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Abstract

Forecasts of professional forecasters are anomalous: they are biased, forecast errors are

autocorrelated, and predictable by forecast revisions. Sticky or noisy information models

seem like unlikely explanations for these anomalies: professional forecasters pay attention con-

stantly and have precise knowledge of the data in question. We propose that these anomalies

arise because professional forecasters don’t know the model that generates the data. We show

that Bayesian agents learning about hard-to-learn features of the data generating process (low

frequency behavior) can generate all the prominent aggregate anomalies emphasized in the

literature. We show this for two applications: professional forecasts of nominal interest rates

for the sample period 1980-2019 and CBO forecasts of GDP growth for the sample period 1976-

2019. Our learning model for interest rates also provides an explanation for deviations from

the expectations hypothesis of the term structure that does not rely on time-variation in risk

premia.
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1 Introduction

For almost half a century, the assumption that people form rational expectations has dominated

economic modelling in macroeconomics and finance. During this time, a substantial empirical

literature has formulated and evaluated tests of rational expectations. One finding from this liter-

ature has been that even professional forecasters consistently fail such tests. Professional forecasts

seem to suffer from a long list of “anomalies.” For example, they are biased, forecast errors are

autocorrelated, and forecast revisions predict future forecast errors.

A related literature has tested the expectations hypothesis of the term structure. If the ex-

pectations hypothesis holds, yields on long-term bonds are the bond market’s forecast of future

short rates (modulo a constant risk premium). Empirical tests of the expectations hypothesis fail

spectacularly (e.g., Campbell and Shiller, 1991). One reaction to this finding is that risk premia

in the bond market are time varying (Wachter, 2006; Bansal and Shaliastovich, 2013; Vayanos and

Vila, 2021). An alternative view is that the this finding reflects forecasting anomalies among bond

traders (Froot, 1989).1

The traditional reaction to forecasting anomalies in macroeconomics is that they imply that

professional forecasters are irrational, i.e., that forecasters are not making efficient use of the infor-

mation available to them (Mincer and Zarnowitz, 1969; Friedman, 1980; Nordhaus, 1987; Maddala,

1991; Croushore, 1998; Schuh, 2001). Recent behavioral work develops this perspective (e.g. Bor-

dalo et al., 2020). An alternative reaction is that these anomalies result from information frictions

(Mankiw et al., 2003; Coibion and Gorodnichenko, 2012, 2015). The most prominent models of

information frictions in macroeconomics are sticky information models (Mankiw and Reis, 2002)

and noisy information models (Sims, 2003; Woodford, 2003). These models seem eminently plau-

sible for households and firms. Arguably, they are less well suited to explain the behavior of

professional forecasters (and bond traders). Professional forecasters read the news every day and

have no trouble observing the relevant data precisely (i.e., without noise).

In this paper, we consider another explanation. Standard tests of rational expectations impose

the very strong assumption that agents know the model that generates the variables that are being

forecast (parameter values and all). In reality, nobody knows the correct model of the world.

Since professional forecasters don’t know the correct model of the world, they use incoming data

to learn about how the world works. But such learning can fundamentally change the dynamics

1See also Bekaert, Hodrick, and Marshall (2001), Piazzesi, Salomao, and Schneider (2015), Cieslak (2018), Xu (2019),
and Nagel and Xu (2021).
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of even perfectly rational Bayesian forecasts. This idea has been recognized by researchers at least

since Friedman (1979).2

Realistic learning models are difficult to solve. As a consequence, early work on learning used

relatively simple models. But in such models, Bayesian learning occurs quickly, suggesting that

rational learning can’t explain forecasting anomalies that persist over multiple decades. Structural

breaks have sometimes been invoked as a reason why learning might persist over long periods of

time, but such arguments have been informal.

Bayesian learning can, however, be extremely slow in richer, more realistic models (Johannes,

Lochstoer, and Mou, 2016). Consider, for example, models with multiple unobserved components

some stationary and others containing a unit root. A key property of such models is that the long-

run trajectory of a variable may move quite independently from the short-run dynamics of that

variable (if the short-run dynamics are dominated by the stationary components). This means that

the quarter-to-quarter dynamics of the variable may be quite uninformative about its longer-run

properties. Since information about low-frequency properties accumulates slowly, learning about

the long run can be extremely slow. In such models, several different parameter combinations

may yield a similar fit for the high-frequency behavior of the series but may have very different

implications about the low-frequency behavior of the series. We show that in such cases it can

take many decades to learn the true parameters.3

We develop two applications of these ideas, one for forecasting nominal interest rates and

another for forecasting real GDP growth. In each case, we endow Bayesian forecasters with an un-

observed components model and initial beliefs about the parameters of this model. Each period,

these agents use real-time U.S. data to update their beliefs about the parameters and states of the

model. They then forecast the variable in question and we assess whether the resulting forecasts

are “anomalous.”

Our main result is that we are able to match all the main aggregate forecasting anomalies em-

phasized in the prior literature for both interest rates and real GDP when forecasters are endowed

with “reasonable” initial beliefs. In addition, we construct long-term yield data from our model-

generated forecasts of nominal interest rates assuming that the expectations hypothesis holds. We

2Other important papers that emphasize this idea include Caskey (1985), Lewis (1989b,a), Barsky and De Long
(1993), Timmermann (1993), Lewellen and Shanken (2002), Brav and Heaton (2002), Cogley and Sargent (2005), Collin-
Dufresne, Johannes, and Lochstoer (2016), Johannes, Lochstoer, and Mou (2016), Guo and Wachter (2019), Singleton
(2021).

3Collin-Dufresne, Johannes, and Lochstoer (2016) and Kozlowski, Veldkamp, and Venkateswaran (2020) develop
models with rare events in which Bayesian learning is slow.
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then run a battery of standard tests of the expectations hypothesis on these data. The model-

generated yield data fail the tests of the expectations hypothesis in exactly the same way as do

real-world bond yields. Notably, our sample period is roughly 40 years for the forecast data (60

years for the term structure data) and we endow our Bayesian agents with data back to the early

post-WWII period. Even though they learn for quite a few decades, agents’ forecasts continue to

display anomalies.

Since learning is slow in our unobserved components model, agents’ initial beliefs matter for a

long time. An important question is whether these findings rely on very tight (“dogmatic”) initial

beliefs. This is not the case. The initial beliefs we endow agents with are quite dispersed. In this

sense, we show that we can match the anomalous features of the forecast data with “reasonable”

initial beliefs. Furthermore, the initial beliefs we endow agents with accord well with historical

experience prior to our sample period. For example, our agents place small weight in 1951 on the

possibility that the nominal interest rate has a large random walk component. This is consistent

with the fact that (outside of war) the U.S. had been on a gold (or silver) standard almost continu-

ously from its founding until that point in time and interest rates had therefore been quite stable.

The large and persistent rise and fall in nominal interest rates that occurred subsequently was far

outside of what had been experienced up to that point in history.4

Our findings demonstrate that many apparent anomalies can be rationalized by the same un-

derlying phenomenon – initial beliefs that turn out (ex post) not to be centered on the “right”

location in the parameters space. While the initial beliefs required for our explanation to work are

quite dispersed, they are not flat. One might reasonably ask whether it is irrational for agents to

deviate from flat initial beliefs. Interestingly, however, we show that flat initial beliefs would not

have led to appreciably smaller root-mean-squared errors. This finding echos the more general

finding in the forecasting literature that allowing for unrestricted priors in complicated learning

models often does not improve forecasting performance.

A potential concern with our results is that perhaps we are able to match the forecast anomalies

we emphasize because we endow agents with a misspecified model. To address this concern and

understand better what drives our results, we conduct a Monte Carlo simulation of our model

for nominal interest rates. In this case, we know the true model and thus know that the agents

in our model are not learning using a misspecified model. We show that when initial beliefs are

centered on parameters that imply too little persistence in interest rates relative to the truth, our

4See Fama (2006, p. 360-361) for a narrative description of these ideas.
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model generates the kinds of anomalies we find in the data.5 In contrast, if initial beliefs are

centered on parameters that imply too much persistence, our model generates anomalies in the

opposite direction (e.g. negatively autocorrelated forecast errors and over-reaction rather than

under-reaction in Coibion and Gorodnichenko (2015) regressions). If initial beliefs happen to be

exactly centered on the true values in our Monte Carlo, no anomalies arise.

In the Monte Carlo simulations, we know what the truth is. When it comes to the real world,

there is no way of knowing what the truth is without learning, and learning about the long run

can be extremely slow. In our Monte Carlo simulation, a decade is a “blink in the eye” in terms

of learning about key parameters of in our model. Even after agents have been learning for 70

years, they are still very far from the truth and are inching towards the truth extremely slowly.

These results illustrate how, rational expectations tests can be very misleading even when run

over “long” periods of time. They are also related to the fact that unit root tests have low power

in “short samples” (short often being many decades).

Whether anomalies arise from Bayesian learning about parameters, however, depends cru-

cially on the nature of the data. If the fluctuations in a variable of interest are homoscedastic and

not very persistent, information about model parameters will accumulate quickly. The same is

true when a variable displays a regular pattern over and over again (such as daily and annual

cycles in the weather). In these cases, agents will learn the value of model parameters relatively

quickly and none of the issues we emphasize will persist for very long.

In our interest rate application, we focus on the mean forecast from the Survey of Professional

Forecasters. An important related literature has sought to understand the behavior of individual

forecasts relative to the mean forecast as well as forecast dispersion. Patton and Timmermann

(2010) document that disagreement among forecasters is largest about long-run outcomes and

persists over time. They argue that this points to the disagreement arising due to heterogene-

ity in priors rather than differences in information sets. We have chosen to abstract from such

heterogeneity for simplicity. (What we do is already very computationally demanding.)

Bordalo et al. (2020) document that while underreaction to news is a pervasive phenomenon

for consensus (i.e., mean) forecasts, the forecasts of individual forecasters tend to overreact to news

(although not for interest rates). They propose a model with two features to match these facts: 1)

noisy information to generate underreaction of consensus forecasts, 2) diagnostic expectations to

generate overreaction of individual forecasts. We view our model as an alternative to the first

5This result is similar in spirit to results in Gourinchas and Tornell (2004) about exchange rates.
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feature in Bordalo et al. (2020): uncertainty about the data generating process is (arguably) a more

plausible information friction than noisy information for professional forecasters. One could layer

diagnostic expectations on top of our model to match overreaction at the individual level, just as

Bordalo et al. (2020) combine diagnostic expectations with noisy information.6

Models in which learning has been shown to be important include long-run risk models and

models with disasters (Cogley and Sargent, 2008; Croce, Lettau, and Ludvigson, 2015; Collin-

Dufresne, Johannes, and Lochstoer, 2016; Kozlowski, Veldkamp, and Venkateswaran, 2020; Bidder

and Dew-Becker, 2016). Our work also relates to a rich literature on boundedly rational learning

in macroeconomics (e.g., Evans and Honkapohja, 2001; Sargent, 2001; Eusepi and Preston, 2011,

2018; Giacoletti, Laursen, and Singleton, 2018; Molavi, Tahbaz-Salehi, and Vedolin, 2021). Ben-

David, Graham, and Harvey (2013) provide evidence for Bayesian learning among firm CFOs.

The paper proceeds as follows. Section 2 describes our data. Section 3 reviews forecasting

anomalies for interest rates and real GDP data. Section 4 presents our model and results for nom-

inal interest interest rates. Section 5 presents our model and results for real GDP growth. Section

6 presents Monte Carlo simulation exercises aimed to shed light on why our results turn out the

way they do. Section 7 concludes.

2 Data

The paper discusses two applications, one to interest rate forecasting and the other to real GDP

forecasting. This section describes the data we use for these two applications in turn.

2.1 Interest Rate Data and Forecasts

The forecast data we use for the 3-month Treasury Bill (T-Bill) rate come from the Survey of Pro-

fessional Forecasters (SPF) conducted by the Federal Reserve Bank of Philadelphia. Our sample

period for these forecasts is 1981Q3 to 2019Q4. The SPF is a quarterly survey sent out to a rotating

panel of forecasters. We use the mean forecast across forecasters. Figure 1 plots these forecasts.

The survey is sent out near the end of the first month of each quarter. The forecast therefore

roughly coincides with the BEA’s advance report of the national income and product accounts.

Survey response deadlines are in the second to third week of the second month of the same quarter.

6Other important papers in this literature include Patton and Timmermann (2011), Andrade et al. (2016), Angeletos,
Huo, and Sastry (2020), Crump et al. (2021), Cao et al. (2021), Singleton (2021), Broer and Kohlhas (2022).
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Figure 1: SPF Forecasts of the 3-Month T-Bill Rate
Note: The black solid line is the 3-month T-bill rate. Each short gray line with five circles represents the SPF
forecasts made in a particular quarter about the then present quarter (first circle) and following four quarters
(subsequent four circles).

Survey respondents are asked to provide nowcasts and one to four quarter ahead forecasts of the

quarterly average 3-month T-Bill secondary market rate. The timing of these forecasts is as follows:

the nowcast pertains to the quarterly average rate at the end of the quarter when the survey is

received, and the subsequent forecasts pertain to quarterly averages for each of the following four

quarters.

The data we use on the 3-month T-Bill secondary market rate is from the Board of Governors of

the Federal Reserve System.7 Our sample period for this series is 1951Q2 to 2019Q4. Figure 2 plots

the series. To be consistent with the forecast data, we use quarterly averages of the daily interest

rate. We also use daily estimates of the zero-coupon yield curve from Liu and Wu (2020). Liu and

Wu estimate the zero-coupon yield curve for bonds of maturity 1 month to 30 years (360 months)

dating back to June 1961. We convert these data to quarterly data by computing the average yield

in a quarter. Our sample period for these zero coupon bond yields is 1961Q3 to 2019Q4.

