Can Trade Policy Mitigate Climate Change?

Farid Farrokhi (Purdue) Ahmad Lashkaripour (Indiana University) NBER Summer Institute, July 2022 Background

Existing Climate Agreements Have Failed to Deliver!

Cause of Failure: The Free-Riding Problem

Nordhaus (2015, AER)

Notwithstanding this progress, it has up to now proven difficult to induce countries to join in an international agreement with significant reductions in emissions. The fundamental reason is the strong incentives for free-riding in current international climate agreements. *Free-riding* occurs when a party receives the benefits of a public good without contributing to the costs. In the case of the international climate-change policy, countries have an incentive to rely on the emissions reductions of others without taking proportionate domestic abatement. To this is

Two Trade Policy Proposals to Overcome the Free-Riding Problem

Proposal #1: Carbon Border Taxes

- Carbon border taxes can serve as a 2nd-best policy to curb (untaxed) CO₂ emissions in the rest of the world.
- Example: EU's carbon border taxes can cut CO₂ emissions in Asia.

Proposal #2: Climate Club

- Climate-conscious governments can use collective trade penalties to deter free-riding.
- Has the potential to achieve 1st-best carbon-pricing.

- We have a limited understanding of the efficacy of Proposals #1 & #2
- Determining the full efficacy of theses proposals is practically infeasible without theoretical formulas for optimal trade & carbon taxes:
 - Theories of optimal policy limited to simple models \rightarrow cannot guide quantitative work
 - Quantitative analyses, thus, rely on *easy-to-implement-but-sub-optimal* policies → cannot uncover the full potential of Proposals #1 and #2.

1. Develop a rich model of trade with climate externalities

- general equilibrium + multi-industry + multi-country
- flexible abatement structure
- firm relocation + scale economies

2. Derive analytical formulas for optimal carbon border taxes & climate club penalties

3. Map model and analytical formulas to data to uncover the full-effectiveness of

- (Proposals 1) carbon border taxes
- (Proposals 2) climate club

1. Develop a rich model of trade with climate externalities

- general equilibrium + multi-industry + multi-country
- flexible abatement structure
- firm relocation + scale economies

2. Derive analytical formulas for optimal carbon border taxes & climate club penalties

- 3. Map model and analytical formulas to data to uncover the full-effectiveness of
 - (Proposals 1) carbon border taxes
 - (Proposals 2) climate club

- 1. Develop a rich model of trade with climate externalities
 - general equilibrium + multi-industry + multi-country
 - flexible abatement structure
 - firm relocation + scale economies
- 2. Derive analytical formulas for optimal carbon border taxes & climate club penalties
- 3. Map model and analytical formulas to data to uncover the full-effectiveness of
 - (Proposals 1) carbon border taxes
 - (Proposals 2) climate club

Theoritical Framework

- Generalized Krugman (1980) + Copeland & Taylor's abatement model
- Many countries: i, j, n = 1, ..., N
- Many industries: $k, g = 1, ..., \mathcal{K}$

Three-tier utility function:

- 1. Cross-industry: Non-parametric
- 2. *Cross-national*: CES with elasticity σ_k
- 3. Sub-national: CES with elasticity γ_k

Demand facing firm ω from nest *ji*, *k* (origin *j*-destination *i*-industry *k*):

$$q_{ji,k}(\omega) = \underbrace{\left(\frac{p_{ji,k}(\omega)}{P_{ji,k}}\right)^{-\gamma_k}}_{\text{sub-national}} \underbrace{\left(\frac{p_{ji,k}}{P_{i,k}}\right)^{-\sigma_k}}_{\text{cross-national}} \underbrace{\mathcal{D}_{i,k}\left(\mathbf{P}_i, Y_i\right)}_{\text{cross-industry}}$$

- Firms compete under monopolistic competition and free entry à la Krugman
- Production combines labor and carbon inputs with elasticity of substitution $oldsymbol{arsigma}$

- a fraction a_{i,k} of labor inputs are allocated to abatement
- abatement raises marginal cost (c) but lowers CO₂ emissions per unit of output (z)

$$c_{ij,k} = \frac{d_{ij,k}w_i}{\varphi_{i,k}} \left(1 - a_{i,k}\right)^{-\frac{1}{s}}; \qquad \qquad z_{i,k} = \left[\frac{1}{\bar{\kappa}_{i,k}} + \left(1 - \frac{1}{\bar{\kappa}_{i,k}}\right) \left(1 - a_{i,k}\right)^{-\frac{s-1}{s}}\right]^{\frac{s}{s-1}}$$

- Firms compete under monopolistic competition and free entry à la Krugman
- Production combines labor and carbon inputs with elasticity of substitution $oldsymbol{arsigma}$

- a fraction $a_{i,k}$ of labor inputs are allocated to abatement
- abatement raises marginal cost (c) but lowers CO₂ emissions per unit of output (z)

$$c_{ij,k} = \frac{d_{ij,k}w_i}{\varphi_{i,k}} \left(1 - \frac{a_{i,k}}{s}\right)^{-\frac{1}{s}}; \qquad \qquad z_{i,k} = \left[\frac{1}{\bar{\kappa}_{i,k}} + \left(1 - \frac{1}{\bar{\kappa}_{i,k}}\right) \left(1 - \frac{a_{i,k}}{s}\right)^{-\frac{s-1}{s}}\right]^{\frac{s}{s-1}}$$

- Firms compete under monopolistic competition and free entry à la Krugman
- Production combines labor and carbon inputs with elasticity of substitution $oldsymbol{arsigma}$

- a fraction $a_{i,k}$ of labor inputs are allocated to abatement
- abatement raises marginal cost (c) but lowers CO₂ emissions per unit of output (z) iceberg cost $C_{ij,k} = \frac{d_{ij,k}W_i}{\varphi_{i,k}} (1 - a_{i,k})^{-\frac{1}{\varsigma}};$ $z_{i,k} = \left[\frac{1}{\bar{\kappa}_{i,k}} + \left(1 - \frac{1}{\bar{\kappa}_{i,k}}\right)(1 - a_{i,k})^{-\frac{\varsigma-1}{\varsigma}}\right]^{\frac{\varsigma}{\varsigma-1}}$

- Firms compete under monopolistic competition and free entry à la Krugman
- Production combines labor and carbon inputs with elasticity of substitution ς

