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Abstract

Why did Britain attain economic leadership during the Industrial Revolution? We argue
that Britain possessed an important but underappreciated innovation advantage: British
inventors worked in technologies that were more central within the innovation network.
We offer a new approach for measuring the innovation network using patent data from
Britain and France in the 18th and early 19th century. We show that the network
influenced innovation outcomes and then demonstrate that British inventors worked in
more central technologies within the innovation network than inventors from France.
Then, drawing on recently-developed theoretical tools, we quantify the implications for
technology growth rates in Britain compared to France. Our results indicate that the
shape of the innovation network, and the location of British inventors within it, can help
explain the more rapid technological growth in Britain during the Industrial Revolution.
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1 Introduction

One of the enduring questions of the Industrial Revolution is: why was Britain able to achieve
more rapid economic growth than other European countries? There is now a substantial list
of potential British advantages, including the country’s uniquely practical Enlightenment
tradition (Mokyr, 2009), its well-developed apprenticeship systems (Kelly et al., 2014), the
stable institutions established in the wake of the Glorious Revolution of 1688 (North and
Weingast, 1989; Acemoglu et al., 2005), higher wages (Allen, 2009), and its advantageous
natural resources (Pomeranz, 2000; Fernihough and O’Rourke, 2014). Despite the substantial
body of ongoing research on this topic, the debate remains largely unsettled.

In this study, we argue that there is one important British advantage that has been
largely overlooked: the possibility that British inventors may have been working “at the right
place” in the technology space. Our idea builds on emerging literature in growth economics
which finds that innovation in some technologies generates more spillover benefits than
innovation in others (Acemoglu et al., 2016; Cai and Li, 2019; Huang and Zenou, 2020;
Liu and Ma, 2021). As a result, a country’s allocation of researchers across technologies
can substantially impact the overall rate of economic growth. In particular, this literature
shows that technological progress will be faster in economies where more research effort is
focused on technologies that generate more spillovers for other technologies; in other words,
technologies that are more central in the technology space.

Translating these ideas into the context of the Industrial Revolution, we ask: did Britain
experienced more rapid technological progress because British inventors were more focused
on technologies, such as steam engines, machine tools, or metallurgy, that generated stronger
spillover benefits for other technologies and were therefore more central in the technology
space? In contrast, could it have been the case that Continental economies like France
experienced slower technological progress because they specialized in developing technologies,
such as apparel, glass, or papermaking, which were more peripheral in the technology space?1

Put another way, we aim to examine whether Britain’s differential growth during the
eighteenth and early nineteenth centuries can be explained by the distinct position of
British inventors in the technology space. By starting with ideas from modern growth
economics, our analysis is less subject to the type of “post hoc, proper hoc” concerns that
have been raised about some other explanations (Crafts, 1977, 1995). Moreover, we offer a
theoretically-grounded quantification describing exactly how much of Britain’s differential
growth experience can be attributed to this mechanism. These two features differentiate our
study from most existing work that aims to understand Britain’s growth lead during the

1Hallmann et al. (2021) show that technological leadership in invention of Britain relative to France
varied across technologies, with Britain leading, besides others, in steam engines and textile technologies,
and France leading, besides others, in papermaking and shoemaking. Mokyr (1990, Chapter 5) provides a
historical overview on British technological lead or lag in invention relative to Continental Europe.
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Industrial Revolution.
To structure our analysis, we begin with a growth model, from Liu and Ma (2021),

that incorporates an innovation network. In this network, each node is a technology type,
while each edge reflects the extent to which innovations in one technology type increase the
chances of further innovation in another. This model provides a framework for thinking
about how the distribution of researchers across technology sectors relates to the growth rate
in the economy. It also generates specific expressions that, given the matrix of connections
across sectors, allow us to quantify how different allocations of researchers across technology
sectors will affect growth. The upshot is that allocations in which more researchers are
working in technology sectors with greater spillovers will generate higher overall growth
rates than others. Therefore, the growth maximizing allocation of researchers will feature
more researchers working in more central technology sectors: specifically, those sectors with
higher eigenvalue network centrality. Furthermore, the model delivers precise analytical
relationships that allow us to quantify the implications of different allocations of research
effort for the rate of economic growth.

To examine whether these forces operated during the Industrial Revolution, we utilize
patent data for Britain, from 1700 to 1849, and for France from 1791-1844.2 These historical
patent data cover a large number of inventors and their inventions, providing a rich source of
information on innovation during the Industrial Revolution.3 We follow a long line of work,
dating back at least to Sullivan (1989), using patent data to better understand innovation
patterns during this period.

A key challenge in our setting is measuring spillovers across technology categories. The
innovation literature typically uses patent citations, but these are not available in our
historical setting. Instead, we introduce a new approach based on the idea that if there are
spillovers between two technology categories, then inventors working primarily in one area
will occasionally file patents in the other. In particular, we measure the extent of spillovers
from technology category j to i based on the propensity of inventors who patent in j to
subsequently patent in i.

Since our approach is new, we validate it using modern data. Specifically, using U.S.
patents from 1970-2014, we construct innovation networks using our approach as well as
the citation-based approach used in modern studies. Comparing these networks shows that
the two approaches generate networks that are extremely similar. This suggests that our
method does a good job of recovering the underlying innovation network.

Using our approach, we document technology networks in Britain and France that feature
a dense central core of closely related—and mainly mechanical—technologies. One important
question about our estimated networks is, do they reflect fundamental features of the

2Both of these were periods during which the patent systems were largely stable. We end just before the
major British patent reform of 1852 and the French patent reform of 1844.

3Of course, not every useful invention was patented, as (Moser, 2012) has shown.
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underlying technologies or simply reflect the local innovation environment in each country?
One way to test this is to compare the networks obtained from the two countries. If they
are similar, they likely reflect fundamental technological features rather than idiosyncratic
conditions. Conducting a direct comparison, however, is challenging because the two
countries use very different technology categorizations. Therefore, it is necessary to construct
a mapping of technology categories from one country’s categorizations to the other. To
do so, we carefully identify a set of inventions that were patented in both countries. We
can then use the categorization of these inventions in each system to construct a crosswalk
between the technology categorizations used in the two countries.

Using this mapping, we construct technology spillover matrices derived from French
patents but in terms of British technology categories, or derived from British patents but
expressed in French technology categories. This allows us to regress the entries of the
technology matrices of one country on the entries of the other country. We find they are
strongly positively related, despite the noise that is inherent in any mapping between different
systems of technology categorization. This indicates that our innovation matrices not just
reflect the local economic environment, but that a significant part of each represents an
underlying ‘global’ network of technology spillovers.

Next, we establish that the shape of the technology spillover network matters for
innovation outcomes. As a first step, we follow existing work on modern patent data by
analyzing how patenting rates vary across technology categories depending on the lagged
knowledge stock in other categories, weighted by the strength of connections through the
innovation matrix. Consistent with the theory, and the results in previous studies of modern
data, we find a significant positive associations of patenting with the lagged network weighted
knowledge stock, shrinking toward zero as lags increase. However, the lack of exogenous
variation in the lagged knowledge stock means that this result could be due to common
shocks that affect connected technology categories.

Thus, in the second step, we provide evidence based on a source of quasi-exogenous
variation in the timing of increases in the knowledge stock at some nodes of the innovation
network. Specifically, we use the unexpected arrival of “macroinventions.” These are
inventions which Mokyr (1990) describes as “a radical new idea, without a clear precedent,
emerges more or less ab nihilo.” Using a list of 65 macroinventions from Nuvolari et al. (2021),
we study whether the arrival of a new macroinvention in one technology category leads to a
subsequent increase in patenting in downstream technology categories within the innovation
network. Here, the identifying assumption is not that the location of macroinventions were
random, but that the timing of their arrival at a given location was unpredictable within the
time frame of analysis. Using pooled difference-in-difference and event study analyses for a
time frame of ten years before and after the arrival of each macroinvention, we show that
macroinventions are followed by significant increases of the patenting rates in technology
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categories sharing stronger (downstream) connections from the technology category of the
macroinvention. In addition, we find no evidence of an increase in technology categories as a
result of being upstream from the macroinvention technology category within the innovation
network. This second result provides a valuable placebo check that provides additional
confidence that our results are picking up the impact of spillovers through the innovation
network.

Next, we look at whether there are notable differences in the allocation of British
and French inventors within the innovation network. In particular, we focus on whether
British inventors were patenting in technology categories that were more central within the
innovation network than French inventors. We do this by studying, within the sets of British
and French patents whether foreign inventors (of British or French origin) were patenting in
more central technology categories than domestic inventors. We find that among French
patents, patents by British-based inventors were significantly more central compared to the
average patents by French domestic inventors—and all other foreign inventors—, whereas
among British patents, patents by French-based inventors were less central compared to the
average patent by British domestic inventors. The pattern indicates that British inventors
were more likely to work in central technology categories than French inventors. As more
central nodes have stronger spillover connections to other technology categories, the more
central locations occupied by British inventors are consistent with a greater “bang for the
buck” of British innovation on the aggregate rate of technological progress.

Finally, we quantify the growth implications of the observed innovation network and
different allocations of inventors in Britain and France through the lens of the model.
Existing estimates for Britain suggest that industrial production grew by between 3 and
3.5% during the first half of the nineteenth century (Broadberry et al., 2015). In France,
estimates indicate growth rates of between 1.7 and 2.5% in the same period (Crouzet, 1996;
Asselain, 2007). (Preliminary) Results from our quantification exercise show that differences
in the allocation of inventors across technology categories led to a technology growth rate
in Britain that was between 0.5 and 2.9 percent higher than the French technology growth
rate. Thus, our results indicate that Britain’s more advantageous position in the innovation
network can explain a substantial fraction, and possibly the entire difference, in growth rates
between the British and French economies during the first half of the nineteenth century.

In sum, the evidence presented in this paper shows that Britain benefited from an
advantageous distribution of inventors across technology sectors during the Industrial
Revolution, and that this difference meaningfully contributed to Britain’s more rapid
industrialization. Our analysis takes as given the differences in the distribution of inventors
across sectors. Thus, our mechanism complements explanations for the British advantage
during the Industrial Revolution, in particular those that can explain why British inventors
were more likely than the French to work on technologies that happened to be more central

4



within the innovation network, in particular mechanical technologies. For example, it could
be that Britain’s practical Enlightenment tradition and well-developed apprenticeship system
(Mokyr, 2009; Kelly et al., 2014) contributed to the British inventors’ greater ability for
working on mechanical technologies, or that high wages and access to cheap coal steered
British inventors to focus on labor-saving mechanical devices (Allen, 2009).4 Put differently,
the contribution of our paper lies in demonstrating that Britain was at the right place in the
technology space at the right time, rather than explain why it was there but France was not.

In addition to improving our understanding of one of the most important questions in
economic history, our study also contributes to work by growth economists on the importance
of innovation networks. Relative to studies in this area (cited above), we offer two main
contributions. First, we offer new methods that can help researchers study innovation
networks further back in history, when standard tools such as systematic patent citations
are unavailable. This opens up the possibility of studying the influence of innovation
networks in different contexts or over longer periods. Second, our analysis of macroinventions
provides additional, more causal, evidence that innovation networks matter for technology
development. Third, our application demonstrates empirically the value of recent theoretical
advances integrating innovation networks into economic growth models.