7Specifically, we use the following series: https://fred.stlouisfed.org/series/TB3MS.
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Figure 2: The 3-Month T-Bill Rate

2.2 Real GDP Growth Data and Forecasts

The real GDP growth forecasts we analyze are from the Congressional Budget Office (CBO).8 Our

sample period for these forecasts is 1976 to 2019. The CBO releases its annual economic outlook

at the beginning of each year, where it provides projections for current and future real economic

growth. Since 1996, the CBO has made projections out to a horizon of 11 years. Before that, they

made projections out to a horizon of 6 years. The CBO forecasts the annual average level of real

output over each calendar year. Growth rates are then computed as percentage changes in these

average levels across years. Up to and including their 1992 report, the CBO forecast real Gross

National Product (GNP). Since then, they have forecast real Gross Domestic Product (GDP). For

expositional simplicity, we refer to these as real GDP forecasts throughout the paper.

The data we use on actual real GDP growth is from the Philadelphia Federal Reserve Bank’s

Real-Time Data Set. This source publishes monthly vintages of real-time real output back to

November of 1965. Most vintages contain data back to 1947Q1. However, a few vintages are

missing data before 1959Q3, which limits our sample period as we discuss in greater detail in

section 5.

8CBO forecasts of real GDP growth are very similar to analogous Blue Chip consensus real GDP growth forecasts
(Congressional Budget Office, 2021).
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Figure 3: CBO Forecasts of Real GDP Growth
Note: The black solid line is the 2021Q1 vintage of real GDP growth from 1976 to 2019. The broken black line
is the initial release of GDP growth at each point in time. Each short gray line with seven circles represents the
initial release of real GDP for the previous year (first circle) and the CBO forecasts made in a particular year
about GDP growth in the following six years (subsequent six circles).

3 Forecasting Anomalies

As we discuss in the introduction, the forecasts of professional forecasters exhibit a number of

“anomalies”—i.e., patterns that previous researchers have argued suggest deviations from fore-

cast rationality. Here we document a number of such anomalies for professional forecasts of the

3-month nominal T-bill rate and real GDP growth. We also document deviations from the expecta-

tions hypothesis of the term structure—which may arise from forecast anomalies on the part of the

bond market (but may alternatively be due to time-varying risk premia). The facts we document

in this section will be key empirical targets we seek to match with our models later in the paper.

The null hypotheses we consider below constitute tests of forecast rationality given two as-

sumptions: 1) that forecasters aim to minimize the mean squared error of their forecasts, implying

that optimal forecasts are equivalent to conditional expectations (Ftyt+h = Etyt+h), and 2) that

forecasters know the true model of the world. For the 3-month T-bill, we focus on forecast hori-

zons of one to four quarters. For real GDP growth, however, we focus on forecast horizons of one

to five years. These different forecasting horizons reflect differences in the horizons at which the

forecast anomalies are most striking for the 3-month T-bill yield vs. real GDP growth.
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Bias

A straightforward prediction of full-information rational expectations models is that forecasts

should be unbiased at all horizons. Let yt be the variable to be forecast, and let Ftyt+h de-

note the h-period ahead forecast of yt given time t information. Define the forecast error as

et+h|t ≡ yt+h − Ftyt+h. The bias in forecasts can then be estimated using the following regres-

sion:

et+h|t = α+ ut+h, (1)

with α = 0 indicating that forecasts are unbiased at a given horizon h.

Panel A of Table 1 displays our estimates of α for the 3-month T-bill rate and real output

growth. Our estimates indicate that professional forecasts of the T-bill rate display negative bias—

the truth being lower than the forecast on average—at all horizons and the magnitude of this bias

increases with the horizon. At the 4-quarter forecast horizon, SPF forecasters overestimate the true

T-bill rate by an average of 0.7 percentage points. These biases are statistically significant at the

1% level at all horizons. In contrast, there is little evidence of statistically significant bias in CBO

forecasts of GDP growth at the horizons we study.

Autocorrelated Forecast Errors

Another prediction of full-information rational expectations models is that forecast errors should

be serially uncorrelated. To assess this prediction, we consider the following regression of h-period

ahead forecast errors on their own past value h periods earlier (i.e., we consider the correlation of

contiguous, non-overlapping h-period forecasts):

et+h|t = α+ βet|t−h + ut+h. (2)

In a full-information setting, forecast rationality implies that α = 0 and β = 0, i.e., there should

be no bias and forecast errors should not be predictable by known information (the time t forecast

error).

Panel B of Table 1 reports our estimates of β from equation (2). SPF forecasts of the T-bill

display substantial positive autocorrelation. The 1-quarter forecast has an autocorrelation of 0.30.

This falls to 0.24 at three quarters. These estimates are statistically significantly different from zero,

especially at horizon two. CBO forecasts of GDP growth also display positive autocorrelation. But
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Table 1: Forecast Anomalies

Forecast Horizon

1 2 3 4 5

Panel A: Bias

T-Bill
-0.18*** -0.34*** -0.52*** -0.70***

–
(0.05) (0.09) (0.14) (0.19)

GDP Growth
0.27 -0.27 -0.54 -0.62 -0.52

(0.25) (0.35) (0.50) (0.53) (0.49)

Panel B: Autocorrelation

T-Bill
0.30* 0.27** 0.24* 0.13

–
(0.14) (0.12) (0.12) (0.13)

GDP Growth
0.22 0.16 0.11 0.08 0.08

(0.12) (0.14) (0.13) (0.18) (0.10)

Panel C: Mincer-Zarnowitz

T-Bill
0.97* 0.94** 0.90** 0.86**

–
(0.02) (0.02) (0.04) (0.05)

GDP Growth
0.94 0.60 0.03** -0.42*** -0.43***

(0.10) (0.38) (0.27) (0.18) (0.29)

Panel D: Coibion-Gorodnichenko

T-Bill
0.23* 0.34* 0.62***

– –
(0.12) (0.16) (0.16)

GDP Growth
0.08 0.00 0.50 -1.63** -1.46**

(0.08) (0.28) (0.58) (0.36) (0.40)

Note: The forecast horizons for the T-Bill are quarters, while the forecast horizons for the GDP growth are years.
Stars represent significance relative to the following hypotheses: α = 0 for bias, β = 0 for autocorrelation,
β = 1 for Mincer-Zarnowitz, β = 0 for Coibion-Gorodnichenko. P-values are computed using Newey-West
standard errors with lag length selected as L = d1.3×T 1/2e and fixed-b critical values, as proposed in Lazarus
et al. (2018). This corresponds to a bandwidth of 17 for the T-bill regressions and 9 for the GDP growth
regressions. * p < 0.1, ** p < 0.05, *** p < 0.01.

in this case the autocorrelation is smaller and not statistically significantly different from zero.

Mincer-Zarnowitz Regressions

A classic test of forecast rationality proposed by Mincer and Zarnowitz (1969) investigates the

intuitive prediction that the truth should on average move one-for-one with a rational forecast:

when the forecast rises by 1%, on average, the realized value should also rise by 1%. This predic-

tion can be analyzed using the regression

yt+h = α+ βFtyt+h + ut+h. (3)
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In a full-information setting, forecast rationality implies that α = 0 and β = 1, i.e., there should be

no bias and realized values should move one-for-one with forecasts.

Panel C of Table 1 reports our estimates of β from (3). In this case, it is the GDP growth forecasts

that display substantial deviations from the null of forecast rationality. While the estimate of β for

the 1-year ahead forecast is close to one, it falls sharply at longer horizons. For the 3-year ahead

forecast, we estimate a β close to zero. In other words, actual GDP growth is no more likely to

be high when it was forecast to be high three years earlier than when it was forecast to be low

three years earlier. For the 4-year and 5-year ahead forecast, we estimate negative values (high

forecasted growth predicts low growth on average). These three estimates are strongly statistically

significantly different from one. In contrast, our estimate of β for the T-bill forecasts are close to

one. They are somewhat below one and the difference is statistically significant. But the deviation

from the null of one is much less stark than in the case of GDP forecasts.

Coibion-Gorodnichenko Test

Another property of rational forecasts under full information is that they should not underreact or

overreact to new information. Coibion and Gorodnichenko (2015) propose the following regres-

sion to assess this:

et+h|t = α+ β(Ftyt+h − Ft−1yt+h) + ut+h.

Forecast rationality in a full-information setting implies that α = 0 and β = 0. Ftyt+h−Ft−1yt+h is

known at time t and forecast errors should not be predictable by known information. If β > 0, the

forecasts are said to suffer from “underreaction.” In this case, an increase in the forecast predicts a

situation where the new forecast is still too low on average, i.e., didn’t increase enough. If β < 0,

the forecasts are said to suffer from “overreaction.”

Panel D of Table 1 reports our estimates of β from (3). In this case, we see opposite anomalies

for the two applications we consider. For the T-bill forecasts, we see evidence of underreaction:

we estimate positive values for β rising from 0.22 at the 1-quarter horizon to 0.64 at the 3-quarter

horizon. For GDP growth forecasts, however, we estimate neither over- nor underreaction at short

horizons. At the 4-year and 5-year horizons, however, we estimate negative values of β indicating

overreaction.
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Table 2: Failures of the Expectations Hypothesis

Long Horizon n

2 3 4 8 12 20 40

Future Short Rates
-0.01*** 0.11*** 0.18*** 0.39** 0.57 0.74 0.71
(0.23) (0.23) (0.23) (0.23) (0.26) (0.23) (0.20)

Change in Long Rate
-1.02*** -0.91*** -1.03*** -1.29*** -1.61*** -2.04*** -2.75***
(0.45) (0.59) (0.62) (0.59) (0.57) (0.55) (0.87)

Note: The sample period is from 1961Q3 to 2019Q4. The top row reports estimates of β from regression (4).
The bottom row reports estimates of β from regression (5). In both cases, the horizon n is listed at the top of the
table. Stars represent significance relative to the hypothesis that β = 1. P-values are computed using Newey-
West standard errors with lag length selected as L = d1.3 × T 1/2e and fixed-b critical values, as proposed in
Lazarus et al. (2018). This corresponds to a bandwidth of 19. * p < 0.1, ** p < 0.05, *** p < 0.01.

Failures of the Expectations Hypothesis

The expectations hypothesis of the term structure implies that the yield on an n-period bond

should equal the average expected values of yields on 1-period bonds over the lifetime of the n-

period bond, up to a constant risk premium. This should hold regardless of the process followed

by the short rate. Following Campbell and Shiller (1991) and others, we can test this implication

with the following regression:

1

n

n−1∑
i=0

y
(1)
t+i − y

(1)
t = α+ β(y

(n)
t − y(1)

t ) + ut, (4)

where y(n)
t denotes the yield of a n-period bond at time t. The expectations hypothesis implies

that when the yield spread between short-term and long-term bonds (y
(n)
t − y(1)

t ) is high, short-

term bond yields will rise in the future (the dependent variable will be large). Specifically, the

expectations hypothesis implies that β = 1. Early papers estimating equation (4) include Fama

(1984) and Fama and Bliss (1987).

The first row in Table 2 presents our estimates of β in equation (4) for bonds of maturity 2 to

40 quarters. Consistent with a large earlier literature, we find that the null hypothesis of β = 1 is

resoundingly rejected at short horizons. At short horizons, our estimates of β are close to zero. As

the horizon grows, our estimate of β rises closer to one, but remains below one for all horizons we

consider.

Another implication of the expectations hypothesis of the term structure is that at times when

the yield spread is unusually high the yield on long bonds will rise. One intuition for this is that
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returns must be equalized (modulo a constant) for short-term and long-term bonds. If the yield

spread is high, then the long-bond yield needs to rise to reduce the return on the long bond so that

it can be equal to that of the short bond. Another intuition is that the high yield spread implies

that the short yield will rise over the life of the long bond. As time passes, the relatively low

current short rate will then drop out of the sum of future short rates that determines the long yield

(according to the expectations hypothesis). As this happens, the sum increases and so the long

yield should increase.

We can test this implication of the expectations hypothesis with the following regression:

y
(n−1)
t+1 − y(n)

t = α+ β

(
1

n− 1

)
(y

(n)
t − y(1)

t ) + ut. (5)

It is straightforward to show that the expectations hypothesis implies β = 1. Early papers estimat-

ing equation (5) include Shiller (1979), Shiller, Campbell, and Schoenholtz (1983), and Campbell

and Shiller (1991).

The second row of Table 2 presents our estimates of β in equation (5). Consistent with earlier

research, we find large deviations from the null of β = 1 implied by the expectations hypothesis.

We estimate values for β around negative one at short horizons and even larger negative values

at longer horizons. This means that when the yield spread is large the long rate has tended to fall

rather than rise as the expectation hypothesis implies that it should. The conventional interpre-

tation of this result is that it implies large predictable excess returns on the long bond when the

yield spread is high.

The previous literature has identified a number of potential econometric issues associated with

these tests of the expectations hypothesis. One issue is that, in regression (5), the long-term yield

appears in the dependent variable with a negative sign and in the regressor with a positive sign.

As a consequence, measurement error in the long yield will bias the estimated coefficient down-

ward and may even result in a negative estimate. Campbell and Shiller (1991) use instrumental

variables techniques to assess whether measurement error is the cause of the negative estimates

but find that the negative coefficients are quite robust. A second issue is small sample bias. This

issue was emphasized for regressions (4) and (5) by Bekaert, Hodrick, and Marshall (1997), who

show that for these regressions taking account of small sample bias strengthens the evidence

against the null of β = 1. We conduct Monte Carlo analysis in section 6 based on our model

from section 4. This analysis does find evidence of some small sample biases. But the quantitative
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magnitude of these biases is small.

4 Learning about Nominal Interest Rates

Traditional tests of forecast rationality evaluate the joint hypothesis that agents form conditional

expectations rationally, and that they know the true model that generates the data. Our goal is

to assess whether we can explain the forecast anomalies documented in section 3 by relaxing the

assumption that forecasters know the true model, while maintaining the assumption of Bayesian

updating. To this end, we consider agents who update their beliefs about how the world works

using Bayesian learning and then form real-time Bayesian forecasts.

Our first application is to learning about the 3-month T-bill rate (short rate). We begin by

presenting the model we assume the agents use to learn about and forecast the short rate. We then

describe the details of how they learn and forecast. Finally, we compare the resulting forecasts

with the SPF forecasts and longer-term yields.

