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Background



Existing Climate Agreements Have Failed to Deliver!
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Cause of Failure: The Free-Riding Problem

Nordhaus (2015, AER)
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Two Trade Policy Proposals to Overcome the Free-Riding Problem

Proposal #1: Carbon Border Taxes

– Carbon border taxes can serve as a 2nd-best policy to curb (untaxed) CO2 emissions
in the rest of the world.

– Example: EU’s carbon border taxes can cut CO2 emissions in Asia.

Proposal #2: Climate Club

– Climate-conscious governments can use collective trade penalties to deter free-riding.

– Has the potential to achieve 1st-best carbon-pricing.
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Existing Assessments of Climate-Oriented Trade Policy

– We have a limited understanding of the efficacy of Proposals #1 & #2

– Determining the full efficacy of theses proposals is practically infeasible without
theoretical formulas for optimal trade & carbon taxes:

– Theories of optimal policy limited to simple models −→ cannot guide quantitative work

– Quantitative analyses, thus, rely on easy-to-implement-but-sub-optimal policies −→
cannot uncover the full potential of Proposals #1 and #2.

Related Literature
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This Paper: Roadmap

1. Develop a rich model of trade with climate externalities

– general equilibrium + multi-industry + multi-country

– flexible abatement structure

– firm relocation + scale economies

2. Derive analytical formulas for optimal carbon border taxes & climate club penalties

3. Map model and analytical formulas to data to uncover the full-effectiveness of

– (Proposals 1) carbon border taxes

– (Proposals 2) climate club
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Theoritical Framework



The Economic Environment

– Generalized Krugman (1980) + Copeland & Taylor’s abatement model

– Many countries: i, j,n = 1,...,N

– Many industries: k, g = 1,..., K
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Preferences and Demand

Three-tier utility function:

1. Cross-industry: Non-parametric

2. Cross-national: CES with elasticity σk

3. Sub-national: CES with elasticity γk

Demand facing firm ω from nest ji, k (origin j–destination i–industry k):

qji,k(ω) =
(
pji,k(ω)

Pji,k

)−γk

︸          ︷︷          ︸
sub-national

(
Pji,k

Pi,k

)−σk

︸     ︷︷     ︸
cross-national

Di,k (Pi,Yi)︸       ︷︷       ︸
cross-industry
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Production and Firms

– Firms compete under monopolistic competition and free entry à la Krugman

– Production combines labor and carbon inputs with elasticity of substitution ς

Equivalent formulation:

– a fraction ai,k of labor inputs are allocated to abatement

– abatement raises marginal cost (c) but lowers CO2 emissions per unit of output (z)

cij,k =
dij,kwi

φi,k

(
1 − ai,k

)− 1
ς ; zi,k =

[
1
κ̄i,k

+
(
1 − 1
κ̄i,k

) (
1 − ai,k

)− ς−1
ς

] ς
ς−1
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Aggregate Production and CO2 Emissions

– We can summarize prices and emissions in origin i–industry k in terms of total
output, Qi,k, and abatement, ai,k:

[ouput price index] Pij,k = dij,kp̄ii,kwi (1 − ai,k)
1
ςγk

− 1
ς Q

− 1
γk

i,k

[carbon emissions] Zi,k = z̄i,k (1 − ai,k)
1
ςγk

−1 Q
1− 1
γk

i,k

– The special case w/ constant-returns to scale: 1
γk

→ 0
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Policy Objectives & Free-Riding



Social Welfare and Optimal Carbon Taxes

– Welfare in country i is the sum of indirect utility from consumption and disutility

from global CO2 emissions: optimal policy definition

Wi ≡ Vi(Yi, P̃i)︸        ︷︷        ︸
consumption utility

−

disutility from CO2︷           ︸︸           ︷
δi

N∑︁
n=1

K∑︁
k=1

Zn,k

– Unilaterally vs. Globally optimal carbon tax

τ⋆i = δ̃i︸         ︷︷         ︸
unilaterally optimal

globally optimal︷       ︸︸       ︷
τ⋆ =

∑︁
n

δ̃n
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The Free-Riding Problem

– Governments have an incentive to lower their carbon tax from the globally optimal
rate, τ⋆ =

∑
n δ̃n, to the unilaterally optimal rate, τ⋆i = δ̃i −→ race to the bottom

– Two remedies for the free-riding problem:

1. using carbon border taxes as a 2nd-best policy to curb untaxed CO2 emissions

2. forging a climate club and using collective trade penalties to deter free-riding

– What is the optimal design of these border policy remedies?
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Unilaterally Optimal Border Policies under Climate Externalities

[import tariff] 1 + t⋆ji,k =
(
1 + ωji,k

)
+ γk − 1

γk
δ̃i vj,k

[export subsidy] 1 + x⋆ij,k =

(
1 + 1
εij,k

) [
1 +

∑︁
n≠i

t⋆ni,k

λnj,k

1 − λij,k

]

– Optimal carbon border tax/subsidies yield the 2nd-best CO2 reduction via border measures.