Our work builds on a long line of literature using patent data to examine innovation
during the Industrial Revolution and into the nineteenth century. Early papers in this area
include Sullivan (1989) and Sullivan (1990). More recent work includes MacLeod et al.
(2003), Khan and Sokoloff (2004), Moser (2005), Khan (2005), Brunt et al. (2012), Nicholas
(2011), Nuvolari and Tartari (2011), Moser (2012), Bottomley (2014b), Bottomley (2014a),
Burton and Nicholas (2017), Khan (2018), Bottomley (2019), Nuvolari et al. (2020), Nuvolari
et al. (2021), Hallmann et al. (2021), and Hanlon (2022). Relative to this extensive literature,
we are the first to study the role of innovation networks in influencing inventive activity
during the Industrial Revolution.

The next section of this paper presents our theoretical framework. We then introduce our
data, in Section 3 and discuss our approach to measuring the innovation network, in Section
4.1. Section 4.3 describes and compares the estimated innovation networks, while Section
5 provides evidence that the structure of the network has a causal effect on innovation
rates. Section 6 shows that British inventors tended to operate in more central nodes of
the innovation network. Finally, Section 7 uses the structure of the model to quantify the
impact of these differences on each country’s growth rate.

4A stable institutional environment and well-developed patent system may have contributed in shifting
inventors from technologies that can be protected by secrecy toward technologies as mechanical devices that
are easily reverse engineered and thus profit the most from patents (Moser, 2005). However, as both Britain
and France had strong patent protection, it is unclear how this mechanism could explain the differential
focus of British vs. French inventors on mechanical devices.
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2 Theory: Growth with Innovation Networks

This section presents a theory of growth with innovation networks based on recent work
by Liu and Ma (2021). The key feature of their model is the introduction of a matrix
of spillovers across technology sectors into a continuous-time closed-economy endogenous
growth framework. At the outset, it is important to recognize that our aim is to study the
impact of different allocations of research effort across technology categories on the growth
rate of an economy. Thus, we take the allocation of researches as given.5

2.1 Preferences and Production

The model features a representative consumer with utility at time t that is a function of
discounted log consumption cs in period t and all future periods:

Vt =
∫ ∞
t

e−ρ(s−t) ln cs ds .

Consumption is a Cobb-Douglas aggregation of consumption of goods from K different
sectors,

cs =
K∑
i=1

cβi
it ,

where the βi parameters give the consumption shares for each sector i and ∑
i βi = 1

(consumption is Cobb-Douglas).
Within each sector i, there is a continuum of varieties of intermediate products, denoted

by ν, which can be supplied in a countably infinite set of quality levels. The highest quality
level available for any variety is given by qit(ν). Only the highest quality version of each
variety is used in the production process. We denote the quantity of a variety of quality q
produced as xit(ν|q) and total production (and consumption) of goods from sector i is:

ln cit =
∫ 1

0
ln (qit(ν)xit(ν|q)) dν

Given some available quality level, production in a sector depends only on the number of
workers allocated to that sector: xit(ν|q) = lit(ν) where lit is the quantity of labor employed
in sector i.

5These allocations may be due to a range of factors, including individual choices, market forces, government
policies, or persistent historical conditions, which we do not attempt to model.
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2.2 Innovation

Following Liu and Ma (2021), we define the knowledge stock available in a sector i at time t
as qit, where ln qit =

∫ 1
0 ln qit(ν) dν. These knowledge stocks are the state variables in the

model. The knowledge stock in a sector improves through the efforts of researchers, rit,
working on developing new technologies in that sector at time t. The innovation production
function is given by:

nit = rit ηi χit where χit = Πk
j=1 q

ωij

jt . (1)

In this expression, nit is the set of new ideas in sector i generated in time t, which in our
empirical application will be represented by patents, ηi is a parameter that determines the
productivity of research effort in sector i, and χit reflects the impact of spillovers across
the innovation network that improve the chances of generating new innovations in sector i.
These spillovers depend on the stock of knowledge in every other sector and a matrix of ωij
parameters that determine the extent to which existing ideas in sector j increase the changes
of producing new ideas in sector i. These will be the key parameters in our study. In order
to obtain balanced growth across sectors, we need to assume that ∑j ωij = 1 for all i. We
denote the K × K matrix of these parameters as Ω, which we refer to as the innovation
network.

New ideas translate into incremental quality improvements according to the following
relationship:

q̇it/qit = λ ln(nit/qit) (2)

where the inclusion of qit in the denominator on the right-hand side of this equation reflects
the idea that improving quality becomes more difficult as the quality level rises. This
formulation is intuitive in that it reflects the idea is that improvements become more difficult
once the “low-hanging fruit” has been harvested. It also plays an important functional role
in the model, because it means that the continually increasing stock of existing knowledge,
which generate a corresponding increase in useful knowledge spillovers, does not generate
explosive growth.

2.3 Resource constraints

To keep the model simple, we fix the number of production workers at l̄ and the number
of researchers at r̄. Thus, ∑i lit = l̄ and ∑i rit = r̄. These assumptions abstract from the
potentially important possibility that changes in the productivity of research activities may
cause more workers to shift into research, but they substantially simplify the model.
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2.4 Key results

The model provides several results that we will use in our empirical analysis. The first of
these is related to how the innovation network determines the relationship between the
current stock of knowledge in one sector and the rate of innovation in other sectors. We can
derive this relationship from Equations 1 and 2. We obtain:

lnni = ln ηi + ln rit + λ
K∑
j=1

ωij

(∫ ∞
0

e−λs lnnj,t−s ds
)

(3)

This is a useful expression for our purposes, because it shows how the current knowledge
stock in related sectors, represented by the term on the far right, influences the current pace
of technology development. Later, we will use this expression to structure our investigation
of whether our estimated innovation network matters for innovation outcomes.

A second key result has to do with the relationship between the distribution of research
effort across sectors and the growth rate. It is useful to start by defining a as the dominant
left eigenvector of Ω with an eigenvalue of one. As described by Liu and Ma (2021), the
vector a exists and is unique. Let b be a vector of researcher allocations across sectors, so
that each element bi = ri/r̄. Liu and Ma (2021) then provide the following useful result:

Proposition: For a balanced growth path with researcher allocation vector b, the aggregate
stock of knowledge and consumption in each sector grows at the rate g(b) = c + λa′ ln b
where c is a constant term that depends on the total stock of researchers, the λ and η

parameters, and a.

From this proposition we get two useful additional results:

Corollary 1: The difference in the growth rates between implied by two different distribu-
tions of researchers across sectors, b and b̃ is: g(b̃)− g(b) = λa′(ln b̃− ln b).

This result tells us that given a and λ, we can easily calculate the difference in growth rates
implied by different allocations of researchers across sectors. The second useful result has to
do with the growth-maximizing allocation of researchers, which we label b∗. This is,

Corollary 2: The allocation of researchers that maximizes the rate of technology growth,
b∗, solves argmaxb a′ ln b subject to b ≥ 0 and 1′b = 1. The solution to this problem is
the vector a.

This result tells us that the growth-maximizing allocation of researchers is the allocation
that mirrors the vector of innovation centrality a obtained from the innovation network.6
Both of these results will come in handy in our empirical analysis, which we turn to next.

6This is not the same as the welfare-maximizing allocation, since the welfare-maximizing social planner
will be willing to sacrifice some future growth in order to increase current consumption because future
consumption is discounted.
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3 Data

3.1 Patent data

The patent data used in our analysis were digitized from the Titles of Patents of Invention,
Chronologically Arranged collected by the British Patent Office (BPO). These data cover
England and Wales, but for ease of exposition we will refer to them as “British” patents
throughout the paper. These data include the patent number and date and the inventor
name and occupation for over 12,500 patents from 1700 to 1849. This was a period of
stability in British patent law, which ended in 1852 when a major patent reform was adopted.
The printed volumes also include information on the inventor address and the patent title.
We add to these data technology classifications, produced by the BPO, which classify each
patent into one or more of 147 technology categories.7

The most important feature of our patent data set is that patents by individual inventors
have been linked using a time-consuming careful manual linking procedure. We form links
using all of the available information in the patent data, and in some cases additional
external biographical information, following a procedure that is described in more detail in
Hanlon (2022). Starting from 13,972 patent-inventor observations, this procedure identifies
8,980 individual inventors. Most of these inventors were located in the U.K., though a small
number filed patents from abroad. In addition, 1,350 patent-inventor observations were
“communicated from abroad.” In these cases, the location and name of the original inventor
is unknown.

The French patent data used in our main analysis begin with the initiation of a modern
patent system in 1791 and end in 1843, just before the major patent reform of 1844. These
data, which come from the French National Patent Institute (INPI) and were previously
used in Hallmann et al. (2021), include patent number, patent title, inventor name, inventor
occupation, inventor address, and additional details such as the type of patent and the patent
term. French patents are divided into three main types: patents of invention, the standard
format for new inventions, patents of importation for inventions imported from abroad, and
patent of improvement for improvements on existing designs. Our analysis focuses on the
first two of these, as they are the categories that represent truly new inventions.8 The French
patent data also include a technology category classification for each patent. Unlike the
British classifications, each French patent is matched to exactly one out of 85 technology
categories.

As in the British data, we have manually linked patents by the same inventor in the
7See Hanlon (2022) for additional details about these data.
8Patents of improvement provided a less expensive way to modify an inventor’s existing design, but they

did not extend the term of the original patent. Another difference between the French and British patent
systems is that in France inventors could choose to apply for patents of different lengths: 5, 10, or 15 years.
Longer patent terms required higher fees.
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French patent data using the full set of available information.9 Starting with 14,277 patent-
inventor observations based on just over 11,000 patents, this matching procedure identifies
around 10,500 unique inventors.

3.2 Mapping between technology categories

An important challenge in our analysis is constructing a reliable mapping between the French
and British technology categories. The difficulty is that the two nation’s patent offices
employed structurally different systems of classifying patents into technology categories.

We build our mapping by matching patents that were filed both in Britain and in France.
Using the technology categorizations applied to the same patent in the two locations, we
build a probabilistic mapping between French and British technology categories. The most
challenging part of constructing this mapping is therefore identifying patents filed in both
locations.

We can construct three sets of patents filed in both countries. For the first set, we begin
with all patents filed in Britain with inventors reporting a French address and then search for
matching French patents. For the second set, we begin with all patents filed in France before
1844 with an inventor reporting an address in Britain and then search for matching British
patents. For both of these sets, we determine a match based on the name of the inventor, the
patent title, and the temporal proximity of the patent date. This is done through a manual
review in order to account for the fact that patents typically have somewhat different titles
in the two countries, and one patent often appears one, and sometimes a few, years later
than the other. A third set of matched patents were filed in France between 1844 and 1852.
For this group, we take advantage of the fact that, as part of the 1844 French patent law
reform, the length of protection for French patents of inventions were previously patented
abroad depended on the filing date of the original foreign patent. As a result, the French
patent office recorded the origin location and filing date of foreign patents. These data
allow us to make a direct match between a number of French patents of British technologies
filed after 1844. Combining these three groups, and eliminating any duplicate entries, we
have 1,140 patents filed in both locations from which to construct our technology category
mapping.10

This set of matched patents enables us to construct a probabilistic mapping from French
to British technology categories. Specifically, if a fraction θij of French patents filed in

9These links are likely to be even more reliable than those in the British data, because French inventors
were less likely to have common names and many inventors had three, four, or five names.