4.1 An Unobserved Components Model for the Nominal Short Rate

Following Kozicki and Tinsley (2001), we propose a “shifting end-point” model for the short rate.9

Specifically, the model we assume agents use to learn about and forecast the short rate is:

yt = µt + xt (6)

µt = µt−1 +
√
γσηt, ηt ∼ N(0, 1), (7)

xt = ρxt−1 +
√

1− γσωt, ωt ∼ N(0, 1), (8)

Here, the short rate yt is modelled as the sum of two unobserved components: a permanent ran-

dom walk component µt and a transitory AR(1) component xt. The transitory component xt is

assumed have mean 0 and persistence ρ. Shocks to µt and xt are independent, normally dis-

tributed. The total variance of these two innovations to yt conditional on time t− 1 information is

σ2. The share of the variance of these innovations that is attributable to shocks to the permanent

component µt is assumed to be γ, with the complementary share 1−γ attributable to the transitory

component xt. We refer to this as the unobserved components (UC) model.

9See also van Dijk et al. (2014), Cieslak and Povala (2015), Bauer and Rudebusch (2020), Bianchi, Lettau, and Lud-
vigson (2020), and Crump et al. (2021).
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To gain intuition about the model, consider the h-period forecast of the short rate assuming

the unobserved components at time t and parameters of the model are known:

Etyt+h = µt + ρhxt (9)

This shows that µt corresponds to the long run forecast of the short rate (as h → ∞), while xt

captures short run deviations of the short rate from this long run forecast. The expectations hy-

pothesis implies that the yield on an n-period zero coupon bond is

y
(n)
t = c(n) +

1

n

n−1∑
h=0

Etyt+h = c(n) + µt +
1

n

n−1∑
h=0

ρhxt (10)

where c(n) denotes the constant risk premium on n-period bonds. Using language from the term

structure literature, we can say that µt represents a “level factor” for bond yields, while the “slope”

and “curvature” of the term structure are governed by xt.

Our model for the short rate abstracts from stochastic volatility. We have extensively analyzed

a version of the model with stochastic volatility (log σ2 following a random walk). This version of

the model yields similar results to the baseline model but the stochastic volatility adds substantial

computational complexity.

4.2 Bayesian Learning and Forecasting about the Nominal Short Rate

We assume that agents do not know the value of the unobserved components (states) µt and xt.

We furthermore assume that they do not know the value of the parameters ρ, γ, and σ. We endow

them with initial beliefs about these unknown states and parameters and data on the short rate.

We assume that they use Bayes Law to update their beliefs about the states and parameters over

time and then in each period construct forecasts of future short rates based on their then current

beliefs. More specifically, we start the agents off with initial beliefs in 1951Q2. The agents then

use data on the short rate from 1951Q2 onward to update their beliefs. Starting in 1961Q3 they

perform “online” forecasting of the short rate. In other words, each quarter they forecast the short

rate based their beliefs at that point in time.

The world did not begin in 1951Q2. So, why do we not use data going further back in time?

The reason for this is that the monetary policy regime in the U.S. was fundamentally different

before 1951Q2. In March 1951, the U.S. Treasury and the Federal Reserve reached an agreement
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– commonly referred to as the Treasury-Fed Accord – to separate government debt management

and monetary policy (Romero, 2013). Between 1942 and the Accord, the Federal Reserve abdicated

its monetary independence by committing to fix the short rate at a low value to aid the financing

of WWII and manage the massive government debt left after WWII. Before 1942, the U.S. had

for the most part been on a gold (or silver) standard. Rather than model these fundamentally

different monetary regimes explicitly, we start our analysis at the time of the Treasury-Fed Accord

and simply endow agents with initial beliefs at that date (which presumably reflect information

gleamed from the prior history).

We use a Gibbs Sampling algorithm (augmented with random walk Metropolis-Hastings steps

when needed) to sample from the posterior distribution of the model parameters and the latent

states at each time period t. We describe this algorithm in more detail in Appendix A. Armed

with an estimate of agent’s belief distribution for the unknown parameters and states in each time

period t, we use our unobserved components model to construct Bayesian forecasts of the future

evolution of the short rate – i.e., we calculate the posterior predictive distribution of future short

rates given beliefs at time t. We describe the algorithm we use to do this in Appendix B. We do

this for each quarter starting in 1961Q3, which is the first quarter for which we have zero-coupon

yield curve data.

An advantage of the fact that agents in our model are Bayesian is that we avoid having to

adopt the “anticipated utility” approach to agent forecasting (Kreps, 1998; Eusepi and Preston,

2018) which is common in research analyzing boundedly rational learning. Another advantage

is that it does not matter how we write our model. For example, our UC model has an ARIMA

representation. The Bayesian agents in our model see through the superficial difference between

the UC and ARIMA representation of our model. Whether we write the model one way or the

other therefore does not matter for our results (something that is not true in the case of boundedly

rational learning).

We assume that agents make their forecasts on the final day of each quarter. This implies that

they have access to the average level of the interest rate in that quarter and their “nowcast” is the

true realized interest rate for the quarter. This is an approximation: in reality, the SPF forecasters

only have information up to the second to third week of the second month of the quarter as we

discuss above.

The short rate was constrained by the zero lower bound (ZLB) towards the end of our sample

period. We define the period when the target federal funds rate was at or below 25 basis points
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as the ZLB period. This corresponds to 2009Q1 to 2015Q4 in our sample period. We view this

as a period when the desired short rate is censored (but for simplicity follows the same process

as before). Our approximation to Bayesian learning for this period is to assume that agents do

not update their beliefs about the parameters (ρ, γ, and σ) but that they continue to filter the

hidden states (µt and xt) using the parameter estimates from 2008Q4. Full learning then resumes

in 2016Q1. This short-cut allows us to avoid substantial additional complications which we believe

are unlikely to materially affect our results.10

4.3 Initial Beliefs about the Nominal Short Rate

If learning is fast, beliefs converge quickly to the truth and initial beliefs quickly cease to matter.

If learning is slow, beliefs will not converge quickly to the truth and initial beliefs will continue to

influence later beliefs non-trivially for a long time – as long as it takes for beliefs to converge to

the truth. In our setting, learning about the parameters ρ, γ, and σ is slow, while learning about

the states µt and xt is reasonably fast. Our choice of initial beliefs about µt and xt, therefore, does

not matter for our results as long as they are reasonable. We assume that initial beliefs about µt in

1951Q2 areN(y1951Q12, 1) and initial beliefs about xt in 1951Q2 areN(0, 1). These initial conditions

are assumed to have a correlation of -1 due to the form of the observation equation (6).

For ρ, γ, and σ we specify initial beliefs in 1951Q2 of the following form:

ρ ∼ N(µρ, σ
2
ρ), γ ∼ B(αγ , βγ), σ2 ∼ IG(ασ2 , βσ2),

whereB denotes a beta distribution and IG denotes an inverse-gamma distribution. As we discuss

above, these initial beliefs encode professional forecaster’s understanding of how the world works

as of 1951Q2, based on prior history. We search over the space of initial beliefs specified above for

the initial beliefs which can best rationalize the forecast anomalies we document in section 3. If

we can find a belief (or perhaps a set of beliefs) that can rationalize the forecast anomalies, then

we ask whether any of these beliefs can be viewed as a reasonable initial beliefs for professional

forecasters to have in 1951Q2. If so, we conclude that the forecast anomalies we have documented

can be explained by Bayesian learning and are therefore not necessarily evidence of forecaster

irrationality.

10A fuller treatment would explicitly allow for censoring of the desired short rate. This would require us to shift to
non-linear sampling methods and would thus increase run times by an order of magnitude. Intuitively, however, the
information learned about (ρ, γ, and σ) during this period would likely be minimal.
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To keep our analysis manageable, we fix the initial beliefs for σ by setting ασ2 = 1.25 and

βσ2 = 0.5625. This belief distribution is plotted in the bottom panel of Figure 4.11 This leaves four

parameters: µρ, σ2
ρ, αγ , βγ . We search over the space of these parameters to find beliefs that match

the forecast anomalies as well as possible. Specifically, for each point in this space, we construct

forecasts as described above and estimate the forecasting regressions discussed in section 3. We

then minimize an unweighted average of the square of the difference between the regression co-

efficients from the regressions based on model-generated forecasts and the regression coefficients

we estimated in section 3 based on real-world data. To focus on the subspace of “reasonable” ini-

tial beliefs, we constrain the mean of the prior for ρ, µρ, to be larger than 0.5. Appendix C provides

more detail.

The top two panels of Figure 4 plot the initial belief distributions for ρ and γ that minimize

the objective function discussed above. The belief distribution for ρ is concentrated on moder-

ately large values. It is centered at 0.76 and has a standard deviation of 0.07. With a ρ = 0.76 the

half-life of innovations to xt is roughly eight months. The belief distribution for γ is concentrated

on relatively small values. It has a mean of 0.09 and a standard deviation of 0.08. This implies

that forecasters believed in 1951Q2 that most of the variation in the short rate was due to transi-

tory fluctuations of moderate persistence (i.e., an xt with a ρ around 0.76) rather than permanent

fluctuations (µt).

Are the initial belief distributions plotted in Figure 4 reasonable? We argue they are for two

reasons. First, they are quite dispersed, i.e., they put substantial mass on a wide range of pa-

rameter combinations, a sufficiently wide range that we think they constitute plausible beliefs

forecasters might have had in 1951Q2. Second, the belief that γ was relatively small is arguably

consistent with the history of interest rates prior to 1951Q2. Outside of war, the United States

had been on a gold standard (or silver standard) almost continuously from its founding (and Eng-

land had been on a gold or bimetallic standard for hundreds of years before that). Over this long

time span, interest rates had been quite stable at low frequencies with most variation being rather

transient (due to seasonal cycles and financial crises). Given this history, it does not seem unrea-

sonable that forecasters’ beliefs were skewed towards believing that most fluctuations in interest

rates would be relatively transient. The long upward march of interest rates in the 1960s, 70s, and

early 80s and subsequent downward march of interest rates since then was completely without

11This belief distribution has a mode of 0.25. The standard deviation of the distribution is undefined for values of
ασ2 ≤ 2. Our choice of ασ2 = 1.25 is thus a very dispersed initial belief.
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Figure 4: Marginal Initial Beliefs Distributions: T-bill Rate Model
Note: Each panel plots the initial beliefs held in 1951Q2 by agents in our T-bill rate model for each of the three
model parameters: ρ, γ, and σ2 respectively.

parallel in history. It seems unlikely that forecasters in 1951Q2 would put much weight on such

an unprecedented sequence of events occurring.

While wider initial beliefs result in smaller forecast anomalies, they do not yield appreciably

smaller root-mean-squared errors (RMSE). In appendix C, we compare the RMSE of our baseline

model with cases where the forecasters have wider initial beliefs for ρ and γ. Moderately wider

initial beliefs yields ever so slightly smaller RMSE (less than 1% difference), while still wider initial

beliefs yield ever so slightly larger RMSE (again, less than 1% difference). All three cases yield

RMSE that are about 4% smaller than the SPF forecasts.

4.4 Model’s Fit to the Data

Figure 5 offers a visual depiction of the fit of the model’s forecasts to the data. The top panel plots

SPF forecasts of the short rate (the same data as is plotted in Figure 1). The bottom panel plots

the forecasts generated by our model with the initial beliefs discussed above. Our model captures

the fact that SPF forecasters tend to predict that the short rate will “mean revert” slowly towards

a “normal” value that is shifting over time, i.e., something close to average value of the short

rate over the past business cycle. For example, in the easing cycle of 1985-1987, SPF forecasters

consistently expect the short rate to rise. This leads them to be wrong in their forecast in the same
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Figure 5: Forecasted T-bill Rate: Data vs. Model
Note: The black solid line is the 3-month T-bill rate. Each short gray line with five circles represents forecasts made in a
particular quarter about the then present quarter (first circle) and following four quarters (subsequent four circles). In
the top panel, these forecasts are SPF forecasts. In the bottom panel, these forecasts are mean forecasts generated from
the UC model estimated in real-time.

direction over and over again. The same is true for agents in our model. This pattern repeats in

later easing cycles such as 1991-1993 and 2001-2003. When rates are rising, SPF forecasters expect

them to rise more slowly than they actually do. This occurs in 1988-1989, in 1994, and in 1999-2000

and leads to highly autocorrelated forecast errors. Our model matches this pattern.

More recently, the increasing use of forward guidance has led SPF forecasts to diverge from

what our model predict on occasion. A prominent example of this is the period 2012-2015, when

the Fed explicitly stated that they would keep the short rate at 0.25% for several years. Our model

does not incorporate this forward guidance and therefore fails to capture its effect on SPF forecasts.

Something similar occurs in 2004-2007 and 2018, when the Fed used forward guidance to inform

the market about the speed of tightening.

Table 3 presents results for the forecast anomaly regressions we analyze in section 3 for our

model-generated data (rows labelled “UC Model”) and compares these with analogous results for

the real-world data (rows labelled “SPF”). Despite our model having very few parameters, we are

able to match almost all the anomalies we have emphasized. For all four types of regressions and

at all horizons, our model matches the magnitude and statistical significance of the real-world

estimates quite closely. Specifically, our model generates a negative bias that increases in size
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Table 3: T-Bill Rate Forecast Anomalies: Model vs. Data

Forecast Horizon

1 2 3 4

Panel A: Bias

SPF
-0.18*** -0.34*** -0.52*** -0.70***
(0.05) (0.09) (0.14) (0.19)

UC Model
-0.15** -0.27** -0.40** -0.51**
(0.06) (0.11) (0.16) (0.21)

Panel B: Autocorrelation

SPF
0.30* 0.27** 0.24* 0.13
(0.14) (0.12) (0.12) (0.13)

UC Model
0.36* 0.39** 0.35** 0.23*
(0.17) (0.14) (0.11) (0.12)

Panel C: Mincer-Zarnowitz

SPF
0.97* 0.94** 0.90** 0.86**
(0.02) (0.02) (0.04) (0.05)

UC Model
0.96* 0.93** 0.88** 0.84***
(0.02) (0.03) (0.04) (0.05)

Panel D: Coibion-Gorodnichenko

SPF
0.23* 0.34* 0.62***

–
(0.12) (0.16) (0.16)

UC Model
0.39* 0.56 0.89*

–
(0.18) (0.37) (0.42)

Note: The forecast horizons are quarters. Stars represent significance relative to the following hypotheses:
α = 0 for bias, β = 0 for autocorrelation, β = 1 for Mincer-Zarnowitz, β = 0 for Coibion-Gorodnichenko.
P-values are computed using Newey-West standard errors with lag length selected as L = d1.3 × T 1/2e and
fixed-b critical values, as proposed in Lazarus et al. (2018). This corresponds to a bandwidth of 17. * p < 0.1,
** p < 0.05, *** p < 0.01.

with the horizon, as in the data; autocorrelation in forecast errors of about 0.35 at horizons one

through three and much less at horizon four, as in the data; Mincer-Zarnowitz coefficients slightly

below one and decreasing with the horizon, as in the data; and underreaction that grows with the

horizon, as in the data.

