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1 Introduction

In December 2020, less than a year after the onset of the Covid-19 pandemic, the first dose of
clinically-approved vaccine was administered. This resounding technological success is widely
seen as the result of a fruitful interaction between public research and the private sector (Cross
et al., 2021; Kiszewski et al., 2021). Cross et al. (2021) show that public and charitable financ-
ing accounts for more than 97% of funding for the vaccine technology research underlying the
Oxford-AstraZeneca vaccine. Similarly, Kiszewski et al. (2021) argue, in the US context, that
“NIH funding contributed substantially to the advance of technologies available for rapid de-
velopment of COVID-19 vaccines”.

The existence and magnitude of spillovers from the public research sector to private firms
is a long-standing question (since Jaffe, 1989). While Azoulay et al. (2019) show that a $10
million boost in NIH funding leads to a net increase of 2.3 patents in the biotechnology and
pharma industries, there is limited causal evidence on the effects of public research funding
on firms outside the pharmaceutical industry. Moreover, there is a lack of systematic empirical
evidence on the channels through which these spillovers operate. In this paper, we shed light
on these questions, exploiting a large scale funding program of public research in France, the
LabEx (“Laboratoire d’Excellence”) program, which allocated 1.5 billion euros to 170 academic
clusters potentially linked to many different sectors, and a wealth of data to measure R&D
inputs, outputs and spillover channels.

We first propose a new measure of scientific proximity between public research groups and
industrial sectors, allowing us to measure the exposure of private firms to the program. Based
on this measure, we use the funding shock to estimate the causal impact of public research
on private sector outcomes. We find that firms spatially and scientifically “close” to funded
research groups increase their spending on R&D as well as R&D outputs compared to less
exposed firms. We then use a wealth of qualitative and quantitative evidence to delve into
the mechanisms driving these positive spillovers. We show in particular the importance of
contracting between firms and public research groups.

Consider the LabEx called ACTION, located in Dijon, working on the development and
integration of smart systems, that received 8 million euros in funding through the LabEx pro-
gram.1 By 2015, it had already developed close links with the industry, giving rise to 4 patents,

1. The activities of the LabEx are summarized as follows: “The project aims to explore the potential of nan-
otechnology and computing for developing miniaturized systems with new functionalities for applications in the
fields of health, transport, energy. That miniaturization will allow technologies to integrate, for example, sensors
interconnected and open to the outside world, computers, software, etc., in order to design so-called "intelligent"
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3 EU projects submitted and 2 start-ups related to the LabEx. The interim report written by
the LabEx for the funding agency provides clues on how these spillovers to the private sector
materialized. It mentions that the Labex signed contracts with firms for PhD co-supervision
and joint research, provided training and seminars for people in the industry and created a
“club of partners”, described as a “structure of exchange of information between the members
of the LabEx and potential partners”. Did all funded LabEx have such an impact on the local
industrial ecosystem as ACTION did? Were the channels for these spillovers similar?

The first step to address empirically these questions is to measure the proximity of the aca-
demic clusters with the local industry, in order to identify the firms most likely to be affected
by the funding shock. Our first contribution is to construct a new measure of proximity. The
key idea is to use the distance between the science used by firms and the science produced by
research groups, so as to proxy the share of ideas produced by the research group which are
likely to be useful to a firm in a given industry.2 Importantly, this measure assigns a scientific
position to firms rather than using the typical approach in the literature that attempts to assign
a technological position to an academic group.3 An academic group and an industry can be
close according to our measure, even if the papers published by the group are not yet cited in
patents, and would thus be categorized as distant with the traditional approach.

We then test and exploit this measure in the context of the LabEx program that selected
170 academic clusters in 2010 and 2011. These clusters bring together public researchers from
different research units, not necessarily from the same institution, planning to work together on
a common theme. The funding was run as a competition, with an international jury evaluating
436 proposals. We obtained a number of key pieces of data from the agency organizing the
competition. First, they provided the list of research labs participating in each proposal and
details on the theme of the proposal. Second, we obtained the full bibliography of the proposal,
a key input for our proximity measure. Third, the agency shared with us the grades awarded
to each proposal by the jury (including rejected projects). Using this information, we construct
the proximity between LabEx proposals and industrial sectors using the new measure proposed
above, based on the articles listed in the bibliography of the proposal.

The resulting proximity appears to make intuitive sense. For instance, for the LabEx AC-
TION mentioned above, the sectors that have the closest proximity are “manufacturing of com-

systems that adapt and anticipate to better respond to the use made of it.”
2. Specifically, our proximity measure between the group and a given industry is the sum over all journals of the

product of the share of publications of the research group in that journal and the share of citations to that journal
coming from that industry.

3. The academic patents or the patents citing the research are typically used to assign a technological distance.
We explain later in the paper why our measure is more adapted in our context.
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munication equipments” (industry code 2630Z), “manufacturing of electronic components”
(2611Z) and “manufacturing of navigation systems” (2651A), which are all sectors suscepti-
ble of using the miniaturized smart systems researched by the LabEx. We provide a number of
validations of the measure. In particular, we show that firms explicitly mentioned in reports of
the LabEx as potential collaborators are in sectors categorized as close to the LabEx according
to our measure.

Our second contribution is to use this natural experiment to estimate the causal effect of
a positive shock in funding of public sector research on private sector R&D. For a given pair
of commuting zone (“zone d’emploi”, henceforth “CZ”) and sector, we calculate exposure as
the sum of funding obtained by the LabEx proposals in the CZ, weighted by the proximity
of the LabEx to the sector. We then implement a difference-in-differences setup that exploits
the fact that a given industry in a given commuting zone will be more or less exposed to the
shock if it is close technologically and geographically to a funded LabEx. We show that firms
in high exposure pairs of CZ and sector significantly increase their employment in R&D after
the start of the program, controlling for CZ specific time effects. The magnitude is large: a firm
in the top quartile of exposure increases total spending on wages of R&D workers by more
than 20% compared to the bottom quartile. We also find significant impacts on outputs of the
R&D process in the more exposed sectors, in particular on the creation of new plants and on
the production of new patents.

A strength of our setting is that we have information on rejected projects and on the grades
obtained by projects. This allows us to show that the counterfactual measure of exposure,
assuming that the rejected proposals were in fact funded, does not have predictive power on
private sector outcomes.4 We also address the unlikely scenario that the jury chose academic
clusters because of the sectors they might affect, and picked those affecting potentially booming
sectors, by using the grades obtained by the proposals.5, and show that the main effects are
broadly similar.

Our third main contribution is to shed light on the channels through which the impor-
tant spillovers from public to private research occur. There are three main candidates. First,
spillovers could be due to direct cooperation between researchers in the academic cluster and
the exposed firms (see e.g. Fernandes and Ferreira, 2013). Second, they could result from mo-
bility of researchers from the public to the private sector or creation by these researchers of
startups (see e.g. Agrawal and Henderson, 2002). Third, spillovers could simply be due to in-

4. We also implement tests as in Borusyak and Hull (2020).
5. We view this as unlikely as the international jury members were not informed of the characteristics of the

local industries.
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formal contacts between researchers from the public and the private sectors, for instance during
events organized by the LabEx (see e.g. Dahl and Pedersen, 2004).

We use the initial reports available for all the funded LabEx to provide evidence on these
channels.6 75% of the reports mention the contracting channel, for instance public-private re-
search partnerships, contracts for co-supervision of PhDs or licensing contracts for patents. 52%
of the reports mention the mobility channel, with special focus on helping researchers to create
spin-offs and encouraging mobility of master and PhD students. Finally, 30% mention infor-
mal contacts as an important element, facilitated by the events organized by many of these
academic clusters oriented towards a private sector audience. The reports thus highlight all
channels, with a predominant role for the contracting channel.

The evidence in the reports provide a comprehensive view of the mechanisms underlying
these spillovers, but do not provide counterfactuals for the non funded proposals. We thus pro-
vide additional elements to show causal evidence on some specific dimensions. To document
the first channel, we obtained data on a program of co-financing of PhDs by firms and public
research institutions, called Cifre, involving explicit contracting. We also use data on scientific
sub-contracting by firms. To capture the second channel, we use the mobility of researchers that
we observe in the administrative data. Using the same identification strategy as in our main
analysis, we find that private firms more exposed to the LabEx program significantly increase
the likelihood of signing contracts formalizing PhD co-supervisions. More generally, we find
that the total amount of contracting between public and private labs rises in the most exposed
industries quickly after the shock. Finally, we also show evidence of more frequent movements
of workers from the public research sector to private firms.

Overall, our results suggest that financing public research is a powerful policy instrument to
spur private sector R&D. While studying the relative importance of this instrument as opposed
to more direct financing instruments such as tax credit policies is beyond the scope of the paper,
we nevertheless conclude by giving some elements of comparison. France has an extensive
R&D tax credit program (“Credit Impôt Recherche” or CIR) which represents above 6 billion euros
of fiscal spending per year. We document that the distribution of benefits from the CIR across
industries is very different from the distribution of indirect benefits from the LabEx program.
We suggest that the indirect instrument might better target research intensive firms, which are
the only firms in a position to exploit the findings of the public sector.

6. These reports were written in 2012, very early in the project and correspond to projected channels.
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Literature review. Bloom, Van Reenen, and Williams (2019) and Teichgraeber and Van Reenen
(2022) survey the existing literature on instruments to spur innovation.7 They show that there
is strong evidence that R&D tax credit policies are powerful and efficient tools to encourage
private R&D. They also conclude that there is still a need for more evidence on the effect of
university and more generally research funding on private sector outcomes. In one of the im-
portant contributions in this literature, Azoulay et al. (2019) link NIH grants with the publica-
tions they generate and the patents in the biotechnology and pharma industries that cite those
publications. Using an identification strategy based on the NIH funding rules, they show that
a $10 million boost in NIH funding leads to a net increase of 2.3 patents. With a spatial fo-
cus, Hausman (2021) studies how universities can be a driver of industrial agglomeration. The
paper exploits a proximity measure between universities and technology classes, using direct
citations. The main results show that after the Bayh Dole Act, the industries closest techno-
logically to the local university witness a growth in employment and innovative outcomes.8

We depart from these papers in two main ways. First, rather than assigning a technological
position to academic groups as in Hausman (2021), we assign a scientific position to firms.
Second, we propose a different identification strategy, based on direct financing of academic
clusters, to estimate the impact of public research funding on private sector innovation. The
program we use can be seen as a middle ground between the project specific funding used in
Azoulay et al. (2019) and the university funding in Hausman (2021).9 In contrast to Azoulay
et al. (2019), the program we study applies to all fields, and not only the biotech and pharma-
ceutical industries which have been shown to be particularly sensitive to university spillovers
(notably in their location choice, see Abramovsky, Harrison, and Simpson, 2007; Abramovsky
and Simpson, 2011).

