INTERGENERATIONAL CORRELATIONS IN LONGEVITY

Sandra E. Black (Columbia University) Neil Duzett (Texas A&M) Adriana Lleras-Muney (UCLA) Nolan Pope (University of Maryland) Joseph Price (BYU)

July 28, 2022

Motivation

- Substantial literature in economics on intergenerational correlations in socio-economic status
 - Income, education, and wealth (Solon 1992; Black and Devereux 2011; Stuhler 2018)
- Burgeoning literature on intergenerational correlations of health
 - Mother's and child's birth weight (Currie and Moretti 2007; Giuntella et al. 2022)
 - Self-reported health status, health indices, or specific conditions (Halliday et al. 2019, 2021; Andersen 2019; Thompson 2014)
- Longevity is a large component of welfare (Jones and Klenow 2016)
 - How correlated is longevity across generations?

What We Do

- Estimate the intergenerational correlation in longevity (IGCL) using new data:
 - Matches family trees available from Family Search to Census data
 - Large sample: over 8 million individuals born between 1880-1920
- Compare IGCL to:
 - IGCL of grandparents
 - Sibling and twin correlations in longevity
 - Correlations in socio-economic status
- Investigate:
 - The role of environment, genetics, and SES

Contribution to Literature

Economics:

- Little research examining intergenerational correlations in longevity
 - Longevity is a good summary measure of lifetime health
 - Strongly correlated with education, occupation & other SES measures, but contains additional information
- Longevity has advantages over other measures (SES, SRHS, conditions)
 - Observed for men and women
 - Easily computed
 - More comparable across time and location
 - Used across multiple generation

Demography:

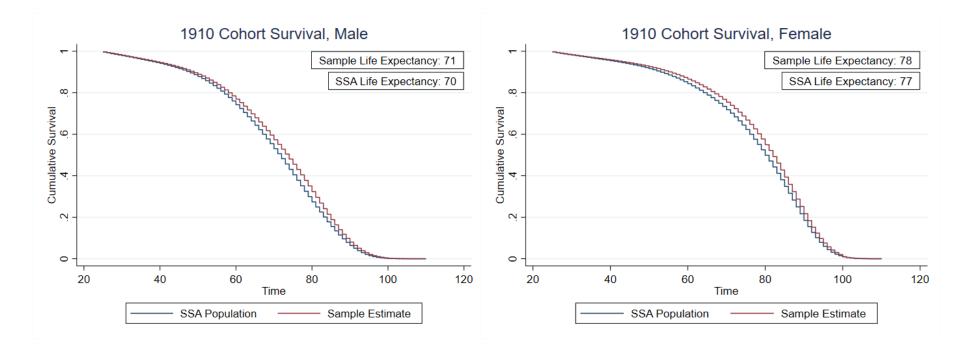
- Establish representativeness of the sample
- Substantially larger sample: can investigate subgroup heterogeneity
- Compare correlations in longevity to correlations in other economic outcomes