- a fraction $a_{i,k}$ of labor inputs are allocated to abatement
- abatement raises marginal cost (c) but lowers CO₂ emissions per unit of output (z)

$$c_{ij,k} = \frac{d_{ij,k}w_i}{\varphi_{i,k}} \left(1 - a_{i,k}\right)^{-\frac{1}{s}}; \qquad \qquad z_{i,k} = \left[\frac{1}{\bar{\kappa}_{i,k}} + \left(1 - \frac{1}{\bar{\kappa}_{i,k}}\right) \left(1 - a_{i,k}\right)^{-\frac{s-1}{s}}\right]^{\frac{s}{s-1}}$$

We can summarize prices and emissions in origin *i*-industry *k* in terms of total output, *Q_{i,k}*, and abatement, *a_{i,k}*:

$$\begin{bmatrix} \text{ouput price index} \end{bmatrix} \qquad P_{ij,k} = d_{ij,k} \bar{p}_{ii,k} w_i \left(1 - a_{i,k}\right)^{\frac{1}{\varsigma \gamma_k} - \frac{1}{\varsigma}} Q_{i,k}^{-\frac{1}{\gamma_k}}$$
$$\begin{bmatrix} \text{carbon emissions} \end{bmatrix} \qquad Z_{i,k} = \bar{z}_{i,k} \left(1 - a_{i,k}\right)^{\frac{1}{\varsigma \gamma_k} - 1} Q_{i,k}^{1 - \frac{1}{\gamma_k}}$$

We can summarize prices and emissions in origin *i*-industry *k* in terms of total output, *Q_{i,k}*, and abatement, *a_{i,k}*:

$$\begin{bmatrix} \text{ouput price index} \end{bmatrix} \qquad P_{ij,k} = d_{ij,k} \bar{p}_{ii,k} w_i \left(1 - a_{i,k}\right)^{\frac{1}{\varsigma \gamma_k} - \frac{1}{\varsigma}} Q_{i,k}^{-\frac{1}{\gamma_k}}$$
$$\begin{bmatrix} \text{carbon emissions} \end{bmatrix} \qquad Z_{i,k} = \bar{z}_{i,k} \left(1 - a_{i,k}\right)^{\frac{1}{\varsigma \gamma_k} - 1} Q_{i,k}^{1 - \frac{1}{\gamma_k}}$$

We can summarize prices and emissions in *origin i–industry k* in terms of total output, *Q_{i,k}*, and abatement, *a_{i,k}*:

[ouput price index] $P_{ij,k} = d_{ij,k} \bar{p}_{ii,k} w_i (1 - a_{i,k})^{\frac{1}{\varsigma\gamma_k} - \frac{1}{\varsigma}} Q_{i,k}^{-\frac{1}{\gamma_k}}$ [carbon emissions] $Z_{i,k} = \bar{z}_{i,k} (1 - a_{i,k})^{\frac{1}{\varsigma\gamma_k} - 1} Q_{i,k}^{1 - \frac{1}{\gamma_k}}$

- We can summarize prices and emissions in *origin i–industry k* in terms of total output, $Q_{i,k}$, and abatement, $a_{i,k}$:

 $P_{ij,k} = d_{ij,k} \overline{p}_{ii,k} w_i \left(1 - a_{i,k}\right)^{\frac{1}{\varsigma \gamma_k} - \frac{1}{\varsigma}} Q_{i,k}^{-\frac{1}{\gamma_k}}$ $Z_{i,k} = \overline{z}_{i,k} \left(1 - a_{i,k}\right)^{\frac{1}{\varsigma \gamma_k} - 1} Q_{i,k}^{1 - \frac{1}{\gamma_k}}$ ouput price index carbon emissions scale effects in abatement

- We can summarize prices and emissions in *origin i–industry k* in terms of total output, $Q_{i,k}$, and abatement, $a_{i,k}$:

output, $Q_{i,k}$, and abatement, $a_{i,k}$: [ouput price index] $P_{ij,k} = d_{ij,k} \overline{p}_{ii,k} W_i (1 - a_{i,k})^{\frac{1}{\varsigma \gamma_k} - \frac{1}{\varsigma}} Q_{i,k}^{-\frac{1}{\gamma_k}}$ [carbon emissions] $Z_{i,k} = \overline{z}_{i,k} (1 - a_{i,k})^{\frac{1}{\varsigma \gamma_k} - 1} Q_{i,k}^{1 - \frac{1}{\gamma_k}}$ [scale effects in abatement]

Policy Objectives & Free-Riding

- Welfare in country *i* is the sum of indirect utility from consumption and disutility

from global CO₂ emissions: Coptimal policy definition $W_{i} \equiv \underbrace{V_{i}(Y_{i}, \tilde{\mathbf{P}}_{i})}_{\text{consumption utility}} - \delta_{i} \sum_{n=1}^{N} \sum_{k=1}^{\mathcal{K}} Z_{n,k}$

- Unilaterally vs. Globally optimal carbon tax

- Welfare in country *i* is the sum of indirect utility from consumption and disutility

from global CO₂ emissions: Optimal policy definition

$$W_{i} \equiv V_{i}(Y_{i}, \tilde{\mathbf{P}}_{i}) - \delta_{i} \sum_{n=1}^{N} \sum_{k=1}^{\mathcal{K}} Z_{n,k}$$

- Unilaterally vs. Globally optimal carbon tax

globally optimal $\tau^{\star} = \sum_{n} \tilde{\delta}_{n}$

disutility per tonne of CO₂

- Welfare in country *i* is the sum of indirect utility from consumption and disutility

from global CO₂ emissions: Optimal policy definition disutility per tonne of CO₂ $W_{i} \equiv V_{i}(Y_{i}, \tilde{\mathbf{P}}_{i}) - \delta_{i} \sum_{n=1}^{N} \sum_{k=1}^{\mathcal{K}} Z_{n,k}$ CO_2 emissions from origin *n*-industry *k* $\tau^{\star} = \sum \tilde{\delta}_n$ $\tau_i^{\star} = \tilde{\delta}_i$

 Welfare in country *i* is the sum of indirect utility from consumption and disutility from global CO₂ emissions: optimal policy definition

$$W_i \equiv V_i(Y_i, \tilde{\mathbf{P}}_i) - \delta_i \sum_{n=1}^N \sum_{k=1}^K Z_{n,k}$$

- Unilaterally vs. Globally optimal carbon tax

- Governments have an incentive to lower their carbon tax from the globally optimal rate, $\tau^* = \sum_n \tilde{\delta}_n$, to the unilaterally optimal rate, $\tau_i^* = \tilde{\delta}_i \longrightarrow$ race to the bottom
- Two remedies for the free-riding problem:
 - 1. using carbon border taxes as a 2nd-best policy to curb untaxed CO_2 emissions
 - 2. forging a climate club and using collective trade penalties to deter free-riding
- What is the optimal design of these border policy remedies?