This strand of the literature on the local effects of academia was initiated by Jaffe (1989),
which found strong effects of universities on corporate patenting, with some geographic di-
mension. Kantor and Whalley (2014) use national shocks on stock-return, affecting the value
of university endowments, to instrument university spending, and found modest but signifi-
cant local effects on non-research wages. Bikard and Marx (2020) study the importance of hubs
in the use of academic science by firms. Akcigit, Hanley, and Serrano-Velarde (2021) find that
basic research has broader spillovers than applied research and that subsidizing basic research

7. In addition to the direct and indirect instruments we have already discussed, they also mention IP policy
8. Related to this literature, Moretti, Steinwender, and Van Reenen (2019) use shocks on military spending as a

driver of private sector innovation.
9. In fact the funding of such academic clusters, based on themes proposed by researchers themselves, is a grow-

ing instrument that appears promising. Our work leads us to introduce a new measure of proximity discussed in
detail in Section 3.
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achieves a better allocation of research efforts, which further motivates our comparison across
policy instruments. Arora, Belenzon, and Sheer (2021) focus on spillovers from corporate sci-
ence to corporate inventions, and find that such spillovers must be particularly large, as firms
are very sensitive to what might benefit their competitors in their investment decisions in sci-
ence.

An important contribution of our paper is also to provide empirical evidence on the chan-
nels through which spillovers occur, both exhaustive evidence from official reports by academic
groups and causal evidence on certain channels of spillovers. There is a large literature that dis-
cusses the question, but it is mostly survey-based and contains little causal evidence.10 In par-
ticular, Cohen, Nelson, and Walsh (2002) use a survey of companies and find that universities
are critically important for a few industries, and quite important for large parts of the manufac-
turing sector. The channels they uncover are mostly informal: publication of papers, participa-
tion to conferences and interpersonal exchanges are found to matter most. University linkages
are found to be most important for large firms and start-ups. De Fuentes and Dutrénit (2012)
find somewhat contrasting evidence: their survey indicates that the most important channels
determining long-term benefits for firms are common R&D projects, property rights, and hu-
man resources sharing. Agrawal and Henderson (2002) focus on transfers from MIT research,
and find that only 10% of knowledge transfers passes through patents, making fundamental
research outputs (such as the academic papers we use) very important. Rather than using sur-
veys, we exploit official reports of all the financed units. Moreover, to our knowledge, there
is little overlap between the literature assessing causally the effects on the private sector and
this literature focusing on the channels of university–industry collaboration. We contribute to
fill this gap by tracking observable transfers occurring between universities affected by our
exogenous shock and the exposed parts of the private sector (as captured by our measure of
proximity).

There is also a large literature on the efficiency of R&D tax credit policies, surveyed in partic-
ular in Bloom, Van Reenen, and Williams (2019). Rather than comparing tax credit policies and
the approach of funding public research, we take a different direction. We compare the indus-
tries relatively affected by the two type of instruments. As noted by Bloom, Van Reenen, and
Williams (2019), other tools financing directly innovative firms have proved to be efficient. In
particular, research grants have been shown to efficiently stimulate innovation among directly
targeted firms (Howell, 2017) and to generate substantial spillovers both across geographical
and technological spaces (Myers and Lanahan, 2021).

10. See for instance Perkmann et al. (2013) and Ankrah and Omar (2015) for reviews of this literature.
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The paper is structured as follows. In Section 2, we present the LabEx funding program and
our main data sources. In Section 3 we present and discuss our proximity measure, and provide
a number of validation checks. Section 4 presents our main results on the impact of the funding
program on exposed industries. Section 5 studies the channels through which spillovers occur.
Section 6 assesses the policy implications of our results and concludes.

2 Data and identification

2.1 LabEx program

Based on a bipartisan report written by two former prime ministers, French president, Nicolas
Sarkozy, announced in 2009 a large-scale investment plan for research and productivity, the
“Plan d’Investissement d’Avenir”. One important component of this initiative was the LabEx
program. It aimed at financing consortia of research units that planned to work on a common
theme (what we refer to as an academic cluster or LabEx).11 The stated goal of the program was
to favor the emergence of ambitious scientific projects, to spur the production of academic paper
and make these clusters visible on the international scene.12 The labs were also encouraged to
reach out to the local communities, including nearby private industries. This was however a
secondary goal, corresponding to one out of the seven criteria the jury had to evaluate.13 As
shown in Table A2, the corresponding grade did not have a significant impact on the probability
of being selected.

The program was run on a bottom-up and fully competitive basis at the national level. A
first call for proposals was issued in 2010. Each application involved several research units with
one coordinator in charge. The 241 applications received were sent to external reviewers and
an independent international committee selected 100 winning proposals that were announced
on March 25, 2011.14 In response to the second call for proposals made in October 2011, 195
proposals were submitted (including 55 resubmissions from the first stage), out of which 71
were funded. The funding for these academic clusters was for an 8-year period (potentially
renewable), with an average allocation of 10 million euros, ranging from 2 to 30 million euros,

11. Similar policies have been developed in other countries such as Germany, Nordic countries with a similar
goal of supporting and developing a limited number of world class research clusters.

12. Carayol, Henry, and Lanoë (2020) study the effect of the policy on research output and show that it increased
co-publications between members of the funded LabEx.

13. The criterion was “Potential of the research project in terms of innovation and impact”
14. The reviewers had to judge in particular the scientific quality of the involved partners and the potential of

the project to produced new research.
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paid through yearly transfers. In 2019, the LabEx were evaluated by an international jury, which
recommended that 11 not be renewed.

LabEx data The ANR (“Agence Nationale de la Recherche”, the institution that supervised the
LabEx program) shared with us all the application files they received.15 All files include the
name of the coordinator, the name and identifying codes of the partner research units, the
amounts requested, the funding decision and a summary of the project.16 In addition each file
contains a bibliography that we use to build our exposure measure.

External referees graded proposals on seven criteria: the quality of the teams and facilities,
the relevance of the research project goals, the potential in terms of innovation and impact, in-
volvement in academic training, organization and management, institutional strategy (univer-
sities and research institutes), and project/means adequacy and ability to generate resources.
The ANR provided us with the grades for each proposal, information we use to conduct ro-
bustness exercises.

2.2 Data sources

We have assembled a large variety of data sources, allowing us to explore spillovers and the
mechanisms underlying them. The data are used to (i) construct a measure of scientific prox-
imity (data on private patenting and publications listed in the bibliography of proposals), (ii)
provide causal evidence on spillovers (data on the LabEx program), (iii) show evidence on
mechanisms (administrative data to track labor mobility (DADS), data on co-supervision of
PhDs and data on subcontracting) and (iv) to compare the LabEx program with other instru-
ments to spur private sector innovation (data on the French tax credit program CIR). To guide
the reader, we provide in Table 1 the list of variables and the source used to construct them.
More details on the data sources are given in Appendix C.

Patent data We rely on Patstat (Spring 2020 Edition), a database produced by the European
Patent Office which contains all the patent applications filed in most intellectual property offices
in the world. Since these applications are entered into the database with some lag, the database
available to us in 2020 provides exhaustive coverage of filings up to 2015. We match French
companies with their patent in the database. The matching procedure is described in Appendix

15. The ANR shared with us 200 of the 241 files for the 2010 call, removing the proposals that received the lowest
grade. For the 2011 call, they shared all the files with us.

16. For confidentiality concerns, we were not given access to the full text of the proposal.
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C.1. In addition, we use the city of the inventors in the OECD REGPAT database (Maraut et al.,
2008), July 2021 edition, to geocode the patent and allocate it to a commuting zone. Finally,
we augment this database with information on citations to the non-patent (mostly academic)
literature. This is done using PatCit (Cristelli et al., 2020), an open-source database aiming at
retrieving all citations made within patent applications, including those that only appear in the
text (details provided in Appendix C.1). The patent data is used to measure the technological
distance between firms and academic clusters, as well as an outcome variable in our analysis.

Linked employer-employee data (DADS) The DADS Postes is an administrative dataset
which contains, for each employment spell in France, the identity of the employer, the salary
paid, the hours worked, the type of occupation, the city of work, as well as the same elements
for the preceding year. We use this information to construct our key measure of spending on
R&D based on the total wage bill of engineers.17 Since we know the city of work, this measure
can be defined very precisely at the local level. We show in Appendix C.2, using alternative
sources, that this variable is a good measure of overall R&D employment.

The DADS is also used to measure mobility from the public research sector to the private
sector. We exploit the fact that we know the occupation in year t − 1 of the worker.18 We distin-
guish movements by junior researchers (those in PhD in the preceding years) versus mobility
of more senior researchers.

Research tax credit data (GECIR and MVC CIR) France has a large R&D tax credit program
called CIR (institutional details provided in Appendix C.3). We obtained from the tax authority
DGFiP and the higher education ministry MESRI, the datasets called GECIR and MVC CIR
which record the declarations made by firms on the composition of their R&D expenditures to
determine the fiscal transfers. The research tax credit is declared at the company level by the
fiscal parent company, and since our geographical unit of observation is the commuting zone,
we need to allocate the total amount claimed. We do so according to the share of the company’s
engineers in the commuting zone (the procedure is described in Appendix C.3). This data is
used to measure outcomes such as total spending on R&D but also to identify specific channels,
exploiting the information on outsourcing to public research labs that firms need to report when
they claim tax credits.

17. Identified through positions with an occupation and socio-professional category (PCS) beginning with 38:
“Engineers and technical managers of companies”

18. The public sector was included in the DADS from 2009.
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PhD cosupervision data (Cifre) France has a public subsidy program, called Cifre, for co-
supervisions of PhDs between a public lab and a company. The two parties sign a contract that
specifies how the student will share her time and what will be the rules regarding intellectual
property (see Appendix C.4 for details on the institution). We obtained data on all Cifre con-
tracts at the individual level, where we can identify the collaborating firm with the national
firm identifier, the municipality where the PhD student is employed and the public research
lab co-supervising the student. These data are available from 2003 to 2018. This measure of
PhD co-supervision is used in the section on channels.

Table 1: Description of variables

Variable name Source Coverage Details

Variables used for main results
R&D wage bill DADS 2005-2018 Total wages of employees in PCS 38
R&D hours DADS 2005-2018 Hours worked by employees in PCS 38
R&D hourly wage DADS 2005-2018 Hourly wage of employees in PCS 38
Total R&D claims GECIR 2008-2018 Total R&D claims declared in the CIR (R&D

tax credit) program
Number of patents PATSTAT 2005-2018 Number of patents
Number of new plants REE 2005-2018 Number of new plants

Variables used to study channels
PhD co-supervision Cifre 2005-2018 Number of Cifre (PhD co-supervisions)
Academic spin-offs JEU 2009-2018 Young academic private ventures entitled

to tax breaks
Outsourcing R&D to public labs GECIR 2008-2018 Amount of outsourcing to public labs de-

clared to claim CIR
Transfer of senior academics DADS 2010-2018 Number of transfers of senior academics

from a main job in academia to a main job
in private sector

Transfer of junior academics DADS 2010-2018 Same for junior academics
Transfer of researchers DADS 2010-2018 Same for total number of transfers
Hiring of young PhDs GECIR 2008-2018 Number of recent PhDs hired as declared

in the CIR tax declarations
Collaboration with univ. CIS 2004-2016 Average probability to collaborate with a

local university.

