
ω̃>L̃(y),(1)Π

(1)
f Λ

(z),(1)
1

(
ω̃>L(w,(1)Π

(1)
f Λ

(z),(1)
1

)>
‖ω̃>L̃(y),(1)Π

(1)
f Λ

(z),(1)
1 ‖2‖ω̃>L(w,(1)Π

(1)
f Λ

(z),(1)
1 ‖2

,

Σ
1
2
ag(ω̃) :=

‖ω̃
>L̃(y),(1)Π

(1)
f Λ

(z),(1)
1 ‖2

n‖Λ(z),(1)‖2HS
0

0
‖ω̃>L(w,(1)Π

(1)
f Λ

(z),(1)
1 ‖2

n‖Λ(z),(1)‖2HS


√1− ρ2(ω̃) ρ(ω̃)

0 1


(2.4)

Lemma B.2. Suppose Assumptions 3.3, 3.4, A.1, A.2, A.3, A.4 hold, then we have the following:time noise(y)

time noise(w)

 = Σ
1
2
ag(ω̃)(ξz,T1

+ op(1)) (2.5)

where E[ξz,T1 ] = 0, V[ξz,T1 ] = I2, and ξz,T1 is independent of ξcr. As T1 increases ξz,T1 converges in distribution

to N (0, I2).

Proof. To prove this we first separate ε(z),(1) into two parts: predictable from ε(z),(0) and unpredictable one.

By Assumption 3.4 we get the unpredictable part is equal to Λ
(z),(1)
1 ν(z),(1) and predictable is equal to µ1|0 :=

Λ
(z),(1)
0 ν(z),(0). The unpredictable part delivers the result (using Lemma A.2) distribution described in the

statement. Asymptotic normality follows from Assumption A.3 and multivariate Lindeberg’s CLT. To finish the

proof we have to prove that the bias from µ1|0 is of the smaller order. It from the chain of inequalities that follow

from Assumptions A.3, A.4:

|ω̃>L(w),(1)Π
(1)
f Λ

(z),(1)
0 ν(z),(0)|

‖ω̃>L(w),(1)Π
(1)
f Λ

(z),(1)
1 ‖2

=
|ω̃>L(w),(1)Π

(1)
f Λ

(z),(1)
1 (Λ

(z),(1)
1 )−1Λ

(z),(1)
0 ν(z),(0)|

‖ω̃>L(w),(1)Π
(1)
f Λ

(z),(1)
1 ‖2

≤

‖ω̃>L(w),(1)Π
(1)
f Λ

(z),(1)
1 ‖∞‖(Λ(z),(1)

1 )−1Λ
(z),(1)
0 ν(z),(0)‖1

‖ω̃>L(w),(1)Π
(1)
f Λ

(z),(1)
1 ‖2

≤ ‖(Λ
(z),(1)
1 )−1Λ

(z),(1)
0 ν

(z)
0 ‖1

sT1

= op(1). (2.6)

The same holds for L̃(y),(1) instead of L(w),(1) concluding the proof.

Corollary B.1. Suppose Assumptions 3.3, 3.4, A.1, A.2 hold, then the following is true:bias(y)

bias(w)

 =

 1
n ω̃
>θ̃(y)

1
n ω̃
>θ(w)

(ηH|Z +Op
(
‖(Λ(h),(1))>Λ(z),(1)‖HS

‖Λ(z),(1)‖2HS

))
(2.7)

Proof. The result is a direct consequence of Lemma A.2 and definition of the bias.

Next theorem follows from the lemmas above.

B-7



Theorem B.1. Suppose Assumption 3.3, 3.4, A.1, A.2, A.3, A.4 hold. Then the following is true:

δ̂ − τ
n ω̃
>π

π̂ − 1
n ω̃
>π

 =

 1
n ω̃
>θ̃(y)

1
n ω̃
>θ(w)

(ηH|Z +Op
(
‖(Λ(h),(1))>Λ(z),(1)‖HS

‖Λ(z),(1)‖2HS

))
+

Σ
1
2
ag(ω̃)(ξz,T1 + op(1)) +

‖ω̃‖2
n‖Λ(z),(1)‖HS

(ξcr + op(1)) (2.8)
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B.2 General version of Theorem 2

Our previous analysis indicates that the key component of bias of an arbitrary weighted estimator depends on

the covariance of the weights with θ(w) and θ̃(y). In this section we bound this covariance using results from

Hirshberg (2021). In this section ω refers to the weights described in Section 2.2.