- Governments have an incentive to lower their carbon tax from the globally optimal rate, $\tau^* = \sum_n \tilde{\delta}_n$, to the unilaterally optimal rate, $\tau_i^* = \tilde{\delta}_i \longrightarrow$ race to the bottom
- Two remedies for the free-riding problem:
 - 1. using carbon border taxes as a 2nd-best policy to curb untaxed CO_2 emissions
 - 2. forging a climate club and using collective trade penalties to deter free-riding
- What is the optimal design of these border policy remedies?

[import tariff]
$$1 + t_{ji,k}^{\star} = (1 + \omega_{ji,k}) + \frac{\gamma_k - 1}{\gamma_k} \tilde{\delta}_i v_{j,k}$$

[export subsidy] $1 + x_{ij,k}^{\star} = \left(1 + \frac{1}{\varepsilon_{ij,k}}\right) \left[1 + \sum_{n \neq i} t_{ni,k}^{\star} \frac{\lambda_{nj,k}}{1 - \lambda_{ij,k}}\right]$

- Optimal carbon border tax/subsidies yield the 2nd-best CO₂ reduction via border measures.

– The sum of carbon & ToT border taxes constitute the optimal trade penalty on free-riders.

Optimal carbon border tax/subsidies yield the 2nd-best CO₂ reduction via border measures.

– The sum of carbon & ToT border taxes constitute the optimal trade penalty on free-riders.

Optimal carbon border tax/subsidies yield the 2nd-best CO₂ reduction via border measures.

- The sum of carbon & ToT border taxes constitute the optimal trade penalty on free-riders.

Optimal carbon border tax/subsidies yield the 2nd-best CO₂ reduction via border measures.

– The sum of carbon & ToT border taxes constitute the optimal trade penalty on free-riders.

Optimal carbon border tax/subsidies yield the 2nd-best CO₂ reduction via border measures.

– The sum of carbon & ToT border taxes constitute the optimal trade penalty on free-riders.

[import tariff]
$$1 + t_{ji,k}^{\star} = (1 + \omega_{ji,k}) + \underbrace{\frac{\gamma_k - 1}{\gamma_k} \tilde{\delta}_i \, v_{j,k}}_{\text{carbon border tax}}$$

[export subsidy] $1 + x_{ij,k}^{\star} = \left(1 + \frac{1}{\varepsilon_{ij,k}}\right) \underbrace{\left[1 + \sum_{n \neq i} t_{ni,k}^{\star} \frac{\lambda_{nj,k}}{1 - \lambda_{ij,k}}\right]}_{\text{carbon border subsidy}}$

- Optimal carbon border tax/subsidies yield the 2nd-best CO2 reduction via border measures.
- The sum of carbon & ToT border taxes constitute the optimal trade penalty on free-riders.

[import tariff]
$$1 + t_{ji,k}^{\star} = (1 + \omega_{ji,k}) + \underbrace{\frac{\gamma_k - 1}{\gamma_k} \tilde{\delta}_i \, v_{j,k}}_{\text{carbon border tax}}$$

[export subsidy] $1 + x_{ij,k}^{\star} = \left(1 + \frac{1}{\varepsilon_{ij,k}}\right) \underbrace{\left[1 + \sum_{n \neq i} t_{ni,k}^{\star} \frac{\lambda_{nj,k}}{1 - \lambda_{ij,k}}\right]}_{\text{carbon border subsidy}}$

- Optimal carbon border tax/subsidies yield the 2nd-best CO2 reduction via border measures.
- The sum of carbon & ToT border taxes constitute the optimal trade penalty on free-riders.

Mapping Theory to Data
- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- Summary of quantitative strategy:
 - 1. write **optimal taxes** as a function of the change in equilibrium variables: $\mathbf{T}^{\star} = f(\hat{\mathbf{x}})$
 - 2. write the change in equilibrium variables as a function of optimal taxes: $\hat{x} = g(\mathbf{T}^{\star})$ 3. Solve the system of equations $\begin{cases} \mathbf{T}^{\star} = f(\hat{x}) \\ \hat{x} = g(\mathbf{T}^{\star}) \end{cases}$
- Our quantitative strategy determines the change in welfare and CO₂ emissions in response to optimal policy as a function of the following sufficient statistics:

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, \alpha_{i,k}, \tilde{\delta}_{i}, w_{n}\bar{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k}, \gamma_{k}, \varsigma\}_{k}$$

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- Summary of quantitative strategy:

exr

- 1. write **optimal taxes** as a function of the change in equilibrium variables: $\mathbf{T}^{\star} = f(\hat{\mathbf{x}})$
- 2. write the change in equilibrium variables as a function of optimal taxes: $\hat{x} = g(\mathbf{T}^{\star})$

3. Solve the system of equations
$$\begin{cases} \mathbf{1} & -\mathbf{7} \\ \hat{\mathbf{x}} = g \\ (\mathbf{T}^*) \end{cases}$$

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, \mathbf{e}_{n,k}, r_{ni,k}, \rho_{i,k}, \alpha_{i,k}, \tilde{\delta}_{i}, w_{n}\bar{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k}, \gamma_{k}, \varsigma\}_{k}$$

enditure share

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- Summary of quantitative strategy:
 - 1. write **optimal taxes** as a function of the change in equilibrium variables: $\mathbf{T}^{\star} = f(\hat{\mathbf{x}})$
 - 2. write the change in equilibrium variables as a function of optimal taxes: $\hat{x} = g(\mathbf{T}^{\star})$

3. Solve the system of equations
$$\begin{cases} \mathbf{T} = \mathbf{T}(\mathbf{x}) \\ \hat{\mathbf{x}} = g(\mathbf{T}^*) \end{cases}$$

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, \mathbf{e}_{n,k}, \mathbf{r}_{ni,k}, \rho_{i,k}, \alpha_{i,k}, \tilde{\delta}_{i}, w_{n} \overline{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k}, \gamma_{k}, \varsigma\}_{k}$$
sales share

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- Summary of quantitative strategy:
 - 1. write **optimal taxes** as a function of the change in equilibrium variables: $\mathbf{T}^{\star} = f(\hat{\mathbf{x}})$
 - 2. write the change in equilibrium variables as a function of optimal taxes: $\hat{x} = g(\mathbf{T}^{\star})$ $(\mathbf{T}^{\star} = f(\hat{x}))$