10We get 127 matched patents in the first set, 167 in the second, and 855 from the third (where we have
better information to identify unique matches). In case there are concerns about the matching procedure used
for the first two sets of matched patents, we have also generated results using only the third set of matched
patents to construct the mapping. This generates similar results, which shows that the patent matching
procedure applied to the other two sets of patents does not have a substantial influence on our results.
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French category i corresponded to British patents classified into British category j, then
we assign patents from French category i to British category j with a weight of θij (see
Appendix B for further details and discussion). This provides a procedure through which we
can reassign all French patents into British technology categories (or vice versa). Overall,
the mapping obtained using this method gives results that appear reasonable (see Appendix
Tables 10 and 11), though it is also clear that differences in the technology classifications will
also introduce noise into analysis where it is necessary to convert patents from one country
into the technology classifications of the other.

3.3 Input–output connections

When analyzing the effect of the innovation network on patenting activity, it will be important
to differentiate the influence of the technology space from the influence of the product space
that operates through input-output channels (Bloom et al., 2013). To do so, we need to
construct a control reflecting the extent to which our technology categories are linked through
input-output connections. This requires (1) data on the input-output connections between
industries and (2) a mapping between industries and our input-output categories. To our
knowledge, no mapping of this kind exists for the historical period we study, and even in
modern settings constructing such a mapping can be challenging (Griliches, 1990).11

As for the data, we use the input–output (IO) table for Britain in 1907 constructed by
Thomas (1984), which gives us a matrix of upstream and downstream connections between
33 industries, to measure product space connections between technology category nodes.12

This is the earliest point for which a detailed input-output matrix for the British economy
is available.13

We introduce a novel approach to constructing a mapping between technology categories
and industries based on occupation information in patent data. In particular, we use that a
substantial fraction of the occupations reported by patenting inventors can be unambiguously
associated with specific industries, for example, “cotton textile manufacturer,” “paper maker,”
or “button manufacturer.” To construct our mapping, we reviewed just over 7,000 occupations
found in the British patent data and manually linked them to industries in the IO matrix.
We link just over 3,400 occupations to industries, providing us with 4,295 patents linked to

11One aspect that makes this mapping challenging is that it is often not clear whether a technology category
should be applied to industries that produce the technology or those that use it. Another challenge is that
patents in some important technology categories (e.g., “Valves”) may be both produced by and used by a
number of different industries.

12The original dataset contains 41 sectors, from which we exclude the four service sectors (Laundry,
Public utility, Distributive services, Other services), aggregate the four chemical industries to one because of
difficulties to match unique occupations (Chemicals, Soap and candle,Oils and paint, Explosives), and exclude
the Motor and Cycle industry because it did not yet exist during our period.

13Horrel et al. (1994) provide an input-output matrix for the British economy in 1841, but it is much less
detailed than the matrix available from Thomas (1984).
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industries. As these patents are also classified into technology categories, we can use these
to construct a probabilistic mapping from technology categories to industries.14

Based on the available IO matrix together with our novel mapping from technology
categories to industries, we construct matrices reflecting both upstream and downstream
IO connections between technology categories. Further details on the construction of this
control are available in Appendix C. As discussed in this appendix, the procedure delivers
results that appear to be quite reasonable.

4 Measuring the innovation network

One of the contributions of this study is the introduction of a method for obtaining innovation
matrices in historical settings where no systematic patent citation data are available. We
start this section by describe how our measure of the network. We then provide evidence
from modern data that our method can generate results that are very close to those obtained
when using citation data. Last, we describe the innovation networks from Britain and France
during the Industrial Revolution recovered using our method.

4.1 Method for measuring the innovation network

In modern settings, where citation data are available, existing studies measure the strength
of spillovers from some technology category j to category i as ωciteij = Citesij/

∑
l Citesil,

where Citesij is the number of patents in category i citing patents in category j (e.g. Liu and
Ma, 2021). In the citation-based approach, the key assumptions are that some fraction of the
useful ideas generated through research in technology j that increase research productivity
in technology i are reflected in citations from i to j, and that this fraction is fairly stable
across all i-j pairs.

Our approach to measuring connections between technology categories relies on a similar
intuition. The basic idea in our approach is that by working on research in technology
category j, an inventor may learn lessons that lead to a subsequent invention in technology
category i. So, when there are more inventions in category j are followed by inventions in
category i by the same inventor, that signals a higher the level of knowledge spillovers from j

to i. The key assumptions in our measure are that some fraction of the useful ideas generated
through research in technology j that increase research productivity in technology i lead to
one or more patents in technology i by inventors who previously patented in technology j,
and that these fractions are fairly stable across i-j pairs.

Let Pkij be the (weighted) count of pairs of patents by inventor k where the first patent
is filed in technology category j and the next patent is filed in technology category i. By

14Specifically, we construct a set of weights φin reflecting the ratio of patents in technology category i that
are linked to industry n to the total number of patents in category i that are linked to an industry.
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“weighted count” we mean that, for patents categorized into multiple technology categories,
which only occurs in the British system, each category receives a fraction of a patent that
depends on the number of categories across which the patent is listed.

Let Pki be the total number of patents in technology category i by inventor k which
pair with an earlier patent, which can be either in i or in another technology category. Our
measure of the strength of connections from category j to i is given by:

ωij =
∑
k Pkij∑
k Pki

(4)

The result is a directed matrix of connections from j to i constructed using a method
that is very similar to the approach used with patent citations by studies in modern data.
Intuitively, our connection values ωij can be thought of as the fraction of knowledge flows
into category i coming from category j, as reflected in the number of inventors who file
patents in i just after a previous patent in j. Later, we will show that our method, when
applied to modern data, generates an innovation network that is almost identical to the
network obtained when using citation data.

Mapping network into foreign categories In some of the analysis below, it will be
useful to have an innovation network based on British patents but expressed in French
technology categories, or a network based on French patents but expressed in British
technology categories. Constructing these networks requires us to use our mapping between
the two technology categories. Let θĩi be the weight used to map patents from, say, French
technology category i to British category ĩ. Given this, to construct an innovation matrix
based on French patents but expressed in British technology categories (or vice versa) we
use:

ω̃ij =
θĩiθjj̃

∑
k Pkij

θĩi
∑
k Pki

Joint network Finally, in some of the analysis below we will use a joint matrix constructed
using both French and British patents, where one of these sets has been mapped into the
technology categories of the other country. A number of potential methods might be used
to construct these joint matrices. Any method requires a judgment about the relative
weight that should be granted to patents from each system in determining the joint matrix.
However, because patents in the two systems are the product of different patent systems
and institutional environments, there is no clear way to determine the correct weighting to
be applied. Given this, we opt for a simple approach that gives each system equal weight in
determining the joint matrix. Specifically, we construct joint matrices where each element is
the average of the elements of the matrices constructed from the two different sets of patent
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data (but expressed in terms of the same technology category).

4.2 Validating our method

Whether the method described above provides a useful measure of the innovation network
is ultimately an empirical question. To provide some confidence that our method works,
before moving to our main analysis we look at how the innovation network generated using
our method in modern data, where we also have citations, compares to a network based
on citation links. To do so, we use data on U.S. patents from 1970-2014 from PatStat. As
described in more detail in Appendix F, we generate a citation-based innovation matrix
using a standard approach taken from previous studies. Our inventor-based innovation
matrix is obtained using the approach described above. Once we have the two matrices, we
can compare either the edge values or centrality of the nodes in the two matrices.

Table 1 presents results comparing the centrality of nodes within the citation-based and
inventor-based networks. We can see that the estimated coefficients are close to one and
the centrality values from the inventor-based network explain nearly all of the variation in
the nodes of the citation based network. This indicates that our inventor-based approach
provides a very close approximation to the network generated using the citation-based
approach commonly used in modern studies. We get the same message if we instead compare
the edges of the two matrices, as is done in Appendix F

The bottom line from this analysis is that our inventor-based method generates results
that are very similar to those obtained using citation data and standard approaches in
modern data. These findings suggest that our approach is also likely to work well in the
historical setting considered in our main analysis, where citation data are unavailable.

4.3 Innovation networks during the Industrial Revolution

In this section, we describe and compare the innovation networks obtained when our method
is applied to both British and French patent data. A first glimpse of the innovation network
is shown in Figure 1, which provides a visualization of the innovation network based on
British patents and expressed in terms of the British technology categories. In the figure,
each technology category is a node, the size of node reflects the number of patents filed in
that category, and the location of the node is determined by the strength of connections
between that node and every other node in the network.

There are several interesting patterns to note. The technology space is characterized
by a dense central core area. Near the center of the core area, we see categories such as
Steam Engines, Water and Fluids (i.e., pumps, etc.), and Motive Power, as well as many
smaller technology categories. These core technologies include a number that historians have
highlighted as important for the Industrial Revolution (Landes, 1969; Mokyr, 1990), most
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Table 1: Comparing the centrality of nodes in the citation-based and inventor-based networks
Dep var: Citation-based network centrality
(1) (2) (3)

Eigenvector InDegree OutDegree
Eigenvalue cent. (inventor-based) 0.947***

(0.026)
InDegree cent. (inventor-based) 0.986***

(0.018)
OutDegree cent. (inventor-based) 0.939***

(0.024)
Constant 0.005* 0.006 0.025

(0.003) (1.603) (0.018)
Observations 120 120 120
R2 0.949 0.958 0.940
Observations = 3-digit IPC technology categories (network nodes). Robust standard errors in parentheses.

* p < 0.1, ** p < 0.05, *** p < 0.01.

notably steam engines. We can also see that there are clusters of related technologies. The
most visible of these is the set of chemical technologies located in the northwest part of the
central core. This includes Acids, Chemical Salts, Dyeing and Coloring, and Alkalis. Finally,
there are a number of very peripheral categories, including such things as Pearl, Ivory, and
Horn technologies, Blacking, Bell-hanging, Calculating Machines, and Hearses and Coffins.

Figure 2 visualizes the network obtained from the French patent data and using French
technology categories. As in the British case, the French network is characterized by a
dense central core surrounded by a set of more peripheral technology categories. Within
the core region, we can see technologies such as Steam Engines, Spinning, Weaving, and
Misc. engines. We can also see a number of more peripheral technologies, such as Umbrellas,
Electricity, and Cannons.

How similar are the two networks? If they show clear similarities, these similarities could
reflect fundamental features of the technologies as described by our theory, consistent with
an underlying ‘global’ technology network rather than idiosyncratic local conditions in the
British and French innovation systems. In order to make this comparison, we begin with
two separate innovation networks, one constructed using only French patents and another
constructed using only British patents, but both expressed in terms of the same technology
categories. We then apply the following regression specification:

ωFR
ij = β0 + β1ω

UK
ij + εij
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Steam engines

Weaving

Spinning

Figure 1: The technology network based on British data
Plot is generated using multidimensional scaling. Some labels are not reported to improve readability.

where the superscripts indicate edges from either the French or UK innovation matrices.
If the networks were identical, then we would estimate β1 = 1 with an R-squared of 1.
Given that the two matrices represent two different realizations of any underlying innovation
network, together with the fact that we have to map patents from one system into the
technology categories of the other, which will introduce substantial noise into the comparison,
it is unrealistic to hope that the two matrices will correspond so closely. However, evidence
of strong similarities between the two matrices is suggestive of a common underlying network
structure, as assumed by the theory.