Table 4 presents results for the expectations hypothesis regressions we discuss in section 3

based on model-generated data and compares these results with those based on real-world data.

Again, our model matches the real-world anomalies both qualitatively and quantitatively. For

the future-short-rate regressions in Panel A, we estimate β coefficients close to zero at short hori-

zons, as in the data. The estimates then rise for longer-term bonds as they do for the data. For

the change-in-long-rate regressions in Panel B, we estimate β coefficients that are negative at all
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Table 4: Failures of the Expectations Hypothesis: Model vs. Data

Long Horizon n

2 3 4 8 12 20 40

Panel A: Future Short Rates

Data
-0.01*** 0.11*** 0.18*** 0.39** 0.57 0.74 0.71
(0.23) (0.23) (0.23) (0.23) (0.26) (0.23) (0.20)

UC Model
-0.11*** 0.08** 0.17** 0.56 0.81 0.93 0.99
(0.32) (0.32) (0.33) (0.38) (0.37) (0.31) (0.36)

Panel B: Change in Long Rate

Data
-1.02*** -0.91*** -1.03*** -1.29*** -1.61*** -2.04*** -2.75***
(0.45) (0.59) (0.62) (0.59) (0.57) (0.55) (0.87)

UC Model
-1.21*** -1.25*** -1.28*** -1.40*** -1.54*** -1.84*** -2.55**
(0.63) (0.64) (0.65) (0.70) (0.76) (0.88) (1.52)

Note: The sample period is from 1961Q3 to 2019Q4. The top panel reports estimates of β from regression
(4). The bottom panel reports estimates of β from regression (5). In both cases, the horizon n is listed at the
top of the table. Stars represent significance relative to the hypothesis that β = 1. P-values are computed
using Newey-West standard errors with lag length selected as L = d1.3× T 1/2e and fixed-b critical values, as
proposed in Lazarus et al. (2018). This corresponds to a bandwidth of 19. * p < 0.1, ** p < 0.05, *** p < 0.01.

horizons and increasingly so as the horizon increases. Quantitatively, our estimates are close to -1

at short horizons and decrease to -2.5 at long horizons. These patterns are quite consistent with

those in the real-world data.

Table 4 shows that our model provides an explanation for why the long rate has tended to fall

when the yield spread is large rather then rise as full-information rational expectations models

predict. In our model, this arises from learning. When the yield spread is large, agents in our

model tend to revise their estimate of the long-run level of the short rate (µt) downward by enough

to offset the forces embedded in full-information rational expectations models.

4.5 Parameter and State Estimates

Figure 6 plots the evolution of the mean of the posterior distributions of ρ, γ, and σ along with

90% credible intervals between 1961Q3 and 2019Q4. Relative to the initial beliefs presented in

Figure 4, agents’ estimates of ρ rise noticeably. The mean estimate of ρ is around 0.8 early in the

sample as compared to about 0.76 for the initial beliefs (in 1951Q2). It then gradually rises further

over the sample and is around 0.9 towards the end of the sample. Agents’ also revise their beliefs

about γ upward relative to the initial beliefs. The mean estimate of γ hovers between 0.1 and 0.2

for most of the sample. In both cases, agents are revising their beliefs in the direction of believing
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Figure 6: Parameter Estimates: T-bill Rate Model
Note: Each panel plots the evolution of beliefs about one of the three UC model parameters: ρ, γ, and σ. The black
solid line is the mean and the dotted black lines are the 5th and 95th percentiles of the posterior distribution for the
parameter in question. Recall that we only update beliefs about these parameters every fourth quarter.

that interest rate fluctuations are more persistent. The mean estimate of σ is around 0.4 early in

the sample. It rises sharply during the Volcker disinflation and gradually decreases after the early

1980s.

Figure 7 plots the mean estimate of µt over the course of the sample. The solid black line is the

mean of the “real-time” filtering distribution, i.e., the belief distribution about µt conditional on

data up to time t, while the solid gray line is the mean of the “ex-post” smoothing distributions,

i.e., the belief distribution about µt conditional on data up to 2019Q4. The broken black lines plot

90% credible intervals for the real-time filtering distribution.

It is interesting to compare the real-time filtering distribution and the ex-post smoothing distri-

bution in Figure 7. The real-time filtering distribution is consistently below the ex-post smoothing

distribution from the beginning of our sample until the early 1980s and then consistently above

from the early 1980s until very late in our sample. This reflects the fact that in real time the agents

in our model underestimate the persistence of the run-up of interest rates in the 1960s and 70s,

and again underestimate the persistence of the fall in interest rates after the early 1980s. Ex post,
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Figure 7: State Estimates: T-bill Rate Model
Note: This figure plots the evolution of beliefs about the permanent component µt. The black solid line is the posterior
mean of the real-time filtering distributions, the dotted black lines are the 5th and 95th percentiles of the posterior
real-time filtering distributions, and the solid gray line is the posterior mean of the ex-post smoothing distributions.

agents revise their view of history and conclude that both the run-up and fall in interest rates was

more persistent than they believed at the time. This helps explain the persistent downward drift

of long rates in the 1980s at a time when the yield spread was high.

4.6 Allowing for a Break in 1990

Much recent work on the term structure of interest rates restricts attention to data after 1990 be-

cause of a break in the behavior of the term structure around 1990. A possible reason for such a

break is that bond market traders at some point became convinced that the change in monetary

policy implemented by Paul Volcker and carried on by Alan Greenspan that focused monetary

policy on maintaining low and stable inflation was likely to be permanent.

In our baseline model, we do not allow forecasters to learn about the process that the short

rate follows from any other source than past data on the short rate itself. In reality, it is likely

that forecasters’ views are to some extent shaped by other sources of information. In particular,

it seems likely that the relentless rhetorical focus of Federal Reserve officials in the 1980s on their

commitment to keep inflation low going forward may have affected the views of bond market
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traders and forecasters about the future evolution of short term interest rates.

In our model, this amounts to forecasters and the bond market becoming convinced that γ was

likely to be smaller going forward than in the past. To capture this, we now consider a case where

we allow for a break in γ in 1990. Specifically, we redo our baseline short-rate analysis exactly as

before except that we allow the agents in the model to “reset” their beliefs about γ in 1990. We

assume that the new belief distribution of agents about γ in 1990 is γ ∼ B(αγ,2, βγ,2) and we search

over the values of αγ,2 and βγ,2 as well as the hyperparameters in the baseline case to best match

the forecast anomalies.

We find that beliefs about γ do indeed shift down in 1990: the mean of the distribution of γ

shifts from 0.19 to 0.11. In addition, the belief distribution becomes much more concentrated on

low values. The standard deviation of the belief distribution falls from 0.09 to 0.03. The fit of

the model to the forecast anomalies and expectations hypothesis regressions we focus on above

improves somewhat, but is fairly similar to the baseline case. However, the model with this break

allows us to match several additional features of the term structure quite well. (The full results for

this case are presented in Appendix D.)

Figure 8 plots the yield spread between a 10-year zero coupon bond and the 3-month Treasury

bill rate in the data and in the model. We see that the model is able to match quite well the many

ups and downs of the yield spread over this 50 year period. The main way in which the model-

implied spread differs from the spread in the data is that it is slightly less volatile.

Cochrane and Piazzesi (2005) present even more spectacular evidence of return predictability

than earlier work by Fama and Bliss (1987), Campbell and Shiller (1991), and others. They show

that a single factor predicts one-year excess returns on two- to five-year maturity bonds with an

R2 in excess of 0.4. We estimate a return predictability factor using the procedure of Cochrane and

Piazzesi on data from our model with the break in 1990. Our model can match the high R2 for

one-year excess returns on 2- to 5-year zero coupon bonds observed in the data: the R2 for these

predictive regressions on data from our model are between 0.46 and 0.50.

Giglio and Kelly (2018) argue that long-maturity assets display excess volatility that is hard to

reconcile with standard asset pricing models. They posit an affine term structure model, estimate

the parameters of this model off of medium-term bond prices (1 to 7 years), and then compare

the volatility of long-term bond prices implied by the estimated model with the actual volatility

of long-term bond prices. Their main result is that the actual volatility is larger than the volatility

implied by the affine term structure model. In appendix D, we show that our learning model can
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Figure 8: Yield Spread in the Data and the Model
Note: The Figure plots the spread between the yield on a 10-year zero coupon bond and the 3-month Treasury bill rate
for the data and the model.

generate this type of excess volatility. However, we also show that their excess volatility result is

sensitive to the details of which yields are used to estimate the affine terms structure model.

We find it quite plausible that ρ, γ, and σ have in fact undergone a number of structural breaks

over our sample period and will do so again in the future. A likely benefit of incorporating further

parameter breaks into our model would be to further perpetuate learning. In our model, agents

eventually learn the parameters and the anomalies disappear, although this takes many, many

decades. In a model where the parameters undergo occasional breaks, learning would continue

for much longer, potentially many centuries.

5 Learning about the Real GDP Growth

Our second application is to learning about real GDP growth. As in section 4, we begin by present-

ing the model we assume agents use to learn about and forecast GDP growth. We then describe

the details of how they learn and forecast. Finally, we compare the resulting forecasts with the

CBO forecasts we discussed in section 3.
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5.1 An Unobserved Components Model for GDP

A key issue for GDP forecasting has to do with the extent to which fluctuations in GDP are trend

stationary versus difference stationary. The model we assume agents use to learn about and fore-

cast real GDP allows for both trend-stationary and difference-stationary shocks:

yt = zt + xt (11)

∆zt = µ+
√
γσut, ut ∼ N(0, 1), (12)

xt = ρ1xt−1 + ρ2xt−2 +
√

1− γσvt, vt ∼ N(0, 1), (13)

where yt denotes quarterly log real GDP, zt is a difference-stationary component, and xt is a trend-

stationary component xt. The difference stationary component zt is assumed to follow a random

walk with drift µ. The trend-stationary component xt is assumed to follow a mean zero AR(2)

process with autoregressive coefficients ρ1 and ρ2. The conditional standard deviation of yt is

denoted σ. The share of innovations to yt that hit the difference-stationary component zt is γ,

with the complementary share 1 − γ hitting the trend-stationary component xt. The parameter γ

therefore governs “how big” the random walk component of GDP is (Cochrane, 1988). We refer

to this model as an unobserved components (UC) model. This model is slightly more complicated

than our model for interest rates. It has two extra parameters: µ to allow for a trend and ρ2 to

allow for hump-shaped dynamics.

5.2 Bayesian Learning and Forecasting about GDP

As in the interest rate application discussed in section 4, we assume that agents in the model do

not know the value of the unobserved components (states) zt and xt or parameters µ, ρ1, ρ2, σ,

and γ. We start the agents off with an initial belief distribution about these unknown states and

parameters in 1959Q3. This is the first date for which we have a full set of real-time GDP vintages

with which to do our analysis. The agents then observe (real-time) data on GDP and update their

beliefs about the states and parameters using Bayes Law. Below we plot results starting in 1976Q1.

This corresponds to the first period for which CBO forecasts are available.

We assume that agents have access to the first release of Q4 GDP for the prior year (the BLS’s

“advance release” for that quarter) when they forecast. This is meant to approximate the informa-

tion set the CBO has access to when it forecasts GDP each year. The CBO’s forecasts (contained
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in its Economic Outlook report) are typically released in January or February of each year. While

this is usually before the advance release of Q4 GDP for the previous year, much of the underlying

data that is used to construct the advance release has been made public at this point. This implies

that the Q4 advance release can be predicted fairly accurately. We therefore think that endowing

our model agents with the Q4 advance release is the best way to approximate the information set

of the CBO at the time it constructs its annual GDP forecast.

The parameters of the model and latent state estimates are updated every 4 quarters to line up

with the timing of when the CBO constructs forecasts. We describe the algorithm we use to update

agent’s beliefs in Appendix E. Armed with estimates of agent’s beliefs, we use our unobserved

components model to construct forecasts of GDP growth. We describe the algorithm we use to do

this in Appendix F.

5.3 Initial Beliefs about GDP

As in the interest rate application in section 4, learning about the parameters in our model for

GDP is slow and agents’ initial beliefs about the parameters matters. In contrast, learning about

the states zt and xt is reasonably fast, implying that initial beliefs about these states is less conse-

quential. We assume that agents’ initial beliefs about zt and xt in 1959Q3 are zt ∼ N(y1959Q3, 0.012)

and xt ∼ N(0, 0.012).

We specify initial beliefs for the parameters in 1959Q3 of the following form

ρ1 + ρ2 ∼ N(µρ, σ
2
ρ)I(ρ1, ρ2), ρ2 ∼ N(µρ2 , σ

2
ρ2)I(ρ1, ρ2),

γ ∼ B(αγ , βγ), µ ∼ N(µµ, σ
2
µ), σ ∼ IG(ασ, βσ).

where I(ρ1, ρ2) is an indicator function which is 1 if the xt process is stationary and 0 otherwise.

For more detail, see Appendix E.