– The sum of carbon & ToT border taxes constitute the optimal trade penalty on free-riders.
unilateraly optimal production & carbon taxes small open economy globally optimal policy cooperative carbon border taxes 13 / 41
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Mapping Theory to Data



Sketch of Optimization-Free Quantitative Strategy

– Our goal is to simulate the counterfactual equilibrium under optimal policy.

– Summary of quantitative strategy:

1. write optimal taxes as a function of the change in equilibrium variables: T⋆ = f (x̂)
2. write the change in equilibrium variables as a function of optimal taxes: x̂ = g

(
T⋆

)
3. Solve the system of equations

{
T⋆ = f (x̂)
x̂ = g

(
T⋆

)
– Our quantitative strategy determines the change in welfare and CO2 emissions in

response to optimal policy as a function of the following sufficient statistics:

Bv ≡ {λni,k, en,k, rni,k, ρi,k, αi,k, δ̃i,wnL̄n,Yn}ni,k Be = {σk, γk, ς}k
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Data Sources

Trade, Production, and Emissions

– 2009 WORLD INPUT-OUTPUT DATABASE & WIOD ENVIRONMENTAL ACCOUNTS.

– 34 Countries + 19 broadly-defined Industries country list industry list

Applied Taxes

– Import Tariffs from UNCTAD-TRAINS

– Environmentally-related Taxes from EUROSTAT & OECD-PINE
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Calibration and Estimation of Parameters

Demand Parameters

– γk is inferred from firm-level markups (COMPUSTAT) Estimated Values

– σk is estimated via Caliendo & Parro’s (2014) technique (WIOD + TRAINS).

Carbon Input Demand Elasticity (ς )

– estimate the input demand function w/ national energy reserves as IV (ς = 0.62)

Disutility from Carbon (δ̃i)

– calibrated via governments’ revealed preferences

– match environmental taxes in each country s.t.
∑

i δ̃i = SCC.

– SSC= 31 $/tC (US’S INTERAGENCY WORKING GROUP ON SCGG)
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Quantitative Analysis of Proposals 1-2



Proposal #1: Brief Summary

– Proposal 1: governments appeal to carbon border taxes to correct transboundary
CO2 externalities on their residents.

– We simulate a non-cooperative equilibrium where all countries adopt their
unilaterally optimal carbon and border taxes

– governments with little care for climate damage, apply little-to-no carbon border taxes
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Proposal #1: Impact of Non-Cooperative Border Taxes

Non-Cooperative Carbon/Border Taxes Globally Optimal Carbon Taxes (1st best)

Country Δ CO2 ΔV ΔW Δ CO2 ΔV ΔW

EU 0.7% -1.2% -1.3% -9.2% 0.0% 2.0%
BRA -6.0% -1.3% -1.3% -70.7% -1.3% -0.8%
CHN 3.0% -1.0% -1.0% -69.3% -1.3% -0.9%
IND 1.1% -4.4% -4.4% -76.0% -2.6% -2.1%
JPN 3.4% -0.9% -0.9% -23.1% -0.2% 1.5%
MEX -1.6% -3.2% -3.2% -79.5% -0.6% -0.4%
USA 1.3% -1.7% -1.7% -48.2% -0.3% 0.3%

Global -0.6% -1.7% -1.7% -61.0% -0.6% 0.4%

– Border taxes can replicate 1% of the globally 1st-best CO2 reduction. EU carbon border taxes
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– Avg real consumption: Non-cooperative 1.7% ↓ 1st-best carbon tax 0.6% ↓
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Inefficacy of Carbon Border Taxes: Intuition

Why are carbon border taxes ineffective at reducing global CO2 emissions? robustness

1. border taxes cannot target non-traded but high-carbon goods/services:

– 2/3 of CO2 emissions are generated by industries with Trade
GDP < 0.1

2. border taxes are not granular enough to induce firm-level abatement:

– carbon border taxes are applied based on origin×industry-level CO2 intensity

– individual firms take origin×industry-level CO2 intensity as given −→ carbon border
taxes have limited ability to induce firm-level abatement abroad.
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Proposal #2: Brief Summary

– Proposal 2: Climate-conscious governments form a climate club and use collective
trade penalties to induce global climate cooperation (Nordhaus, 2015).
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Proposal #2: The Climate Club Game

– Core members commit to rules of membership. Other countries play strategically:

Trade taxes set by
Members Non-members

Against Members zero unilaterally optimal
Against Non-members unilaterally optimal status quo (i.e., applied tariffs)

Carbon taxes set by
Members Non-members

globally optimal status quo (i.e., unilaterally optimal)

– By joining the club, a country

– ... incurs a production loss by adopting a higher carbon tax,

– ... but, it escapes the climate club’s trade penalties.
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Proposal #2: The Club of All Nations is a Nash Equilibrium

– The club-of-all-nations is a Nash equilibrium, no matter who core members are.
– Why? Because abandoning the club-of-all-nations is too costly.