Table 2 presents the regression results. The first two columns present results where
both matrices are expressed in British technology categories. Column 1 compares all ij
elements, while Column 2 looks across only those ij matrix entries with non-zero values.
Both columns provide clear evidence of similarity across the two matrices. Columns 3 and
4 follow the same structure, but using matrices expressed in French technology categories.
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Figure 2: The technology network based on French data
Plot is generated using multidimensional scaling. Some labels are not reported to improve readability.

Across all four sets of results, we observe strongly significant positive coefficient estimate as
well as R-squared values indicating that the patterns observed in one matrix can explain a
meaningful fraction of the variation observed in the other matrix.

An alternative approach to assessing matrix similarity is to focus on the centrality of the
network nodes, which provides a useful way to summarize the shape of the network. This
approach is motivated by our theoretical results, which highlight the importance of centrality
in determining outcomes. Table 3 presents regression results comparing the centrality of
nodes based French patents to the centrality of nodes based on British patents, where both
are expressed in terms of British technology categories.15 The first column contains results
for eigenvector centrality. The next two columns present results for two alternative centrality
measures, indegree and outdegree centrality. Across all three, we see clear evidence of

15Equivalent results are obtained if we instead express the matrices in terms of the French technology
categories.
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Table 2: Comparing the edges of French and British innovation networks
Dep var: French network edges

in UK categories in French categories
(1) (2) (3) (4)

incl zeros excl zeros incl zeros excl zeros
UK network edges 0.182*** 0.311*** 0.063** 0.621***

(0.033) (0.043) (0.025) (0.193)
Constant 0.029*** 0.036*** 0.006*** 0.027***

(0.000) (0.001) (0.001) (0.004)
Observations 21462 3401 9120 1435
R2 0.006 0.080 0.006 0.136
OLS. Observations are network edges connecting nodes (technology categories) i and j. Observations are

weighted by the sum of patents in i and j (Stata analytical weights). Robust standard errors in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01.

commonalities in the network structure, despite the noise induced by the need to map from
one system of technology categorizations to another. This provides further evidence that
there is some common underlying structure in the innovation networks in Britain and France.
We interpret these estimates as indicating that there is a substantial ‘global’ underlying
innovation network.

5 Effect of the network on innovation

In this section, we examine the effect of the network on innovation. In the first step, we
follow existing studies on modern innovation networks by running panel regressions using
lagged values of the network-weighted knowledge stock based on Eq. 3. Identification in this
approach relies on the assumption of no common shocks to connected technology categories,
which can be difficult to establish. To address this concern, we introduce in the second
step a novel approach that uses the unexpected arrival of important inventions in certain
technology categories to isolate variation in knowledge stocks.

5.1 Effect of knowledge stocks on patenting

Equation 3 expresses the log number of patents in a particular technology category i and
year t as a function of the log knowledge stock in other categories that generate spillovers
for technology i through the innovation matrix. This expression has been used by existing
studies, such as Liu and Ma (2021), to provide evidence that the innovation network has an
impact on innovation outcomes. Following this approach, we operationalize this relationship

18



Table 3: Comparing the centrality of nodes in the French and British innovation networks
Dep var: French network centrality

(in UK categories)
(1) (2) (3)

Eigenvector In Degree Out Degree
UK Eigenvector centrality 0.177***

(0.032)
UK in Degree centrality 0.521***

(0.114)
UK out Degree centrality 0.571***

(0.129)
Constant 0.072*** 96.051*** 0.722***

(0.003) (4.728) (0.034)
Observations 132 132 132
R2 0.253 0.157 0.173
* p < 0.1, ** p < 0.05, *** p < 0.01. OLS regressions with robust standard errors. Observations are

network nodes based on U.K. technology categories. A small number of technology categories are dropped
(e.g., wigs) because of insufficient data to generate a mapping from French technology categories to those
British technology categories.
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by regressing log patents in category i and year t, nit (plus 1), on lagged patents in other
technology categories j in previous years t− s, nj,t−s (also plus 1), weighted by the strength
of connection in the innovation network between the categories ωij , conditional on a set of
technology category fixed effects Ai and year t fixed effect Bt:

ln(nit + 1) = Ai +Bt + βs
∑
j 6=i

ωij ln(nj,t−s + 1) + εit where t > s (5)

One notable difference in Eq. 5 relative to the model is that we add one to the number of
patents in each technology category and year. This is necessary because at the technology
category by year level we end up with a large number of cells with zero patents.

Figure 3 presents the estimated βs for lags from one to ten years using British patent data
and the British innovation network. The network proximity weighted lagged knowledge stock
is significantly and positively associated with patenting rates. The association decreases
over time, consistent with the pattern we would expect given the model. As the finding
is fairly similar to those obtained by studies using modern data, it appears that our novel
network measures are representing the innovation network well.16 In Appendix D, we show
that similar patterns are also obtained if we include lagged patents in category i as a control.
We can also estimate effects for the knowledge stock downstream of category i. Those
results show that only knowledge stocks upstream from a category in the innovation affect
subsequent patenting in that category, while knowledge stocks in downstream categories
have no effect.

5.2 Effect of macroinventions on patenting in downstream technologies

One important concern with the approach above is that there may be common shocks to
connected technology categories, which would result both in greater knowledge stocks in
some categories as well as higher rates of patenting in other connected technologies, but
not as a result of spillovers through the innovation network. To provide a stronger test
of the role of innovation networks, in the next part of our analysis we use the arrival of
unexpected macroinventions in certain technology categories as a source of quasi-exogenous
variation in knowledge stocks. Macroinventions are ideal for this exercise because (1) they
represent substantial increments to existing knowledge and (2) they are thought to be largely
unpredictable. Mokyr (1990), for example, described macroinventions as “inventions in which
a radical new idea, without a clear precedent, emerges more or less ab nihilo.” According
to Crafts (1995) (p. 596), “Technological history suggests that seeking for socio-economic
explanations of macroinventions is likely to be a fruitless pursuit.” Given these features, and
the fact that a number of macroinventions appeared during our study period, there is an

16See, e.g., Liu and Ma (2021) Figure 4.
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Figure 3: The lagged effect of the knowledge stock on patenting rates

.4

.6

.8

1

C
oe

ffi
ci

en
t o

n 
la

gg
ed

 u
ps

tre
am

 k
no

w
le

dg
e 

st
oc

k

t–1 t–2 t–3 t–4 t–5 t–6 t–7 t–8 t–9 t–10

The figure presents estimated coefficients and 95% confidence intervals for PPML regressions based on Eq. 5
applied to all British patents and using the British innovation matrix. We include only patents by domestic
inventors. Patents appearing in multiple (N) technology categories count as only a fraction (1/N) of a patent
in each of category. Because there are many zeros in the data, we actually use ln(nit + 1) in place of the
ln(nit) terms shown in Eq. 5. Each estimate comes from a separate regression, though joint estimation yields
similar results.

opportunity to generate more causal estimates of the impact of the innovation network on
technology development than the estimates obtained using the approach in Figure 3.

The key assumption in this analysis is that the exact timing of arrival of macroinvention
is unpredictable within the analysis window of two decades. Given what we know about
these inventions from the work of economic historians, this assumption seems generally
reasonable. To illustrate the variation harnessed in our analysis, take the example of steam
engines. After Thomas Newcomen introduced the atmospheric engine in 1712, there were
consistent efforts to improve the efficiency of the design. Thus, it was likely that a major
advance would occur in the area of steam engines at some point in time. Yet, it took until
1769 for James Watt to invent the separate condenser. From the historical accounts, there
appear to be no reason why that invention may not have occurred earlier—and it may well
have occurred many years later if genius had not struck Mr. Watt.

We focus this analysis on British patent data primarily because prior research has
established a list of British patents that can be considered macroinventions (Nuvolari
et al., 2021). The list includes 65 macroinventions patented in Britain between 1700 and
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1852. These are identified using sources that include a list of contemporary citations to
patents complied by Bennett Woodcroft and the British Patent Office, biographies of famous
inventors such as the Oxford Dictionary of National Biography, and modern histories of
technology such as Bunch & Helleman’s History of Science and Technology.17

We structure our analysis data as follows. For each year t in which there was one
or more macroinventions, we construct a panel dataset with four five-year periods, two
before year t and two after.18 So, for each year with a macroinvention, which we refer to
as an ‘experiment’, we have a panel with four periods and a cross-section of technology
categories. For each technology category i and experiment e, we calculate the upstream
connection within the innovation network to the category in which the macroinvention
occurred, j, as Proximityie = ωij×1[macroinvention in j in period e].19 If there were multiple
macroinventions in the year, then we sum the proximity across all macroinventions. We
then run regressions using all of the different experiments (macroinvention years).

We begin with an “event study” approach, using the following specification:

ln(Patentsieτ ) = Proximityie × Iτ × βτ +XieτΓ + γie + ηeτ + εieτ (6)

where τ denotes the time period within each experiment, Patentsieτ is the number of patents
in a technology category in time period τ of experiment e, Iτ ∈ 1, 2, 3, 4 is a set of indicator
variables for each time period within an experiment, with the period just before the arrival
of the macroinvention (period 2) omitted, βτ is a set of period-specific coefficients, γie is a
set of technology category fixed effects for each experiment, and ηeτ is a set of time period
fixed effects for each experiment. Effectively, this amounts to running difference-in-difference
regressions around each macroinvention year, but stacking the panels to obtain common
βτ coefficients. In each panel, we omit any technology category in which a macroinvention
occurred. Given the nature of our data, we estimate results using Pseudo-Poisson Maximum
Likelihood (PPML) regressions.

We focus this analysis on British patents from 1700-1830. We do not use data after 1830
because during that decade there was a massive increase in the number of patents, a surge
that has been attributed to the influence of a series of legislative and court decisions that made
patenting more attractive (see Figure 5).20 This change appears to have been differential

17To be specific, Nuvolari et al. (2021) define macroinventions are defined as top 0.5 percentile of patents
in a composite citation score that is based on all of the sources they review.

18So, for a year t with a macroinvention, our pre-periods span years t-10 to t-6 and years t-5 to t-1, while
our post-periods cover years t+1 to t+5 and years t+6 to t+10. Year t itself is excluded from the panel.

19Note that this includes only direct connections between technology categories, not second or higher order
connections through the network. This seems like the most reasonable approach given our setting and the
length of the time period across which we look for effects.

20Bottomley (2014a) describes (p. 22) how, “around 1830, when there was apparently a ‘sea change’ in
attitudes, that judicial hostility was replaced by a growing appreciation of patenting’s role in encouraging
innovation...placing patent rights on a much more secure footing.”
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across technology types, and so including this period has the potential to substantially affect
our results.

One potential concern with these regressions is that macroinventions may be affecting
innovation patterns in other technology categories through input-output linkages, rather
than spillovers across the innovation network (Bloom et al., 2013). To deal with this concern,
we can include controls for upstream and downstream IO linkages to the macroinvention
technology category. Another potential concern is that technology categories that are more
proximate to the macroinvention categories may be more central within the network in
general. If so, then we might expect them to grow more rapidly overall. To deal with this
concern, we can include a control for the eigenvalue centrality of each technology category
within the network.network.