We fix µµ = 0.01 and σµ = 0.01, corresponding to an initial belief for average annual long run

growth of 4%. We fix ασ = 7.0625 and βσ = 0.0014 corresponding to a mean initial belief for σ2

of 0.0152 and standard deviation of 0.01. That leaves 6 parameters to estimate to fit the forecast

anomalies presented in section 2, which we denote θ = (µρ, σρ, µρ2 , σρ2 , αγ , βγ)′. We do this in a

similar fashion to what we do in the interest rate application in section 4. Appendix G provides

details.12

12We place some bounds on the values of parameters that can be chosen in this estimation. Namely, we restrict
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Figure 9: Marginal Initial Beliefs Distributions: Real GDP Growth Model
Note: Each panel plots the initial beliefs held in 1959Q3 by agents in our model for the following five parameter
combinations: ρ1 + ρ2, ρ2, γ, µ, and σ2.

The resulting initial beliefs are plotted in Figure 9. We view these as reasonable initial beliefs in

that they are quite dispersed. For example, the initial belief distribution on ρ1 +ρ2 puts substantial

weight on values between 0.7 and 1. This range spans cases were the transitory component xt has

a modest half-life of less than a year and cases where it is very persistent. Likewise, the initial

belief for γ is centered close to 0.5 and has high variance. The initial belief for ρ2 embeds a belief

that the transitory component of GDP is hump-shaped. But again, this distribution has substantial

variance.

5.4 Model’s Fit to the Data

Figure 10 offers a visual depiction of the fit of the forecasts that our model generates to the data.

The top panel plots CBO forecasts of real GDP growth (the same data as is plotted in Figure 3).

The bottom panel plots the forecasts generated by our model with the initial beliefs discussed

above. The model is able to match the broad characteristics of CBO forecast errors. For example,

the standard deviation of the initial beliefs on ρ1 + ρ2, ρ2, and γ to be greater than or equal to 0.05. For the initial
belief distribution for γ, we additionally put an upper bound on the standard deviation of 0.15 and restrict the mode
of the distribution to be less than 0.6. The latter restriction imposes that agents believe at least 40% of the variation in
output comes from trend-stationary fluctuations. These restrictions are useful to guarantee dispersed initial beliefs and
to generate initial beliefs where a significant fraction of output fluctuations are trend-stationary.
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Figure 10: Forecast Whisker Plots: Real Economic Output Growth
Note: The black solid line is the most recent vintage of GDP growth estimates. The dashed black line is the initial release
of GDP growth for each period. Each short gray line with seven circles represents forecasts made in a particular year
about that year (first circle) and following six years (subsequent six circles). In the top panel, these forecasts are CBO
forecasts. In the bottom panel, these forecasts are mean forecasts generated from the UC model estimated in real-time.

the model matches the large forecast errors the CBO made in the early 2010s when it forecast that

the economy would grow unusually fast after the Great Recession but growth turned out to be

more modest. Also, the model generates persistent forecast errors in the late 1990s when growth

was high for several years but the CBO persistently forecast lower growth.

Table 5 presents results for the forecast anomaly regressions we analyze in section 3 for our

model-generated data (rows labelled “UC Model”) and compares these with analogous results

for the real-world data (rows labelled “CBO”). Our model is able to match the anomalies in the

CBO forecasts quite well. The most spectacular anomaly in the case of the CBO forecasts is for

the Mincer-Zarnowitz regressions in Panel C. These start off close to one at the one-year horizon

but fall to zero at the three-year horizon and to roughly -0.4 at the four and five-year horizons.

Our model is able to match this pattern quite well. The model also yields positively autocorre-

lated forecast errors, overreaction at long horizons in the Coibion-Gorodnichenko regression, and

negative bias. For almost all of the anomaly statistics, the model estimate is not statistically signif-

icantly different from the data estimate, though the exact numerical fit if not as impressive as in

our interest rate application.
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Table 5: Real GDP Forecast Anomalies: Model vs. Data

Forecast Horizon

1 2 3 4 5

Panel A: Bias

CBO
0.27 -0.27 -0.54 -0.62 -0.52

(0.25) (0.35) (0.50) (0.53) (0.49)

UC Model
-0.65 -1.65** -1.36** -0.85 -0.66
(0.32) (0.45) (0.45) (0.42) (0.40)

Panel B: Autocorrelation

CBO
0.22 0.16 0.11 0.08 0.08

(0.12) (0.14) (0.13) (0.18) (0.10)

UC Model
0.39* 0.31 0.23* 0.06 -0.05
(0.17) (0.16) (0.10) (0.10) (0.05)

Panel C: Mincer-Zarnowitz

CBO
0.94 0.60 0.03** -0.42*** -0.43***

(0.10) (0.38) (0.27) (0.18) (0.29)

UC Model
0.84 0.35** 0.34* -0.38*** -0.98**

(0.11) (0.17) (0.31) (0.19) (0.53)

Panel D: Coibion-Gorodnichenko

CBO
0.08 0.00 0.50 -1.63** -1.46**

(0.08) (0.28) (0.58) (0.36) (0.40)

UC Model
0.06 -0.76 -0.11 -0.78 -1.22**

(0.09) (0.44) (0.26) (0.39) (0.38)

Note: The forecast horizons are years. Stars represent significance relative to the following hypotheses: α = 0
for bias, β = 0 for autocorrelation, β = 1 for Mincer-Zarnowitz, β = 0 for Coibion-Gorodnichenko. P-values
are computed using Newey-West standard errors with lag length selected as L = d1.3 × T 1/2e and fixed-b
critical values, as proposed in Lazarus et al. (2018). This corresponds to a bandwidth of 9. * p < 0.1, **
p < 0.05, *** p < 0.01.

5.5 Parameter Estimates

Figure 11 plots the evolution of the mean of the posterior distributions of the five parameters of

our model for GDP along with 90% credible intervals over the period 1976 and 2019. Perhaps

the most striking feature of Figure 11 is how little beliefs about the parameters change over time.

We do see that σ trends downward by a modest amount, likely reflecting the Great Moderation.

Also, ρ2 trends modestly upward. But ρ1, γ, and µ change very little. This lack of change reflects

a combination of at least two things. First, it may be that some of the parameters are close to

their true values. Second, for those parameters that are further away from their true values, little

information can be gleaned from the data about their true values resulting in posterior beliefs
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Figure 11: Parameter Estimates: Real Economic Output Growth
Note: Each panel plots the evolution of beliefs about one of the five UC model parameters: ρ1, ρ2, γ, µ, and
σ. The black solid line is the mean and the dotted black lines are the 5th and 95th percentiles of the posterior
distribution for the parameter in question. Recall that we only update beliefs about these parameters every
fourth quarter.

being little changed even over a 40 year period. This is perhaps not surprising given how difficult

it is to distinguish between difference-stationary time series and persistent but trend-stationary

time series.

6 Why Does it Work?

To understand better why it is that our Bayesian learning model can match the forecast anomalies

that we document in section 3, we now simulate data from the model we use in section 4 and assess

how learning occurs in this model. Relative to the analysis earlier in the paper, in this section, we

know the true data generating process. We can therefore assess how long it takes agents to learn

the truth and how initial beliefs that differ in various ways from the truth affect results from the

forecasting regressions we consider in section 3.
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Figure 12: Truth and Initial Beliefs for Three Simulations
Note: The figure plots the truth (gray vertical line) and initial belief distribution (black line) for ρ (left column),
γ (middle column), and σ (right column) for the three cases we consider. The first row of figures is the Unbi-
ased Initial Beliefs case, the middle row is the Downward-Biased Initial Beliefs case, and the bottom row is the
Upward-Biased Initial Beliefs case.

Recall that the model we use for the short rate in section 4 is:

yt = µt + xt (14)

µt = µt−1 +
√
γσηt, ηt ∼ N(0, 1), (15)

xt = ρxt−1 +
√

1− γσωt, ωt ∼ N(0, 1). (16)

We present results for three cases which we refer to as a case of unbiased initial beliefs,

downward-biased initial beliefs, and upward-biased initial beliefs. Figure 12 plots the true param-

eter values (gray vertical lines) and initial belief distributions (black lines) for these three cases. A

more detailed description follows:

– Unbiased Initial Beliefs: In this case, we set the true parameters to values ρ = 0.95, γ = 0.3,

and σ = 0.5. These values are close to the mean of the belief distribution we estimate from

the real-world data in the second half of our sample. We assume that agents in the model
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have an initial belief distribution with the property that the mode of the belief distribution

for each parameter is equal to the truth:

ρ ∼ N(0.95, 0.01), γ ∼ B(9.052, 19.788), σ2 ∼ IG(1.25, 0.5625).

– Downward-Biased Initial Beliefs: In this case, we again set the true parameters to values

ρ = 0.95, γ = 0.3, and σ = 0.5. We however assume that agents in the model have an initial

belief distribution with the property that the modes of the belief distributions for ρ and γ are

smaller than the truth:

ρ ∼ N(0.4, 0.01), γ ∼ B(2.34, 26.5), σ2 ∼ IG(1.25, 0.5625).

• Upward-Biased Initial Beliefs: In this case, we set the true parameters to values ρ = 0.1,

γ = 0.01, and σ = 0.5. We then assume that agents in the model have an initial belief

distribution with the property that the modes of the belief distributions for ρ and γ are larger

than the truth:

ρ ∼ N(0.95, 0.01), γ ∼ B(9.052, 19.788), σ2 ∼ IG(1.25, 0.5625).

The reason why we choose different true values for this case is that the true value of ρ used

in the other two cases is sufficiently large that it is difficult to illustrate the effects of beliefs

that are upward biased relative to this truth.

For each of these three sets of assumptions, we simulate 500 samples of the same length as

the short rate data we use in section 4, i.e., 275 periods corresponding to the sample period from

1951Q2 to 2019Q4. For each of these simulated data series, we then perform the same exercise as

we did in section 4. Given their initial beliefs, the agents in the model learn about the parameters

of the model using the short rate series and Bayes Law. They then construct Bayesian forecasts.

The length of the sample period for the Bayesian forecasts is the same as for the real-world data.

We then run the same forecast rationality and expectations hypothesis tests on the resulting data

as we did on the real-world data in section 4.

Tables 6 and 7 present the results from this analysis. Table 6 presents results on autocorrela-

tion of forecast errors, the Mincer-Zarnowitz test, and Coibion-Gorodnichenko tests of over- and
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Table 6: Forecast Anomalies in Simulated Data

Forecast Horizon

1 2 3 4

Panel A: Autocorrelation

Unbiased Initial Beliefs
0.01 0.00 -0.00 -0.01

(0.08) (0.09) (0.11) (0.13)
1.00 1.00 0.99 0.84

Downward-Biased Initial Beliefs
0.16 0.19 0.19 0.18

(0.09) (0.10) (0.12) (0.14)
0.93 0.78 0.61 0.33

Upward-Biased Initial Beliefs
-0.34 -0.32 -0.28 -0.26
(0.06) (0.07) (0.08) (0.08)
1.00 1.00 1.00 1.00

Panel B: Mincer-Zarnowitz

Unbiased Initial Beliefs
0.96 0.92 0.88 0.83

(0.03) (0.05) (0.08) (0.11)
0.58 0.62 0.57 0.53

Downward-Biased Initial Beliefs
0.98 0.95 0.90 0.85

(0.03) (0.05) (0.08) (0.11)
0.27 0.40 0.45 0.47

Upward-Biased Initial Beliefs
0.37 0.33 0.34 0.35

(0.17) (0.22) (0.25) (0.27)
1.00 1.00 1.00 0.99

Panel C: Coibion-Gorodnichenko

Unbiased Initial Beliefs
0.01 0.01 0.01

–(0.09) (0.12) (0.15)
0.99 0.99 1.00

Downward-Biased Initial Beliefs
0.18 0.32 0.41

–(0.11) (0.19) (0.25)
0.66 0.55 0.79

Upward-Biased Initial Beliefs
-0.52 -0.55 -0.53

–(0.10) (0.13) (0.17)
1.00 1.00 1.00

Note: The top number for each case is the mean estimate across simulations. The middle number for
each case (in parentheses) is the standard deviation across simulations. The bottom number for each
case is the fraction of simulations that give a smaller estimate than the real-world data.

underreaction, while Table 7 presents results on the two tests of the expectations hypothesis we

consider in section 3. In each case, we report three statistics. The first is the mean estimated co-

efficient across the 500 simulations; the second statistic is the standard deviation of the estimated

effects across simulations (in parentheses); and the third statistic is the fraction of simulations that

give a smaller estimate than the estimate based on real-world data.

The main finding from this analysis is that the downward-biased initial beliefs simulation
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Table 7: Failures of the Expectations Hypothesis in Simulated Data

Long Horizon n

2 3 4 8 12 20 40

Panel A: Future Short Rates

Unbiased Initial Beliefs
0.95 1.01 1.05 1.19 1.31 1.51 2.06

(0.64) (0.63) (0.66) (0.72) (0.76) (0.82) (1.03)
0.07 0.07 0.08 0.12 0.16 0.16 0.08

Downward-Biased Initial Beliefs
0.17 0.20 0.23 0.33 0.42 0.57 0.97

(0.19) (0.21) (0.22) (0.29) (0.33) (0.40) (0.56)
0.17 0.30 0.38 0.57 0.65 0.66 0.29

Upward-Biased Initial Beliefs
2.46 2.14 1.97 1.71 1.64 1.59 1.50

(0.21) (0.16) (0.14) (0.09) (0.07) (0.06) (0.05)
0.00 0.00 0.00 0.00 0.00 0.00 0.00

Panel B: Change in Long Rate

Unbiased Initial Beliefs
0.90 0.93 0.95 1.01 1.08 1.20 2.08

(1.27) (1.32) (1.36) (1.50) (1.63) (1.92) (3.00)
0.07 0.08 0.07 0.06 0.05 0.03 0.03

Downward-Biased Initial Beliefs
-0.66 -0.69 -0.74 -1.03 -1.39 -2.04 -3.62
(0.38) (0.40) (0.42) (0.52) (0.64) (0.91) (1.84)
0.17 0.28 0.24 0.32 0.34 0.51 0.66

Upward-Biased Initial Beliefs
3.91 4.13 4.38 5.59 6.90 9.56 13.77

(0.42) (0.42) (0.42) (0.51) (0.62) (0.86) (1.62)
0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: The top number for each case is the mean estimate across simulations. The middle number for each case (in paren-
theses) is the standard deviation across simulations. The bottom number for each case is the fraction of simulations that
give a smaller estimate than the real-world data.

roughly matches all of the anomalies we document in real-world data. This simulation yields

positively autocorrelated forecast errors, underreaction in the Coibion-Gorodnichenko regression,

values below one in the future-short-rate regression, and negative values for the change-in-long-

rate regressions. In virtually all cases, the downward-biased initial beliefs simulation is quantita-

tively consistent with our real-world estimates of the anomalies in the sense that the real-world

estimate is well within the 95% central probability mass of the distribution of estimates from the

simulation.