Academic spinoffs (JEU) France has in place a program of payroll and tax exemptions for
academic spin-offs launched by students or faculty members in universities (JEU, Jeunes en-
treprises universitaires). We obtained data on firms involved in this programs as described in
Appendix C.5.
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Plant register (REE) We use yearly information on the stock of firms and establishments from
the French statistical office (Insee). Using this source, we can calculate the number of new plants
opened each year. These plants can be created either by existing firms or be the first plants of a
new firm.

3 Measurement of proximity and identification

One of the contributions of this paper is to propose a novel measure of the proximity between
a given industry and a research group. The key idea is to measure whether the science that
an industry uses and the science that a research group produces coincide, without restricting to
existing direct links. This procedure thus infers a scientific position of each industry, rather than
attributing a technological position to each university, as is more common in the literature. In
this section, We first present the measure before discussing its properties and the relation with
the literature.

3.1 Construction of measures of proximity and exposure

The proximity of a firm in an industry i to a research group l can be conceptualized as follows.
If the group produces a new article, it will be published in journal j with a probability equal to
the share sl j of papers from l published in journal j. The paper in journal j may trigger an idea
of a technological application, which will originate from industry i with a probability equal to
the share sji of citations to journal j made by industry i.

Therefore, our measure of proximity

proxli = ∑
j

sl j · sji (1)

sums the product of these shares over journals j and yields a measure between 0 and 1, which
represents the probability that the scientific production of the lab l is used by industry i.

Based on this measure of proximity, we construct the measure of exposure of industry i in
commuting zone k to a fundung shock, expoik. The measure is the sum over all LabEx in the
commuting zone k of the funding received by each LabEx, weighted by the proximity of the
LabEx to the industry. We have:

expoik = ∑
l∈k

dl · proxli (2)
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where dl is the amount of funding received by the LabEx proposal l. expoik can be interpreted
as the amount of funds implicitly directed toward firms of industry i in commuting zone k, as
part of the Labex program.19 In our regression analysis, we use ln(expoik + 1) interacted with
time dummies as covariates to capture both the intensive and extensive margins of response to
the funding.

3.2 Implementation in the case of the LabEx

In order to compute the proximity and exposure measures between LabEx and industries, we
use the unique information contained in the bibliographies of the proposals. We tagged biblio-
graphic references20 in these applications, and linked them to the journals in which they were
published. We then characterize each LabEx l by the vector of shares sl j of papers in the bibliog-
raphy published in each journal (ISSN). For instance, a LabEx project on aerospace engineering
could be characterized by half of the bibliography being published in Progress in Aerospace sci-
ence, the other half in Journal of Fluid Mechanics and zero in all other journals, while a LabEx
project in molecular biology might have a vector composed of a third of its publications in Jour-
nal of Biological Chemistry, a third in Cell, a third in Journal of Molecular Biology, and zero in all
other journals. These vectors of shares will therefore finely represent how a project is positioned
in the scientific space.

On the firm side, we take the universe of patents owned by French firms before 2011 and
use the available DOIs in the PatCit database to determine which academic articles are cited
by these patents. We then link these articles to the journal in which they were published. This
allows us to compute the share sji of citations to journal j made by industry i.

Given the novel nature of this indicator, we start by providing some evidence on its validity
in Appendix D, before discussing the relation with other indicators in the literature in Section
3.3. We first exploit the initial reports we obtained for the funded projects, which sometimes
mention potential collaborations. Fore each LabEx we can thus determine the sectors that are
mentionned in the reports. We show that sectors that appear more in the reports are closer,
according to our proximity measure, to the LabEx. In a second exercise, we use the Community
Innovation Survey (CIS) which surveys more than 10,000 companies every two years on the
nature of their innovative activities. As in Abramovsky, Harrison, and Simpson (2007), we use
the question on the importance of sourcing from universities and higher education institutions

19. It can be compared to other innovation subsidies received by firms, for instance through the research tax
credit, an exercise which we conduct in section 6.

20. Using the machine-learning library Grobid.

12

https://grobid.readthedocs.io/en/latest/Introduction/


by the firm. We show that sectors in which a high share of firms report using the research
published by the public sector prior to 2011 are those with a higher average proximity. Both
these validation exercises are presented in Appendix D

3.3 Proximity measure: discussion

Our measure of proximity captures the distance between the science produced in academia
and the science used in the industry to develop technological applications. It thus infers a
scientific position for each industry, which is different from the more standard approach used
in the literature which attributes a technological position to each university. There are two
broad approaches in the literature to assign a technological position to academic groups us-
ing patents (and their distribution across technological classes). A first stream of papers (for
instance Hausman, 2021) directly uses academic patents (i.e. patents filed by public labs) to
infer the technological position of universities. A second approach is to use the patents which
directly cite the papers produces by a research group, as in Azoulay et al. (2019) in the context
of the biotechnology and pharmaceutical industries.

We believe these two approaches typically used in the literature are not ideal in our context.
First, academic patenting is a rather rare event in France prior to 2010.21 More importantly, we
want to exploit a shock in funding that could affect the production of the academic group and
the way the knowledge produced is used in the industry. Thus, using a method that relies on
citations to academic papers prior to the shock could be problematic. For instance, the LabEx
members, prior to funding, might not have invested time in collaborating with the industry.
They might have produced science useful for firms, but knowledge not yet exploited by the
industry, therefore having received very few citations.22 On the contrary, unless the funding
changes the type of science produced by the LabEx,23 the measure of proximity we propose
should not be affected by the funding.

We nevertheless compare our approach to alternative measures based on patents. The de-
tailed construction is presented in Section 4.2. In a nutshell, we identify patents which directly
cite papers contained in the bibliography of a given LabEx project and compare these to the set

21. Moreover, university patents have been shown to capture only a small share of the effects produced by
universities’ knowledge production (Agrawal and Henderson, 2002), and may therefore only reflect knowledge
transfers of a very specific kind.

22. Or simply the group might have produced lower quality work not useful for the industry, before they re-
ceived the funding.

23. Carayol, Henry, and Lanoë (2020) show that there is no evidence of a shift in research topics following fund-
ing.
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of patents filed by an industry. These alternative measures of proximity and our proposed mea-
sure are positively, but not perfectly correlated, suggesting that they capture different notions
of scientific proximity. Moreover, as shown in Section 4.2, our main results still hold when we
replace our baseline exposure with exposures based on these measures, although the precision
of the estimator is lower.

Finally, our approach hinges on the fact that potential spillovers between LabEx and pri-
vate firms are local since our measure of exposure does not expand across CZ borders. This
assumption is motivated by the local dimensions of the channels that are highlighted in the
literature and that we test in this paper. Nevertheless, we consider alternative exposures that
take into account broader geographical spillovers in Appendix E and show that our results are
only modestly impacted.

3.4 Identification

We exploit the shock in funding resulting from the LabEx program that affected certain com-
muting zones and not others after 2010 (the start of the program). Within these commuting
zones, certain industries were exposed to the shock because of their technological proximity
to the funded academic cluster. The variations in relative exposure across space and indus-
tries allow us to control for shocks specific to the commuting zone. Therefore, our identifying
variation comes from differential exposure to the policy of industries within a commuting zone.

Specifically, for a given industry i in a commuting zone k in year t we are interested in an
outcome variable Yikt, such as employment in R&D. We estimate the following model:

Yikt = β × 1{t > 2010} × ln (1 + expoik) + αik + δtk + εikt (3)

where expoik measures the exposure of industry i in commuting zone k to the funding shock,
as introduced above, a measure which is time independent. The parameter αik is an industry ×
commuting zone fixed effect, while δt,k captures flexibly commuting zone specific time trends.
The parameter of interest is β and captures the impact of exposure on outcome variables. The
underlying assumption is that the more exposed industry–commuting zone dyads would have
followed similar trends as the less exposed ones, absent the funding shock. To increase the
likelihood that this assumption is satisfied, we restrict our sample to commuting zones that
had at least one LabEx proposal submitted in the competition and industries with non-zero
proximity to the local research cluster proposal in at least one commuting zone. Commuting
zones where no proposal is submitted are typically much more rural and less active in research
than those in our sample (see Figures E2 in the Appendix E).
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We also present the results graphically by estimating a dynamic difference-in-differences
specification allowing us to gauge the magnitude of effects over time, through the following
equation:

Yikt =
2017

∑
d=2005
d ̸=2010

βd × 1{t = d} × ln (1 + expoik) + αik + δt,k + εikt (4)

The estimated coefficients βd can be causally interpreted under the identifying condition
that the treatment is orthogonal to the error term in equation (4) conditional on CZ × sector
and CZ × year fixed-effects. Formally, this identifying assumption writes as:

E[εikt(1{t = d} × ln (expoik + 1)) | αik, δt,k] = 0 ∀(t, d)

In words, the identifying assumption states that, in the absence of the policy reform, the
outcome variable would have been similar, within a given commuting zone, among industries
more or less exposed to spillovers from the reform. This common trend assumption cannot be
directly assessed. However, finding βt not to be significantly different from zero for t < 2010 is
evidence consistent with the absence of differential pre-trends between differentially exposed
industry-commuting zone dyads (which is supportive of the common trend assumption prior
to the treatment).

The identification strategy rests on two sources of variation: variation in clusters that were
selected and variation in industries exposed to the funding shocks. To address potential endo-
geneity concerns on these sources of variation, we propose additional tests presented in Section
4.2.

In particular, even in the presence of exogenous shocks, exposure of industries to shocks
might not be random, and the unobservable variables explaining exposure might also drive
the dynamic evolution of these industries. To address this concern, we follow Borusyak and
Hull (2020) and consider counterfactual realizations of the shocks in a number of robustness
exercises. Our data on grades and amounts requested on all submitted projects allows us to
compute precisely the funding non selected clusters would have obtained, had they been se-
lected.

The second threat might come from the selection process of the funded units. One might
worry that the selection was performed based on how connected the proposed clusters were
to potentially booming sectors in a specific geographical area. While we view this event as
unlikely given that the jury was made of international experts with no specific knowledge of
the French economy and was asked to judge purely scientific quality, we however restrict the
sample to show that this mechanism is not at play, using the key information on grades.
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4 Main results: spillovers from public to private

4.1 Main results

The private sector can benefit from research in the public sector if it manages to integrate the in-
novations and ideas produced by public researchers in its production process. It can also benefit
by building on these ideas to produce its own innovations and new products. Both processes
require additional spending on R&D inputs, in the first case to increase absorptive capacity and
in the second to be in a position to innovate. More research in the public sector can also lead
to the development of new ideas that could result in the creation of new establishments or the
production of new patents. In this Section, we estimate specifications (3) and (4) for different
dependent variables, to explore the effects on R&D inputs and outputs.