B.2.1 Random oracle weights

Let Ecs[·] be the expectation with respect to noise E(w), E(y), conditional on ν(z),(0), ν(h),(0). We define random

oracle weights ω? as a solution to the following problem:

ω? = arg min
{w}

{
ζ2 T0

n2
‖w‖22 +

Ecs‖ 1
nw
>Y (0)Π(0)‖22
σ̂2
Y

+
Ecs‖ 1

nw
>W (0)Π(0)‖22
σ̂2
W

}
subject to:

1

n

n∑
i=1

wiDi = 1,

1

n

n∑
i=1

wi = 0,

(2.9)

Define r? := ω − ω? – the deviation of the empirical weights from the oracle weights. Define the following

parameters:

σ̃2
y := σ2

y + τσ2
w + 2τρidσyσw,

ζ̃2 := κ2ζ2 +
κ2σ̃2

y(T0 − p− 1)

T0σ̂2
Y

+
κ2σ2

w(T0 − p− 1)

T0σ̂2
W

,
(2.10)

and the following symmetric matrix:

Γ̂ :=
1

σ̂2
W

L(w),(0)Π(0)(L(w),(0))> +
1

σ̂2
Y

L̃(y),(0)Π(0)(L̃(y),(0))>+

‖Π0ε
(h),(0)‖22
σ̂2
W

(θ(w))(θ(w))> +
‖Π0ε

(h),(0)‖22
σ̂2
Y

(θ̃(y))(θ̃(y))>+

1

σ̂2
W

L(w),(0)Π(0)ε(h),(0)(θ(w))> +
1

σ̂2
W

θ(w)(ε(h),(0))>Π(0)(L(w),(0))>+

1

σ̂2
Y

L̃(y),(0)Π(0)ε(h),(0)(θ̃(y))> +
1

σ̂2
Y

θ̃(y)(ε(h),(0))>Π(0)(L(y),(0))> (2.11)
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Using these definitions and computing expectations in (2.9) we get another representation for ω?:

ω? = arg min
{w}

{
ζ̃2 T0

n2
‖w‖22 + κ2w>Γ̂w

}
subject to:

1

n

n∑
i=1

wiDi = 1,

1

n

n∑
i=1

wi = 0,

(2.12)

B.2.2 Deterministic oracle weights

We define additional, “deterministic” oracle weights ωdet as a solution to the following problem:

ωdet = arg min
{w}

{
ζ̃2 T0

n2
‖w‖22 +

κ2

n2
w>Γw

}
subject to:

1

n

n∑
i=1

wiDi = 1,

1

n

n∑
i=1

wi = 0,

(2.13)

Define rdet := ω? − ωdet – the deviation of the random oracle weights from the deterministic ones.

B.2.3 Technical lemmas

The first lemma describes the key properties of ωdet. Define χ := max{σw, σ̃y, cfe}.

Lemma B.3. Suppose Assumptions 3.5, A.1, A.5, A.6 hold, in addition, as n and T0 approach infinity κζ
χ =

cζ + o(1), where cζ > 2 and T0

n = casp + o(1), where casp > 0. Then the following is true for n and T0 large

enough:

‖D −D‖22 ≤ ‖ωdet‖22 ≤ cn(1 + cvar)c
2
ω̌

(
1 +

c2fe
c2ζχ

2casp

)
(1 + op(1))

κ2ω>detΓω ≤ cn2
(
c2ω̌
)

(caspc
2
ζχ

2 + c2fe)(1 + cvar)(1 + op(1))

(2.14)
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Proof. To prove the result we define yet another weights:

ω̃det = arg min
{w}

{
ζ̃2 T0

n2
‖w‖22 +

κ2

n2
w>Γw

}
subject to:

1

n

n∑
i=1

wiπi = 1,

1

n

n∑
i=1

wi = 0,

(2.15)

The difference between these weights and ωdet is that they average up to 1 with respect to πi, not Di. It is

straightforward to see that the solution has the “ridge” form:

1

n
ωdet =

(ζ̃2IT0 + κ2

T0
ΠαΓΠα)−1(π − π)

(π − π)>(ζ̃2IT0 + κ2

T0
ΠαΓΠα)−1(π − π)

(2.16)

and thus we get the following

1

n
(ω̃det)

>D =
(D −D)>(ζ̃2IT0

+ κ2

T0
ΠαΓΠα)−1(π − π)

(π − π)>(ζ̃2IT0 + κ2

T0
ΠαΓΠα)−1(π − π)

= s

(
ζ̃

κ

)
(2.17)

By construction we have for n, T0 large enough ζ̃
κ > ζ >

cζ max{σw,σ̃y,cfe}
2κ >

max{σw,σ̃y}
κ which by Assumption

A.6 implies s
(
ζ̃
κ

)
is bounded away from zero by cs and thus we can define the following weights:

ω̌new :=
1

s
(
ζ̃
κ

) ω̃det (2.18)

that now average to 1 once multiplied by Di. With these weights we get the following inequalities:

ζ̃2 T0

n2
‖ωdet‖22 +

κ2

n2
(ωdet)

>Γ(ωdet) ≤ ζ̃2 T0

n2
‖ω̌new‖22 +

κ2

n2
(ω̌new)>Γ(ω̌new) =

1

s2
(
ζ̃
κ

) (ζ̃2 T0

n2
‖ω̌det‖22 +

κ2

n2
(ω̌det)

>Γ(ω̌det)

)
(2.19)

As a result, we need to bound only the last part. Here we use Assumption 3.5 to get the following for n, T0 large

enough:

ζ̃2 T0

n2
‖ω̌det‖22 +

κ2

n2
(ω̌det)

>Γ(ω̌det) ≤ c(1 + cvar)(c
2
ζcaspχ

2 + c2fe)(1 + op(1)) (2.20)

Applying this bound separately to ζ̃2 T0

n2 ‖ωdet‖22 and κ2

n2 (ωdet)
>Γ(ωdet), and using the fact that ‖ωdet‖ cannot be

smaller that ‖D −D‖ (solution for ζ̃ equal to infinity) we get the result.
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Our next lemma provides connection between ω? and ωdet.

Lemma B.4. Suppose Assumptions 3.4, 3.5, A.1, A.2, A.5 hold, and 1
‖Λ(h),(0)‖HS

= o(1), κζ
χ = cζ + o(1) and

cζ > 2 as n, T0 approach infinity. Then the following is true as n, T0 approach infinity:

|r>detθ(w)| = op

(√
κ2(ωdet)>Γωdet
‖Λ(h),(0)‖HS

)

|r>detθ̃(y)| = op

(√
κ2(ωdet)>Γωdet
‖Λ(h),(0)‖HS

)

‖rdet‖2 = op

(√
κ2(ωdet)>Γωdet√

T0cζχ

)
(ω?)>Γ̂ω? ≤ c(ωdet)>Γωdet(1 + op(1))

(2.21)

Proof. Observe that in the described regime we have the following ζ̃2 ≥ c2ζ max{σ2
w, σ̃

2
y}. Consider the following

chain of inequalities:

0 ≥ T0ζ̃
2‖ω?‖22 + κ2(ω?)>Γ̂ω? − T0s̃

2‖ωdet‖22 − κ2(ωdet)
>Γ̂ωdet ≥

2κ2r>det(Γ̂ − Γ)ωdet + κ2r>det(Γ̂ − Γ)rdet + κ2r>detΓrdet + T0ζ̃
2‖rdet‖22 (2.22)

Here the first follows by definition of ω?, the second follows by definition of ωdet. Define the following variables:

x2
1 := T0ζ̃

2‖rdet‖22

x2
2 := κ2r>detΓrdet

x2
3 := κ2(ωdet)

>Γωdet

(2.23)

We will bound the first two terms in the sum above using this qualities. We have the following expansion:

κ2(Γ̂− Γ) =
κ2

σ̂2
W

L(w),(0)(Π(0) −Π
(0)
f )(L(w),(0))> +

κ2

σ̂2
Y

L̃(y),(0)(Π(0) −Π
(0)
f )(L̃(y),(0))>+

(‖Π0ε
(h),(0)‖22 − (1− (ρ

(0)
H|Z)2)‖Λ(h),(0)‖2HS)

(
κ2

σ̂2
W

(θ(w))(θ(w)) +
κ2

σ̂2
Y

θ̃(y)(θ̃(y))>
)

+

κ2

σ̂2
W

L(w),(0)Π(0)ε(h),(0) +
κ2

σ̂2
W

θ(w)(ε(h),(0))>Π(0)(L(w),(0))>+

κ2

σ̂2
Y

L̃(y),(0)Π(0)ε(h),(0)(θ̃(y))> +
κ2

σ̂2
Y

θ̃(y)(ε(h),(0))>Π(0)(L(y),(0))> (2.24)

We bound κ2r>det(Γ̂ − Γ)rdet in terms of |x2| and |x3|. We only need to bound the last six terms, because the

first two are positive. We start with the last four, they all behave in the same way, so we focus on the one that
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involves θ(w) and L(w):

∣∣∣∣ κ2

σ̂2
W

(rdet)
>θ(w)(ε(h),(0))>Π(0)(L(w),(0))>rdet

∣∣∣∣ ≤
(1 + op(1))| |x2

2|
‖Λ(h),(0)‖HS

∣∣∣(ε(h),(0))>Π(0)Π
(0)
f (L(w),(0))>rdet

∣∣∣
‖Π(0)

f (L(w),(0))>rdet‖2
≤

(1 + op(1))| |x2
2|

‖Λ(h),(0)‖HS
sup

x,‖x‖2=1,x∈Im(Π
(0)
f (L(w),(0))>)

|(ε(h),(0))>Π(0)x| (2.25)