In sharp contrast, the upward-biased initial belief simulation yields anomalies with the op-

posite sign from what we see in the real-world data. This simulation yields negatively autocor-

related forecast errors, overreaction in the Coibion-Gorodnichenko regression, and values above

one in both the future-short-rate regression and the change-in-long-rate regression. In addition

to this, the upward-biased initial beliefs simulation also yields a very different pattern from the
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Figure 13: Parameter Learning with Downward-Biased Initial Beliefs
Note: The figure plots the evolution of beliefs about ρ (left panel) and γ (right panel) over time when agents
start off with downward-biased initial beliefs. The solid gray line is the truth. The solid black line is the
evolution over time of the the mean point estimate across simulation. Recall that the point estimate in a
particular simulation is the mean of the belief distribution of the parameter in question in that simulation. The
broken black lines plot the evolution of the 90% and 10% quantiles of the distribution of point estimates across
simulations.

real-world data for the Mincer-Zarnowitz regression, while the downward-biased initial beliefs

simulation matches the real-world data for this regression as well.

Finally, the unbiased initial beliefs simulation yields results that are in most cases consistent

with full-information rational expectations on average. It yields virtually no autocorrelation of

forecast errors and a coefficient very close to zero in the Coibion-Gorodnichenko regressions (i.e.,

neither underreaction nor overreaction). For the expectations hypothesis regressions, it yields

coefficients that are on average slightly larger than one at longer horizons. But the value one is

not far from the middle of the distribution of coefficients across simulations.

From these results, we conclude that beliefs in society about interest rates in 1951 that under-

estimated the extent to which fluctuations in interest rates would be persistent relative to what

turned out to be the case provide an explanation for the forecast anomalies and failures of the

expectations hypothesis that we discuss in section 3. As we discuss earlier in the paper, such be-

liefs seem reasonable given the prior history of interest rate movements. Outside of war, the U.S.

had been on a gold or silver standard and a run-up and run-down of interest rates such as was

experiences from the 1960s to the 2000s had never before happened.

It is instructive to consider the speed of learning about the key parameters ρ and γ in the sim-
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ulations with downward-biased initial beliefs. Figure 13 plots the evolution of beliefs about these

parameters over time in the simulations. The gray line denotes the true value of the parameters.

The solid black line plots the evolution of the mean point estimate of the parameters across sim-

ulations from 1951Q2 to 2019Q4. In 1951, the point estimates of both ρ and γ are substantially

below the truth. Over time, both estimates rise, but this happens very slowly and both continue to

be substantially below the truth at the end of the sample – when agents have been learning about

these parameters for almost 70 years.

Figure 13 shows that it takes substantially longer than 70 years for the agents in our model to

learn the true values of the parameters ρ and γ. One reason for this is that increases in ρ and γ both

increase the persistence of fluctuations in the short rate. When agents revise upward their beliefs

about the persistence of the short rate, they face the problem of whether the higher persistence is

due to a more persistent xt process (i.e., a higher ρ) or to a more volatile µt process (i.e., higher γ).

This is an example of what Johannes, Lochstoer, and Mou (2016) refer to as confounded learning,

which they argue slows down learning. Figure 14 compares the speed of learning about ρ in the

downward-biased case with a case that is the same as the downward-biased case except that γ is

set (very close) to zero and agents have a very tight initial belief distribution around the true value

of γ – i.e., we turn off variation in µt and learning about γ. In this case, learning about ρ is much

quicker.

Figure 14 shows that confounded learning (i.e., having two unobserved persistent compo-

nents) slows down learning in our setting. But even when variation in µt and learning about γ

has been shut down, learning about ρ still takes quite a few decades. This illustrates that learning

about the persistence of highly persistent time series processes is quite slow. Unit root tests have

low power for similar reasons.

An important point to emphasize is that the agents in the model cannot exploit past forecast

anomalies to improve their forecasts. Agents are already optimally incorporating new information

to update their beliefs through Bayes Rule. At every point in time, the agents in the model expect

that their future forecasts will be free of anomalies. In our simple model, this will eventually be

true once their beliefs have converged to the true parameters. In the short run each new data point

on average moves their beliefs a little bit closer to those true parameters. This process is slowed

down by the fact that each data point contains relatively little information about the long-run

dynamics of the short rate.
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Figure 14: Learning about Persistence with Different Values for γ
Note: The figure plots the evolution of beliefs about ρ for the downward-biased case (solid black line) and for
a case that is the same as the downward-biased case except that γ is set (very close) to zero agents have very
tight initial beliefs around the true value of γ (dashed black line). The solid gray line is the truth.

7 Conclusion

In this paper, we provide a new interpretation of well-known forecast anomalies of professional

forecasters. We stress that tests of forecast rationality are joint tests of rationality and the notion

that forecasters know the true model of the world. We relax the assumption that forecasters know

the true model of the world and show that the anomalies can be explained via Bayesian learning

of unobserved components models. Since the anomalies in question persist for decades, it is im-

portant that learning is slow in our setting. We show that learning is indeed extremely slow in the

type of unobserved components model we consider. This implies that forecasters with reasonable

initial beliefs that turn out not be centered on the truth result in forecast anomalies of the kind

we observe in the data that persist for decades. We also perform a simulation exercise in which

we know the true value of the parameters. We show in this exercise that reasonably dispersed

initial beliefs can yield extremely persistent forecast anomalies. In this simulation exercise, we

know that agents are using a correctly-specified model to learn and yet learning is extremely slow.

Forecast anomalies can thus arise in part for the same reason that it is hard for econometricians

to distinguish certain classes of models / parameters even with decades of data, e.g., it is hard to
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reject a unit root in many macroeconomic settings.
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A Bayesian Updating about Parameters and States for Interest Rates

In this appendix, we describe in more detail the Gibbs Sampling algorithm we use to sample

from the joint posterior of the model parameters and latent states in the UC model for the short

rate. Define the vector of the parameters and latent states of the model through date t as θ ≡

(ρ, γ, σ,µ1:t,x1:t)
′. Let p(θ) denote the joint prior over the parameter vector θ. Let L(y1:t|θ) denote

the likelihood function of the data through time t, given a set of parameters θ. Our goal is to

sample from the posterior of the parameters given the data, p(θ|y1:t), where we know

p(θ|y1:t) ∝ L(y1:t|θ)p(θ)

We assume functional forms for the initial beliefs as follows

ρ ∼ N(µρ, σ
2
ρ)

γ ∼ B(αγ , βγ)

σ2 ∼ IG(ασ2 , βσ2)

The initial beliefs for the states are given by

µ1951Q2 ∼ N(y1951Q2, 1)

x1951Q2 ∼ N(0, 1)

where y1952Q2 denotes the 3-month Treasury bill rate in 1952Q2.

We start with an initial guess of the parameters θ(0) =
(
ρ(0), γ(0), σ(0),µ

(0)
1:t ,x

(0)
1:t

)′
. Given a

draw of the parameters θ(b), we draw θ(b+1) as follows:

1. Draw ρ(b+1)|γ(b), σ(b),µ
(b)
1:t ,x

(b)
1:t ,y1:t. Given the other parameters, beliefs about ρ can be up-

dated from the autoregression

x
(b)
t = ρx

(b)
t−1 +

√
1− γ(b)σ(b)ωt
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Define

σ̃2
ρ ≡

σ−2
ρ +

∑t
s=2

(
x

(b)
s−1

)2

(
1− γ(b)

) (
σ(b)

)2

−1

µ̃ρ ≡ σ̃2
ρ

[
µρ
σ2
ρ

+

∑t
s=2 x

(b)
s−1x

(b)
s(

1− γ(b)
) (
σ(b)

)2
]

The posterior of ρ is N(µ̃ρ, σ̃
2
ρ) and thus we draw ρ(b+1) ∼ N(µ̃ρ, σ̃

2
ρ).

2. Draw γ(b+1)|ρ(b+1), σ(b),µ
(b)
1:t ,x

(b)
1:t ,y1:t. There is no closed form expression for the posterior

of γ. We therefore draw it using a random walk Metropolis-Hastings step. Specifically, we

draw a proposal γ̃(b+1) ∼ N(γ(b), σ2
γ,prop) where σ2

γ,prop is a proposal variance chosen such

that this step has between a 25 and 40% acceptance rate over the burn-in period. We then set

γ(b+1) = γ̃(b+1) with probability αb+1, where

αb+1 ≡
L
(
y1:t|ρ(b+1), γ̃(b+1), σ(b),µ

(b)
1:t ,x

(b)
1:t

)
pγ
(
γ̃(b+1)

)
L
(
y1:t|ρ(b+1), γ(b), σ(b),µ

(b)
1:t ,x

(b)
1:t

)
pγ
(
γ(b)
)

Otherwise we set γ(b+1) = γ(b).

3. Draw σ(b+1)|ρ(b+1), γ(b+1),µ
(b)
1:t ,x

(b)
1:t ,y1:t. Given the other parameters, beliefs about σ can be

updated from the two equations

µ
(b)
t = µ

(b)
t−1 +

√
γ(b+1)σηt

x
(b)
t = ρ(b+1)x

(b)
t−1 +

√
1− γ(b+1)σωt

Since ηt and ωt are independent, these regression equations can be treated as two indepen-

dent sources of information for σ2. It is as if beliefs about σ2 are first updated using informa-

tion about {ηs}ts=2 where σηs = µs−µs−1√
γ and then updated using information about {ωs}ts=2

where σωs = xs−ρxs−1√
1−γ . These are each samples of t − 1 observations which can be used to
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learn about σ2 using standard conjugate prior updating. Define

α̃σ2 ≡ ασ2 + (t− 1)

β̃σ2 ≡ βσ2 +

∑t
s=2

(
µ

(b)
s − µ(b)

s−1

)2

2γ(b+1)
+

∑t
s=2

(
x

(b)
s − ρ(b+1)x

(b)
s−1

)2

2
(
1− γ(b+1)

)
The posterior of σ2 is IG(α̃σ2 , β̃σ2) and thus we draw

(
σ(b)

)2 ∼ IG(α̃σ2 , β̃σ2).

4. Draw µ
(b+1)
1:t ,x

(b+1)
1:t |ρ(b+1), γ(b+1), σ(b+1),y1:t. This can be done using the standard Kalman

filter and simulation smoother.

This algorithm is repeated to produce B draws from the posterior distribution of the parame-

ters and states at each time t.

B Bayesian Forecasting of Interest Rates

The algorithm described in Appendix A yields B samples of the posterior of the states and pa-

rameters of our UC model at each point in time t. We index these samples by b as follows{
ρ(b), γ(b), σ(b),µ

(b)
1:t ,x

(b)
1:t

}B
b=1

. Draws b for which ρ(b) > 1 are not used for forecasting as they imply

explosive dynamics in interest rates. We then use the following algorithm to produce a real-time

forecast distribution for the yield curve at time t:

1. For each b = 1, . . . , B

(a) Simulate a path of shocks
{
η

(b)
t+h, ω

(b)
t+h

}H
h=1

from the standard Normal distribution.

(b) Starting from h = 1, construct a simulated path of the states overH subsequent periods

using equations (7)-(8):

µ
(b)
t+h = µ

(b)
t+h−1|t +

√
γ(b)σ(b)η

(b)
t+h

x
(b)
t+h = ρ(b)x

(b)
t+h−1|t +

√
1− γ(b)σ(b)ω

(b)
t+h

(c) Use the simulated states to construct the forecast distribution of the short rate{
y

(b)
t+h|t

}H
h=1

where

y
(b)
t+h|t = µ

(b)
t+h|t + x

(b)
t+h|t
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2. The forecast of yt+h given time t information is computed as

Ftyt+h =
1

B

B∑
b=1

y
(b)
t+h|t

The implied yield of a bonds of maturity n is given by

y
(n)
t = c(n) +

1

n

n−1∑
h=0

Ftyt+h

We estimate the constant c(n) as the average level of the corresponding n-period bond yield in the

data since it is not identified from the expectations hypothesis alone. Note that this estimate of the

constant does not affect the results of the expectations hypothesis regression tests we run since it

only affects the level of the n-period yield.

At the end of the estimation we are left with a sequence of model-implied 1 to H-quarter

ahead forecasts {Ftyt+h}Hh=1 and model-implied yields
{
y

(h)
t

}H
h=1

for every quarter t from 1961Q3

to 2019Q4.

C Search over Initial Beliefs for Nominal Short Rate

Let θ = (αρ, βρ, αγ , βγ)′. Let α = {αh}Hh=1 and β = {βh}Hh=1 denote vectors of estimated coef-

ficients from the forecasting anomaly regressions for different horizons up through a maximum

horizon ofH using the SPF and yield curve data. Let α̂ = {α̂h}Hh=1 and β̂ =
{
β̂h

}H
h=1

denote those

same quantities estimated on the model implied forecasts and yields for a particular value of θ.