4.1.1 R&D efforts

We first study how the financing of public research affects private R&D efforts. Figure 1 presents
the results of the estimation of the dynamic model (equation (4)) using as outcome variable the
total R&D wage bill (in log).24

Figure 1: Impact of Labex funding on employment in R&D
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Notes: Panel (a) presents point estimates and 95% confidence intervals of coefficients βd from equation (4) for values of d ranging from 2005
to 2018. βd has been standardized to 0 for d = 2010. Estimates were obtained through OLS with standard errors clustered at the industry–
commuting zone level. The dependent variable is the log of engineer wages in plants of a given commuting zone–industry pair. Panel
(b) presents a similar figure but the coefficient βd is replaced by a binary variable for different quantiles of the level of exposure, where
the reference category is the set of industry–CZ pairs below the first quartile of non-zero exposures. 42301 obs (3761 industry–CZ pairs).

24. As explained in the previous section, we use the total R&D wage bill as a proxy for R&D expenditures, since
this is a quantity that is precisely observed at the local level for the full set of firms (see discussion in Appendix
C.2).
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We present the results using the continuous measure of exposure in Figure 1(a) and we show
the effect by quartile of exposure in Figure 1(b). The results show that a few years after the
treatment, industry-location pairs that were more exposed to the local public research funding
shock witnessed an increase in spending on R&D labor. 5 years after treatment, we observe an
increase of around 1.5% in R&D wage bill when the exposure of an industry in an commuting
zone is doubled. This Figure also shows the absence of differential pre-trends in the years
building up to the financing, which is evidence in support of our identification strategy. Figure
1(b) shows that the effect is mostly driven by pairs of industry-location that are in the top
quartile of exposure. On average, these pairs increase their spending on employment in R&D
by 20% compared to the least exposed units (which received no funding).

The first line of Table 2 presents the corresponding static coefficient β of equation (3) for the
total spending on R&D jobs. We then decompose this effect in the next two lines and show that
the increase in wages is explained for three fourth by increased hours, and for one fourth by
an increase in hourly wage. In these three regressions, the static coefficient is significant and
positive. The table also systematically presents the average value of pre-trend coefficients (βd

with d < 2010) from an estimation of equation (4), to test the absence of a trend prior to the
treatment.

As an alternative measure of R&D effort, we use as outcome variable the total R&D claims
in the tax credit data (see Appendix C.3 for details). The results are presented in the fourth
line of Table 2 and are in line with what was found for total R&D worker wagebill. This is not
surprising as the correlation between the two variables is very high (see Table C1 in Appendix
C.2). However, the coefficient is larger which suggests that our main result could underestimate
the total effect on R&D inputs.
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Table 2: Main results

Static Coefficient Obs. Pre Trends

R&D wage bill (log) 0.0087*** 47,986 obs (4285 pairs) 0.0017
(0.0033) (0.0038)

R&D hours (log) 0.0068** 47,985 obs (4285 pairs) 0.0030
(0.0031) (0.0036)

R&D hourly wage (log) 0.0019** 47,985 obs (4285 pairs) -0.0013
(0.0007) (0.0009)

Total R&D claims (log) 0.0150** 27,373 obs (3073 pairs) 0.0022
(0.0064) (0.0076)

Notes: Each line corresponds to a different dependent variable. Column 1 shows the coefficient from a static difference-in-
differences specification run over the period 2005–2018 (see model (3)). The reported coefficient corresponds to the exposure
variable interacted with a post (i.e. after 2010) dummy variable. The last column shows the average value of the pre-trend co-
efficients of the model (4), estimated over the same period 2005-2018. The unit of observation is a pair of commuting zone ×
5-digits industry. All models include a commuting zone-industry fixed effects and a set of commuting zone-year dummies. All
estimations use the OLS. Standard errors are clustered at the pair level.

Discussion on magnitude and external validity. Results presented in Table 2 imply quan-
titatively important effects. They suggest that a one standard deviation increase in exposure
(≈ 5.05) translates into a 3.4% increase in R&D (engineer) employment. These estimates are
obtained using cross-sectional variation in exposure across sectors within CZ. Therefore, they
cannot be directly extrapolated to assess the aggregate effect of the policy on R&D employ-
ment. In particular, we cannot rule out that the policy reallocated engineers from low- to high-
exposure sectors within commuting zones. In fact, the modest but positive and significant effect
we find on hourly wages is consistent with an increase in competition in the labor market for
engineers—which leads to the capitalization of some of the gains of the policy on factors (R&D
workforce) which are unlikely to be perfectly elastically supplied, especially in the short-run.

Abstracting away from local general equilibrium effects, our estimates are unlikely to be
representative from what a scaling-up of the program would produce, because the program
selected the best projects. Even if our results are an unbiased estimate of the average treatment
effect on the treated, there might have been some selection on treatment effects, whereby the
best teams with the most ambitious projects were financed first. Accordingly, the ATT we esti-
mate is likely higher than the average treatment effect that would result from a larger and less
selective program.

4.1.2 R&D outputs

How do these increased R&D inputs translate into outputs? We consider two possible out-
comes: creation of new plants and production of new patents.
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To measure the effect of the LabEx program on the creation of new plants, we use the registry
of plants administrated by the INSEE and calculate the number of new establishments in each
CZ and each sector. Table 3 shows a positive effect of LabEx exposure on the probability of
creation of a new plant in an industry–CZ pair, corresponding to an increase of 0.2 percentage
points when exposure doubles. Decomposing this effect between plant creation from new and
incumbent firms shows that it stems almost entirely from new firms. These young firms are
typically more innovative and dynamics than incumbents, and might be missed by our measure
of R&D inputs since they typically do not have R&D workers or ask for R&D tax credit during
their first year of existence.

Table 3: Additional outcome results

Static Coefficient Obs. Pre Trends

Creation of new plants (binary) 0.0021*** 59,990 obs (4285 pairs) 0.0006
(0.0008) (0.0014)

Creation by new firms 0.0019*** 59,990 obs (4285 pairs) -0.0017
(0.0007) (0.0014)

Creation by old firms 0.0008 59,990 obs (4285 pairs) 0.0021
(0.0008) (0.0015)

Number of patents 0.0148 17,456 obs (1248 pairs) -0.0212**
(0.0245) (0.0108)

Number of patents (with sector FE) 0.0443** 15,657 obs (1232 pairs) -0.0265
(0.0184) (0.0219)

Notes: Each line corresponds to a different dependent variable. Column 1 shows the coefficient from a static difference-in-differences specifica-
tion run over the period 2005–2018 (see model (3)). The reported coefficient corresponds to the exposure variable interacted with a post (i.e. after
2010) dummy variable. The last column shows the average value of the pre-trend coefficients of the model (4), estimated over the same period
2005-2018. The unit of observation is a pair of commuting zone × 5-digits industry. All models include a commuting zone-industry fixed effects
and a set of commuting zone-year dummies (the last model also include a set of 5 digit industry-year fixed effects). Estimations on entry use an
OLS estimator while estimations on patents uses a Poisson model. Standard errors are clustered at the pair level.

The impact on patenting is explored in the second part of Table 3. We use a Poisson re-
gression to estimate the coefficient which allows to take into account the very large number
of observation with no patent, while taking into account the intensive margin. The baseline
model yields a non significant static coefficient along with non 0 pre-trend. However, when
sector-year fixed effects are added to the model, the coefficient becomes positive and signifi-
cant and the pre-trends are no longer significant. This suggests that industry-specific patenting
dynamics play a first-order role over our period of study and confound our baseline estima-
tion.25

Overall, these first results show that investments in public research have a causal and sig-

25. It is well known that the propensity to patent is very different across technologies and therefore across sectors.
If this propensity has evolved over time, then adding industry-year fixed dummies will capture this effect.
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nificant medium term effect on R&D spending and R&D outputs in local industries that are
scientifically connected to the research entity. We explore the robustness of these results in the
next section.

4.2 Robustness

4.2.1 Additional controls and alternative samples

In our main specification, we include flexible commuting zone–time effects, but do not include
industry–time effects. Our first robustness exercise is therefore to add these flexible time effects
specific to each industry (2-digits, 88 categories). The results, presented in Figure B2, are very
similar to those in Figure 1. The average treatment effect is extremely similar, suggesting that
spillovers across commuting zones are not that important, but the standard errors increase.
We replicate Table 2 adding these fixed effects. The results are largely preserved (see Table
??). Going one step further, we also add 5-digit industry-year fixed effects to the model. The
resulting coefficient is shown in Table 4 for the main dependent variable (the total wagebill of
R&D workers taken in log). Its magnitude is very similar to the one of the baseline estimation
and its precision is slightly lower, but still significantly different from 0.

A possible concern is that LabEx are widely concentrated in the Paris area (Ile de France
region) and in specific sectors (chemistry and pharmaceutical in particular, see Figure 3). In
addition, the list of 2 digit sectors includes an “R&D sector” which also accounts for a large
share of the total exposure. We check that our results are robust to removing these specific
observations. We thus alternatively restrict the sample by removing the R&D sector, then the
chemistry and pharmaceutical industries and finally the Paris region. Our main coefficient of
interest is barely affected (see Table 4).

4.2.2 Alternative measures of proximity

As explained in Section 3.3, the typical measure of proximity used in the literature would assign
a technological position to the LabEx and compare it with the position of different sectors. To
construct this alternative measure of proximity, We proceed as follows. First, we use the PatCit
database to identify the patents which directly cite papers contained in the bibliography of a
given LabEx project. This procedure assigns a portfolio of patents to each LabEx that can be
compared to the set of patents obtained by each industry. We then compute two different types
of proximity metrics. The first one is based on the technological classes (IPC) of the patents. For
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Table 4: Robustness checks

Static Coefficient Obs. Pre Trends

Baseline 0.0087*** 47,986 obs (4285 pairs) 0.0017
(0.0033) (0.0038)

Adding sector fixed-effects
1. 2-digit sector FE 0.0107*** 47,986 obs (4285 pairs) -0.0018

(0.0038) (0.0044)
2. 5-digit sector FE 0.0097* 47,986 obs (4284 pairs) 0.0029

(0.0041) (0.0048)
Removing highly exposed sectors/locations
3. Remove R&D sector 0.0083** 47,157 obs (4214 pairs) 0.0018

(0.0033) (0.0038)
4. Remove pharma and chemical sectors 0.0102*** 44,987 obs (4009 pairs) 0.0027

(0.0034) (0.0040)
5. Remove Paris region 0.0084** 39,400 obs (3544 pairs) 0.0037

(0.0035) (0.0040)
Alternative measures of proximity
6. IPC3 weights 0.0068* 47,986 obs (4285 pairs) -0.0013

(0.0037) (0.0042)
7. IPC4 weights 0.0060* 47,986 obs (4285 pairs) 0.0001

(0.0036) (0.0040)
8. Embedding weights 0.0061* 47,986 obs (4285 pairs) -0.0007

(0.0031) (0.0036)
Notes: This Table presents the results of the same estimation as in Table 2, using as dependent variable the log of the total wage bill of engineers, and either
adding sector specific trends in lines 1 and 2, or applying restrictions to the data in lines 3-5 (see Section 4.2.1), or using alternative distance measures in lines
6-8 (see Section 4.2.2).

each LabEx and for each industry, we calculate a vector of weights on each IPC classes at the 3-
digits level (there are 123 such technological classes in our data) and simply take the Euclidean
distance between each pairs of LabEx-industry. We repeat the procedure at the 4-digits IPC
level. The second type of metric uses the embedding of each patent as calculated by Google
(Srebrovic, 2019). Embeddings are a learned representation of a complex object composed of
many features with the goal of reducing its dimensionality. In this case, each patent has been
associated with a vector of 64 real numbers computed using a machine learning model that
predicted a patent’s technological classes from its text. In other words, the embedding vector
encodes the semantic content of a patent into an algebraic object from which we can easily
calculate a distance. We calculate the unweighted average of the embedding vectors of each
patents associated with a given Labex on the one hand and for each patent associated with a
given industry on the other hand, and calculate the cosine distance between the two.