Let Πw be the projector on Im((L(w),(0))Π
(0)
f ), by Assumption 3.5 we know that the dimension of this subspace

is o(min{n, T0}). Using this and Lemmas A.1, A.2 we get the following:

sup
x,‖x‖2=1,x∈Im(Π

(0)
f (L(w),(0))>)

|(ε(h),(0))>Π(0)x| = ‖Π(0)
w Π(0)ε(h),(0)‖2 ≤

‖Π(0)
w ε(h),(0)‖2 + |η̂(0)

H|Z |‖Π
(0)
w ε(z),(0)‖2 = op

(
‖Λ(h),(0)‖HS

)
(2.26)

This implies the following bound:∣∣∣∣ κ2

σ̂2
W

(rdet)
>θ(w)(ε(h),(0))>Π(0)(L(w),(0))>rdet

∣∣∣∣ ≤ op (x2
2

)
(2.27)

Using Lemma A.2 we get the following:

∣∣∣‖Π0ε
(h),(0)‖22 − (1− (ρ

(0)
H|Z)2)‖Λ(h),(0)‖2HS

∣∣∣ ( κ2

σ̂2
W

(rdet)
>(θ(w))(θ(w))>rdet +

κ2

σ̂2
Y

(rdet)
>θ̃(y)(θ̃(y))>rdet

)
=

op(x
2
2) (2.28)

Next we bound
∣∣∣κ2ω>det(Γ̂− Γ)rdet

∣∣∣ in terms of x2, x3. Applying exactly the same argument as above we get the

following:

∣∣∣κ2ω>det(Γ̂− Γ)rdet

∣∣∣ = op (|x2x3|) + |x2x3|Op
(

1

‖Λ(z),(0)‖HS

)
= op (|x2x3|) (2.29)

Combining this with previously derived bound we get the following equation:

x2
1 + x2

2(1 + op(1)) + op (|x2x3|) ≤ 0 (2.30)

This implies that |x2| = op(|x3|) and the same holds for |x1|. Going back to the original notation this gives us
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the following bounds:

|r>detθ(w)| = op

(√
κ2(ωdet)>Γωdet
‖Λ(h),(0)‖HS

)

|r>detθ̃(y)| = op

(√
κ2(ωdet)>Γωdet
‖Λ(h),(0)‖HS

)

‖rdet‖2 = op

(√
κ2(ωdet)>Γωdet√

T0cζχ

) (2.31)

By combining the bounds above and using a straightforward implication:

∣∣∣(ωdet)>(Γ̂− Γ)ωdet

∣∣∣ ≤ op (ωdet)>Γωdet
)

(2.32)

we get the following bound, thus finishing the proof:

(ω?)>Γ̂ω? ≤ 2(ωdet)
>Γ̂ωdet + 2(rdet)

>Γ̂rdet ≤ c(ωdet)>Γωdet(1 + op(1)). (2.33)

The next lemma provides a technical tool that connects the bound on the covariance we are interested to

the bound on (ω?)>Γ̂ω?.

Lemma B.5. Suppose Assumptions 3.4, 3.5, A.1, A.2, A.5 hold, T0

n = casp + o(1), where casp ∈ (0, 1); also

suppose that for some (possibly random) x the following holds with probability at least 1− α:

‖x‖2 ≤ s,

‖x>(θ(w)(ε(h),(0))> + L(w))Π(0)‖22 ≤ cs2T0

‖x>(θ̃(y)(ε(h),(0))> + L̃(y))Π(0)‖22 ≤ cs2T0

(2.34)

Then the following holds with probability at least 1− α

|x>θ(w)| ≤ c s
√
T0

‖Λ(h),(0)‖HS
(1 + op(1))

|x>θ̃(y)| ≤ c s
√
T0

‖Λ(h),(0)‖HS
(1 + op(1))

(2.35)

Proof. In the course of the previous lemma we showed the following:

κ2r>detΓ̂rdet ≥ κ2r>detΓrdet(1 + op(1)) (2.36)

It is clear from the proof that the same result hold for arbitrary vector x, which implies the result in a straight-
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forward way.

The next lemma establishes the rate for (r?)>Γ̂r? and ‖r?‖2.