23 / 41



Proposal #2: Determining all Nash Equilibria is Challenging

Characterizing all Nash equilibria faces two major challenges:

1. Computing optimal trade penalties is strenuous w/ numerical optimization

– Our analytical formulas for optimal trade penalties help us overcome this challenge.

2. Nash outcomes must be identified over 2N possible outcomes.1

– To overcome the curse of dimensionality, we note that net benefits from joining the
climate club rise with the number of existing members.

– We use iterative elimination of dominated strategies to shrink the outcome space

1N denotes the number of countries that are not core members.
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Proposal #2: The Efficacy of the Climate Club

– The makeup of core members is pivotal to the efficacy of the climate club.

– If EU is the only core member −→ the club-of-only-EU is also a Nash eq.

– If EU + USA are core members −→ the club-of-all-nations is the unique Nash eq.
− Core members: EU, USA
− 2nd round: CAN, ROW
− 3rd round: AUS, IND, JPN, KOR, MEX, RUS, TUR, TWN
− 4th & 5th round: CHN & BRA, IDN

– CO2 reduction under a US-EU climate club:

%ΔCO2global = −8.3%︸  ︷︷  ︸
EU & US

+ −52.7%︸   ︷︷   ︸
Other members

= −61.0%

contant-returns to scale alternative carbon demand elast. trade-off: participation vs. tax target 25 / 41
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Summary of Findings

– Carbon border taxes have limited efficacy at curbing CO2 emissions, because

– most high-carbon goods/services never cross international borders

– border taxes have a limited influence on firm-level abatement.

– The climate club can be highly effective at curbing CO2 emissions, but its efficacy
hinges critically on the make-up of core members.
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Thank You.
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Definitions of Unilaterally vs. Globally Optimal Policy

– Unilaterally optimal border, production, and carbon taxes solve

max Wi s.t. equibrium constraints

– Globally optimal border, production, and carbon taxes solve

max
∑︁

n

Wn s.t. equibrium constraints

Return
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Country i’s Unilaterally Optimal Policy Schedule

[carbon tax] τ⋆i,k = δ̃i [industrial subsidy] 1 + s⋆i,k =
γk

γk − 1

[import tariff] 1 + t⋆ji,k = 1 + ωji,k + γk − 1
γk
δ̃ivj,k

[export subsidy] 1 + x⋆ij,k =

(
1 + 1
εij,k

) [
1 +

∑︁
n≠i

[
t⋆ni,k

λnj,k

1 − λij,k

] ]
Return
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Theorem: Country i’s Unilaterally Optimal Policy

Special Case: Small Open Economy

[carbon tax] τ⋆i,k = δ̃i [industrial subsidy] 1 + s⋆i,k =
γk

γk − 1

[import tariff] 1 + t⋆ji,k = 1 + γk − 1
γk
δ̃ivj,k

[export subsidy] 1 + x⋆ij,k =

(
σk − 1
σk

) [
1 + γk − 1

γk
δ̃i
∑︁
n≠i

νn,k
λnj,k

1 − λij,k

]
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Cooperative 2nd-Best Carbon Border Taxes

– Suppose governments are cooperative but cannot raise their carbon tax beyond its
unilaterally optimal level, τi,k = δ̃i.

– Cooperative carbon border taxes that maximize global welfare, in that case, are

1 + t∗ji,k =

(
1 + δ̃−j νj,k

) 1 + (σk − 1)λii,k

1 +
[
1 + δ̃−iνi,k

]
(σk − 1)λii,k

Cooperative carbon border taxes have two components:

1. 1st component taxes origin j’s total CO2 externality on RoW: δ̃−j =
∑

n≠j δ̃n

2. 2nd component corrects for cross-substitution effects Return
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Globally Optimal Policy Schedule

– Suppose governments act cooperatively to maximize global welfare
∑

n Wn.