3. Solve the system of equations
$$\begin{cases} \hat{x} = g \ (\mathbf{T}^{\star}) \end{cases}$$

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, \frac{\alpha_{i,k}}{\delta_{i}}, w_{n}\overline{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k}, \gamma_{k}, \varsigma\}_{k}$$

$$(CO_{2} \text{ input share})$$

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- Summary of quantitative strategy:
 - 1. write **optimal taxes** as a function of the change in equilibrium variables: $\mathbf{T}^{\star} = f(\hat{\mathbf{x}})$
 - 2. write the change in equilibrium variables as a function of optimal taxes: $\hat{x} = g(\mathbf{T}^{\star})$ $(\mathbf{T}^{\star} = f(\hat{x}))$

3. Solve the system of equations
$$\begin{cases} \hat{x} = g \ (\mathbf{T}^*) \end{cases}$$

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, \alpha_{i,k}, \tilde{\delta}_{i}, w_{n}\bar{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k}, \gamma_{k}, \varsigma\}_{k}$$
precieved cost of CO₂

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- Summary of quantitative strategy:
 - 1. write **optimal taxes** as a function of the change in equilibrium variables: $\mathbf{T}^{\star} = f(\hat{\mathbf{x}})$
 - 2. write the change in equilibrium variables as a function of optimal taxes: $\hat{x} = g(\mathbf{T}^{\star})$ $(\mathbf{T}^{\star} = f(\hat{x})$

3. Solve the system of equations
$$\begin{cases} x = g \ (\mathbf{T}^{\star}) \\ \hat{x} = g \ (\mathbf{T}^{\star}) \end{cases}$$

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, \alpha_{i,k}, \tilde{\delta}_{i}, w_{n} \overline{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k}, \gamma_{k}, \varsigma\}_{k}$$
national accounts data

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- Summary of quantitative strategy:
 - 1. write **optimal taxes** as a function of the change in equilibrium variables: $\mathbf{T}^{\star} = f(\hat{\mathbf{x}})$
 - 2. write the change in equilibrium variables as a function of optimal taxes: $\hat{x} = g(\mathbf{T}^{\star})$ 3. Solve the system of equations $\int \mathbf{T}^{\star} = f(\hat{x})$

3. Solve the system of equations
$$\begin{cases} \hat{x} = g \ (T) \end{cases}$$

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, \alpha_{i,k}, \tilde{\delta}_{i}, w_{n} \bar{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k}, \gamma_{k}, \varsigma\}_{k}$$

Trade, Production, and Emissions

- 2009 World Input-Output Database & WIOD Environmental Accounts.
- 34 Countries + 19 broadly-defined Industries Country list Industry list

Applied Taxes

- Import Tariffs from UNCTAD-TRAINS
- Environmentally-related Taxes from EUROSTAT & OECD-PINE

- γ_k is inferred from firm-level markups (COMPUSTAT) (Estimated Values
- σ_k is estimated via Caliendo & Parro's (2014) technique (WIOD + TRAINS).

Carbon Input Demand Elasticity ($\boldsymbol{\varsigma}$)

– estimate the input demand function w/ national energy reserves as IV (g = 0.62)

Disutility from Carbon ($\widetilde{\delta}_i$)

- calibrated via governments' revealed preferences
- match environmental taxes in each country *s.t.* $\sum_{i} \tilde{\delta}_{i} = SCC$.
- SSC = 31 \$/tC (US's Interagency Working Group on SCGG)

- γ_k is inferred from firm-level markups (COMPUSTAT) (Estimated Values
- σ_k is estimated via Caliendo & Parro's (2014) technique (WIOD + TRAINS).

Carbon Input Demand Elasticity ($\boldsymbol{\varsigma}$)

- estimate the input demand function w/ national energy reserves as IV ($\varsigma = 0.62$)

Disutility from Carbon ($\widetilde{\delta}_i$)

- calibrated via governments' revealed preferences
- match environmental taxes in each country *s.t.* $\sum_{i} \tilde{\delta}_{i} = SCC$.
- SSC = 31 \$/tC (US's Interagency Working Group on SCGG)

- γ_k is inferred from firm-level markups (COMPUSTAT) (Estimated Values
- σ_k is estimated via Caliendo & Parro's (2014) technique (WIOD + TRAINS).

Carbon Input Demand Elasticity ($\boldsymbol{\varsigma}$)

- estimate the input demand function w/ national energy reserves as IV ($\varsigma = 0.62$)

Disutility from Carbon ($\tilde{\delta}_i$)

- calibrated via governments' revealed preferences
- match environmental taxes in each country *s.t.* $\sum_{i} \tilde{\delta}_{i} = SCC$.
- SSC = 31 \$/tC (US'S INTERAGENCY WORKING GROUP ON SCGG)

- γ_k is inferred from firm-level markups (COMPUSTAT) (Estimated Values
- σ_k is estimated via Caliendo & Parro's (2014) technique (WIOD + TRAINS).

Carbon Input Demand Elasticity ($\boldsymbol{\varsigma}$)

- estimate the input demand function w/ national energy reserves as IV ($\varsigma = 0.62$)

Disutility from Carbon ($\tilde{\delta}_i$)

- calibrated via governments' revealed preferences
- match environmental taxes in each country *s.t.* $\sum_{i} \tilde{\delta}_{i} = SCC$.
- SSC = 31 \$/tC (US'S INTERAGENCY WORKING GROUP ON SCGG)

Quantitative Analysis of Proposals 1-2

 Proposal 1: governments appeal to carbon border taxes to correct transboundary CO₂ externalities on their residents.

- We simulate a non-cooperative equilibrium where all countries adopt their unilaterally optimal carbon and border taxes
 - governments with little care for climate damage, apply little-to-no carbon border taxes

 Proposal 1: governments appeal to carbon border taxes to correct transboundary CO₂ externalities on their residents.