Lemma B.6. Suppose Assumptions 3.1,3.2,3.3,3.4,3.5, A.1,A.2 hold; also suppose that as n, T0 approach infinity

we have the following:

T0

n
= casp + o(1),

κζ

χ
= cζ + o(1), cfe < cσ. (2.37)

where casp ∈ (0, 1) and cζ > cmax
{

1,
max{σw,σ̃y}√

casp

}
. Then we have the following with probability at least 1 −

c exp
(
−c(min

{
σ2
w, σ̃

2
y

}
n
)
:

‖r?‖2 ≤ c
√
n
(
χ2cζ +

√
χ+ χ

)
(1 + op(1))

‖(r?)>(θ(w)(ε(h),(0))> + L(w))Π(0)‖2 ≤ cn
(
χ2cζ +

√
χ+ χ

)
(1 + op(1))

‖(r?)>(θ̃(y)(ε(h),(0))> + L̃(y))Π(0)‖2 ≤ cn
(
χ2cζ +

√
χ+ χ

)
(1 + op(1))

(2.38)

Proof. We have the following implication from Lemmas B.3, B.4:

1

n

√
κ2(ω?)>Γ̂ω? ≤ ccζχ(1 + op(1)),

1

n
‖ω?‖2 ≤

c√
n

(1 + op(1))
(2.39)

Define the following objects:

X1 :=
(
Y (0)Π(0)

)>
, X2 :=

(
W (0)Π(0)

)>
,

ε1 :=
(

(E(y),(0) + τE(w),(0))Π(0)
)>

, ε1 :=
(

(E(w),(0))Π(0)
)>

,

A1 := X1 − ε1, A2 := X2 − ε2,

(2.40)

and consider the optimization problem:

θ̂ := arg min
θ∈Θ

{
T0ζ

2κ2‖|θ‖22 +
κ2‖X1θ‖22

σ̂2
Y

+
κ2‖X2θ‖22

σ̂2
W

}
(2.41)

It is immediate for the appropriate Θ we get θ̂ = ω
n . Also, if we take expectations conditionally on {Zt, Ht}T0

t=1

and then optimize, then the solution would be equal to θ? := ω?

n . As a result, to control r? we need to control

θ − θ?.

Define η2 as a solution to the following equation:

ζ2 = (η2 − 1)

(
1

σ̂2
Y

σ̃2
y +

1

σ̂2
W

σ2
w

)
T0 − p− 1

T0
. (2.42)

B-15



By assumption for n, T0 large enough we have that η2 > 1 + b
2 . With this parameter the minimized function in

(2.41) has the following form:

(
T0(η2 − 1)

κ2

σ̂2
Y

σ̃2
y

T0 − p− 1

T0
‖|θ‖22 +

κ2‖X1θ‖22
σ̂2
Y

)
+

(
T0(η2 − 1)

κ2

σ̂2
W

σ2
w

T0 − p− 1

T0
‖|θ‖22 +

κ2‖X2θ‖22
σ̂2
W

)
(2.43)

A more general version of such problem, but with a single X, instead of X1, X2 has been considered in Hirshberg

(2021). His analysis trivially extends to this version, by simply considering two separate bounds for each term.

We consider one such bound, the second is analogous.

All the assumptions of Hirshberg (2021) are satisfied by Assumption 3.3 and 3.4 once we condition on

{Zt, Ht}T0
t=1, and thus we can use its Theorem 1. It implies the following for η2 > 1 + cR

n :

‖θ̂ − θ?‖2 ≤ s

‖A2(θ̂ − θ?)‖ ≤ s
√
T0η

(2.44)

with probability at least 1− c exp
(
−cmin

{
σ2
w
T0−p−1
T0

n,R, T0

})
, where s satisfies the following constraint:

s2 ≥
cσ2
w
T0−p−1
T0

s2n

T0η2
(1 + op(1)) +

c(σ2
w
T0−p−1
T0

(R‖θ?‖22)1,1/2

η2T0
(1 + op(1))+

c
√
σ2
w
T0−p−1
T0

‖A2(θ̂ − θ?)‖2s
√
n+ cσ2

w
T0−p−1
T0

(n‖θ?‖22)1/2s
√
n

η2T0
(1 + op(1)), (2.45)

and R satisfies the following constraint:

R ≥ cσR+1(A2)
s
√
n

s+

√
σ2
w
T0−p−1
T0√
n

(1 + op(1))

(2.46)

By choosing R = min{n, T0} we can simplify this to the following condition:

s2 ≥ c
(
σ2
ws

2

caspη2
+
σ2
w + σw
η2T0

+
σwcζχ+ σ2

w

η2T0
s
√
n

)
(1 + op(1))) (2.47)

which delivers the following condition with probability at least 1− c exp
(
−cσ2

wn
)

as long as η2 ≥ c σ
2
w

casp
which is

guaranteed by assumptions on cζ :