Data

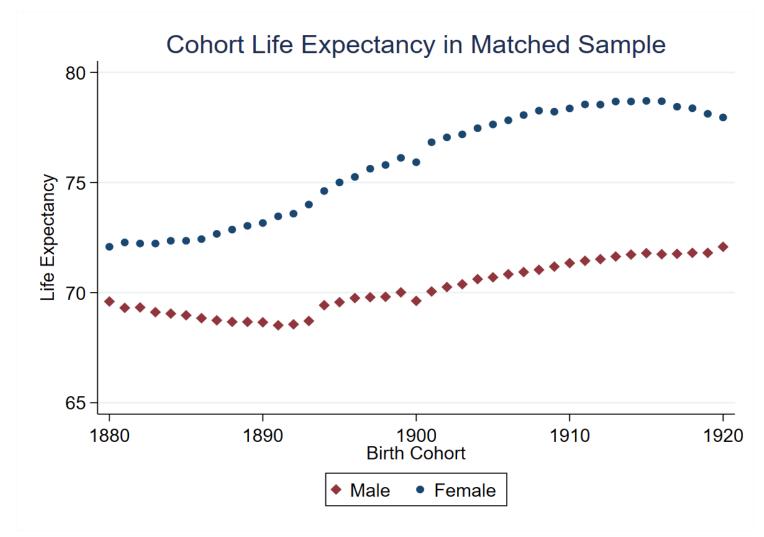
- Census data from 1900, 1910, and 1920
 - Focus on everyone who was born between the years 1880 and 1920
 - Also link to 1940 Census
- Family Search Family Tree data
 - Largest collection in world (1.3 billion individuals represented)
 - Profiles provide information on date of birth, date of death, and therefore longevity of children, parents, and grandparents
 - Match to Census using records attached to profiles on Family Tree
- Main sample: Over 8 million individuals
 - Both child and parent have data and lived past age 25
- Data issues
 - Who is represented?
 - Is the age at death data accurate?

Representativeness of Data

Variable	Matched Analysis Data	Matched Analysis Data (Weighted)	Full Census Sample
Female	0.458	0.460	0.444
Birth Year	1900	1893	1892
White	0.994	0.993	0.863
Black	0.004	0.005	0.128
Northeast	0.119	0.304	0.304
Midwest	0.411	0.299	0.299
South	0.351	0.301	0.301
West	0.118	0.082	0.082
Immigrant	0.011	0.029	0.190
Father is Immigrant	0.138	0.161	0.378
Mother is Immigrant	0.115	0.139	0.357
Observations	8,623,936	8,623,936	38,947,264


• Females well represented: improvement relative to other linked records

• Blacks and immigrants vastly under-represented: similar to other genealogical research


• Geographic distribution skewed towards Midwest; NE under-represented

• Older cohorts under-represented

Survival Profiles

- Individuals in our data live longer. Our data likely biased towards long lived, but SSA data also not clearly representative. Histograms reveals little <u>age-heaping</u>
- Similar for other cohorts

- Gender gap and its evolution consistent with prior research
- Decline in LE for males in 19th century maybe due to urbanization, effects of civil war (similar to trends in men's height)

Data Generating Model

$$L^{g}_{ijsc} = \delta \frac{1}{2} \Big[G^{f}_{jc-1} + \eta^{f}_{ijc} + G^{m}_{jsc-1} + \eta^{m}_{ijc} \Big] + \alpha_{sc} + \gamma^{g}_{i} + \theta^{SES}_{j} + \varepsilon_{i}$$

- Longevity of individual *i* born in family *j* in state *s* and cohort/year *c* depends on
 - Genes: individuals get a random $\frac{1}{2}$ from each parent $(G_{jsc-1}^{f}, G_{jsc-1}^{m})$ with some genetic variation $(\eta_{ijc}^{f}, \eta_{ijc}^{m})$
 - Environmental factors: technology, water/air quality, etc. (α_{sc})
 - SES: education, income, wealth, rank, etc. (θ_i^{SES})
 - Gender: genes, hormones, social effects (γ_i^g)
- Strong assumptions
 - Linearity. No gene-environment interactions. No behavior/optimization
 - Parental lifespan itself has no effect on child lifespan

Model Predictions

- IGCL captures:
 - Genetic component, including assortative mating
 - Environmental component
 - SES component
- If $\alpha_{sc} = \alpha_s$ (environment is stable) then:
 - $\beta_{twins} > \beta_{brothers} = \beta_{father-son} > \beta_{mother-son} > \beta_{father-mother}$
 - $\beta_{parent \ average} > \beta_{one \ parent}$
 - $\beta_{father} > \beta_{grandfather}$