- We simulate a non-cooperative equilibrium where all countries adopt their unilaterally optimal carbon and border taxes
 - governments with little care for climate damage, apply little-to-no carbon border taxes

	Non-Cooperative Carbon/Border Taxes		Globally Optimal Carbon Taxes (1st l		xes (1st best)	
Country	$\Delta \operatorname{CO}_2$	ΔV	ΔW	$\Delta \operatorname{CO}_2$	ΔV	ΔW
EU	0.7%	-1.2%	-1.3%	-9.2%	0.0%	2.0%
BRA	-6.0%	-1.3%	-1.3%	-70.7%	-1.3%	-0.8%
CHN	3.0%	-1.0%	-1.0%	-69.3%	-1.3%	-0.9%
IND	1.1%	-4.4%	-4.4%	-76.0%	-2.6%	-2.1%
JPN	3.4%	-0.9%	-0.9%	-23.1%	-0.2%	1.5%
MEX	-1.6%	-3.2%	-3.2%	-79.5%	-0.6%	-0.4%
USA	1.3%	-1.7%	-1.7%	-48.2%	-0.3%	0.3%
Global	-0.6%	-1.7%	-1.7%	-61.0%	-0.6%	0.4%

– Border taxes can replicate 1% of the globally 1st-best CO_2 reduction. (EU carbon border tax

	Non-Cooperative Carbon/Border Taxes			Globally Optimal Carbon Taxes (1st best)		
Country	$\Delta \operatorname{CO}_2$	ΔV	ΔW	$\Delta \operatorname{CO}_2$	ΔV	ΔW
EU	0.7%	-1.2%	-1.3%	-9.2%	0.0%	2.0%
BRA	-6.0%	-1.3%	-1.3%	-70.7%	-1.3%	-0.8%
CHN	3.0%	-1.0%	-1.0%	-69.3%	-1.3%	-0.9%
IND	1.1%	-4.4%	-4.4%	-76.0%	-2.6%	-2.1%
JPN	3.4%	-0.9%	-0.9%	-23.1%	-0.2%	1.5%
MEX	-1.6%	-3.2%	-3.2%	-79.5%	-0.6%	-0.4%
USA	1.3%	-1.7%	-1.7%	-48.2%	-0.3%	0.3%
Global	-0.6%	-1.7%	-1.7%	-61.0%	-0.6%	0.4%

- Border taxes can replicate 1% of the globally 1st-best CO₂ reduction. EU carbon border taxes

	Non-Cooperative Carbon/Border Taxes			Globally Optimal Carbon Taxes (1)		ixes (1st best)
Country	$\Delta \operatorname{CO}_2$	ΔV	ΔW	$\Delta \operatorname{CO}_2$	ΔV	ΔW
EU	0.7%	-1.2%	-1.3%	-9.2%	0.0%	2.0%
BRA	-6.0%	-1.3%	-1.3%	-70.7%	-1.3%	-0.8%
CHN	3.0%	-1.0%	-1.0%	-69.3%	-1.3%	-0.9%
IND	1.1%	-4.4%	-4.4%	-76.0%	-2.6%	-2.1%
JPN	3.4%	-0.9%	-0.9%	-23.1%	-0.2%	1.5%
MEX	-1.6%	-3.2%	-3.2%	-79.5%	-0.6%	-0.4%
USA	1.3%	-1.7%	-1.7%	-48.2%	-0.3%	0.3%
Global	-0.6%	-1.7%	-1.7%	-61.0%	-0.6%	0.4%

– Avg real consumption: Non-cooperative $1.7\% \downarrow$ 1st-best carbon tax $0.6\% \downarrow$

	Non-Cooperative Carbon/Border Taxes			Globally C	Globally Optimal Carbon Taxes (1st be	
Country	$\Delta \operatorname{CO}_2$	ΔV	ΔW	$\Delta \operatorname{CO}_2$	ΔV	ΔW
EU	0.7%	-1.2%	-1.3%	-9.2%	0.0%	2.0%
BRA	-6.0%	-1.3%	-1.3%	-70.7%	-1.3%	-0.8%
CHN	3.0%	-1.0%	-1.0%	-69.3%	-1.3%	-0.9%
IND	1.1%	-4.4%	-4.4%	-76.0%	-2.6%	-2.1%
JPN	3.4%	-0.9%	-0.9%	-23.1%	-0.2%	1.5%
MEX	-1.6%	-3.2%	-3.2%	-79.5%	-0.6%	-0.4%
USA	1.3%	-1.7%	-1.7%	-48.2%	-0.3%	0.3%
Global	-0.6%	-1.7%	-1.7%	-61.0%	-0.6%	0.4%

– Avg real consumption: Non-cooperative $1.7\% \downarrow$ 1st-best carbon tax $0.6\% \downarrow$

	Non-Cooperative Carbon/Border Taxes			Globally C	Globally Optimal Carbon Taxes (1st be	
Country	$\Delta \operatorname{CO}_2$	ΔV	ΔW	$\Delta \operatorname{CO}_2$	ΔV	ΔW
EU	0.7%	-1.2%	-1.3%	-9.2%	0.0%	2.0%
BRA	-6.0%	-1.3%	-1.3%	-70.7%	-1.3%	-0.8%
CHN	3.0%	-1.0%	-1.0%	-69.3%	-1.3%	-0.9%
IND	1.1%	-4.4%	-4.4%	-76.0%	-2.6%	-2.1%
JPN	3.4%	-0.9%	-0.9%	-23.1%	-0.2%	1.5%
MEX	-1.6%	-3.2%	-3.2%	-79.5%	-0.6%	-0.4%
USA	1.3%	-1.7%	-1.7%	-48.2%	-0.3%	0.3%
Global	-0.6%	-1.7%	-1.7%	-61.0%	-0.6%	0.4%

– Avg real consumption: Non-cooperative $1.7\% \downarrow$ 1st-best carbon tax $0.6\% \downarrow$

Why are carbon border taxes ineffective at reducing global CO₂ emissions? (robustness)

1. border taxes cannot target non-traded but high-carbon goods/services:

 $-\frac{2}{3}$ of CO₂ emissions are generated by industries with $\frac{\text{Trade}}{\text{GDP}} < 0.1$

- 2. border taxes are not granular enough to induce firm-level abatement:
 - carbon border taxes are applied based on origin×industry-level CO₂ intensity
 - individual firms take *origin*×*industry*-level CO_2 intensity as given \rightarrow carbon border taxes have limited ability to induce firm-level abatement abroad.

Why are carbon border taxes ineffective at reducing global CO₂ emissions? Cobustness

1. border taxes cannot target non-traded but high-carbon goods/services:

 $-\frac{2}{3}$ of CO₂ emissions are generated by industries with $\frac{\text{Trade}}{\text{GDP}} < 0.1$

- 2. border taxes are not granular enough to induce firm-level abatement:
 - carbon border taxes are applied based on origin×industry-level CO₂ intensity
 - individual firms take *origin*×*industry*-level CO_2 intensity as given \rightarrow carbon border taxes have limited ability to induce firm-level abatement abroad.