Our event study results based on Eq. 6 are presented in Figure 4. We include in
these results our full set of controls, each interacted with a full set of time-period indica-
tor variables. This set includes upstream and downstream input-output linkages to the
macroinvention technology category as well as a measure of the eigenvalue centrality of each
technology category within the network. These results indicate that, prior to the arrival
of a macroinvention, there were no differential patenting trends in technology categories
that were more proximate to (upstream) macroinvention technology categories. After the
arrival of the macroinvention, we observe a substantial increase in the number of patents in
technology categories that were more proximate to the upstream macroinvention category,
relative to those that were less proximate, within the same time period. It is interesting to
note that these results to not decay rapidly over time, as we found when studying all patents
in Figure 3. The most likely explanation for this is that the increase in the knowledge
stock generated by macroinventions was more radical, and therefore more durable, than the
increase generated by the average patented invention. We also observe no evidence that
having a macroinvention arrive downstream in the innovation network affects patenting
rates. This provides additional confidence that our directed innovation network is capturing
meaningful spillovers from upstream to downstream technology categories.

For additional robustness results, we turn to a more parsimonious regression specification,

ln(Patentsieτ ) = β Proximityie × posteτ +XieτΓ + γie + ηeτ + εieτ (7)

where posteτ is an indicator the the two time periods after the arrival of the macroinvention.
Table 4 presents results using this approach. Columns 1 begins with the simplest specification,
without control variables. These results are telling us that patents increase as a result of
a macroinvention arriving upstream in the innovation network. Column 2 shows that no
similar effects are found for macroinventions located downstream within the innovation
network. Column 3 and 4 show that adding IO controls to our specification does not have
any substantial effect on our results. In Column 5, we add a control for the eigenvalue
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Figure 4: Macroinvention event study results
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The figure presents estimated coefficients and 95% confidence intervals (robust standard errors) for PPML
regressions of log patents on the interaction of proximity to a macroinvention (Proximityie) either upstream
or downstream of a technology category and indicators for each five-year period before and after the event.
The five-year period just before the macroinvention is the omitted reference category. Additional results using
this event study approach are available in Appendix F. The regression includes controls for upstream and
downstream IO connections to the macroinvention technology category, as well as the eigenvalue centrality of
each technology category, each interacted with time-period indicators.

centrality of each technology category. This also does not substantially affect our results.
Finally, in Column 6, we include all of these controls together.

In Appendix E, we provide some additional robustness checks for our macroinvention
analysis. In particular, we show that similar results are obtained if we run regressions in
levels rather than logs, which allows us to include those category-period bins with zero
patents. We also provide full results corresponding to the event-study specification.

6 Centrality of inventors by country

The previous section provides evidence that the shape of the innovation network matters for
technological progress. In this section, we look at whether there are systematic differences
between Britain and France in terms of the distribution of researchers across technology
categories, which could have implications for their rate of technology growth.

Motivated by the theoretical results, in this section we focus on comparing the relative
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Table 4: Macroinventions baseline regression results
Dep var: Ln (number of patents)

(1) (2) (3) (4) (5) (6)
Proximity upstream × post 0.061*** 0.060** 0.062*** 0.061*** 0.058*** 0.058**

(0.021) (0.026) (0.021) (0.021) (0.021) (0.026)
Proximity downstream × post 0.003 −0.001

(0.026) (0.026)
Upstream I–O × post −0.011 −0.008

(0.007) (0.007)
Downstream I–O × post −0.002 0.001

(0.012) (0.013)
EV centrality × post −0.016 −0.012

(0.015) (0.015)
Category × event FE 3 3 3 3 3 3

Period × event FE 3 3 3 3 3 3

Observations 11591 11591 11591 11591 11519 11519
Estim. FE coef. 3535 3535 3535 3535 3508 3508
Number of clusters 138 138 138 138 136 136
Pseudo R2 0.199 0.199 0.199 0.199 0.198 0.198
Poisson pseudo maximum likelihood (PPML) regressions. Observation = category–event–period, with four

periods per event, two before the event ([t− 10, t− 6] and [t− 5, t− 1]) and two after the event ([t+ 1, t+ 5]
and [t+ 6, t+ 10]). Standard errors are clustered at the level of technology category. * p < 0.1, ** p < 0.05,
*** p < 0.01

centrality of British and French inventors. These results provide suggestive evidence relating
to the growth outcomes that we can expect from the different distributions of research
efforts (as reflected by patents) in these two economies. However, the analysis in this section,
which has some advantages from an empirical point of view, will not map directly into the
model. In the next section, we take the model more seriously and analyze the differential
growth outcomes implied by the theoretical framework given the observed differences in the
allocation of research effort between the British and French economies.

To generate a fair comparison between the centrality of British and French inventors
within the innovation network, we compare in both countries foreign inventors to domestic
inventors, using the domestic innovation network. If we find that foreign inventors were
always patenting in more central categories, in Britain as in France, differences in centrality
could be due to a foreign inventor selection effect. If, however, we find that only inventors
from one country are more central, we can rule out such selection effect. For example, using
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French patents and the French network, we estimate

Centralitypkt = βUKUKk + βforeign OtherForeignk + φt + εpkt (8)

where Centralitypkt is the centrality of the technology category associated with patent p
patented by inventor k in year t, UKk is an indicator for whether inventor k reported a UK
address when filing the patent in France, and OtherForeignk is an indicator for whether
the inventor listed some other location outside of France as their address, for example in
the USA, or the patent type is “of unspecified origin” (communication in British patents,
importation in French patents). We also include a set of year-of-patent-filing fixed effects φt.

Table 5: Centrality of British inventors within the French innovation network
Dep var: French patent centrality (standardized)

Eigenvector Out Degree In Degree
(1) (2) (3) (4) (5) (6)

Foreign inventor 0.080*** 0.076*** 0.092***
(0.018) (0.018) (0.018)

UK inventor 0.141*** 0.138*** 0.138***
(0.035) (0.036) (0.037)

US inventor −0.065 −0.077 0.009
(0.138) (0.138) (0.138)

Other foreign inventor 0.065*** 0.061*** 0.081***
(0.020) (0.020) (0.020)

Year FE 3 3 3 3 3 3

Observations 14145 14145 14145 14145 14145 14145
R2 0.012 0.012 0.011 0.012 0.013 0.013
Observation = inventor–patent in France (French patents, French categories). The dependent variables are

the centrality of the technology category associated with a patent, standardized to mean zero and standard
deviation of one. Foreign inventors are identified based on the reported addresses and an indicator for
unspecified foreign origin (imported patent). Robust standard errors in parenthesis. * p < 0.1, ** p < 0.05,
*** p < 0.01.

Table 5 shows that British inventors patenting in France patented in substantially more
central technology categories than any other group of patentees in France, foreign or domestic.
This holds for three different centrality measures, eigenvalue centrality—the main centrality
measure from the theory—as well as both indegree and outdegree centrality. Whereas the
first columns of each centrality measure (1, 3, 5) report that foreign inventors patenting in
France were generally patenting in more central categories, the second columns (2, 4, 6)
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show that this is particularly due to British based inventors.

Table 6: Centrality of French inventors within the British innovation network
Dep var: UK patent centrality (standardized)

Eigenvector Out Degree In Degree
(1) (2) (3) (4) (5) (6)

Foreign inventor −0.111*** −0.069*** −0.064***
(0.024) (0.024) (0.023)

French inventor −0.066 −0.087 −0.110
(0.076) (0.076) (0.074)

US inventor 0.185** 0.103 0.065
(0.079) (0.086) (0.084)

Other foreign inventor −0.143*** −0.083*** −0.072***
(0.026) (0.025) (0.025)

Year FE 3 3 3 3 3 3

Observations 12384 12384 12384 12384 12384 12384
R2 0.014 0.015 0.012 0.012 0.011 0.011
Observation = inventor–patent in Britain (UK patents, UK categories). The dependent variables are the

centrality of the technology category associated with a patent, standardized to mean zero and standard
deviation of one. For patents with multiple technology categories, centrality is averaged across categories.
Foreign inventors are identified based on the reported addresses and an indicator for unspecified foreign
origin (communicated patent). Robust standard errors in parenthesis. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 5 shows that French inventors patenting in Britain did not patent in more central
technology categories than British or other foreign patentees across all centrality measures.
In fact, foreign inventors in Britain patent generally in significantly less central categories
than the average British inventor (columns 1, 3, 5). Splitting up foreign inventors by origin
(columns 2, 4, 6), we see that this association is driven both by French foreign inventors and
other foreign inventors. The coefficient on French inventors is not significant, but it has the
same magnitude (negative). Due to the irregular reporting of addresses in the British patent
data, the majority of “other foreign inventors” are most likely from France. Interestingly,
US-based inventors patenting in Britain are more central than the average British inventor.

In sum, it appears that British inventors were systematically working in more central
technology categories than French inventors. This fact is derived from both British and
French patents and innovation networks and is thus independent from the mapping of
categories across countries. Furthermore, the result cannot be explained by the fact that
inventors patenting in a foreign country might generally have patented in more central
categories.
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The results in this section provide a first piece of evidence showing that British inventors
tended to work in technology categories that were located more centrally within the innovation
network. From the theoretical results, we know that the optimal allocation of researchers,
from a growth perspective, involves a larger allocation of researchers working in more central
technology categories. However, these results alone don’t tell us that the more central
allocation of British inventions that we observe will necessarily translate into a higher growth
rate. In order to take that next step, we need to use the theory in order to assess the growth
implications of the different allocations of research effort that we observe in the two different
economies.

7 Quantification of growth effects

In this section, we assess the quantitative importance of the different allocations of research
effort observed in France and Britain. To do so, we start with one of the key results generated
by the theory, which expresses the difference in growth rates between two allocations of
research activity across different technology sectors (b vectors):

g(b̃)− g(b) = λa′(ln b̃− ln b) (9)

This expression tells us that the difference in growth rates (in the BGP) depends on the
interaction of the allocations of researchers across technology sectors (the b and b̃ vectors)
and the shape of the technology space, reflected in the a vector, as well as the λ parameter,
which represents the size of each technology step in the model.

We have constructed a set of alternative innovation networks that can be used to obtain
the a vector. We infer bFR and bUK from the number of patents filed by inventors from
each country in each technology category. When calculating these, we use only the French
patents filed by inventors who list a modal address in France, and for the British patents we
drop all of those communicated from abroad or listing a foreign address.

Before moving on, it is interesting to observe how the allocations bFR and bUK differ.
We do this, in Table 7, by comparing the allocation of patents for both countries but
expressed in terms of the British technology categories. We can see that British inventors
hold the highest relative share of patents (bUK − bFR) in several categories that feature
importantly in historical accounts of the Industrial Revolution, including steam engines,
metals, railroads, shipbuilding, and motive power. Relative to this set, the technology
categories most associated with French inventors are typically not those we think of as
crucial to the Industrial Revolution.