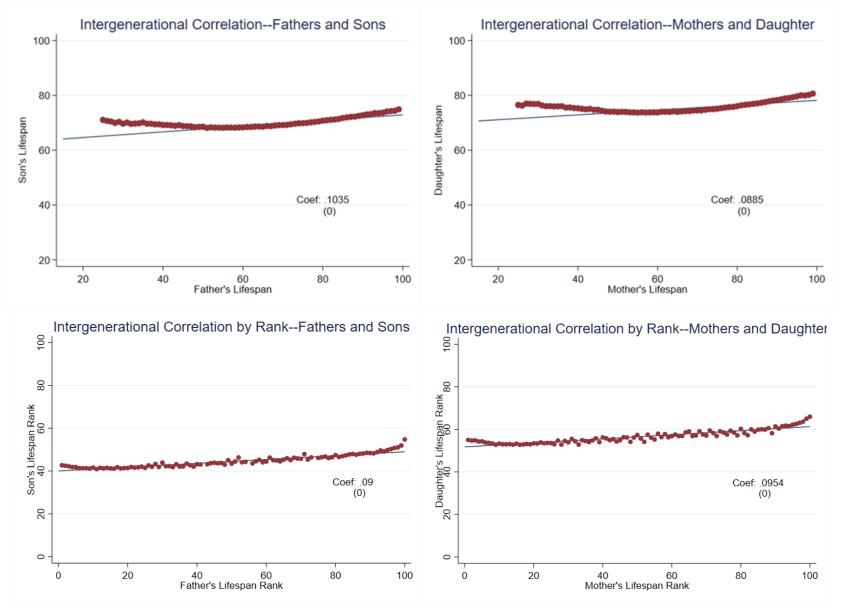
Estimation Strategy

$$L_i^C = \beta_0 + \beta_1 L_i^P + X\beta_2 + e_{ijc}$$

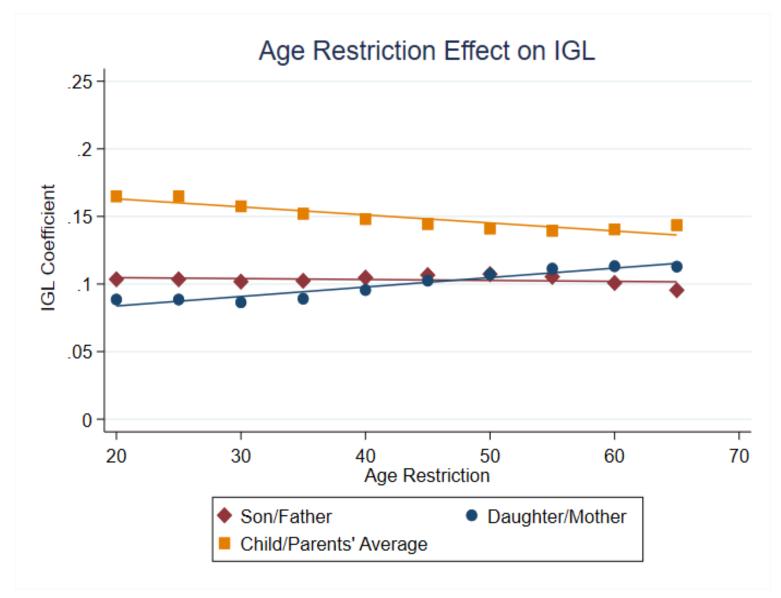
- L_i^C : age at death of individual *i*, conditional on surviving to age 25
- L_i^P : age at death of parent, conditional on surviving to age 25
- X is a set of control variables
 - Basic model controls for birth cohort for parents and children to account for longevity trends
- Robustness checks:
 - Different functional form
 - Additional controls
 - Linearity assumption
 - Cutoff choice (25, 35, etc.)