 Proposal 2: Climate-conscious governments form a climate club and use collective trade penalties to induce global climate cooperation (Nordhaus, 2015). - Core members commit to rules of membership. Other countries play strategically:

	hade takes set by			
	Members	Non-members		
Against Members	zero	unilaterally optimal		
Against Non-members	unilaterally optimal	status quo (i.e., applied tariffs)		

Trade taxes set by

Carbon taxes set by

Members	Non-members		
globally optimal	status quo (i.e., unilaterally optimal)		

- By joining the club, a country
 - ... incurs a production loss by adopting a higher carbon tax,
 - ... but, it escapes the climate club's trade penalties.

Proposal #2: The Club of All Nations is a Nash Equilibrium

- The club-of-all-nations is a Nash equilibrium, no matter who core members are.
- Why? Because abandoning the club-of-all-nations is too costly.

Characterizing all Nash equilibria faces two major challenges:

- 1. Computing optimal trade penalties is strenuous w/ numerical optimization
 - Our analytical formulas for optimal trade penalties help us overcome this challenge.
- 2. Nash outcomes must be identified over 2^N possible outcomes.¹
 - To overcome the *curse of dimensionality*, we note that net benefits from joining the climate club rise with the number of existing members.
 - We use iterative elimination of dominated strategies to shrink the outcome space

 $^{^{1}}N$ denotes the number of countries that are not core members.

Proposal #2: The Efficacy of the Climate Club

- The makeup of core members is pivotal to the efficacy of the climate club.
- If EU is the only core member \rightarrow the club-of-only-EU is also a Nash eq.
- If EU + USA are core members \rightarrow the club-of-all-nations is the unique Nash eq.
 - Core members: EU, USA
 - 2nd round: CAN, ROW
 - 3rd round: AUS, IND, JPN, KOR, MEX, RUS, TUR, TWN
 - 4th & 5th round: CHN & BRA, IDN
- CO₂ reduction under a US-EU climate club:

$$\% \Delta \text{CO2}_{\text{global}} = \underbrace{-8.3\%}_{\text{EU \& US}} + \underbrace{-52.7\%}_{\text{Other members}} = -61.0\%$$

Proposal #2: The Efficacy of the Climate Club

- The makeup of core members is pivotal to the efficacy of the climate club.
- If EU is the only core member \rightarrow the club-of-only-EU is also a Nash eq.
- If EU + USA are core members \rightarrow the club-of-all-nations is the unique Nash eq.
 - Core members: EU, USA
 - 2nd round: CAN, ROW
 - 3rd round: AUS, IND, JPN, KOR, MEX, RUS, TUR, TWN
 - 4th & 5th round: CHN & BRA, IDN
- CO₂ reduction under a US-EU climate club:

$$\% \Delta CO2_{global} = -8.3\% + -52.7\% = -61.0\%$$

- Carbon border taxes have limited efficacy at curbing CO₂ emissions, because
 - most high-carbon goods/services never cross international borders
 - border taxes have a limited influence on firm-level abatement.

 The climate club can be highly effective at curbing CO₂ emissions, but its efficacy hinges critically on the make-up of core members.

- Carbon border taxes have limited efficacy at curbing CO₂ emissions, because
 - most high-carbon goods/services never cross international borders
 - border taxes have a limited influence on firm-level abatement.

 The climate club can be highly effective at curbing CO₂ emissions, but its efficacy hinges critically on the make-up of core members.

Related Literature

Optimal climate/environmental policy in open economies

- 2×2 or partial equilibrium: Markusen (1975), Copeland (1996), Hoel (1996)
- Kortum and Weisbach (2021): DFS with carbon externalities and energy markets

Quantitative general equilibrium models of climate/environmental policy

Babiker (2005), Elliott et al. (2010), Nordhaus (2015,2021), Bohringer et al. (2016), Larch and Wanner (2017), Cherniwchan et al. (2017), Shapiro and Walker (2018), Shapiro (2020)

Optimal policy in quantitative trade models

Costinot et al. (2015), Costinot et al. (2016), Lashkaripour and Lugovskyy (2021), Bartelme et al. (2019), Lashkaripour (2021); Beshkar and Lashkaripour (2020), Caliendo and Parro (2021)

Linkage in international cooperation

- Barrett (1997), Maggi (2016), Nordhaus (2015, 2021), Barrett and Dannenberg (2022)

Definitions of Unilaterally vs. Globally Optimal Policy

- Unilaterally optimal border, production, and carbon taxes solve

max W_i s.t. equibrium constraints

- Globally optimal border, production, and carbon taxes solve

$$\max \sum_{n} W_{n} \qquad s.t. \qquad equibrium \ constraints$$

[carbon tax]
$$au_{i,k}^{\star} = \tilde{\delta}_i$$
 [industrial subsidy] $1 + s_{i,k}^{\star} = \frac{\gamma_k}{\gamma_k - 1}$

[import tariff]
$$1 + t_{ji,k}^{\star} = 1 + \omega_{ji,k} + \frac{\gamma_k - 1}{\gamma_k} \tilde{\delta}_i v_{j,k}$$

$$[\text{export subsidy}] \quad 1 + x_{ij,k}^{\star} = \left(1 + \frac{1}{\varepsilon_{ij,k}}\right) \left[1 + \sum_{n \neq i} \left[t_{ni,k}^{\star} \frac{\lambda_{nj,k}}{1 - \lambda_{ij,k}}\right]\right]$$

Country i's Unilaterally Optimal Policy Schedule

[carbon tax]
$$\tau_{i,k}^{\star} = \tilde{\delta}_{i}$$
 [industrial subsidy] $1 + S_{i,k}^{\star} = \frac{\gamma_{k}}{\gamma_{k} - 1}$
uniform~industry-blind
[import tariff] $1 + t_{ji,k}^{\star} = 1 + \omega_{ji,k} + \frac{\gamma_{k} - 1}{\gamma_{k}} \tilde{\delta}_{i} \vee_{j,k}$
[export subsidy] $1 + x_{ij,k}^{\star} = \left(1 + \frac{1}{\varepsilon_{ij,k}}\right) \left[1 + \sum_{n \neq i} \left[t_{ni,k}^{\star} \frac{\lambda_{nj,k}}{1 - \lambda_{ij,k}}\right]\right]$
[carbon tax]
$$au_{i,k}^{\star} = \tilde{\delta}_i$$
 [industrial subsidy] $1 + s_{i,k}^{\star} = \frac{\gamma_k}{\gamma_k - 1}$