The final missing piece in Eq. 9 is the λ parameter. Recall from Eq. 2 that this parameter
determines how much patents augment the stock of available technology. Below, we offer two
approaches to dealing with this issue. First, we offer a less parametric approach that allows
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Table 7: Technologies most associated with inventors in each country
Highest relative British allocations Highest relative French allocations

1 Steam engines 1 Lamps
2 Shipbuilding 2 Wearing apparel
3 Metals 3 Stationary and bookbinding
4 Coaches and road conveyance 4 India-rubber and gutta-purcha
5 Railways and rolling stock 5 Sugar manufacturing
6 Fireplaces, stoves, furnaces 6 Paper and pasteboard
7 Motive power and propulsion 7 Gas manufacture and consumption
8 Brewing and distilling 8 Games, exercises and amusements
9 Cloth fulling and dressing 9 Heat, heating, evaporating

10 Harbors and lighthouses 10 Pipes, tubes and drain tiles
The table lists by country the top ten categories in which either British inventors hold the highest relative

share of patents (left, highest bUK−bFR) or French inventors (right, lowest bUK−bFR). For example, steam
engines accounts for 3.9% of British patents but only 2.2% of French patents, while Lamps accounts for 3.5%
of French patents but only 1.9% of British patents. The results are expressed in terms of British technology
categories. The pattern is very similar if one uses French technology categories.

Table 8: The effect of the innovation network on relative growth in Britain vs France
Network based

on patents
from:

Expressed in
categories of:

British
allocation,

distance from
optimum

French
allocation,

distance from
optimum

Ratio of growth
differences

Both countries Britain 0.38 0.44 1.179
Both countries France 0.28 0.30 1.080

us to generate relative growth results without needing an estimate of λ. The downside of
these results is that they are difficult to interpret. Second, we use a range of λ parameter
estimates from existing studies to obtain more easily interpretable estimates of the difference
in growth rates implied by the different allocations that we observe.

For the less parametric approach, we begin by noting that the model provides a method
for calculating the optimal allocation (from a growth perspective) of researchers across the
different technology sectors, b∗. Using this fact, we can express the differences in growth
rates implied by the allocations observed in Britain and France relative to the optimal
allocation:

g(bFR)− g(b∗)
g(bUK)− g(b∗) = a′(ln bFR − ln b∗)

a′(ln bUK − ln b∗) (10)

At the cost of expressing the difference in growth rates relative to the (unknown) maximum
rate of growth, the expression allows us to avoid taking a stand on the value of λ.
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Table 9: Differences in growth in Britain vs. France for different λ values
Network based

on patents
from:

Expressed in
categories of:

Low estimate
(λ = 0.13)

Medium
estimate

(λ = 0.173)

High estimate
(λ = 0.22)

Both countries Britain 0.0088 0.012 0.035
Both countries France 0.0029 0.004 0.024

Average 0.0058 0.0077 0.0292
The table presents the differences in the growth rates between Britain and France, obtained from Eq. 9, for

various values of λ. In the first column of results, we use a low estimate from existing studies, of λ = 0.13
from Acemoglu et al. (2018). In the second column of results, we use a medium estimate from existing work,
0.173 from Liu and Ma (2021). In the third column, we use a high estimate of 0.22 based on Aghion et al.
(2019).

Table 8 presents estimates based on Eq. 10 showing that, within an innovation matrix
based on patents from both countries, France was consistently further away from the
maximum attainable technology growth rate than Britain. Column (1) shows that the
British inventor allocation generates growth rates that are substantially below the optimum
achievable growth rate. However, the French inventor allocation (column 2) generates growth
rates that are even further from the optimum—and always more remote than the British.
As a result, in each scenario the British allocation generates more rapid technology growth
than the French allocation (column 3). Specifically, these results indicate that the French
technology growth rate was between 8 and 17 percent further from the maximum achievable
growth rate than the British allocation.

For the parametric approach, we consider a range of λ values obtained from existing
studies and then study the implications of our results under each. Table 9 presents the growth
difference between the British and French economies that are implied by the innovation
network and different inventor allocations for low, medium, and high λ values found in
previous studies.

These estimates indicate that differences in the allocation of researchers across sectors
generate growth differences ranging from, on the low end. 0.5%, to 2.9% on the high end.
Available estimates suggest that growth of industrial production in Britain was around 3 to
3.5% during the first half of the nineteenth century (Broadberry et al., 2015) and in the
growth rate in france was around 1.7 to 2.5% in the same period (Crouzet, 1996; Asselain,
2007). This suggests growth rate differences ranging from 0.5 to 1.8 percentage points. Thus,
our results indicate that the impact of differences in the allocation of researchers within
the technology network was large enough to explain a meaningful fraction, and possibly
the entirety, of the difference in growth rates estimated for Britain and France during this
period.
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8 Conclusions

Did it matter that in the early decades of the Industrial Revolution many British researchers
worked in technology areas, such as steam engines or textile machinery, rather than technolo-
gies such as papermaking or chemicals? We argue that the answer to this question is that,
yes, it did matter. Specifically, we show that the distribution of British inventors within the
technology space differed in fundamental ways from the distribution of inventors in the most
natural comparison country, France, and that this distribution had a meaningful impact on
the difference in technology growth rates in the two countries. To make this argument, we
bring together frontier theoretical tools, rich historical patent data, and a novel approach to
measuring the structure of the innovation network in a historical setting.

Our results enrich our understanding of the factors that contributed to Britain’s industrial
dominance during the Industrial Revolution. They also contribute to a broader literature
looking at the importance of innovation networks in economic growth, by providing direct
evidence on the role that the structure of the innovation network played during an important
period of economic history.

In addition to helping us better understand the nature Britain’s advantages during the
early decades of the Industrial Revolution, our findings may also shed light on why these
advantages slipped away in the late-nineteenth and early-twentieth centuries. It seems
likely that the structure of the innovation network was slowly evolving over the nineteenth
century, with the rising importance of chemical and electrical technologies that characterized
the the Second Industrial Revolution. This change in the technology space away from
the mechanical technologies may help explain why Britain found it increasingly difficult
to maintain its position as industrial leader. One interesting direction for future work is
assessing the extent to which slow-moving changes in the underlying innovation network may
have undermined Britain’s advantages and contributed to the erosion of British leadership
in the late nineteenth and early twentieth century.
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Kelly, M., J. Mokyr, and C. Ó Gráda (2014): “Precocious Albion: a New interpretation
of the British Industrial Revolution,” Annual Review of Economics, 6, 363–389.

Khan, B. Z. (2018): “Human Capital, Knowledge and Economic Development: Evidence
from the British Industrial Revolution, 1750–1930,” Cliometrica, 12, 313–341.

Khan, B. Z. and K. L. Sokoloff (2004): “Institutions and Democratic Invention in
19th-Century America: Evidence from ”Great Inventors,” 1790-1930,” The American
Economic Review, 94, pp. 395–401.

Khan, Z. (2005): The Democratization of Invention: Patents and Copyrights in American
Economic Development, 1790-1920, Cambridge: Cambridge University Press.

Landes, D. S. (1969): The Unbound Prometheus, London: Cambridge University Press.

Liu, E. and S. Ma (2021): “Innovation Networks and Innovation Policy,” NBER Working
Paper No. 29607.

33



MacLeod, C., J. Tann, J. Andrew, and J. Stein (2003): “Evaluating Inventive Activity:
The Cost of Nineteenth-Century UK Patents and the Fallibility of Renewal Data,” The
Economic History Review, 56, pp. 537–562.

Mokyr, J. (1990): The Lever of Riches: Technological Creativity and Economic Progress,
Oxford University Press.

——— (2009): The Enlightened Economy, Yale University Press.

Moser, P. (2005): “How Do Patent Laws Influence Innovation? Evidence from Nineteenth-
Century World’s Fairs.” American Economic Review, 95, 1214.

——— (2012): “Innovation Without Patents: Evidence from World’s Fairs,” Journal of Law
and Economics, 55, pp. 43–74.

Nicholas, T. (2011): “Cheaper Patents,” Research Policy, 40, 325–339.

North, D. C. and B. R. Weingast (1989): “Constitutions and Commitment: The
Evolution of Institutional Governing Public Choice in Seventeenth-Century England,” The
Journal of Economic History, 49, pp. 803–832.

Nuvolari, A. and V. Tartari (2011): “Bennet Woodcroft and the Value of English
Patents, 1617-1841,” Explorations in Economic History, 48, 97–115.

Nuvolari, A., V. Tartari, and M. Tranchero (2021): “Patterns of Innovation During
the Industrial Revolution: A Reappraisal Using a Composite Indicator of Patent Quality,”
Explorations in Economic History, 82.

Nuvolari, A., G. Tortorici, and M. Vasta (2020): “British-French Technology Transfer
from the Revolution to Louise Philippe (1791-1844): Evidence from Patent Data,” CEPR
Discussion Paper No. 15620.

Pomeranz, K. (2000): The Great Divergence, Princeton: Princeton University Press.

Sullivan, R. J. (1989): “England’s “Age of Invention”: The acceleration of patents and
patentable invention during the Industrial Revolution,” Explorations in Economic History,
26, 424–452.

——— (1990): “The revolution of ideas: widespread patenting and invention during the
English industrial revolution,” The Journal of Economic History, 50, 349–362.

Thomas, M. (1984): “An Input–Output Approach to the British Economy, 1890–1914,”
Phd dissertation, Oxford.

34



A Additional details on the British patent system

Figure 5 describes the number of patents filed in England and Wales from 1700 to 1849.
The large increase in the number of patents starting in 1830 has been attributed to a set
of court decisions that made it more likely that patents would be upheld in court, thereby
making patenting more attractive (Bottomley, 2014a).

Figure 5: British patents over time
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B Mapping French to British technology categories

This appendix provides some additional details regarding the construction of the mapping
between the different British and French technology category classifications. As described in
the main appendix, we construct three groups of patents where we can identify the same
patent filed in both Britain and France:

1. Starting with French patents filed before 1844 and searching for corresponding patents
in England, with matches constructed using a manual review based on inventor name,
patent titles, and the patents being filed within a few years of one another. We identify
167 matched patents using this method.

2. Starting with English patents filed up to 1849 and searching for corresponding patents
in France, with matches based on the same criteria as above. We identify 127 patents
using this method.

3. Starting with French patents filed after 1844 and matched to English patents using the
exact filing date of the English patent recorded by the French patent office. For these
patents, as long as the title indicates that we have identified a correct match, we allow
variation in the inventor name (common when patent agents appear as the inventor).
We identify 855 matched French patents using this method, which correspond to 808
matched British patents, since some British patents correspond to more than one
French patent.

Using these data, we construct a set of weights mapping French technology categories
(i) to British categories (j) (and vice versa from British to French categories) where each
weight is given by:

θij = Patij/Pati .

To provide a sense of what these category mappings look like, Table 10 presents, for
the first twenty British technology categories, the most closely related French technology
category, as well as the corresponding weight of the mapping between them. Table 11 presents
similar information for the mapping for the first twenty French technology categories. While
the mapping is clearly imperfect, we can see that it generally seems quite reasonable.