Results with Varying Controls

Model	No Controls	+ Parent and Child Birth Year FE	+ Parent and Child State of Birth FE	
Son/Father	0.104	0.109	0.106	0.106
	(0.001)	(0.001)	(0.001)	(0.001)
Daughter/Mother	0.088	0.088	0.086	0.086
	(0.001)	(0.001)	(0.001)	(0.001)

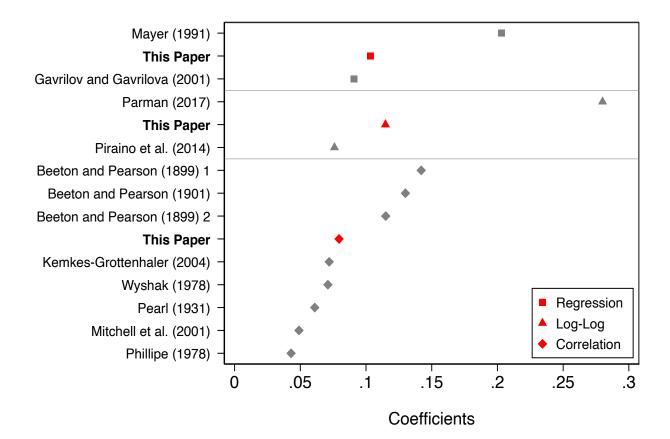

- Not sensitive to controls for birth year, birth state, race, or birth order
- IGCL tends to be larger for males than females

Results by Gender and Outcome


	Outcome					
 Model	Lifespan (Years)	Lifespan (Weighted*)	Percentile	Log Lifespan		
Son/Father	0.109	0.121	0.092	0.101		
	(0.001)	(0.001)	(0.000)	(0.001)		
Son/Mother	0.075	0.087	0.080	0.064		
	(0.001)	(0.001)	(0.000)	(0.001)		
Son/Parents' Average	0.170	0.192	0.164	0.168		
	(0.001)	(0.001)	(0.001)	(0.001)		
Daughter/Father	0.090	0.104	0.079	0.079		
C	(0.001)	(0.001)	(0.001)	(0.001)		
Daughter/Mother	0.088	0.106	0.095	0.074		
8	(0.001)	(0.001)	(0.001)	(0.001)		
Daughter/Parents' Average	0.170	0.199	0.167	0.163		
5 6	(0.001)	(0.002)	(0.001)	(0.001)		
Father/Mother	0.041	0.044	0.046	0.039		
	(0.001)	(0.001)	(0.001)	(0.001)		

- Reweighting and function form has limit impact on IGCL
- Verify $\beta_{father-son} > \beta_{mother-son} > \beta_{father-mother}$, and $\beta_{parent average} > \beta_{one parent}$ • Assortative mating based on langevity law
- Assortative mating based on longevity low

Testing for Linearity



Sensitivity to Truncation Age

Comparison to Previous Estimates

Father-Son

• Despite differences in sample, time period, and truncation, estimates are comparable, and all in the low range.

Multiple Generations

	Bivariate	Regressions	Multiple Regressions		
Variable	Son's	Daughter's	Son's	Daughter's	
	Lifespan	Lifespan	Lifespan	Lifespan	
Father's Lifespan	0.090	0.062	0.083	0.055	
	(0.002)	(0.003)	(0.002)	(0.003)	
Mother's Lifespan	0.068	0.076	0.062	0.071	
	(0.002)	(0.002)	(0.002)	(0.002)	
Paternal Grandfather's	0.031	0.023	0.025	0.017	
Lifespan	(0.002)	(0.003)	(0.002)	(0.003)	
Paternal Grandmother's	0.020	0.022	0.014	0.018 (0.002)	
Lifespan	(0.002)	(0.002)	(0.002)		
Maternal Grandfather's	0.033	0.027	0.028	0.021	
Lifespan	(0.002)	(0.003)	(0.002)	(0.003)	
Maternal Grandmother's	0.015	0.019	0.010	0.014	
Lifespan	(0.002)	(0.002)	(0.002)	(0.002)	
Observations	253,035	206,980	253,035	206,980	