These three alternative measures of proximity are correlated with our baseline (the correla-
tion are respectively of 0.44, 0.59 and 0.60 with the Embedding, IPC3 and IPC4 measures) and
we use them to construct three different exposures. We then run our main specification using
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the three new measures. Results shown in Table 4, lines 6-8, and are qualitatively similar to the
one in our baseline model with slightly smaller and less precise coefficients (see Figure B3 in
the Appendix).

4.3 Placebo tests

Our identification strategy relies on a parallel trends assumption for the pairs of sector and CZ
more or less exposed to the shock. There are two sources of variations in exposure to funding
of these pairs: different CZ obtain different levels of funding and within CZ different sector
are more or less scientifically close to the treated units. In this section we propose a number of
placebo tests to show that the causal effects of our treatments is not driven by the potentially
non random exposure of pairs of sector and CZ to the shock.

We first follow Borusyak and Hull (2020), who have developed a new methodology that al-
lows constructing counterfactual shocks by simulating the data generating process that assigns
the funding to candidate LabEx. We apply their approach to our data. We have information
on 268 candidate projects, 139 of them have been accepted and 129 have been rejected. We ran-
domly reassign this decision across all candidates but keep the share of accepted projects the
same. For each LabEx that have been allocated in the new treatment group, we then use the
average funding value observed for actually accepted LabEx d̄l while for other LabEx, we set
the funding to 0. We can now construct the corresponding measure of exposure at the sector-CZ
level which results from this specific first permutation that we note êxpo(1).

We then replicate this procedure a thousand time to generate êxpo(2), êxpo(3),... êxpo(1000).
From which we construct a control variable:

êxpopermut
=

1
1000

1000

∑
p=1

êxpo(p)

which we add as a control variable in equations (3) and (4) as shown in equations (5) and (5)
respectively.

Yikt = 1{t > 2010} ×
(

β ln (1 + expoik) + γ ln
(

1 + êxpopermut
ik

))
+ αik + δtk + εikt (5)
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and

Yikt =
2017

∑
d=2005
d ̸=2010

(
1{t = d} ×

(
βd ln (1 + expoik) + γd ln

(
1 + êxpopermut

ik

)))
+ αik + δt,k + εikt (6)

The results are presented in Table 5 (lines 1). If the positive result reported previously is
indeed a response to the funding, we would expect coefficients γ and γd to remain indistin-
guishable from 0, while coefficients β and βd to be similar as in our baseline model. The result
shows that indeed the actual exposure continues to be positively associated with changes in
R&D workers after the treatment, while the counterfactual exposure does not.

We then exploit the unique features of the data we obtained on the LabEx to go further. For
each proposal, including the rejected, we know the amount of funding that was requested by
the project, the grades obtained and the scientific field. We can predict the funding that a LabEx
would have received had it been accepted in the program: we estimate the following model for
all accepted projects l:

dl = exp
(

log(Rl) + µ f (l) + νn(l) + tl + ε l

)
Where dl is the funding actually received and Rl the amount requested. µ f (l) is a vector of

dummy variables for each scientific field and νn(l) a dummy vector for each grade category.
Finally, tl is a binary variable that takes the value 1 if the application has been filed in 2011 (as
opposed to 2010). The coefficients are estimated using a Poisson estimator and used to predict
d̂ for all projects, including those that have been rejected.

We then recompute the exercise in Borusyak and Hull (2020) but use the project specific
predicted value of the funding dl to construct the counterfactual shock. The results, presented
in Table 5 (line 2) are very close to those obtained in the first exercise.26

To control for the fact that all candidate LabEx do not have the same likelihood of being
actually funded, we replicate the exercise presented in line 1 of Table 5 but randomize the
assignment within 4 categories of grades (below 27, between 27 and 29, between 30 and 32 and
above 32, out of 35). Hence, the randomization allows to build a counterfactual exposure that

26. Borusyak and Hull (2020)’s approach also allows to conduct robust randomization inference based on the
distribution of the coefficients obtained across counterfactual shocks permutations in order to test β = 0. The two
exercises implies a p-value, defined as the probability that a simulated coefficient is larger than the baseline one

when equation (4) is estimated using êxpo(k) instead of expo, of respectively 0.009 and 0.011. This approach to
inference presents the advantage of accounting for the potential dependence across observations i, k induced by
the fact that variation in exposure derives from random funding decisions at the Label (l) level.
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keep the proportion of funded LabEx within each category of grades. The results are presented
in line 3 of Table 5 and again show a non significant counterfactual coefficient while the actual
exposure continues to be positively associated with the post treatment wagebill of engineers.

Finally we test an extreme version of the counterfactual allocation of funds. We compute
a counterfactual exposure as if rejected LabEx were in fact accepted, while the accepted ones
were rejected. Formally, we use our predicted measure of exposure for the group of rejected
academic clusters and set it to 0 for the actual funded LabEx. We then estimate equation (3)
and present the results in line 4 of Table 5. The results show that this counterfactual exposure
measure does not have predictive power.

Table 5: Placebos, selection on grades

Static Coefficient Obs. Pre Trends

Borusyak and Hull (2020) counterfactuals
1. Counterfactual Exposure (average) -0.0050 47,986 obs (4285 pairs) 0.0035

(0.0070) (0.0079)
Actual Exposure 0.0125** -0.0010

(0.0057) (0.0065)

2. Counterfactual Exposure (predicted) -0.0054 47,986 obs (4285 pairs) 0.0039
(0.0058) (0.0080)

Actual Exposure 0.0127*** -0.0012
(0.0058) (0.0065)

3. Counterfactual Exposure (clustered) -0.0003 47,986 obs (4285 pairs) 0.0024
(0.0181) (0.0203)

Actual Exposure 0.0087** 0.0015
(0.0036) (0.0042)

Placebo test
4. Predicted Exposure (rejected proposals) 0.0032 47,986 obs (4285 pairs) 0.0035

(0.0035) (0.0039)

Selection on grade
5. Actual Exposure (average grades) 0.0063* 39,131 obs (3439 pairs) 0.0026

(0.0035) (0.0040)

6. Actual Exposure (outstanding grades) 0.0114*** 36,081 obs (3185 pairs) 0.0019
(0.0036) (0.0042)

Notes: This Table shows the coefficients and standard errors of various estimations. The dependent variable is the logarithm of the total wage bill of engi-
neers in each pairs of CZ and industry. Lines 1, 2 and 3 corresponds to the estimations of equations (5) and (6) using different measures of the counterfactual
exposure as explained in Section 4.3. Lines 4, 5 and 6 show the results of the estimation of equations (3) and (4). Line 4 uses a measure of the exposure based
on the predicted funding of the rejected LabEx. Lines 5 and 6 select on project with average grades (Grades between 26 and 32 for proposals filed in 2010 and
between 30 and 32 (out of 35) for proposals submitted in 2011, there are 115 such proposals) and outstanding grades (greater than 32 out of 35, there are 73
such proposals). The specifications are otherwise similar to the one presented in Table 2.
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We also use the grade received by the proposals to change the selection of pairs industry-
commuting zones. One might worry that the choice of one proposal compared to another one
was based on the motivation that these LabEx are more connected to potentially booming sec-
tors in a specific geographical area. While we view this event as unlikely given that the jury was
made of international experts with no specific knowledge of the French economy, we however
restrict the sample to show that this mechanism is not at play.

First, we restrict attention to proposals that had a “standard” or “average” grade, i.e. the
common grade support across accepted and rejected proposals.27 This allows us to remove
proposals that were either not good enough so that they had no chance to get the funding and
those that were so good that they were ex-ante almost sure to be accepted. Second, we keep
only the proposals with a very good grade.28 In spite of their scientific quality, still 4 were
rejected, probably due to reasons that were independent of the quality of the proposal itself
(for example to ensure some level of geographical distribution across the whole country). The
first restriction answers a potential concern on the randomness of the treatment, by focusing
on a set of proposals of similar quality. The second restriction focuses on the contrary on a set
of proposals for which the unlikely anticipation of their local impact on the private sector by
the jury could not have been the marginal unobserved criterion that would have distinguished
funded from unfunded proposals, given their outstanding scientific quality. In both case, we
select the pairs of industry-CZ by considering those with an eligible LabEx and estimate the
same model as previously. Results are presented in the third section of Table 5. The static
coefficient remains of the same magnitude and sign.

5 Channels for spillovers

Section 4 provides robust evidence of sizeable spillovers from the public to the private sector.
We both propose a new measure of proximity and provide causal evidence on spillovers. In the
current section, we turn to our third main contribution which is to study the mechanisms that
sustain these spillovers.

There are three main channels through which spillovers can operate. First, they can result
from formal contracting between the public researchers and private firms (contracting chan-
nel). The second potential channel is mobility of researchers (PhD students and more senior

27. Grades between 26 and 32 for proposals filed in 2010 and between 30 and 32 (out of 35) for proposals submit-
ted in 2011, there are 115 such proposals.

28. Greater than 32 out of 35, there are 73 such proposals.
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researchers) taking up part-time or full-time positions in the private sector, bringing new ideas
to the private firms in the process (mobility channel). We include in this category the creation
of new startups by public sector researchers. Finally, spillovers can occur through informal
contacts between private and public researchers, for instance in the context of outreach events
organized by the academic group (informal channel).

5.1 Evidence from initial reports

We first exploit a unique source of data, the initial reports written by the funded LabEx shortly
after the start of the clusters, to fomalized for the funded agency the governance and poten-
tial impacts of the Labex, that were provided to us by the ANR. These reports have a specific
section called “socio-economic impacts of the project”, that describe in particular the projected
interactions with the private sector, and therefore shed light on the importance of the different
channels mentioned above.

As shown in Table 6, that summarizes the content of the reports, 74% of the reports men-
tion an activity that we characterize as belonging to the contracting channel. Four main types
repeatedly appear: contracts (including subcontracting of research by firms), public-private re-
search partnerships, PhD co-supervision and finally licensing agreements of academic patents.
Some reports also mention more original types of contracts. For instance, the LabEx MINOS
Lab, located in the Grenoble area and specializing in nanotechnologies, describes an agreement
whereby expensive equipment are provided by private firms in exchange for the sharing of sci-
entific results. The report states that “this type of collaboration is very fruitful since MINOS Lab
can obtain state of the art equipment that cannot be otherwise obtained, while the providers of
the equipment obtain scientific information that their internal R&D teams cannot obtain.”