‖θ̂ − θ?‖2 ≤ c
(

χ2cζ√
casp
√
n

+

√
χ+ χ

√
casp
√
n

)
(1 + op(1)) (2.48)
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The same bound is true if we use A1 and thus with probability at least 1− c exp
(
−cmin{σ2

w, σ̃
2
y}n

)
:

‖θ̂ − θ?‖2 ≤ c
(

χ2cζ√
casp
√
n

+

√
χ+ χ

√
casp
√
n

)
(1 + op(1))

‖A1(θ̂ − θ?)‖2 ≤ c (χ2cζ +
√
χ+ χ) (1 + op(1))

‖A2(θ̂ − θ?)‖2 ≤ c
(
χ2cζ +

√
χ+ χ

)
(1 + op(1))

(2.49)

Translating the bound into our original notation and simplifying we get the following bounds thus concluding

the proof:

‖r?‖2 ≤ c
√
n
(
χ2cζ +

√
χ+ χ

)
(1 + op(1))

‖(r?)>(θ(w)(ε(h),(0))> + L(w))Π(0)‖2 ≤ cn
(
χ2cζ +

√
χ+ χ

)
(1 + op(1))

‖(r?)>(θ̃(y)(ε(h),(0))> + L̃(y))Π(0)‖2 ≤ cn
(
χ2cζ +

√
χ+ χ

)
(1 + op(1))

(2.50)

Lemma B.7. Suppose Assumptions 3.1,3.2,3.3,3.4,3.5, A.1,A.2 hold; also suppose that as n, T0 approach infinity

we have the following:

T0

n
= casp + o(1),

κζ

χ
= cζ + o(1), cfe < cσ. (2.51)

where casp ∈ (0, 1) and cζ > cmax
{

1,
max{σw,σ̃y}√

casp

}
. Then we have the following with probability at least 1 −

c exp
(
−c(min

{
σ2
w, σ̃

2
y

}
n
)
:

max

{
1

n
|ω>θ̃(y)|, 1

n
|ω>θ(w)|

}
≤ c

χ2cζ +
√
χ

‖Λ(h),(0)‖HS
(1 + op(1)) (2.52)

Proof. We have the following (the same for the second quantity):

|ω>θ(w)| ≤ |ω>detθ(w)|+ |r>detθ(w)|+ |(r?)>θ(w)| (2.53)

Define σ := max{σw, σ̃y}; applying Lemmas B.3,B.4,B.5,B.6 we get the following result with probability at least

1− c exp
(
−c(max

{
σ2
w, σ̃

2
y

}
n
)
:

1

n
|ω>θ(w)| ≤ c

χ2cζ +
√
χ

‖Λ(h),(0)‖HS
(1 + op(1)) (2.54)

Theorem B.2. Suppose Assumptions 3.1,3.2,3.3,3.4,3.5,A.1,A.2, A.5,A.6 hold; also suppose that as n, T0, T1
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approach infinity in such a way that the following relationships hold:

T0

n
= casp + o(1),

κζ

χ
= cζ + o(1),

1

nmin{σ2
w, σ̃

2
y}

= o(1), (2.55)

where casp ∈ (0, 1), and c
χ > cζ > cmax

{
1,

max{σw,σ̃y}√
casp

}
. Then the following is true:

δ̂ − τ
n ω̃
>π

π̂ − 1
n ω̃
>π

 =

√
χξbias

‖Λ(h),(0)‖HS

(
ηH|Z +Op

(
‖(Λ(h),(1))>Λ(z),(1)‖HS

‖Λ(z),(1)‖2HS

))
(1 + op(1))+

Σ
1
2
ag(ω̃)(ξz,T1

+ op(1)) +
‖ω̃‖2

n‖Λ(z),(1)‖HS
(ξcr + op(1)) (2.56)

where ξbias is a bounded random variable independent of ξz,T1
, ξcr.

Proof. Proof follows immediately from the previous results.
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B.3 General version of Theorem 3

Theorem B.3. Suppose conditions of Theorem B.2 hold, and max{σw, σ̃y} = o(1), T0

T1
= cint + o(1), for

cint ∈ (0, 1). In addition suppose that the following is true for cρl < 1, and cint ∈ (0, 1):