• $\beta_{father} > \beta_{grandfather}$ as model predicts

• Grandparents still matter controlling for parents

Sibling Correlations

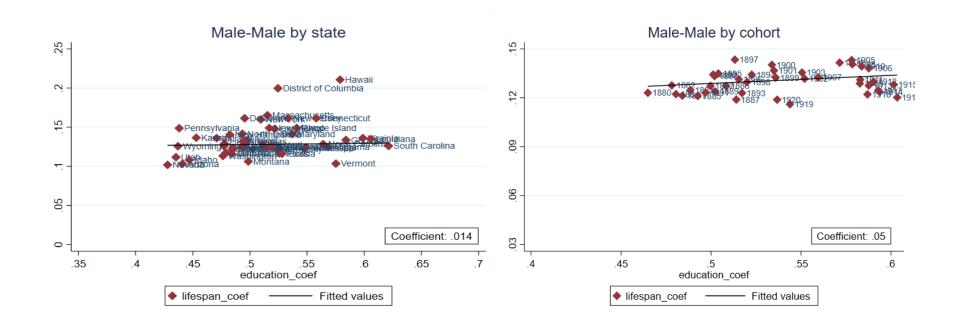
	Siblings					
Outcome:	Lifespan Education HH Income IGC					
Brother/Brother	0.139	0.537	0.248	0.095		
	(0.001)	(0.001)	(0.009)	(0.001)		
Ν	885,041	885,041	885,041	1,221,808		
Sister/Sister	0.105	0.577	0.256	0.079		
	(0.002)	(0.002)	(0.012)	(0.001)		
Ν	480,144	480,144	480,144	807,598		
Sister/Brother	0.040	0.508	0.209	0.087		
	(0.001)	(0.001)	(0.008)	(0.001)		
Ν	1,242,108	1.242.108	1,242,108	1,925,854		

- Sibling correlations in lifespan somewhat larger than the IGCL with father
- Sibling correlations in education and income are similar to those estimated in literature
- Correlations in education and income are substantially larger than in longevity

Twin Correlations

	Twins			
Outcome:	Lifespan	HH Income	IGCLF	
Brother/Brother	0.206	0.738	0.488	0.106
	(0.015)	(0.023)	(0.072)	(0.018)
Ν	4,966	5 1,582 1,620		4,957
Sister/Sister	0.199	0.745	0.481	0.094
	(0.018)	(0.026)	(0.041)	(0.021)
Ν	4,334	1,094	1,107	4,320
Sister/Brother	0.053	0.571	0.412	0.107
	(0.014)	(0.027)	(0.069)	(0.109)
N	5,357	1,413	1,491	5,354

- The correlation in longevity is larger for twins than siblings. Similar results for education and income.
- Sister/brother twin correlations are similar to sister/brother sibling correlations
- IGCL with father is similar to full sample