Define the moment function as

https : //www.overleaf.com/project/5fe122a5d2991bb3a6770275m̂(θ) =



αbias − α̂bias

βar − β̂ar

βmz − β̂mz

βcg − β̂cg

βsr − β̂sr

βlr − β̂lr


(17)

The parameters are then estimated via the simulated method of moments (SMM) with an iden-
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Table C.1: Root-Mean-Squared Errors: Ratio of Model to SPF

Forecast Horizon

1 2 3 4 Mean

Baseline 0.96 0.98 0.97 0.96 0.96
Highly Dispersed 0.95 0.98 0.97 0.97 0.97

Note: The table reports the ratio of the root-mean-squared error (RMSE) of forecasts from our model for in-
terest rates with different initial beliefs to the RMSE of SPF forecasts. The baseline initial beliefs for ρ are
N(0.6, 0.122). The initial beliefs in the‘highly dispersed’ case are N(0.6, 0.312). The baseline initial beliefs for
γ are B(2.3, 19.7). The initial beliefs in the ‘highly dispersed’ case are B(1.13, 2.9). The ‘Mean’ column reports
the average ratio across the four horizons.

tity weighting matrix

θ̂ = argmaxθ ‖m̂(θ)‖2 = argmaxθm̂(θ)′m̂(θ)

Every evaluation of the moment function m̂(θ) requires us to sample from the posterior of

the UC model sequentially. Since this step is very computationally costly, we only re-estimate the

model every 4 quarters rather than every quarter, and use a burn-in sample of 50,000 draws and

keep the subsequent 25,000 draws rather than 75,000 for each of those quantities in our empiri-

cal specification. The global minimum is found using MATLAB’s “particleswarm” optimization

routine, subject to the constraint that the mean of ρ is larger than 0.5.

C.1 More Dispersed Initial Beliefs?

Table C.1 reports results on the root-mean-squared error (RMSE) of the forecasts from our

model relative to the RMSE of SFP forecasters. We do this for our baseline initial beliefs –

ρ ∼ N(0.6, 0.122) and γ ∼ B(2.3, 19.7) – and for a case with more highly dispersed initial be-

liefs – ρ ∼ N(0.6, 0.312) and γ ∼ B(1.13, 2.9). The first four columns of Table C.1 report the ratio

of the RMSE from our model relative to the RMSE of SFP forecasters for forecast horizons of one

through four quarters. The last column reports the average ratio across the four horizons.

Several facts are notable. First, the forecasts from our model are slightly ‘better’ than the

SPF forecasts in that their RMSE is slightly lower than the RMSE of the SPF forecasts (the ratios

reported in the table are all smaller than 1). Second, using more highly dispersed initial beliefs

actually leads to very slightly worse forecasts from a RMSE perspective at most horizons: the

‘highly dispersed’ case generates slightly larger RMSE on average and for horizons 2 through 4.

However, the differences are very small. Overall, we conclude that a model with more dispersed

initial beliefs generates forecasts of very similar quality as measured by RMSE.
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Figure D.1: Marginal Prior Distributions: T-bill Rate Model
Note: These four panels plot the initial beliefs we estimate for the four parameters of the model. The panels
labelled ρ, γ1, and σ give the initial beliefs for ρ, γ, and σ, respectively, in 1951Q2. The panel labelled γ2 give
the belief distribution for γ in 1990Q1.

D Interest Rate Results with a Break in 1990

Here we present results for a case where we allow for a break in beliefs about γ in 1990. We redo

our baseline short-rate analysis exactly as before except that we allow the agents in the model

to “reset” their beliefs about γ in 1990. We assume that the new belief distribution of agents

about γ in 1990 is γ ∼ B(αγ,2, βγ,2) and we search over the values of αγ,2 and βγ,2 as well as the

hyperparameters in the baseline case to best match the forecast anomalies.

Results analogous to those presented for our baseline model in the main body are presented

in Figures D.1-D.4 and Tables D.2-D.3. We estimate a substantial decrease in the mean of the

distribution of beliefs about γ (from 0.19 to 0.11) and a sharp downward shift in the standard

deviation (from 0.09 to 0.03) in 1990, leading to lower posterior mean estimates in the latter part of

the sample as one would expect. Other results are quite similar to in our baseline case. The extra

parameters allows up to improve the fit of the model to the data modestly.
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Table D.2: T-Bill Rate Forecast Anomalies: Model vs. Data

Forecast Horizon

1 2 3 4

Panel A: Bias

SPF
-0.18*** -0.34*** -0.52*** -0.70***
(0.05) (0.09) (0.14) (0.19)

UC Model
-0.18** -0.32** -0.47** -0.60**
(0.06) (0.11) (0.16) (0.21)

Panel B: Autocorrelation

SPF
0.30* 0.27** 0.24* 0.13
(0.14) (0.12) (0.12) (0.13)

UC Model
0.38* 0.41** 0.37** 0.25*
(0.17) (0.14) (0.11) (0.12)

Panel C: Mincer-Zarnowitz

SPF
0.97* 0.94** 0.90** 0.86**
(0.02) (0.02) (0.04) (0.05)

UC Model
0.96* 0.93** 0.89** 0.84**
(0.02) (0.03) (0.04) (0.05)

Panel D: Coibion-Gorodnichenko

SPF
0.23* 0.34* 0.62***

–
(0.12) (0.16) (0.16)

UC Model
0.41* 0.59 0.94*

–
(0.19) (0.39) (0.45)

Note: The forecast horizons are quarters. Stars represent significance relative to the following hypotheses:
α = 0 for bias, β = 0 for autocorrelation, β = 1 for Mincer-Zarnowitz, β = 0 for Coibion-Gorodnichenko.
P-values are computed using Newey-West standard errors with lag length selected as L = d1.3 × T 1/2e and
fixed-b critical values. This corresponds to a bandwidth of 17. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table D.3: Failures of the Expectations Hypothesis: Model vs. Data

Long Horizon n

2 3 4 8 12 20 40

Panel A: Future Short Rates

Data
-0.01*** 0.11*** 0.18*** 0.39** 0.57 0.74 0.71
(0.23) (0.23) (0.23) (0.23) (0.26) (0.23) (0.20)

UC Model
-0.07*** 0.09*** 0.15*** 0.48 0.72 0.84 0.92
(0.25) (0.26) (0.27) (0.33) (0.33) (0.28) (0.33)

Panel B: Change in Long Rate

Data
-1.02*** -0.91*** -1.03*** -1.29*** -1.61*** -2.04*** -2.75***
(0.45) (0.59) (0.62) (0.59) (0.57) (0.55) (0.87)

UC Model
-1.14*** -1.17*** -1.19*** -1.31*** -1.45*** -1.79*** -2.61**
(0.50) (0.51) (0.52) (0.55) (0.59) (0.68) (1.24)

Note: The sample period is from 1961Q3 to 2019Q4. The top panel reports estimates of β from regression (4).
The bottom panel reports estimates of β from regression (5). In both cases, the horizon n is listed at the top
of the table. Stars represent significance relative to the hypothesis that β = 1. P-values are computed using
Newey-West standard errors with lag length selected as L = d1.3 × T 1/2e and fixed-b critical values. This
corresponds to a bandwidth of 19. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure D.2: Forecasted T-bill Rate: Data vs. Model
Note: The black solid line is the 3-month T-bill rate. Each short gray line with five circles represents forecasts made in a
particular quarter about the then present quarter (first circle) and following four quarters (subsequent four circles). In
the top panel, these forecasts are SPF forecasts. In the bottom panel, these forecasts are mean forecasts generated from
the UC model estimated in real-time.
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Figure D.3: Parameter Estimates: T-bill Rate Model
Note: Each panel plots the evolution of beliefs about one of the three UC model parameters: ρ, γ, and σ. The black
solid line is the mean and the dotted black lines are the 5th and 95th percentiles of the posterior distribution for the
parameter in question. Recall that we only update beliefs about these parameters every fourth quarter.
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Figure D.4: State Estimates: T-bill Rate Model
Note: Each panel corresponds to one of the two UC hidden state variables: µt and xt respectively. The black solid line
is the posterior mean of the real-time filtering distributions, the dotted black lines are the 5th and 95th percentiles of
the posterior real-time filtering distributions, and the solid gray line is the posterior mean of the ex-post smoothing
distributions for the corresponding parameter.
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D.1 Cochrane-Piazzesi Regressions

Cochrane and Piazzesi (2005) show that a single factor predicts one-year excess returns on one- to

five-year maturity bonds with an R2 above 0.4. Here we show that our learning model can match

this return predictability. Following Cochrane and Piazzesi (2005), we consider the period length

to be measured in years in this section – i.e., n and t are measured in years in this section while

it is measured in quarters elsewhere in the paper. Let p(n)
t denote the log price of an n-year zero

coupon bond at time t. The relationship between the log yield and log price of an n-year zero

coupon bond is y(n)
t = −p(n)

t /n. The forward rate at time t for a loan between time t + n − 1 and

time t+ n is

f
(n−1→n)
t ≡ p(n)

t − p
(n−1)
t .

We refer to this as the n-year forward rate. (It might alternatively be referred to as the n-year-

ahead, one-year forward rate.) The log holding period return of buying an n-year bond at time t

and selling it as an n− 1-year bond at time t+ 1 is given by

r
(n)
t+1 ≡ p

(n−1)
t+1 − p(n)

t .

Denote the log excess return on the bond as

rx
(n)
t+1 ≡ r

(n)
t+1 − y

(1)
t .

Cochrane and Piazzesi (2005) run two sets of return predictability regressions. First, they run

a set of unrestricted regressions:

rx
(n)
t+1 = β

(n)
0 + β

(n)
1 y

(1)
t + β

(n)
2 f

(1→2)
t + . . .+ β

(n)
5 f

(4→5)
t + ε

(n)
t+1 (18)

for n = 2, . . . , 5. These regressions yield a similar pattern of coefficients across the four maturi-

ties. This motivates considering the notion that a single factor may forecast excess returns at all

horizons as follows:

rx
(n)
t+1 = bn

(
γ0 + γ1y

(1)
t + γ2f

(1→2)
t + . . .+ γ5f

(4→5)
t

)
+ ε

(n)
t+1

for n = 2, . . . , 5. Cochrane and Piazzesi normalize the loadings bn so they have an average value
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Data

const. y(1) f (1→2) f (2→3) f (3→4) f (4→5) R
2

-0.19 -0.93 -1.25 1.41 1.45 -0.71 0.38
(0.39) (0.45) (0.85) (0.82) (1.00) (0.73)

Model

const. y(1) f (1→2) f (2→3) f (3→4) f (4→5) R
2

-2.67 -21.13 82.60 -112.64 53.76 -2.54 0.48
(1.82) (7.31) (34.02) (51.08) (37.28) (17.71)

Table D.4: Restricted Regression Results for γn

of 1:
1

4

5∑
n=2

bn = 1

and estimate the bn and γn coefficients in two stages. First, they estimate the γn coefficients from

1

4

5∑
n=2

rx
(n)
t+1 = γ0 + γ1y

(1)
t + γ2f

(1→2)
t + . . .+ γ5f

(4→5)
t + εt+1. (19)

Then they estimate the bn coefficients from

rx
(n)
t+1 = bn

(
γ̂0 + γ̂1y

(1)
t + γ̂2f

(1→2)
t + . . .+ γ̂5f

(4→5)
t

)
+ ε

(n)
t+1, (20)

where γ̂n are the fitted values from regression (19). We refer to these as the restricted regressions.

We perform this analysis on our quarterly zero-coupon bond data from Liu and Wu (2020)

for the sample period 1961Q3-2019Q4. (Cochrane and Piazzesi (2005) use monthly data for the

sample period 1964-2003.) We also perform this analysis on the bond yields implied by our model

(allowing for a break in γ in 1990). Before running the regressions for the model-implied data, the

sample mean of our model-implied yields is made the same as the sample mean of the yields in

the real-world data over our sample period.

Tables D.4 and D.5 report the coefficients [γ1, ... γ5] and [b2, ... b5] from the restricted regressions

(equations (19) and (20)) respectively, along with the adjusted R2 for these regressions. We can

match the high R2 for one-year excess returns on 2- to 5-year zero coupon bonds in data from our

model: the R2 for these predictive regressions on data from our model are between 0.46 and 0.50.

This finding of high predictability is quite robust across the different variants of our model we
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Data

n bn SE R
2

2 0.58 (0.07) 0.35
3 0.93 (0.08) 0.41
4 1.18 (0.09) 0.40
5 1.31 (0.10) 0.37

Model

n bn SE R
2

2 0.60 (0.05) 0.47
3 0.91 (0.07) 0.50
4 1.16 (0.08) 0.50
5 1.33 (0.10) 0.49

Table D.5: Restricted Regression Results for bn

have considered. The shape of the factor that predicts returns is much more sensitive to model

specification, due to the high correlations between yields at various maturities generated by our

model.

D.2 Giglio-Kelly Volatility Ratio

Giglio and Kelly (2018) argue that long-maturity assets display excess volatility that is hard to

reconcile with standard asset pricing models. One of their applications is to the term structure

of interest rates. Our exposition of their methods builds on the discussion in Liu and Wu (2020).

Consider an affine term structure model in which the short rate is affine in a multi-variate latent

factor xt:

yt = δ0 + δ′1xt,

where δ1 = [1, 1, 1]′. Assume that the latent factor evolves according to a VAR(1) under the risk-

neutral measure Q:

xt = ρQxt−1 + εQt ,

where ρQ is diagonal. In this case, the log-price of an n-period zero coupon bond is affine in xt:

p
(n)
t = an + b′nxt, (21)

where the coefficients bn may be calculated recursively. Hamilton and Wu (2012) provide a deriva-
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tion.

Given this setup, ρQ can be estimated by, first, running a regression

p
(h)
t = αh + β′hPt + u

(h)
t ,

where Pt is a three-dimensional vector of bond prices Pt = [p
(i)
t , p

(j)
t , p

(k)
t ]. The three unknown

parameters in ρQ can then be recovered from the following three equations

β̂h = [bi, bj , bk]
−1bh, (22)

where the b′s in this equation are the loadings on the factor xt in equation (21). This procedure

should recover ρQ for any i, j, k, h. We follow Giglio and Kelly (2018) and regress the 7-year zero

coupon bond on the 1-year, 3-year, and 5-year zero coupon bonds.