Table 6 also documents that 30% of reports mention some type of informal contacts. In a
number of cases this corresponds to industrial outreach, i.e. the organization of seminars tar-
geted towards industrials and engineers. Some reports in fact use the terminology informal
contracts. The LabEx LERMIT, an academic cluster oriented towards medical treatments of
cancer and cardiovascular diseases, located in Saclay, highlights that “a considerable number
of informal exchanges which will enable LERMIT to be known and recognized by all”. The
LabEx ASLAN in Lyon, that studies with an interdisciplinary team issues around language, its
acquisition and use, has a “program of regular meetings between PhD students and researchers
from ASLAN with actors of the private sector to build relationships.”29 Finally as a last exam-

29. Examples of industrial applications are mentioned on the website of this Labex, ranging from startups pro-
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Table 6: Evidence on channels in interim report

Channel Sub Category Nb. reports Share Reports

Contracting 128 74%

Contracts 78 45%
Partnerships 46 27%
PhD co-supervision 15 9%
Patent licensing 67 39%

Mobility 89 52%

Startup creation 72 41%

Informal contacts 53 30 %

Industrial outreach 17 10 %
Notes: This table summarizes the information contained in the initial reports. Column 1 gives the three broad
categories of channels (contracting, mobility and informal contacts), column 2 organizes these channels into
sub-categories. Column 3 counts the number of reports in each category while column 4 lists the proportion of
reports where the category under consideration appears.

ple, the LabEx ACTION, which focuses on intelligent systems and is based in Dijon, created a
“club of partners”, described as a “structure of exchange of information between the members
of the LabEx and potential partners”. They insist on the fact that the membership in this club
will not be contingent on a contractual relation with the Labex.

Finally, 52% of the reports mention efforts to facilitate the mobility of students and staff to
the private sector. Part of this channel corresponds to setting up instruments to facilitate startup
creations. It also corresponds to efforts oriented towards helping and encouraging master and
PhD students to find a job in the industry. The LabEx EGID in Lille, that focuses on diabetes
diagnostic and treatment, mentions “training and exchanging students with the industrial part-
ners.” A LabEx specializing in systems of scientific simulation based in Paris, CALSIMLAB,
highlighted efforts to “create PhD and Postdoc positions at the intersection of different disci-
plines to create new skills for these young researchers facilitating their professional insertion in
the high technology sectors. This will contribute to increase the competitivity of these firms.”

5.2 Causal evidence on channels

The picture drawn by the reports is one where all the three channels appear to play a role,
the contracting channel being particularly important. These reports provide a comprehensive

viding online language tools to educational startups.
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picture on mechanisms, since they are filed by all funded proposals. They do not allow us
however to make causal claims. To show that indeed such mechanisms are at play, we exploit
the wealth of data we assembled and provide causal evidence on specific instances of these
channels.

5.2.1 The contracting channel

To measure formal contracting, we exploit the data on PhD co-supervision contracts (Cifre pro-
gram) as well as data on outsourcing to private research labs recorded in the French research
tax credit. These are two important instances of the contracting channels, though they of course
do not capture all the different subcategories mentioned in the reports.

The effect on PhD co-supervision contracts is presented in Figure 2(a). The figure shows the
absence of differential pre-trends and a significant increase in these contracts with industries
scientifically close to the funded group. The results by quantile presented in Figure B5 in the
Appendix, suggest that the effect is concentrated in the top quartile. There is an increase of 5%
of the probability of having at least one PhD co-supervision contract in the industry*location
pair in the top quartile compared to the bottom one (on average only 6% of industry*location
pairs have these type of contracts).

Figure 2(b) shows the effect of the program on R&D subcontracting by private firms, a prac-
tice mentioned by several of the reports. The more exposed industries become more likely
to sign at least one outsourcing contract with a public lab. The effect becomes larger a few
years after the treatment. The effect also appears concentrated in the top quartile. The results
of the static specification (3) are presented in Table 7. On average, doubling the exposure of
an industry-location pair, increases PhD co-supervision contracts by 0.39% (base rate of 6%)
and outsourcing by 0.2% (base rate of 12%). Outsourcing also increases at the intensive mar-
gin, with a doubling in the exposure of an industry–CZ pair implying a 5.6% increase in the
amounts outsourced to public labs.

5.2.2 The mobility channel

We now turn to the second channel. We can observe mobility by using the administrative data
which since 2010 contains the public sector. We have access to the complete French adminis-
trative data on employment, so this provides us with a comprehensive measure of movements
from the public to the private sector. For any worker in year t we can observe the main occu-
pation of that worker in t − 1. In particular, we can track public researchers in t − 1 who have
as highest paying job a position in the private sector in t. This is our measure of mobility from
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Figure 2: Impact of Labex funding on channels
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Notes: These figures are similar to Figure 1(a) but consider the probability that (a) a PhD co-supervision
is agreed upon, (b) there is some outsourcing from firms to public labs, (c) there is a transfer of a re-
searcher from the public to the private and (d) some hiring of young PhDs from the public research sector.

the public research sector to the private sector. Furthermore, we distinguish junior researchers
(PhD students, researchers with temporary teaching contracts) and senior researchers (those
that hold permanent research positions).30 It is worth highlighting that compared to the re-
ports, we miss the transfer of master students, who are not included in the administrative data
since they do not have a work contract.

The results are presented in Figures 2(c) and 2(d). These figures document a significant
increase in both categories. Sectors that are closer scientifically to the funded LabEx are more
likely to attract public researchers and Phd students from the public sector after the funding
shock. Given the constraint on the data that starts recording public sector workers only in 2009,

30. The category of senior researchers includes maître de conférence and professeur des universités, as well as
chargé de recherche and directeur de recherche in CNRS, INSERM and other public research organization. Note
that the equivalent in anglo-saxon system covers both untenured assistant professors as well as tenured ones.
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Table 7: Difference-in-differences estimates of spillover channels

Panel A: Contracting channel
Static Coefficient Obs. Pre Trends

PhD co-supervision (binary) 0.0033*** 59,990 obs (4285 pairs) -0.0002
(0.0008) (0.0009)

Academic Spin-offs (binary) 0.0015*** 42,850 obs (4285 pairs) -0.0000
(0.0003) (0.0000)

Outsourcing R&D to public labs (binary) 0.0025*** 47,135 obs (4285 pairs) -0.0005
(0.0008) (0.0010)

Outsourcing R&D to public labs (log) 0.0288* 5,183 obs (1031 pairs) -0.0237
(0.0155) (0.0226)

Panel B: Mobility channel
Static Coefficient Obs. Pre Trends

Transfer of senior academics (binary) 0.0030*** 34,280 obs (4285 pairs) -
(0.0008)

Transfer of junior academics (binary) 0.0018* 34,280 obs (4285 pairs) -
(0.0012)

Transfer of researchers (binary) 0.0029*** 34,280 obs (4285 pairs) -
(0.0011)

Hiring of young PhDs (binary) 0.0030*** 47,135 obs (4285 pairs) -0.0015*
(0.0007) (0.0009)

Notes: Same as Table 2 but using different dependent variables. The absence of pre-trend coefficients for some outcomes are due to the fact that we do
not measure them before 2010 (see Section 2).
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we cannot establish the absence of pre-trends.

The results of the static specification (3) are presented in Table 7, Panel B. On average, dou-
bling the exposure of an industry-location pair, increases transfers of researchers by 0.30%. The
last line of the Table exploits the information available in the CIR declarations where firms
report whether they hired young PhDs. The effect is of the same order of magnitude.

Overall, the initial reports, discussed in Section 5.1, show that all three channels play a role
and Section 5.2 validates the finding by providing causal evidence on certain subcategories of
these channels. Furthermore, the reports highlight the particular importance of the contracting
channel.

6 Policy implications and conclusion

We have shown causal evidence on the existence of spillovers from the public research sector
to the private sector. Furthermore we have shown the particular importance of the contracting
channel to explain these results. We conclude this paper with a discussion of policy implications
of these findings.

The LabEx program we exploit to derive these results is a specific type of public research
financing: it targets very high quality research groups deciding to work on a common theme.
This type of policy instrument is being more and more widely adopted by European authori-
ties,31 and universities also increasingly divert funds from traditional discipline based funding
to invest in specific themes.32 This kind of instrument can be particularly well suited to generate
spillovers as opposed to individual research grants since they give visibility to the theme locally
and also encourage researchers to make particular efforts to share their knowledge. Comparing
the different modes of financing public research would be an important topic of future research.

Our results also have policy implications for the financing of private sector innovation. Be-
cause of spillovers, whose importance we showed in Section 4.1, the financing of public research
can be considered as an indirect policy tool to finance private sector R&D. Another widespread
instrument to encourage private sector innovation are tax credit programs, which have been
shown to be effective in spurring R&D (Bloom, Van Reenen, and Williams, 2019). As opposed

31. The “Exzellenzinitiative” in Germany, the “Severo Ochoa” Centers of Excellence in Spain, the Centers of Ex-
cellence in the Nordic countries (descriptive evidence in Möller, Schmidt, and Hornbostel, 2016) or the Initiative
d’Excellence in France.

32. There are numerous instances of academic clusters (or centers) of excellence created recently within (or some-
times across) universities such as the University of British Columbia, Stanford University, MIT, or the University
of Cambridge.
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to the financing of public research, such tools can be described as direct instruments of financ-
ing, since they directly target R&D spending by firms.

The tax credit program in France is called Crédit d’Impôt Recherche (CIR), and accounts
for more than two thirds of direct incentives to innovation for firms (see details in Appendix
C.3). Tax credits are earned as a share of reported R&D expenditures, which can be labor or
capital costs.33 A potential limitation of tax credit programs is that they are based on inputs
in R&D. Therefore, they cannot target firms that make the most productive use of these inputs.
Furthermore, they open the way to potential misreporting of R&D spending, such as relabelling
non-R&D expenditures into R&D ones (Chen et al., 2021). Financing public research on the
contrary can benefit only the private firms which are productive in R&D and can thus benefit
from spillovers. In that sense this type of financing targets more innovative firms.

While an empirical comparison of the relative impact of these two instruments on private
sector innovation is beyond the scope of this paper, we can shed light on the question of what
sectors are more affected by these two instruments. To perform this comparison, we allocate
the total funding of the two instruments by industry: the LabEx funding is allocated using the
sum of exposures over all labs, while the research tax credit is using the claims made by firms.34

The results are presented in Figure 3. We see that the distribution of exposure to the LabEx
program is much more skewed towards a few sectors. The two sectors that benefit the most
are the scientific R&D (almost 30%) and the pharmaceutical sector (more than 20%).35 On the
contrary the benefits of the CIR are much more evenly distributed across sectors, including in
sectors where innovation should not be central, such as computer consultancy. This evidence
suggests that financing public research to spur private sector innovation might be a better in-
strument to target truly innovative firms than more direct tools such as tax credit programs.
Comparing these instruments and understanding their complementarities is an important av-
enue for future research.