Focusing on Table 10, in a number of cases we observe a clear correspondence between
the French and British technology categories. In some cases, such as “Aerial Conveyances”
into “Aviation” or “Alkalis” into “Chemicals-General,” the British category fully maps into
a French category. In a number of others, such as “Boots, Shoes, Clogs, Pattens, etc.” into
“Shoemaking”, the weight is close to one. However, there are others–“Bearings, Wheels, Axles,
And Driving-Bands” for example–where the mapping between the two categorizations is less
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Table 10: Mapping from British to French technology categories with weights
British category (first 20) Closest French category Mapping weight

Accidents, Prevention Of Railroads .26
Acids Chemicals-General .88
Adhesive Substances Canned food .5
Aerated Liquors, Mineral Waters, etc. Drinks .75
Aerial Conveyances Aviation 1
Agricultural Produce Milling .82
Agriculture Agricultural Machines .61
Air and Gas Engines And Windmills Misc Engines .42
Alarms, Snares, And Vermin Traps Construction fittings 1
Alkaline Lees, Wash Waters, And Bleaching Chemicals-General 1
Alkalis Chemicals-General 1
Assurance: Preventing Forgery And Fraud Paper making 1
Baths And Bathing-Machines Chemicals-Rubber etc. 1
Bearings, Wheels, Axles, And Driving-Bands Railcars .23
(tie) Machine components .23
(tie) Misc Engines .23
Bell-Hanging Locks 1
Blacking
Bleaching, Washing, And Scouring Textile finishing .57
Boilers And Pans Steam engines .74
Boots, Shoes, Clogs, Pattens, etc. Shoemaking .87
Boring, Drilling, Punching Machine tools .46

clear. There are a small number of categories, such as “Blacking” (i.e., shoe polish) where it
is not possible to construct a mapping. Any patents in those categories, which tend to be
very small, will be dropped in any analysis where we map patents from one classification
system to the other. Similar patterns are visible when focusing on the mapping from French
into British categories in Table 11. Overall, we can conclude that our mapping approach is
largely reasonable, though it is also clear that converting from one categorization to another
will also introduce a meaningful amount of noise into our analysis.

37



Table 11: Mapping from French to British technology categories with weights
French category (first 20) Closest British category Mapping

weight

Agricultural Machines Agriculture. .8
Fertilizer Manure; Deodorizing Fecal Matters .43
Rural Engineering Agriculture. .5
Breeding etc Weaving, And Preparing For Weaving .5
Milling Agricultural Produce .56
Baking Cooking: Making Bread And Confectionery .67
Sweets Sugar Manufacture .76
Canned food Preserving & Curing Provisions, other Substances, Liquids .53
Drinks Brewing, Distilling, Rectifying, And Preparatory Processes .4
Railroads Railways And Railway Rolling-Stock .64
Locomotives Railways And Railway Rolling-Stock .49
Railcars Railways And Railway Rolling-Stock .7
Spinning Spinning And Preparing For Spinning .8
Textile finishing Printing .36
Weaving Weaving, And Preparing For Weaving .57
Knitting Spinning And Preparing For Spinning .4
Lace etc Weaving, And Preparing For Weaving .71
Other textiles Rope Manufacture .75
Paper making Paper And Pasteboard .85
Carton Calculating-Machines: Apparatus for Teaching .25
(tie) Games, Exercises, And Amusements .25
(tie) Lighting; Lamps And Luminaries; Matches .25
(tie) Paper And Pasteboard .25
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C British IO matrix construction

This appendix provides some additional details and discussion of the methods used to
construct input-output links between technology categories. Note that these links are
primarily used in our analysis of the impact of macroinventions, which uses only British
data. Thus, our focus is on construct input-output controls for that context.

The main challenge in constructing these matrices is mapping technology categories to
the industries available in the IO matrix. To do so, we first try to match the occupation
found in the patent data to IO industries. This is done through a manual review of the
roughly 7,000 occupation titles listed in British patents from 1700-1849. A subset of these
occupations unambiguously match to industries present in the IO table. Note that this
does not always mean that the patented invention is associated with that industry; our
assumption is that on average individuals working in a particular industry are likely to be
invention technologies associated with that industry.

To provide a sense of the types of occupations corresponding to different industries, Table
12 lists by IO industry the three most common “topics” contained in occupations that help
us to establish unambiguous matches. Generally, we do not match generic occupations that
refer to professions or class/status (e.g. merchant, manager, worker, officer) unless they are
qualified by a topic that refers unambiguously to one industry. For example, we do not match
“engineers” to the industry “Engineering” because the unqualified occupation title refers to a
profession rather than an industry. However, we match coal mining (colliery) engineer to
the coal mining industry because in this case, the qualifying topic is unambiguous.21

Once we have a mapping from occupations to industries, the mapping from technology
categories to industries is straightforward given that occupations are associated with patents
which are classified into technology categories.22 We can use this mapping, together with
the information included in the IO matrix, to construct measures of the upstream and
downstream links between different technology categories.

The resulting probabilistic mapping from technology categories to industries appear
quite reasonable. To illustrate this, Table 13 lists, for each IO industry, the most important
technology category (highest weight). In cases where a technology category exists that is
broadly similar to the IO industry, this technology category receives the highest weight:
e.g. the Agriculture technology category to the Agriculture, Forestry, etc industry; the
Ship-Building, Rigging, And Working technology category to the Shipbuilding industry.
Furthermore, industries that one would expect to be more technologically diverse tend

21Some professions are ambiguous even if qualified by a topic, for example “coal merchant” or “cloth
merchant” because we do not know if this occupation worked in industry or in the excluded distribution
services. One exception to the rule are composite occupations like “woollen manufacturer and merchant”
because there the “manufacturer” clearly indicated involvement in production.

22Two minor technology categories are missing because we were unable to map their associated occupations
to any IO industry. These are “Diving, engines for diving” and “Maps and Globes”.
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Table 12: Information used for matching input–output industries to occupations
Most common occupation theme

Input–output industry ranked 1st 2nd 3rd
Agriculture, Forestry, etc farmer agriculturalist planter
Coal Mining coal colliery viewer
Other mining quarry quarryman engineer
Coke ovens coke burner breeze
Iron and Steel iron steel founder
Non-ferrouse metals brass founder tin
Engineering machine agricultural engine
Metal Goods, NES tool lock wire
Shipbuilding ship builder shipwright
Railway Rolling stock railway builder carriage
Cotton and silk cotton spinner silk
Woolen and worsted wool spinner worsted
Hosiery and lace lace hosier hosiery
Other textiles carpet elastic cloth
Jute, hemp, and linen flax spinner rope
Textile finishing dyer finisher printer
Clothing hat tailor clothier
Boot and shoe boot shoe gutta-percha
Leather and fur leather harness currier
Food processing miller baker sugar
Drink brewer water distiller
Tobacco cigar tobacco snuff
Chemicals chemist oil chemical
Paper paper card stainer
Printing and publishing printer stationer publisher
Rubber india-rubber rubber gutta-percha
Timber trades sawyer mill saw
Furniture cabinet dressing case
Other wood block bobbin wood
Building materials brick tile stone
Building, etc. builder architect painter
Misc. Manufactures instrument glass watch
Gas, electricity, water gas meter apparatus
The topics are obtained from breaking splitting the occupation string in parts, e.g. “iron founder” into

“iron” and “founder”. The table excludes generic themes such as manufacturing, manufacturer, maker, worker,
master, manager, agent, proprietor. Note that we do not match the occupations to industries based on
individual themes but based on the information contained in the full occupation string.
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to place relatively low weight on the top technology category (e.g. Metal Goods, NES;
Chemicals), while industries that one would expect to be more technologically specialized
typically place a higher weight on the top technology category (e.g. Boot and Shoe to Boots,
Shoes, Clogs, Pattens, etc.).

Table 14 lists, for the first 50 technology categories (in alphabetical order), the most
important IO industry. Note that the difference in the weights between the two tables comes
from a different normalization—here, weights are normalized to one by technology category.
Again, this mapping conforms reasonably well to what we would expect. Highly specialized
technologies are mapped with high precision into one industry (and the “correct” one), as in
the cases of Bell-Hanging (to Non-ferrous metals), Blacking (to Boot and Shoe), Calculating
Machines, and Combs (to Mixed Manufacture). This pattern holds consistently even when
many specialized technologies should connect to the same industry (e.g. Chemicals industry,
Acids, Alkaline Lees, Alkalis, and Chemical salts all receive high weights). Moreover, as
one would expect, technology categories are mapped with low weights on many different
industries when they are based on principles like “Prevention of Accidents,” or composites
like “Bearings, Wheels, Axles, And Driving-Bands,” that are not particular to any one
industry.
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Table 13: Most important technology category by input–output industry
Input–output industry Top technology category Weight IO←TC

Agriculture, Forestry, etc Agriculture. 0.495
Coal Mining Water And Fluids 0.135
Coke ovens Fireplaces, Stoves, Furnaces, Ovens, And Kilns. 0.5
Coke ovens Heat, Heating, Evaporating, And Concentrating 0.5
Iron and Steel Metals And Metallic Substances 0.31
Non-ferrouse metals Lighting; Lamps And Luminaries; Matches 0.089
Engineering Spinning And Preparing For Spinning 0.309
Metal Goods, NES Locks And Other Fastenings. 0.101
Shipbuilding Ship-Building, Rigging, And Working. 0.577
Railway Rolling stock Railways And Railway Rolling-Stock 0.5
Cotton and silk Spinning And Preparing For Spinning 0.494
Woolen and worsted Spinning And Preparing For Spinning 0.487
Hosiery and lace Weaving, And Preparing For Weaving. 0.775
Other textiles Weaving, And Preparing For Weaving. 0.602
Jute, hemp, and linen Spinning And Preparing For Spinning 0.429
Textile finishing Printing. 0.244
Clothing Wearing-Apparel 0.33
Boot and shoe Boots, Shoes, Clogs, Pattens, &C. 0.567
Leather and fur Tanning And Preserving: Treatment Of Skins; Curriery 0.434
Food processing Agricultural Produce 0.161
Drink Brewing, Distilling, Rectifying, And Preparatory Processes 0.476
Tobacco Gas Manufacture And Consumption 0.4
Tobacco Tobacco And Snuff 0.4
Chemicals Chemical Salts, Compositions, Gases, And Processes 0.106
Paper Paper And Pasteboard. 0.512
Printing and publishing Printing. 0.453
Rubber India-Rubber And Gutta-Percha 0.667
Timber trades Lighting; Lamps And Luminaries; Matches 0.5
Furniture Furniture and Cabinet-ware 0.398
Other wood Ship-Building, Rigging, And Working. 0.379
Building materials Building Materials.-Burning Lime 0.406
Building, etc. Building And Relative Processes 0.149
Misc. Manufactures Musical Instruments 0.197
Gas, electricity, water Gas Manufacture And Consumption 0.419