This affine term structure model with the estimate ρ̂Q has strong implications regarding the

volatility of longer term bond prices. In particular, one can calculate the βm implied by the model

for m-period zero coupon bonds. We call these β̂Rm. The model then implies that the volatility of the

price of an m-period zero coupon bond should be V R
m = β̂R′m V̂ (Pt)β̂

R
m, where V̂ (Pt) is the sample

variance-covariance matrix of Pt. This model implied volatility of the price of the m-period zero

coupon bond can be compared to the volatility implied by running an unrestricted OLS regression

of the price of the m-period zero coupon bond on Pt. We denote the estimated coefficients from

this regression as β̂Um and the implied volatility V U
m = β̂U ′m V̂ (Pt)β̂

U
m. Giglio and Kelly (2018) focus

attention on the volatility ratio V U
m /V

R
m .

Figure D.5 plots the V R
m (orange line), V U

m (blue line) and reports the ratio between them (num-

bers) for zero-coupon bonds with maturity between 10 years and 30 years. The left panel reports

these statistics estimated on the real-world data, while the right panel reports these statistics es-

timate on the zero-coupon bond prices implied by our model (with a break in 1990). We see that

our model generates substantially higher V U
m than V R

m as does the data.

For the term structure of interest rates, the excess volatility fact that Giglio and Kelly (2018)

focus on turns out to be rather sensitive to the details of how the affine term structure model is

estimated. If we use a regression of the 5-year zero coupon bond on the 1-year, 2-year, and 3-year

zero coupon bonds to estimate ρQ – rather than a regression of the 7-year zero coupon bond on the

1-year, 3-year, and 5-year zero coupon bonds – and then calculate V R
m and V U

m we get dramatically

different results. These results are plotted in Figure D.6. In this case, V R
m is much larger than
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Figure D.5: Giglio-Kelly Variance Ratios: Data and Model

V U
m and the variance ratio is therefore less than one. The reason for this is that the largest root

– i.e., the largest element of ρQ – is estimated to be slightly larger than one (1.012 to be precise)

in this case, while it is estimated to be slightly smaller than one (0.958 to be precise) in the case

Giglio and Kelly (2018) focus on. The dynamics of xt are therefore stationary in the case Giglio

and Kelly (2018) focus on, but very close to being non-stationary, while they are estimated to be

non-stationary in the alternative case presented in Figure D.6.
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Figure D.6: Giglio-Kelly Variance Ratios for Alternative Basis
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E Bayesian Updating about Parameters and States for GDP

Here we describe the initial beliefs and sampling algorithm for our GDP application. We assume

that the initial belief of the CBO about the mean of the difference stationary component µ is Nor-

mal,

µ ∼ N(µµ, σ
2
µ).

We assume that the CBO has independent Normal initial beliefs about the sum of the autoregres-

sive parameters ρ1 + ρ2 and for the second autoregressive parameter ρ2. We truncate these initial

belief distributions in such a way as to put zero weight on parameter combinations that result in

the xt component being non-stationary. We can write these initial belief distributions as

ρ1 + ρ2 ∼ N(µρ, σ
2
ρ)I(ρ1, ρ2),

ρ2 ∼ N(µρ2 , σ
2
ρ2)I(ρ1, ρ2).

where I(ρ1, ρ2) is an indicator variable which is 1 for (ρ1, ρ2) combinations that result xt being

stationary and 0 otherwise.

This implies a joint initial belief distribution for ρ1, ρ2 the moments of which are

µρ1 = µρ − µρ2 ,

σ2
ρ = σ2

ρ1 + σ2
ρ2 + 2σρ1,ρ2 ,

σρ,ρ2 = σρ1,ρ2 + σ2
ρ2 = 0,

σρ1,ρ2 = −σ2
ρ2 ,

σ2
ρ1 = σ2

ρ + σ2
ρ2 .

In other words,  ρ1

ρ2

 ∼ N

 µρ − µρ2

µρ2

 ,
 σ2

ρ + σ2
ρ2 −σ2

ρ2

−σ2
ρ2 σ2

ρ2


 I(ρ1, ρ2).

We assume that the CBOs initial belief distribution about the the variance share γ of shocks to

the trend component is a Beta distribution,

γ ∼ B(αγ , βγ).
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We assume that the CBOs initial belief distribution about the conditional variance σ2 is an Inverse

Gamma distribution,

σ2 ∼ IG(ασ2 , βσ2).

Lastly, we assume that agents’ initial beliefs about zt and xt in 1959Q3 are zt ∼ N(y1959Q3, 0.012)

and xt ∼ N(0, 0.012).

We start with an initial guess of the unknown parameters

θ(0) =
(
µ(0), ρ

(0)
1 , ρ

(0)
2 , γ(0), σ(0), z

(0)
1:t ,x

(0)
1:t

)′
.

Given a draw of the parameters θ(b), we draw θ(b+1) as follows:

1. Draw µ(b+1)|ρ(b)
1 , ρ

(b)
2 , γ(b), σ(b), z

(b)
1:t ,x

(b)
1:t ,y1:t. Given the other parameters, beliefs about µ can

be updated from the equation for zt:

∆z
(b)
t = µ+

√
γ(b)σ(b)ut.

Define

σ̃2
µ ≡

[
σ−2
µ +

t− 1

γ(b)
(
σ(b)

)2
]−1

,

µ̃µ ≡ σ̃2
µ

[
µµ
σ2
µ

+

∑t
s=2 ∆z

(b)
s−1

γ(b)
(
σ(b)

)2
]
.

The posterior of µ is N(µ̃µ, σ̃
2
µ) and thus we draw µ(b+1) ∼ N(µ̃µ, σ̃

2
µ).

2. Draw ρ
(b+1)
1 , ρ

(b+1)
2 |µ(b+1), γ(b), σ(b), z

(b)
1:t ,x

(b)
1:t ,y1:t. Given the other parameters, beliefs about

ρ1, ρ2 can be updated from the equation for xt:

x
(b)
t = ρ1x

(b)
t−1 + ρ2x

(b)
t−2 +

√
(1− γ(b))σ(b)vt.

Define

Σ̃ρ ≡

[
Σ−1
ρ +

∑t
s=3[x

(b)
s−1, x

(b)
s−2]′[x

(b)
s−1, x

(b)
s−2]

(1− γ(b))
(
σ(b)

)2
]−1

,

µ̃ρ ≡ Σ̃ρ

[
Σ−1
ρ µρ +

∑t
s=3[x

(b)
s−1, x

(b)
s−2]′x

(b)
s

(1− γ(b))
(
σ(b)

)2
]
.
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The posterior of (ρ1, ρ2)′ is N(µ̃ρ, Σ̃ρ) and thus we draw (ρ
(b+1)
1 , ρ

(b+1)
2 )′ ∼ N(µ̃ρ, Σ̃ρ).

3. Draw γ(b+1)|µ(b+1), ρ
(b+1)
1 , ρ

(b+1)
2 , σ(b), z

(b)
1:t ,x

(b)
1:t ,y1:t. There is no closed form expression for

the posterior of γ. We therefore draw it using a random walk Metropolis-Hastings step.

Specifically, we draw a proposal γ̃(b+1) ∼ N(γ(b), σ2
γ,prop) where σ2

γ,prop is a proposal variance

chosen such that this step has between a 25 and 40% acceptance rate over the burn-in period.

We then set γ(b+1) = γ̃(b+1) with probability αb+1, where

αb+1 ≡
L
(
y1:t|µ(b+1), ρ

(b+1)
1 , ρ

(b+1)
2 , γ̃(b+1), σ(b), z

(b)
1:t ,x

(b)
1:t

)
pγ
(
γ̃(b+1)

)
L
(
y1:t|µ(b+1), ρ

(b+1)
1 , ρ

(b+1)
2 , γ̃(b+1), σ(b), z

(b)
1:t ,x

(b)
1:t

)
pγ
(
γ(b)
) .

Otherwise we set γ(b+1) = γ(b).

4. Draw σ(b+1)|µ(b+1), ρ
(b+1)
1 , ρ

(b+1)
2 , γ(b+1), z

(b)
1:t ,x

(b)
1:t ,y1:t. Given the other parameters, beliefs

about σ can be updated from the two equations

∆z
(b)
t = µ(b+1) +

√
γ(b+1)σut.

x
(b)
t = ρ

(b+1)
1 x

(b)
t−1 + ρ

(b+1)
2 x

(b)
t−2 +

√
1− γ(b+1)σvt.

Since ut and vt are independent, these regression equations can be treated as two indepen-

dent sources of information for σ2. It is as if beliefs about σ2 are first updated using informa-

tion about {us}ts=2 where σus = ∆zs−µ√
γ and then updated using information about {vs}ts=3

where σvs = xs−ρ1xs−1−ρ2xs−2√
1−γ . These are samples of t− 1 and t− 2 observations respectively

which can be used to learn about σ2 using standard conjugate prior updating. Define

α̃σ2 ≡ ασ2 + (2t− 3)/2,

β̃σ2 ≡ βσ2 +

∑t
s=2

(
∆z

(b)
s − µ(b+1)

)2

2γ(b+1)
+

∑t
s=3

(
x

(b)
s − ρ(b+1)

1 x
(b)
s−1 − ρ

(b+1)
2 x

(b)
s−2

)2

2
(
1− γ(b+1)

) .

The posterior of σ2 is IG(α̃σ2 , β̃σ2) and thus we draw
(
σ(b)

)2 ∼ IG(α̃σ2 , β̃σ2).

5. Draw z
(b+1)
1:t ,x

(b+1)
1:t |µ(b+1), ρ

(b+1)
1 , ρ

(b+1)
2 , γ(b+1), σ(b+1),y1:t. This can be done using the stan-

dard Kalman filter and simulation smoother.
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F Bayesian Forecasting of GDP

The algorithm described in Appendix E yields B samples of the posterior of the states and param-

eters of our UC model for GDP at each point in time t. We index these samples by b as follows{
ρ

(b)
1 , ρ

(b)
2 , γ(b), µ(b), σ(b), z

(b)
t|t , x

(b)
t|t , x

(b)
t−1|t

}B
b=1

. We then use the following algorithm to produce a

real-time forecast distribution for the GDP at time t:

1. For each b = 1, . . . , B

(a) Simulate a path of shocks
{
u

(b)
t+h, v

(b)
t+h

}H
h=1

from the standard Normal distribution.

(b) Starting from h = 1, construct a simulated path of the states overH subsequent periods

using equations

z
(b)
t+h|t = µ(b) +

√
γ(b)σ(b)u

(b)
t+h,

x
(b)
t+h|t = ρ

(b)
1 x

(b)
t+h−1|t + ρ

(b)
2 x

(b)
t+h−2|t +

√
1− γ(b)σ(b)v

(b)
t+h.

(c) Use the simulated states to construct
{
y

(b)
t+h|t

}H
h=1

where

y
(b)
t+h|t = z

(b)
t+h|t + x

(b)
t+h|t.

2. The forecast of yt+h given time t information is computed as

Ftyt+h =
1

B

B∑
b=1

y
(b)
t+h|t.

At the end of the estimation we are left with a sequence of model-implied 1 to H-quarter ahead

forecasts {Ftyt+h}Hh=1 for every year t from 1976Q4 to 2019Q4.

We must perform a few additional steps to transform our forecasts to ones that are comparable

to those produced by the CBO. The CBO publishes forecasts of growth in the average annual level

of real output. We define the average annual level of real output over the year preceding quarter

t as

Ȳt ≡
1

4

t∑
s=t−3

exp(ys).

As an example, in the CBO’s economic outlook published in 1990, its 1-year ahead forecast of GDP
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growth is

100×
(
Ȳ1990Q4

Ȳ1989Q4
− 1

)
.

Thus to convert the model’s forecasts of quarterly log real GDP to average annual h-year ahead

level forecasts, we apply the following transformation to the simulated forecast distribution

FtȲt+h ≡
1

B

B∑
b=1

[
1

4

t+4h∑
s=t+4h−3

exp
(
Fty

(b)
s|t

)]
.

The associated forecasts of growth in average annual levels between year t + h − 1 and t + h for

h = 1, . . . ,H are

100×
(

FtȲt+h
FtȲt+h−1

− 1

)
.

G Search over Initial Beliefs for GDP Growth

We denote θ = (µρ, σρ, µρ2 , σρ2 , αγ , βγ)′. Let α = {αh}Hh=1 and β = {βh}Hh=1 denote vectors of

estimated coefficients from the forecasting anomaly regressions for different horizons up through

a maximum horizon of H using the CBO data. Let α̂ = {α̂h}Hh=1 and β̂ =
{
β̂h

}H
h=1

denote those

same quantities estimated on the model implied forecasts and yields. Additionally, denote the t−

statistics associated with these coefficients as {tα, tβ} = {tα,h, tβ,h}Hh=1 for the data and
{
tα̂, tβ̂

}
={

tα̂,h, tβ̂,h

}H
h=1

for the model. Define the moment function as

m̂(θ) =



αbias − α̂bias

tα,bias − tα̂,bias

βar − β̂ar

tβ,ar − tβ̂,ar
βmz − β̂mz

tβ,mz − tβ̂,mz
βcg − β̂cg

tβ,cg − tβ̂,cg



(23)
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The parameters are then estimated via SMM with the following objective function

θ̂ = argmaxθm̂(θ)′W m̂(θ)

where the elements of the objective function associated with the Mincer-Zarnowitz and Coibion-

Gorodnichenko coefficients are given 3 times the weight of all other elements inW . We also place

bounds on the estimated parameters as described in footnote 12 in the main text. The estimated

initial belief distributions are plotted in Figure 9.

Every evaluation of the moment function m̂(θ) requires us to sample from the posterior of

the UC model sequentially. Since this step is very computationally costly, we only re-estimate the

model every 4 quarters rather than every quarter, and use a burn-in sample of 15,000 draws and

keep the subsequent 15,000 draws rather than 50,000 for each of those quantities in our empiri-

cal specification. The global minimum is found using MATLAB’s “particleswarm” optimization

routine.
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