33. One of the peculiarities of the French research tax credit is that it has a very high ceiling (which implies a
drop from a 30% to a 5% rate), whereas many similar programs in other countries only apply to SMEs.

34. As noted in the data section, we define a firm’s industry as the industry of the largest non financial unit, to
avoid attributing a large weight to finance because of holding companies.

35. This justifies their exclusion in robustness checks of our main analysis (Table 4)
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Figure 3: Share of benefits by sector from LabEx vs CIR programs
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Online Appendix

A Additional tables

Table A1: Summary statistics on the baseline estimation sample

Panel A. Sector × CZ-level statistics

R&D and exposure variables Mean p50 p90

Exposure (in milions euros) 0.19 0.00 0.15
Proximity 0.05 0.00 0.07
Total employment 575.55 135.54 1029.41
Engineer employment 108.96 6.12 111.24
# plants 50.88 8.00 97.00
# plants employing engineers 3.39 0.00 4.00
# EPO patents 1.09 0.00 0.00

Cooperation variables

Has R&D outsourcing to public sector 0.12 0.00 1.00
Has a industry-univ. PhD convention 0.05 0.00 0.00
Transfer from univ to private 0.09 0.00 0.00
Has PhD graduate in priv. sector 0.07 0.00 0.00
Has academic spin-off 0.01 0.00 0.00

Observations: 59,990 — # (CZ × NAF) : 4,285

Panel B. CZ-level statistics

# of 5-digit sector 8.05 8.00 12.00
Total employment (in 1000s) 64.62 30.13 89.23
# plants 5737.43 2848.50 8906.00
# plants employing engineers 381.83 152.00 612.00

Observations: 532 — # CZ : 38

Notes: This Table presents descriptive statistics regarding the estimating sample.
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Table A2: Probability to be funded according to LabEx grades and characteristics

Dep. var. : P(funded)

Grade: Team quality 0.0379
(0.050)

Grade: Scientific ambition 0.1231***
(0.036)

Grade: Innovation and impact 0.0610
(0.038)

Grade: Teaching quality -0.0016
(0.039)

Grade: Management quality -0.0249
(0.038)

Grade: Partner univ. joint strategy 0.0329
(0.041)

Grade: Adequation ambition / funding 0.1173***
(0.035)

P(second wave) -0.2758***
(0.046)

Funding requested (log) 0.0707***
(0.026)

R2 0.384
Observations 340

Notes: This Table presents the results of an OLS regression of a dummy indi-
cating if a lab received funding on the grades it obtained over the seven dimen-
sions of grading and basic characteristics (year of reply and amount of funding
requested).
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Table A3: Impact of Labex exposure on employment and R&D spending, controlling for
industry–time effects.

Static Coefficient Obs. Pre Trends

Engineers wage (log) 0.0094** 42301 obs (3761 pairs) -0.0025
(0.0044) (0.0049)

Engineers hours (log) 0.0083** 42300 obs (3761 pairs) -0.0032
(0.0041) (0.0046)

Engineers hourly wage (log) 0.0011 42300 obs (3761 pairs) 0.0007
(0.0010) (0.0013)

Total R&D claims (log) 0.0079 24403 obs (2711 pairs) -0.0088
(0.0083) (0.0105)

Number of patents 0.0832*** 15558 obs (1142 pairs) -0.0183
(0.0205) (0.0195)

Notes: This Table replicates Table 2 but adds 2-digit industry-year dummies to each regression model.
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B Additional figures

Figure B1: Impact of Labex funding on R&D effort
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Notes: These figures are similar to Figure 1(a) but consider alternative dependent variables.
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Figure B2: Impact of Labex funding on engineer employment controlling for industry–time
effects
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Notes: see Figure 1. The regression now includes 2 digits industry–year fixed effects.

Figure B3: Effect of the Labex treatment on engineer wage bill with different proximity mea-
sures
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Notes: These figures reproduce Figure 1(a) using alternative measures of proximity to build exposure, as described in section 3.
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Figure B4: Impact of Labex funding on channels
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Notes: These figures reproduce Figure 1(a) for alternative dependent variables.
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Figure B5: Impact of Labex funding on channels (binary variables) by quantile

(a) PhD Co-supervision
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-.05

0

.05

.1

C
oe

ffi
ci

en
t

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Quartile 2
Quartile 3
Quartile 4

(c) Researcher transfer

-.05

0

.05

.1

.15

C
oe

ffi
ci

en
t

2010 2011 2012 2013 2014 2015 2016 2017

Quartile 2
Quartile 3
Quartile 4

(d) Hiring of young PhD

-.05

0

.05

.1

C
oe

ffi
ci

en
t

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Quartile 2
Quartile 3
Quartile 4

Notes: These figures reproduce Figure 1(b) for alternative dependent variables.
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Figure B6: Change in the probability to collaborate with a university versus log of av. exposure
to LabEx

-.02

0

.02

.04

.06
∆ 

P(
co

lla
bo

ra
tio

n 
w

ith
 lo

ca
l u

ni
v.

)

4 6 8 10 12
Log av. exposure

Notes: This figure shows the variation in the probability to declare collaborating with a local university for
firms in an industry surveyed in the waves 2004, 2008 and 2010 relative to firms in that industry surveyed
in the waves 2012, 2014 and 2016 in the CIS Survey. This change is plotted against the log of the average
exposure to the Labex policy of an industry (across commuting zones).
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C Data sources and variable construction

C.1 Patent data

Patent–firm identifier matching procedure The matching procedure of French patents to the
firm identifier (Siren number) of their assignees is implemented in several steps.

We rely on the harmonized PSN (Patstat Standardized Name) identification of assignees
and inventors in the Patstat Spring 2020 Database. We select all such identifiers whose country
code is recorded as being France at least once.36 We further require that the type of applicant
recorded in Patstat is not specified as being "individual" and is not missing, so as to focus on
companies and public organizations. We complement this list with a matching between firm
identifiers and French patent applicants available in the scanR search engine. This selection
leaves us with 76,582 PSN identifiers to match with French legal unit identifiers. Thanks to this
already existing matching, 34,150 identifiers are matched with a Siren firm identifier from the
start.

For those that do not match, we proceed in a number of additional steps. In a first step, we
try to match directly the names recorded in the Patstat database with firm names. We match
names in priority with sources including primarily innovative firms (INPI patents including the
Siren identifier, firms that obtain research tax credit, firms in the R&D survey), and then match
to firms with no name duplicates in the Sirene (all legal units) registry. This step complements
our list of French PSN identifiers in Patstat with 2,313 Siren identifiers.

In a second step, we use fuzzy matching techniques (using both the reclink stata package
and Jaro-Winkler distances) on names of firms found in the above-mentioned databases of in-
novative firms, which are a priori very susceptible of applying for patents. We match only on
this very limited set of firms because fuzzy matching procedures with the universe of firms in
the registry would be both computationally costly and lead to potentially high rates of type I
errors. This step adds 4,105 new siren identifiers to our list of applicants.

Next, we send requests of patent applicant names to a major online search engine condi-
tioning on web domains which contain historical registries of French legal units37. This allows
for a fuzzy matching, where the search engine is able to find the underlying company even
though some parts of its name make it difficult to match through fuzzy matching techniques
(for instance the presence of very common words which add little value but many characters,
making the string distance very high but which the search engine easily ignores). This steps
adds 4,910 new siren identifiers.

36. psn_id groups several person_id, and the country code is recorded at the person_id level. This means that,
for instance for multinational companies, we keep the psn_id which correspond to at least one person identifier
located in France.

37. For instance societe.com.

A-9

reclink
societe.com


As a last step, we take the list of yet unmatched names and use the web “batch search”
tool of Bureau van Dijk’s Orbis database, which has a built-in module of fuzzy matching of
company names with BvD identifiers (Orbis identifier), which can be directly converted into a
Siren. This final step adds 2,151 siren identifiers.

Finally, we consolidate our identifiers by name and by psn_id, and manually search for the
siren identifiers of the largest unmatched applicants.38 We end up with 47,545 psn_id which are
associated with 33,826 different siren identifiers, associated with approximately 963 thousand
patent applications.

Details on PatCit data Text mining methods are applied to both the dedicated section of the
application, and to the text describing the invention, in order to extract bibliographic refer-
ences.39 In the case of citations to the NPL, the vast majority of which are academic articles, the
database collects the DOIs (digital object identifiers) of the cited publications, and thus enables
a match with other bibliographic databases. The database includes 27 million academic biblio-
graphic references, of which more than 11 million could be associated with a DOI. The database
is described in more detail in Cristelli et al. (2020).

C.2 Linked employer-employee data

R&D wage bill In the main text, we use as our measure of spending on R&D labor, the
wages reported in the administrative data DADS for engineering occupations. We use positions
with an occupation and socio-professional category (PCS) beginning with 38: “Engineers and
technical managers of companies”.40

This measure has the advantage of covering the entire private sector over a long period
of time. In this appendix, we validate our measure by comparing it to R&D employment as
measured by the R&D survey (RDS), for the subsample of firms present in both databases. We
compare the wage bill of engineers in the DADS to the wage bill of R&D personnel in the RDS.
In order to account for the size of the firm, we normalize the relevant wage bill by total sales.

In Table C1, we compare these variables of interest between the two datasets for all firms
(legal units) present in each of the two sources continuously over the period 2009–2016 in the
first line. In the second line, we restrict to the sample of firms reporting a positive value in both

38. These are often firms which have changed their name over time, which we associate with their current iden-
tifier to obtain a consistent patenting history if we were to use older periods.

39. The database is available at https://cverluise.github.io/PatCit/
40. The advantage of this definition is that there is no break in the series and that it is therefore available over

the entire study period, before and after the 2008 reform. Before 2009, it is not mandatory to provide this detailed
PCS for companies with less than 20 employees. Nevertheless, there was a break in the series in 2009, even for
companies with more than 20 employees, making it impossible to consider the long series for this detailed variable
reliable.
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sources. The correlation is 72.4 % in the whole sample and rises to 84.5 % in the sub-sample of
firms where the variable takes a positive value. In the next column we compute the difference
between the two measures. The difference is close to 0 at the median but negative on average,
meaning that both the engineer measure and the employee measure of R&D in the DADS tend
to underestimate actual R&D personnel spending. This can be explained by the fact that the
definition of employees contributing to R&D (for example, as defined by the CIR, the French
tax credit) is broader than the definition of employees’ positions as R&D-oriented, and that the
fact that not all the company’s engineers are R&D-oriented is not sufficient to make up for this
difference.

Table C1: Comparison of the wage bill of R&D staff (in the R&D survey) and the
engineer (in the DADS)

Variable Sample N ρ Gap: mean p50 p10 p90

DADS Engineer Full 52,525 0.724 -0.178 0.002 -0.300 0.125
DADS Engineer Positive var. 45,106 0.845 -0.112 0.007 -0.202 0.147

NOTES : ρ = correlation coefficient. Gap := Engineer wage bill DADS
Sales − R&D wage bill RDS

Sales , where "R&D wage
bill RDS" refers to wage R&D expenditure in the R&D survey (RDS). The "positive var." sample con-
cerns companies reporting a positive amount of payroll in the DADS as engineers.