1

n
‖ω>L̃(y),(1)Π

(1)
f Λ

(z),(1)
1 ‖2 = c‖Λ(z),(1)‖HS(1 + op(1)),

1

n
‖ω>L(w),(1)Π

(1)
f Λ

(z),(1)
1 ‖2 = c‖Λ(z),(1)‖HS(1 + op(1)),∣∣∣∣∣∣∣

ω>L̃(y),(1)Π
(1)
f Λ

(z),(1)
1

(
ω>L(w),(1)Π

(1)
f Λ

(z),(1)
1

)>
‖ω>L̃(y),(1)Π

(1)
f Λ

(z),(1)
1 ‖2‖ω>L(w,(1)Π

(1)
f Λ

(z),(1)
1 ‖2

∣∣∣∣∣∣∣ < cρl(1 + o(1)),

‖Λ(k),(0)‖HS
‖Λ(k),(1)‖HS

= cint + o(1),

‖Λ̂(z),(1) − Λ(z),(1)‖HS = op

(
‖Λ(z),(1)‖HS

)
,

‖Λ̂(z)
1 − Λ

(z)
1 ‖op = op

(
‖Λ(z)‖op

)
.

(2.57)

Then under H0 : τ = τ0 we get the following result:

E
[{
|δ̂ − τ0π̂| ≤ zα/2σ̂(τ0)

}]
→ 1− α (2.58)

Proof. From Theorem B.2 and assumptions we get the following result:δ̂ − τ
nω
>π

π̂ − 1
nω
>π

 = Σ
1
2
ag(ω)ξz,T1

(1 + op (1)). (2.59)

Define the following object (residuals):

ey :=
1

n
ω>Y (1)Π

(1)
f

(
IT1
− 1

‖ε(z),(1)‖22
ε(z),(1)(ε(z),(1))>

)
ew :=

1

n
ω>W (1)Π

(1)
f

(
IT1 −

1

‖ε(z),(1)‖22
ε(z),(1)(ε(z),(1))>

) (2.60)

and observe that the following is true for ey (expansion for ew is the same):

ey = εy +
1

n
ω>θ̃(y)(ε(h),(1))>

(
IT1
− 1

‖ε(z),(1)‖22
ε(z),(1)(ε(z),(1))>

)
−

1

‖ε(z),(1)‖22
1

n
ω>L̃(y),(1)Π

(1)
f ε(z),(1)(ε(z),(1))> +

1

n
ω>Ẽ(y),(1)Π

(1)
f

(
IT1 −

1

‖ε(z),(1)‖22
ε(z),(1)(ε(z),(1))>

)
=

εy + op(1) + Op (1) + op(1) = εy + ry (2.61)
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By assumptions we have the following two bounds:

∣∣∣‖εkΛ̂
(z),(1)
1 ‖2 − ‖εkΛ

(z),(1)
1 ‖2

∣∣∣ ≤ ‖εk‖2‖Λ̂(z),(1)
1 − Λ

(z),(1)
1 ‖op = op(‖Λ(z),(1)‖HS), (2.62)

and

∣∣∣‖ekΛ̂
(z),(1)
1 ‖22 − ‖εkΛ̂

(z),(1)
1 ‖22

∣∣∣ ≤ 2‖rk‖2‖Λ̂(z),(1)‖op‖εkΛ̂
(z),(1)
1 ‖2 + ‖rk‖22‖Λ̂

(z),(1)
1 ‖2op =

Op
(
‖Λ(z),(1)‖HS‖Λ(z),(1)‖op + ‖Λ(z),(1)‖op

)
= op

(
‖Λ(z),(1)‖HS

)
. (2.63)

Using this we arrive to the following:

Σ̂(ω) :=
1

‖Λ̂(z),(1)‖4HS

 ‖e>y Λ̂
(z),(1)
1 ‖22 e>y Λ̂

(z),(1)
1 (Λ̂

(z),(1)
1 )>ew

e>y Λ̂
(z),(1)
1 (Λ̂

(z),(1)
1 )>ew ‖e>wΛ̂

(z),(1)
1 ‖22

 =

1

‖Λ(z),(1)‖4HS

 ‖ε>y Λ
(z),(1)
1 ‖22 ε>y Λ

(z),(1)
1 (Λ

(z),(1)
1 )>εw

ε>y Λ
(z),(1)
1 (Λ

(z),(1)
1 )>εw ‖ε>wΛ

(z),(1)
1 ‖22

 (1 + op(1)) = Σ(ω)(1 + op(1)) (2.64)

For arbitrary fixed τ0 the following objects:

σ̂(τ0) =

√
(1,−τ0)Σ̂(ω)(1,−τ0)>,

σ(τ0) =
√

(1,−τ0)Σ(ω)(1,−τ0)>
(2.65)

The result above tells us that σ̂(τ0) = σ(τ0)(1 + op(1)). Under H0 : τ = τ0 we get the following for the test:

E
[{
|δ̂ − τ0π̂| ≤ zα/2σ̂(τ0)

}]
= E[{|ξz,T1

(1 + op(1))| ≤ zα/2(1 + op(1))}]→ 1− α, (2.66)

and thus concluding the proof.