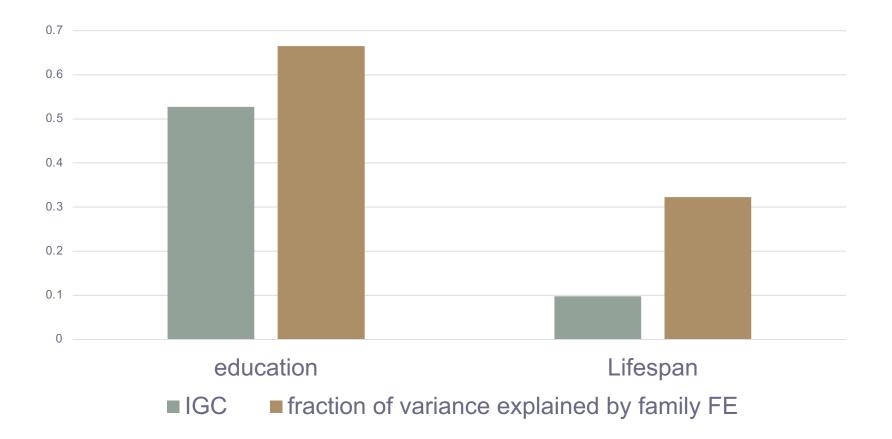

Role of SES in IGCL

Sample	sample with education education, income and occupation		sample with education		sample with education, income and occupation			
Parental Lifespan		Fat	her		Mother			
Panel A: Son Parental	n's lifespan							
Lifespan	0.0931	0.0918	0.0917	0.0904	0.0633	0.0607	0.0607	0.0606
Liiospaii	(0.0010)	(0.0010)	(0.0010)	(0.0010)	(0.0008)	(0.0008)	(0.0009)	(0.0008)
Child's	(0.0010)	(0.0010)	(0.0010)	(0.0010)	(0.0000)	(0.0000)	(0.000)	(0.0000)
Education		0.2203	0.2148	0.2661		0.2135	0.2111	0.2658
		(0.0036)	(0.0043)	(0.0041)		(0.0037)	(0.0043)	(0.0041)
Income/100			-0.0134	0.0015			-0.0168	-0.0008
			(0.0019)	(0.0011)			(0.0021)	(0.0011)
Occupation				-0.0501				-0.0535
I				(0.0012)				(0.0012)
Ν	1,613,293		1,450	6,619	1,61	3,293	1,45	6,619
R ²	0.0167	0.0191	0.0193	0.0205	0.0142	0.0165	0.0166	0.0180

• Very small effect on IGCL

- Similar results for daughters
- Education positive and significant, income and occupation of son negative (but positive for daughters)
- Weak test: more ideal test uses parental SES (not child)

SES and Longevity Sibling Correlations

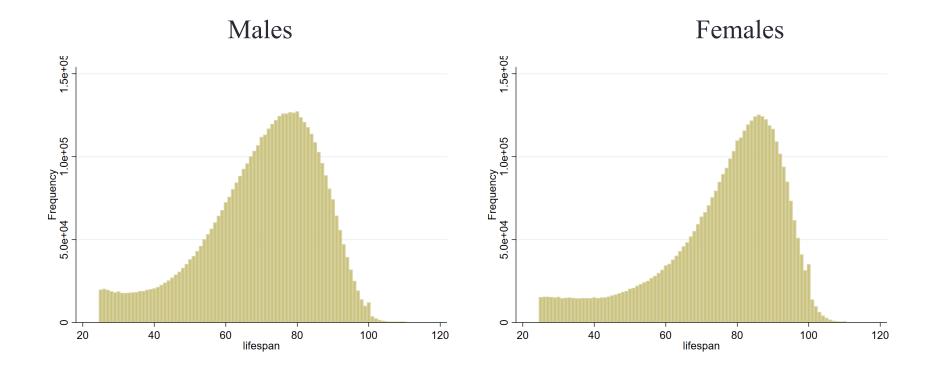


- Groups with higher correlations in education do not have higher correlations in longevity.
- Similar result for female-female estimates.

Why is IGCL low?

- 1. Measurement error
 - IGCL remains low in states/places with good data
 - Robust to when restricted to individuals with death certificates in tree
- 2. Large variance in lifespan conditional on inherited traits
 - Vaupel (1988) demonstrates that even if the correlations between parents and children in inherited frailty is 1, IGCL can be low if the stochastic component of longevity is large.

Variance Decomposition with Family FE



• Within family variance in longevity is much larger than for education

Conclusion: Longevity Mobility Is High

- IGCL is low: ~ 0.1 regardless of the measure or controls
 - Similar to previous demographic work despite differences in population, time period, etc.
- IGCL is much lower than correlations in SES (education, occupation, income)
 - Lower than IGC in health measures ~0.2-0.3 (Halliday et al. 2017, 2020)
 - Low heritability because fixed family factors explain only a modest amount of the variation in lifespan
- Simple additive model is a relatively good approximation
 - But some evidence from sibling and grandparents correlations demonstrates the limits of this model

Age at death distributions

Very little age heaping, except for age 100