R&D plants We use a similar procedure, exploiting the administrative data DADS, to identify
R&D intensive plants. This is not achievable using surveys on R&D which are administered at
the firm level. We define an R&D plant as an establishment with more than 20% of its wage
bill spent on R&D wages (as defined above). We use this information to compute the variable
Hours in R&D plants, defined as the total number of hours worked in the R&D plants (defined
above).

Labor mobility Since 2009 the DADS include public sector employees. This allows us to
measure mobility from the research public sector to the private sector from 2010 onward. We
define a mover as a worker whose main job in t − 1 was in the public sector in a research
occupation and in t, gets most of her salary from the private sector. We distinguish junior
movers (those who were PhDs or in teaching postdoc positions in t − 1) and senior movers
(those who had a permanent position in research in the public sector in t − 1).

C.3 Research tax credit

Description of the program The French research tax credit program (Crédit Impot Recherche
CIR) was set up in 1983. Any firm, including large ones, can participate. The eligible spending
covers R&D related expenditures, including wages, investments and subcontracting. The credit
is equal to 30% of the spending when the spending is less than 100 million euros, and 5% above.
In 2019 more than 7 billion euros were spent on CIR with 26 900 firms making claims.
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Data While the MVC CIR database contains only the total amount of tax credit but measured
over a long time period (2000-2018), the GECIR database is available only from 2008 onward
(so that we cannot observe pre-trends), but features a detailed breakdown of R&D expenditures
eligible for the tax credit. In particular, we exploit a variable indicating the amount of R&D
outsourced to public organizations (Outsourcing R&D to public labs), as well as the amounts of
wages paid to young PhD graduates (Hiring of young PhDs). These pieces of information are
very well recorded since they are used in the calculation of the tax credit.Because these are
relatively rare outcomes, we allocate them to the CZ where the firm has the largest share of
engineers, rather than splitting them according to this share, as for the overall RTC claims.

C.4 PhD co-supervision

Description of the program The Cifre program is a program, set up in the early 2000s to
encourage contacts between public research labs and the industry. The candidate firm and
public lab have to submit an application to the national agency (ANRT) and if selected receive
a subsidy. The student typically shares her time between the two partners. In 2018 there were
around 1500 Cifre contracts signed per year.41

Data We obtained data on all Cifre contracts at the individual level, where we can identify
the collaborating company with the national firm identifier, the municipality where the PhD
student is employed, the public research lab co-supervising the student, the statutory wage,
and the date when the 3-years contract starts. These data are available from 2003 to 2018. The
variable PhD co-supervision we construct in this way is used in the analysis of mechanisms.

C.5 Academic spin-offs

Description of the program The JEU (Jeunes entreprises universitaires) program targets aca-
demic spinoffs. Qualifying firms need to be launched by students or faculty members in uni-
versities, who need to hold at least 10% of the capital. Beneficiaries are young (less than 11
years old), SME (less than 250 employees), with a high R&D intensity. Firms that qualify get
reductions in corporate tax rate as well as payroll exemptions for workers related to R&D.

Data We obtained data on firms registered as JEU. These data allow us to build the variable
academic spinoffs, used as outcome and to illustrate channels. The JEU program was launched
in 2009, and only few firms benefited from it in the first two years, so that we mostly observe
the outcome concomitantly with our funding shock.

41. See Guillouzouic and Malgouyres (2020) for a complete description of the program.
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D Validation of the proximity measure

We provide some validation of our novel indicator of proximity introduced in Section 3.1.

We first exploit the initial reports (see Section 5.1 for details). These reports mention po-
tential or actual collaborations with firms. For instance the LabEx ACTION, mentioned in the
introduction, mentions a number of firms by name that it describes as those that could be “inter-
ested by the research activities of the LabEx”. The report identifies them as potential members
of the club of partners. We thus hand-collected all the instances where firms were mentioned
in these reports and matched each firm with its sector. From this, we compute a number of
matches between a given sector and a given LabEx. We show in Figure D1 that our measure
of proximity is a predictor of whether an industry is mentioned. In Panel (a), we show that
matched firms are much less likely to appear as having zero proximity than unmatched ones,
and that the distribution is shifted towards higher values. In Panel (b) we show that matched
firms appear very often among the five closest industries, while unmatched firms have a fairly
uniform distribution of ranks.

Figure D1: Proximity for matched and unmatched firms
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Notes: This figure compares firms that match the firms directly quoted in the LabEx interim reports, and firms that do not. Panel a shows
the distribution of a standardized value of proximity for both groups. Panel b shows the distribution of proximity ranks for both groups.

Our second exercise uses three vintages of the Community Innovation Survey (CIS): 2004,
2006 and 2010. In each of these waves, firms are asked to what extent they source their knowl-
edge from universities (0: not at all to 3: a lot). We calculate for each sector the share of firms
that don’t answer 0 to this question and look at the correlation between this share and the sum
of proximities taken across all LabEx (in log). Figure D2 shows a binned scatterplot of the prob-
ability for firms of an industry to source knowledge from universities, plotted against the log
of the sum of LabEx proximities. It shows a clear positive correlation between both variables,
which further supports the fact that our proximity variable captures well the existing proximity
between firms and universities.
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Figure D2: Probability to use university knowledge versus industry–LabEx proximity
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Notes: This figure presents a binned scatterplot of the average probability to use knowledge produced by a university by firms
surveyed in waves 2004, 2006 and 2010 of the CIS in an industry, plotted against the (log of the) sum of LabEx proximities.

E Accounting for additional geographical spillovers

Our baseline measure of proximity assumes that there are no spillovers across different CZ,
which is of course a simplifying assumption. In this section, we explore how our main results
are affected when we relax this assumption. This extension has two main interests. First, our
identification relies on the fact that pairs of sector-CZ that are in the control group (i.e. with an
exposure set to 0 but which could have been treated based on the existence of a candidate LabEx
in the CZ and with a non-0 distance to the industry) are indeed not impacted by neighboring
treated units. We check that this is not the case by calculating a “neighboring CZ exposure”, an
exposure that is based on the funding received by LabEx in adjacent CZ and including it in our
model. Second, this extension allows correcting for the case of LabEx which are located near
the border of a CZ and are thus likely to impact firms located across this border. To do so, we
distribute the funding received by a given LabEx in all CZ with an exponential decay based on
distance.

Neighboring CZ. We first define a measure of exposure based on neighboring CZ as follows:

expoN
ik = ∑

l∈N(k)
dl · proxli,

where N(k) denotes the set of CZ that are adjoining CZ k and proxli is the same as in the
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baseline (1). This expoN
ik captures the potential spillover from neighboring CZ and we include

it as a control variable in our static and dynamic models (respectively equations (3) and (4))
which become:

Yikt = 1{t > 2010} ×
(

β ln (1 + expoik) + γ ln
(

1 + expoN
ik

))
+ αik + δtk + εikt

and

Yikt =
2017

∑
d=2005
d ̸=2010

(
1{t = d} ×

(
βd ln (1 + expoik) + γd ln

(
1 + expoN

ik

)))
+ αik + δt,k + εikt

Results are presented in Table E1, line 1, using the same sample as in the baseline. They
warrant our assumption that spillovers are mostly concentrated with a Commuting Zone and
that the control group made of CZ with no (accepted) LabEx is essentially not affected by the
treatment.42

Continuous distance. Mainland France counts more than 35,000 municipalities which consti-
tute a very fine grid of the territory. We use this to calculate a measure of exposure for each CZ,
including those without any LabEx. Formally, let c ∈ Ck denotes a given city in CZ k and cl the
city where LabEx l is located. Then we can define weights as:

ωk,l = ν̄l ∑
c∈Ck

e−νδ(c,cl),

where δ(c, cl) denotes the distance (in km) between two cities c and cl, ν is a depreciation pa-
rameter and ν̄l ensures that the weights sum to one for each LabEx:

ν̄l =
1

∑k ∑c∈Ck
e−νδ(c,cl)

.

Then, the continuous measure of exposure is defined as:

expoN
ik = ∑

l
ωk,ldl · proxli.

We then need to set a value for ν. The distance at which half of the spillover has faded away
is equal to log(2)/ν. We set the value of ν such that this distance is equal to 10km and also
show results when this value is set to 5 and 50km respectively. All of this is presented in Table

42. To pursue the analysis further, one possibility is to construct a measure of exposure that does not take into
account geographical border. That is, the sum is taken over all k in equation (2). Using this as another control in
our models yields results that are consistent with Line 1 of Table E1.
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E1, lines 2 to 4. To get a sense on the geographical distribution of spillovers, we plot different
quantities in Figure E1 (see also Figure E2 for comparison with the measures used in the core
of the paper). First, we report the value of:

∑
l

dl ν̄le−νδ(c,cl),

at the city level, with ν taken equal to 5, 10 and 50 respectively. Second, we plot the value of the
aggregate exposure by CZ:

∑
i

∑
l

ωk,ldl proxli.

Table E1: Robustness checks - geographical spillover

Static Coefficient Obs. Pre Trends

Baseline 0.0093** 42,301 obs (3761 pairs) 0.0013
(0.0037) (0.0042)

1. Neighboring CZ shock 0.0002 48,138 obs (4308 pairs) -0.0011
(0.0046) (0.0021)

Baseline shock 0.0090*** 0.0015
(0.0035) (0.0032)

2. Continuous distance shock (10km) 0.0104*** 170,871 obs (19,582 pairs) 0.0005
(0.0023) (0.0023)

3. Continuous distance shock (5km) 0.0099*** 170,871 obs (19,582 pairs) 0.0007
(0.0024) (0.0024)

4. Continuous distance shock (50km) 0.0146*** 170,871 obs (19,582 pairs) 0.0006
(0.0029) (0.0031)

Notes: This Table presents the results of the same estimation as in Table 2, using as dependent variable the log of the total wage bill of engineers and
alternative shocks accounting for broader geographical spillovers (see Section E).
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Figure E1: Geographical spillovers

At the city level
(a) ν = 5km (b) ν = 10km (c) ν = 50km

At the CZ level
(d) ν = 5km (e) ν = 10km (f) ν = 50km

Notes: These maps report the value of ∑l dl ν̄le−νδ(c,cl ) for each city (first line) for ν respectively set to 5, 10 and 50 km and the value of
∑i ∑l ωk,ldl proxli for each CZ (second line) for the same values of ν. All values are transformed by taking log(1 + x). See Section E.
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Figure E2: Mapping baseline exposure

(a) Exposure (b) Predicted Exposure (c) Exposure on rejected projects

Notes: These maps report the sum of the baseline measures of exposure at the CZ level. Formally, the first map reports the value
of ∑l,i dl proxil for each CZ (see Section 3.1. The second map does the same but replace dl by the predicted value d̂l (see Section 4.3)
and the third map does the same but restricts on projects that have been rejected. All values are transformed by taking log(1 + x).
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