B.4 Verification

For AR(1) with coefficient ρ process we have the following:

‖Λ(j),(k)‖HS =

√
Tk

(1− ρ2)
(1 + o(1))

‖Λ(h),(1)‖op <
ρ

1− ρ2

‖(Λ(z),(1)
1 )−1(Λ

(z),(1)
0 )ν(z),(0)‖1 = Op(1)

(2.67)
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Assumption A.3 does not have to hold, because the statement of all the theorems guarantees its version that is

sufficient for all the results. Assumption A.1 holds as a result of all other assumptions. Assumption A.6 holds

as a result of Assumption 3.7.

C Parameters of the simulation

The variance matrix of (ε
(y)
it , ε

(w)
it ):

Σ =

0.001 0.000

0.000 0.003

 (3.1)

The model for Zt:

Zt = ν
(z)
t + 1.14ν

(z)
t−1 + 0.52ν

(z)
t−2

ν
(z)
t ∼ N (0, 0.43)

(3.2)

The model for Ht:

Ht = 0.5Zt + 0.25Z̃t (3.3)

where Z̃t has the same distribution as Zt and is independent of it. Exposures θ
(w)
i and θ

(y)
i have the following

form:

θ
(w)
i = 0.2πi +

√
1− 0.22ξ

(w)
i

θ
(y)
i = 0.45πi + 1.5

√
1− 0.32ξ

(y)
i

(3.4)

where ξ
(w)
i , ξ

(y)
i are independent realizations of standard normal random variables.

D Heterogeneous treatment effects

While formally our results (in particular Theorem B.2) apply for the case of constant τ they can be generalized

to allow for unit-specific effects τi. In this case, interpretation of the resulting estimand becomes essential. We

want to stress that the same question applies to the conventional TSLS algorithm from Section 2.1. While there

are available results in the literature that provide interpretation of an IV-like ratio in similar setups (e.g., see

appendix of Borusyak and Hull (2020)), they do not directly apply to our setting. Below we sketch an informal

argument that suggests that in the low-noise regime (as in Theorem 3), our estimator converges to a convex

combination of τi as long as some additional assumptions hold.
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For arbitrary weights ω̃ we have the same expansion as in Section B.1:

τ̂ =
δ̂

π̂
=

1
n ω̃
>(τ ◦ π) + bias(y) + noise(y)

1
n ω̃
>π + bias(y) + noise(w)

(4.1)

Generalizing the arguments of Section B.2 we can conclude the following for the weights ω:

τ̂ =
1
nω
>(τ ◦ π) + op(1)
1
nω
>π + op(1)

We can further split this sum in the following way:

τ̂ =
1
nω
>
det(τ ◦ π) + 1

n (ω − ωdet)>(τ ◦ π) + op(1)
1
nω
>
detπ + 1

n (ω − ωdet)>π + op(1)
(4.2)

Results of Theorem B.2 imply that ‖ω − ωdet‖2 = op(
√
n) and thus we get the following result:

τ̂ =
1
nω
>
det(τ ◦ π) + +op(1)
1
nω
>
detπ + op(1)

Under Assumption 3.7 we get that the denominator is equal to 1
cπ
6= 0 and thus we get the following:

τ̂ = τdet + op(1) (4.3)

where τdet =
1
nω
>
det(τ◦π)

1
nω
>
detπ

. This implies that we need to provide the interpretation for τdet.

Suppose there exist a sequence of numbers {ri}ni=1 such that the following is true:

1

n

n∑
i=1

ωi,detri = o(1)

1

n

n∑
i=1

ωi,detτiri = o(1)

γi :=
ωi,det(πi − ri)

1
n

∑n
i=1 ωi,det(πi − ri)

≥ 0

(4.4)

Then the following holds:

τdet =
1

n

n∑
i=1

γiτi + o(1) (4.5)

which implies that τ̂ converges to a convex combination of unit-specific treatment effects.

One way to guarantee that such sequence {ri}ni=1 exists is to use constant ri = π and impose an additional
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convex constraint in the optimization problem:

ωi(Di −D) ≥ 0 for all i (4.6)

This constraint is similar in spirit to the non-negativity constraint imposed in synthetic control literature. Of

course, then to guarantee a good performance of the oracle one would need to assume that there exist good

balancing weights with such properties. In this case γi is non-negative by construction as long as Assumption

3.7 holds, the first restriction in (4.4) is satisfied by definition, and the second restriction is likely to be satisfied,

because the weights ωi,det have to balance τiµ
(w)
t .
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