The tables lists by input–output industry the most important technology, including the associated weight to
map technology categories into industries.
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Table 14: Most important input–output industry by technology category
Technology category Top input–output in-

dustry
Weight TC←IO

Accidents, Prevention Of Non-ferrouse metals 0.155
Acids Chemicals 0.753
Adhesive Substances Chemicals 0.5
Aerated Liquors, Mineral Waters, etc Chemicals 0.658
Aerial Conveyances Furniture 1
Agricultural Produce Food processing 0.299
Agriculture. Agriculture, Forestry,

etc
0.447

Air And Wind ;-Air And Gas Engines And Windmills Misc. Manufactures 0.282
Alarms, Snares, And Vermin Traps Misc. Manufactures 0.334
Alkaline Lees, Wash Waters, And Bleaching Chemicals 0.676
Alkalis. Chemicals 0.865
Assurance: Preventing Forgery And Fraud. Printing and publishing 1
Baths And Bathing-Machines. Misc. Manufactures 0.481
Bearings, Wheels, Axles, And Driving-Bands. Metal Goods, NES 0.169
Bearings, Wheels, Axles, And Driving-Bands. Cotton and silk 0.169
Bearings, Wheels, Axles, And Driving-Bands. Boot and shoe 0.169
Bearings, Wheels, Axles, And Driving-Bands. Rubber 0.169
Bearings, Wheels, Axles, And Driving-Bands. Building, etc. 0.169
Bell-Hanging. Non-ferrouse metals 1
Blacking Boot and shoe 1
Bleaching, Washing, And Scouring Textile finishing 0.458
Boilers And Pans Chemicals 0.164
Boots, Shoes, Clogs, Pattens, etc Boot and shoe 0.613
Boring, Drilling, Punching Engineering 0.569
Bottles, Vessels, And Jars, Covers And Stoppers Misc. Manufactures 0.43
Brewing, Distilling, Rectifying, And Preparatory Processes Drink 0.545
Bridges, arches, viaducts, aquaducts Building, etc. 0.522
Brushes. Misc. Manufactures 0.808
Building And Relative Processes Building, etc. 0.479
Building Materials.-Burning Lime Building, etc. 0.364
Buttons, Buckles, Studs, And Other Dress-Fastenings. Misc. Manufactures 0.469
Calculating-Machines; Apparatus for Teaching Misc. Manufactures 1
Candle Manufacture;-Preparing Candle And Other Wicks. Chemicals 0.91
Casks And Barrels Drink 0.571
Casting. Iron and Steel 0.5
Chains And Chain-Cables. Iron and Steel 0.375
Chemical Salts, Compositions, Gases, And Processes Chemicals 0.844
Clocks, Watches, Chronometers, And Other Timekeepers. Misc. Manufactures 0.991
Cloth Fulling, Dressing, Cutting, And Finishing. Textile finishing 0.319
Coaches And Other Road Conveyances Iron and Steel 0.224
Coffee, Cocoa, Chocolate, And Tea. Food processing 0.522
Combs For The Hair. Misc. Manufactures 1
Condensing. Chemicals 0.636
Cooking; Culinary Apparatus. Non-ferrouse metals 0.484
Cooking; Making Decoctions And Infusions. Non-ferrouse metals 0.667
Cooking;-Making Bread And Confectionery. Food processing 0.83
Cork Cutting And Preparing. Misc. Manufactures 0.419
Cutlery. Metal Goods, NES 0.83
Cutting, Sawing, And Shaping Engineering 0.185
Cylinders, Rollers, Pistons, And Stuffing-Boxes. Non-ferrouse metals 0.368
Drawing And Photography Printing and publishing 0.643
Dyeing And Colouring. Textile finishing 0.431
Earthenware And Porcelain Manufacture. Misc. Manufactures 0.62

The tables lists by technology category the most important input–output industry, including the weight
that we use to map industries into categories. The sample comprises the first 50 technology categories in
alphabetical order.
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D Additional results for the impact of knowledge stocks on
innovation

Here we present some additional results related to those shown in Figure 3 in the main text.
In Figure 6 we present results using the same approach as in Figure 3 except that we also
include a lag of the dependent variable in the regression. Our motivation for examining
this alternative specification is that the inclusion of a lagged dependent variable may help
pick up the effect of the number of researchers working in a technology area on patenting
in that area (the ln rit term in Eq. 3). In modern studies, this is dealt with through the
inclusion of controls for R&D expenditures in particular technology areas. It is impossible
to obtain such measures for the historical setting that we consider, but these values should
be closely related to lagged patents. The results in Figure 6 show that the inclusion of the
lagged dependent variable does not substantially affect our results.

Figure 6: The lagged effect of the knowledge stock on patenting rates
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The figure presents estimated coefficients and 95% confidence intervals for PPML regressions based on Eq. 5
applied to all British patents and using the British innovation matrix. We include only patents by domestic
inventors. Patents appearing in multiple (N) technology categories count as only a fraction (1/N) of a patent
in each of category. Because there are many zeros in the data, we actually use ln(nit + 1) in place of the
ln(nit) terms shown in Eq. 5.
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E Additional Macroinvention analysis results

This appendix provides some additional results related to our macroinvention analysis. One
potential concern in our main analysis is that, by using the log number of patents as the
dependent variable, we are dropping some observations. In many cases this is sensible. For
example, this causes us to omit observations for the Railroad technology category for many
years because, prior to the invention of railroads, there were zero patents in this category.
We also end up dropping observations for very small technology categories, such as Wigs,
which often have zero patents even when aggregating up to five year periods.

To ensure that omitting these categories by taking logs is not critical to our results, in
Table 15 we present results from regressions where the outcome variable is the number of
patents, rather than log patents. These results are very similar to those presented in the
main text, which shows that the omitted categories are unlikely to be key to our results. The
only notable difference here is that the eigenvalue centrality control is now more important.

Table 16 presents macroinvention regression results with effects estimated period-by-
period, as in the event study results shown in Figure 4, but with various combinations of
controls. For all of the various sets of controls, the basic patterns are similar to those shown
in Figure 4.
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Table 15: Macroinventions regression results in levels
Dep var: Number of patents

(1) (2) (3) (4) (5) (6)
Proximity upstream × post 0.052** 0.047** 0.052** 0.051** 0.040** 0.037*

(0.022) (0.024) (0.022) (0.022) (0.020) (0.022)
Proximity downstream × post 0.009 0.005

(0.022) (0.022)
Upstream I–O × post 0.012 −0.003

(0.007) (0.009)
Downstream I–O × post 0.007 0.008

(0.014) (0.016)
EV centrality × post 0.070*** 0.072***

(0.020) (0.022)
Category × event FE 3 3 3 3 3 3

Period × event FE 3 3 3 3 3 3

Observations 19342 19342 19342 19342 19086 19086
Estim. FE coef. 5008 5008 5008 5008 4944 4944
Number of clusters 145 145 145 145 143 143
Pseudo R2 0.656 0.656 0.656 0.656 0.656 0.656
Poisson pseudo maximum likelihood (PPML) regressions. Observation = category–event–period, with four

periods per event, two before the event ([t− 10, t− 6] and [t− 5, t− 1]) and two after the event ([t+ 1, t+ 5]
and [t+ 6, t+ 10]). Standard errors are clustered at the level of technology category. * p < 0.1, ** p < 0.05,
*** p < 0.01
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Table 16: Macroinventions regression results by period
Dep var: Ln (number of patents)

(1) (2) (3) (4) (5) (6)
Upstream proximity × t− 10 0.028 0.034 0.027 0.030 0.026 0.036

(0.028) (0.032) (0.028) (0.028) (0.028) (0.033)
Upstream proximity × t+ 5 0.061** 0.070*** 0.061** 0.062*** 0.056** 0.067**

(0.024) (0.027) (0.024) (0.024) (0.023) (0.027)
Upstream proximity × t+ 10 0.086*** 0.081** 0.086*** 0.087*** 0.083*** 0.082**

(0.032) (0.036) (0.032) (0.032) (0.032) (0.037)
Downstr. proximity × t− 10 −0.012 −0.012

(0.032) (0.033)
Downstr. proximity × t+ 5 −0.016 −0.019

(0.030) (0.030)
Downstr. proximity × t+ 10 0.009 0.005

(0.032) (0.032)
I–O upstream × t− 10 0.010** 0.013***

(0.004) (0.004)
I–O upstream × t+ 5 −0.004 −0.002

(0.006) (0.006)
I–O upstream × t+ 10 −0.008 −0.002

(0.008) (0.007)
I–O downstream × t− 10 −0.018 −0.023

(0.023) (0.022)
I–O downstream × t+ 5 −0.007 −0.006

(0.019) (0.019)
I–O downstream × t+ 10 −0.012 −0.011

(0.020) (0.020)
EV centrality × t− 10 0.004 −0.004

(0.012) (0.012)
EV centrality × t+ 5 −0.005 −0.004

(0.012) (0.013)
EV centrality × t+ 10 −0.023 −0.022

(0.016) (0.017)
Category × event FE 3 3 3 3 3 3

Period × event FE 3 3 3 3 3 3

Observations 11591 11591 11591 11591 11519 11519
Estim. FE coef. 162 162 162 162 162 162
Pseudo R2 0.199 0.199 0.199 0.199 0.198 0.198
Poisson pseudo maximum likelihood (PPML) regressions. Observation = category–event–period, with four

periods per event, two before the event ([t− 10, t− 6] and [t− 5, t− 1]) and two after the event ([t+ 1, t+ 5]
and [t+ 6, t+ 10]). Standard errors are clustered at the level of technology category. * p < 0.1, ** p < 0.05,
*** p < 0.01
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F Validating our approach using modern data

Because our approach to measuring the innovation matrix is novel, it is useful to provide
some additional evidence showing that our approach provides an accurate measure of the
underlying innovation network. To validate our approach, we turn to modern patent data,
where we can observe both citations and individual identifiers for inventors that allow us to
link their patents.

Our comparison focuses on the U.S. patent data provided in the 2015 version of PatStat.
The PatStat database provides individual identifiers, International Patent Classification
(IPC) technology categories for each granted patent, and bilateral patent citations. Using
these inputs, we can construct and compare innovation matrices based on either citations
or on the inventor-based approach that used in our main analysis. To keep the size of the
networks manageable, we focus on the “three digit” IPC level (e.g., A41: Wearing Apparel)
and classify each patent based on the first (primary) IPC code provided by the U.S. Patent
and Trademark Office (PTO). The result is a 123 x 123 matrix, a similar level of detail to
the technology classifications used in our main analysis.

Our inventor-based innovation network is constructed using the approach shown in Eq.
4. Our citation-based network is generated using the approach used in Liu and Ma (2021)
as well as other modern studies:

ωij = Citesij/
∑
l

Citesil

where Citesij is the number of patents in category i citing patents in category j.
We focus on citations between U.S. patents for this measure. Also, because we are

interested in knowledge flows that contribute to the development of new technologies, we
limit our analysis to only those citations provided by the patent applicant in the original
submission. This excludes other citations, such as those added by the patent examiner in
the search phase or those added during opposition, which identify related technologies but
may have been unknown to the inventor at the time of invention. After these cuts, we are
left with a total of just over 30 million bilateral citations between U.S. patents.

After generating these two network measures, we compare the similarity of the resulting
measures using the same methods that we apply to comparing the French and British
innovation networks in Section 4.3. In Table 1 in the main text, we compare the centrality of
nodes of the two networks, which we find to be very similar. Alternatively, in Table 17 below,
we compare the edges of the two networks. This is a more demanding specification, but
despite that we continue to find strong evidence that our method generates an innovation
network that is very similar to the one obtained using citations. In particular, the estimated
coefficients are close to one and the inventor-based network can explain a substantial fraction
of the total variation in the citation-based network.
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Table 17: Comparing the edges of French and British innovation networks
Dep var: Citation-based edges

(1) (2)
incl zeros excl zeros

Inventor-based edges 1.078*** 1.162***
(0.084) (0.061)

Constant −0.000 −0.001**
(0.000) (0.000)

Observations 14884 7961
R2 0.788 0.843
OLS. Observations are network edges connecting nodes (technology categories) i and j. Observations are

weighted by the sum of patents in i and j (Stata analytical weights). Robust standard errors in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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