[import tariff]
$$1 + t_{ji,k}^{\star} = 1 + \omega_{ji,k} + \frac{\gamma_k - 1}{\gamma_k} \tilde{\delta}_i v_{j,k}$$

[export subsidy]
$$1 + x_{ij,k}^{\star} = \left(1 + \frac{1}{\varepsilon_{ij,k}}\right) \left[1 + \sum_{n \neq i} \left[t_{ni,k}^{\star} \frac{\lambda_{nj,k}}{1 - \lambda_{ij,k}}\right]\right]$$

Special Case: Small Open Economy

[carbon tax]
$$\tau_{i,k}^{\star} = \tilde{\delta}_i$$
 [industrial subsidy] $1 + s_{i,k}^{\star} = \frac{\gamma_k}{\gamma_k - 1}$

[import tariff]
$$1 + t_{ji,k}^{\star} = 1 + \frac{\gamma_k - 1}{\gamma_k} \tilde{\delta}_i v_{j,k}$$

export subsidy] $1 + x_{ij,k}^{\star} = \left(\frac{\sigma_k - 1}{\sigma_k}\right) \left[1 + \frac{\gamma_k - 1}{\gamma_k} \tilde{\delta}_i \sum_{n \neq i} v_{n,k} \frac{\lambda_{nj,k}}{1 - \lambda_{ij,k}}\right]$

- Suppose governments are cooperative but cannot raise their carbon tax beyond its unilaterally optimal level, $\tau_{i,k} = \tilde{\delta}_i$.
- Cooperative carbon border taxes that maximize global welfare, in that case, are

$$1 + t_{ji,k}^* = \left(1 + \tilde{\delta}_{-j} \,\nu_{j,k}\right) \frac{1 + (\sigma_k - 1)\lambda_{ii,k}}{1 + \left[1 + \tilde{\delta}_{-i}\nu_{i,k}\right](\sigma_k - 1)\lambda_{ii,k}}$$

- 1. 1st component taxes origin j's total CO₂ externality on RoW: $\tilde{\delta}_{-i} = \sum_{n \neq i} \tilde{\delta}_n$
- 2. 2nd component corrects for cross-substitution effects Return

- Suppose governments are cooperative but cannot raise their carbon tax beyond its unilaterally optimal level, $\tau_{i,k} = \tilde{\delta}_i$.
- Cooperative carbon border taxes that maximize global welfare, in that case, are

$$1 + t_{ji,k}^* = \left(1 + \tilde{\delta}_{-j} \nu_{j,k}\right) \frac{1 + (\sigma_k - 1)\lambda_{ii,k}}{1 + \left[1 + \tilde{\delta}_{-i}\nu_{i,k}\right](\sigma_k - 1)\lambda_{ii,k}}$$
carbon intensity

- 1. 1st component taxes origin j's total CO₂ externality on RoW: $\tilde{\delta}_{-i} = \sum_{n \neq i} \tilde{\delta}_n$
- 2. 2nd component corrects for cross-substitution effects Return

- Suppose governments are cooperative but cannot raise their carbon tax beyond its unilaterally optimal level, $\tau_{i,k} = \tilde{\delta}_i$.
- Cooperative carbon border taxes that maximize global welfare, in that case, are

$$1 + t_{ji,k}^* = \left(1 + \tilde{\delta}_{-j} \nu_{j,k}\right) \frac{1 + (\sigma_k - 1)\lambda_{ii,k}}{1 + \left[1 + \tilde{\delta}_{-i}\nu_{i,k}\right](\sigma_k - 1)\lambda_{ii,k}}$$
carbon intensity

- 1. 1st component taxes origin j's total CO₂ externality on RoW: $\tilde{\delta}_{-i} = \sum_{n \neq i} \tilde{\delta}_n$
- 2. 2nd component corrects for cross-substitution effects Return

- Suppose governments are cooperative but cannot raise their carbon tax beyond its unilaterally optimal level, $\tau_{i,k} = \tilde{\delta}_i$.
- Cooperative carbon border taxes that maximize global welfare, in that case, are

$$1 + t_{ji,k}^* = \left(1 + \tilde{\delta}_{-j} v_{j,k}\right) \frac{1 + (\sigma_k - 1)\lambda_{ii,k}}{1 + \left[1 + \tilde{\delta}_{-i}v_{i,k}\right](\sigma_k - 1)\lambda_{ii,k}}$$
carbon intensity

Cooperative carbon border taxes have two components:

1. 1st component taxes origin j's total CO₂ externality on RoW: $\tilde{\delta}_{-i} = \sum_{n \neq i} \tilde{\delta}_n$

2. 2nd component corrects for cross-substitution effects Return

- Suppose governments are cooperative but cannot raise their carbon tax beyond its unilaterally optimal level, $\tau_{i,k} = \tilde{\delta}_i$.
- Cooperative carbon border taxes that maximize global welfare, in that case, are

$$1 + t_{ji,k}^* = \left(1 + \tilde{\delta}_{-j} \nu_{j,k}\right) \frac{1 + (\sigma_k - 1)\lambda_{ii,k}}{1 + \left[1 + \tilde{\delta}_{-i}\nu_{i,k}\right](\sigma_k - 1)\lambda_{ii,k}}$$
carbon intensity

- 1. 1st component taxes origin j's total CO₂ externality on RoW: $\tilde{\delta}_{-i} = \sum_{n \neq i} \tilde{\delta}_n$
- 2. 2nd component corrects for cross-substitution effects Return

Globally Optimal Policy Schedule

- Suppose governments act *cooperatively* to maximize global welfare $\sum_{n} W_{n}$.
- The optimal policy under global climate cooperation is the following:

[carbon tax]
$$au_{i,k}^* = \sum_{n \in \mathbb{C}} \tilde{\delta}_n$$

[industrial subsidy]
$$1+s_{i,k}^*=rac{\gamma_k}{\gamma_k-1}$$

[trade taxes/subsidies]
$$\mathbf{x}_i^* = \mathbf{t}_i^* = \mathbf{0}$$

Globally Optimal Policy Schedule

- Suppose governments act *cooperatively* to maximize global welfare $\sum_{n} W_{n}$.
- The optimal policy under *global climate cooperation* is the following:

[industrial subsidy]
$$\tau_{i,k}^* = \sum_{n \in \mathbb{C}} \tilde{\delta}_n$$

$$\sup_{n \in \mathbb{C}} \text{ of } CO_2 \text{ externality} \text{ across all locations}$$

[trade taxes/subsidies]
$$\mathbf{x}_i^* = \mathbf{t}_i^* = \mathbf{0}$$

Globally Optimal Policy Schedule

- Suppose governments act *cooperatively* to maximize global welfare $\sum_n W_n$.
- The optimal policy under *global climate cooperation* is the following:

[industrial subsidy]
$$\tau_{i,k}^* = \sum_{n \in \mathbb{C}} \tilde{\delta}_n$$
sum of CO₂ externality across all locations
$$1 + s_{i,k}^* = \frac{\gamma_k}{\gamma_k - 1}$$

[trade taxes/subsidies]
$$\mathbf{x}_{i}^{*} = \mathbf{t}_{i}^{*} = \mathbf{0}$$

Country	Share of World GDP	Share of World CO2	Carbon Intensity (\overline{v}_i)	Emission Tax Rate $(\overline{\tau}_i)$	CO2 Disutility ($\tilde{\phi}_i$)	Normalized $\tilde{\phi}_i$
AUS	1.7%	1.4%	100.00	32.51	0.49	40.43
EU	27.2%	12.1%	53.57	80.41	19.12	100.00
BRA	2.4%	2.4%	121.33	13.43	0.28	16.70
CAN	2.0%	1.7%	102.68	20.83	0.37	25.90
CHN	13.6%	23.1%	204.31	6.93	0.82	8.61
IDN	1.0%	1.8%	218.95	8.43	0.07	10.48
IND	2.2%	6.5%	359.48	5.25	0.10	6.53
JPN	8.4%	2.9%	40.99	69.13	5.08	85.97
KOR	1.9%	1.6%	99.68	26.80	0.44	33.33
MEX	1.2%	1.4%	137.31	3.76	0.04	4.67
RUS	2.0%	5.8%	344.11	3.69	0.07	4.59
TUR	1.0%	0.9%	116.09	48.45	0.41	60.25
TWN	0.7%	0.8%	139.84	13.69	0.09	17.03
USA	21.1%	15.3%	87.32	18.18	3.35	22.61
RoW	13.5%	22.1%	197.23	2.21	0.26	2.75

	Industry	CO2 Emissions (% of total)	$\frac{\text{Trade}}{\text{GDP}}$	Carbon Intensity (v)	Carbon Input Share ($lpha$)	Trade Elasticity (σ – 1)	Markup $\left(\frac{\gamma}{\gamma-1}\right)$
1	Agriculture	19.9%	6.8%	100.0	0.020	2.05	1.46
2	Mining	8.0%	27.6%	40.4	0.019	1.80	1.53
3	Food	1.1%	9.0%	4.2	0.004	1.36	1.70
4	Textiles and Leather	0.4%	27.1%	4.2	0.005	0.86	2.11
5	Wood	0.2%	8.4%	5.4	0.010	3.42	1.28
6	Pulp and Paper	0.6%	8.9%	6.8	0.004	3.21	1.30
7	Coke and Petroleum	2.7%	17.9%	23.2	0.006	3.31	1.18
8	Chemicals	3.4%	24.6%	19.5	0.017	0.89	2.06
9	Rubber and Plastics	1.0%	14.0%	15.2	0.006	1.55	1.27
10	Non-Metallic Mineral	9.6%	13.1%	31.5	0.006	1.95	1.49
11	Metals	0.3%	25.9%	2.1	0.001	3.97	1.24
12	Machinery and Electronics	0.4%	37.1%	1.8	0.004	1.90	1.50
13	Transport Equipment	0.3%	23.3%	1.6	0.002	0.59	1.21
14	Manufacturing, Nec	0.4%	32.8%	10.1	0.005	0.59	1.91
15	Electricity, Gas and Water	32.0%	1.0%	205.5	0.018	7.14	1.12
16	Construction	0.9%	0.3%	2.1	0.008	7.14	1.10
17	Retail and Wholesale	1.8%	3.7%	2.6	0.009	6.93	1.14
18	Transportation	8.1%	10.9%	30.2	0.033	7.14	1.01
19	Other Services	9.0%	2.6%	4.1	0.007	1.59	1.60

EU's Optimal Carbon Border Taxes

	Δ <i>C</i> O2	$\Delta CO2$ as % of 1st-best	ΔV
Main specification (SCC = 31 $/tC$, ς = 0.62)	-0.62%	1.02%	-1.71%
SCC=68 \$/tC	-0.71%	1.01%	-1.72%
$\varsigma = 1$ (Cobb-Douglas)	-2.07%	2.85%	-1.64%
$CRS\;(\gamma\to\infty)$	-1.29%	2.16%	-1.63%
CRS with SCC = $68 $ \$/tC	-1.42%	2.04%	-1.64%
CRS with $\varsigma = 1$	-2.70%	3.74%	-1.64%
No ToT border taxes (base: zero tariffs)	-0.87%	1.42%	-0.01%
No ToT border taxes (base: applied tariffs)	-0.31%	0.51%	0.01%
Cooperative border taxes	-0.34%	0.56%	0.03%

Climate Club: Constant-Returns to Scale

CRS: $\gamma_k \to \infty$

Return

Climate Club: Alternative Carbon Demand Elasticities

$$\begin{array}{c|c} SCC= 31, \quad \varsigma = 0.25 \\ \hline Core \ Members \\ EU, USA \end{array} \begin{array}{c|c} 1st \ Round \\ CAN, \ ROW \end{array} \begin{array}{c|c} 2nd \ Round \\ AUS, \ JPN, \ KOR, \ RUS, \ TUR, \ TWN \end{array} \begin{array}{c|c} 3rd \ Round \\ MEX \end{array} \begin{array}{c|c} Remain \ Outside \ of \ the \ Club \\ BRA, \ IND, \ CHN, \ IDN \end{array}$$

SCC= 31,
$$\varsigma = 0.99$$

Core Members	1st Round	2nd Round	3rd Round
EU, USA	CAN, ROW	AUS, IND, JPN, KOR, MEX, RUS, TUR, TWN	BRA, CHN, IDN

$$SCC = 68, \quad \varsigma = 0.63$$

Core Members	1st Round	2nd Round	3rd-5th Round	Remain Outside of the Club
EU, USA	CAN, ROW	AUS, JPN, TWN	KOR, MEX, RUS, TUR	BRA, IND, CHN, IDN