– The optimal policy under global climate cooperation is the following:

[carbon tax] τ∗i,k =
∑︁
n∈C
δ̃n

[industrial subsidy] 1 + s∗i,k =
γk

γk − 1

[trade taxes/subsidies] x∗i = t∗i = 0
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Country Share of Share of Carbon Emission CO2 Normalized
World GDP World CO2 Intensity (v̄i) Tax Rate (τ̄i) Disutility (ϕ̃i) ϕ̃i

AUS 1.7% 1.4% 100.00 32.51 0.49 40.43
EU 27.2% 12.1% 53.57 80.41 19.12 100.00
BRA 2.4% 2.4% 121.33 13.43 0.28 16.70
CAN 2.0% 1.7% 102.68 20.83 0.37 25.90
CHN 13.6% 23.1% 204.31 6.93 0.82 8.61
IDN 1.0% 1.8% 218.95 8.43 0.07 10.48
IND 2.2% 6.5% 359.48 5.25 0.10 6.53
JPN 8.4% 2.9% 40.99 69.13 5.08 85.97
KOR 1.9% 1.6% 99.68 26.80 0.44 33.33
MEX 1.2% 1.4% 137.31 3.76 0.04 4.67
RUS 2.0% 5.8% 344.11 3.69 0.07 4.59
TUR 1.0% 0.9% 116.09 48.45 0.41 60.25
TWN 0.7% 0.8% 139.84 13.69 0.09 17.03
USA 21.1% 15.3% 87.32 18.18 3.35 22.61
RoW 13.5% 22.1% 197.23 2.21 0.26 2.75

Return



Industry
CO2 Emissions

(% of total)
Trade
GDP

Carbon
Intensity

(ν )

Carbon
Input Share

(α)

Trade
Elasticity
(σ − 1)

Markup
( γγ−1 )

1 Agriculture 19.9% 6.8% 100.0 0.020 2.05 1.46
2 Mining 8.0% 27.6% 40.4 0.019 1.80 1.53
3 Food 1.1% 9.0% 4.2 0.004 1.36 1.70
4 Textiles and Leather 0.4% 27.1% 4.2 0.005 0.86 2.11
5 Wood 0.2% 8.4% 5.4 0.010 3.42 1.28
6 Pulp and Paper 0.6% 8.9% 6.8 0.004 3.21 1.30
7 Coke and Petroleum 2.7% 17.9% 23.2 0.006 3.31 1.18
8 Chemicals 3.4% 24.6% 19.5 0.017 0.89 2.06
9 Rubber and Plastics 1.0% 14.0% 15.2 0.006 1.55 1.27
10 Non-Metallic Mineral 9.6% 13.1% 31.5 0.006 1.95 1.49
11 Metals 0.3% 25.9% 2.1 0.001 3.97 1.24
12 Machinery and Electronics 0.4% 37.1% 1.8 0.004 1.90 1.50
13 Transport Equipment 0.3% 23.3% 1.6 0.002 0.59 1.21
14 Manufacturing, Nec 0.4% 32.8% 10.1 0.005 0.59 1.91
15 Electricity, Gas and Water 32.0% 1.0% 205.5 0.018 7.14 1.12
16 Construction 0.9% 0.3% 2.1 0.008 7.14 1.10
17 Retail and Wholesale 1.8% 3.7% 2.6 0.009 6.93 1.14
18 Transportation 8.1% 10.9% 30.2 0.033 7.14 1.01
19 Other Services 9.0% 2.6% 4.1 0.007 1.59 1.60

Return: data Return: parameters
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Inefficacy of Carbon Border Taxes: Alternative Specifications

ΔCO2 ΔCO2 as % of 1st-best ΔV

Main specification (SCC=31 $/tC, ς = 0.62) -0.62% 1.02% -1.71%

SCC=68 $/tC -0.71% 1.01% -1.72%

ς = 1 (Cobb-Douglas) -2.07% 2.85% -1.64%

CRS (γ → ∞) -1.29% 2.16% -1.63%

CRS with SCC=68 $/tC -1.42% 2.04% -1.64%

CRS with ς = 1 -2.70% 3.74% -1.64%

No ToT border taxes (base: zero tariffs) -0.87% 1.42% -0.01%

No ToT border taxes (base: applied tariffs) -0.31% 0.51% 0.01%

Cooperative border taxes -0.34% 0.56% 0.03%
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Climate Club: Constant-Returns to Scale

CRS: γk → ∞

Core Members 1st Round 2nd Round 3rd Round

EU, USA CAN, MEX, ROW AUS, BRA, IND, JPN, KOR, RUS, TUR, TWN CHN, IDN

Return
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Climate Club: Alternative Carbon Demand Elasticities

SCC= 31, ς = 0.25
Core Members 1st Round 2nd Round 3rd Round Remain Outside of the Club

EU, USA CAN, ROW AUS, JPN, KOR, RUS, TUR, TWN MEX BRA, IND, CHN, IDN

SCC= 31, ς = 0.99
Core Members 1st Round 2nd Round 3rd Round

EU, USA CAN, ROW AUS, IND, JPN, KOR, MEX, RUS, TUR, TWN BRA, CHN, IDN

Return
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Climate Club: Higher Global Carbon Tax Target

SCC= 68, ς = 0.63

Core Members 1st Round 2nd Round 3rd-5th Round Remain Outside of the Club

EU, USA CAN, ROW AUS, JPN, TWN KOR, MEX, RUS, TUR BRA, IND, CHN, IDN

Return
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