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Abstract

We study wealth redistribution in a framework where individual portfolio choices and associated

returns are correlated with wealth through: (i) type dependence, which reflects that investment

skills drive return differences, and (ii) scale dependence, which captures that wealth itself trig-

gers returns. Using an analytical framework, we argue that several common heterogeneous agent

models can be understood through the lens of a type and scale dependence representation. We

show that four key statistics characterize the macroeconomic and welfare implications of wealth

taxation: the right tail of the wealth distribution, the degree of scale and type dependence, and

the extent to which returns reflect investment productivity. We then build a quantitative model

calibrated using micro US data and find an optimal marginal wealth tax rate of 0.8 percent above

an exemption level of $550K. The result is driven by two opposing forces. Under scale depen-

dence, productivity and wealth accumulation decrease with the tax, as risk-taking depends on

wealth. Under type dependence, a higher wealth tax reinforces the selection of skilled investors

at the top and improves productivity. Finally, the marginal wealth tax only slightly increases

when returns partially reflect rent motives, as both forces almost quantitatively offset each other.
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1 Introduction

Wealth is highly concentrated at the top. In the US, for instance, Saez and Zucman (2016) report

that the wealth share of the richest 1% households has risen from 25% of the total wealth in 1980

to 40% in 2012. This trend has recently renewed academic and political interests on whether, and

how, economies should redistribute the wealth of their richest individuals (see e.g. Piketty et al.

(2014), Saez and Zucman (2019)). On the practical side, many of the richest OECD countries have

considered a wealth tax in the last decades; some have implemented it, while others have with-

drawn it.1 In 2021, the Ultra-Millionaire Tax Act was proposed at the US Congress to introduce a

tax on the wealth of the top 0.05% households.

In this paper, we investigate the macroeconomic and welfare implications of wealth taxation.

To assess these implications, we build a general equilibrium model that accounts for key determi-

nants behind the wealth accumulation of the richest individuals. We follow the influential work

by Benhabib et al. (2011, 2019) and introduce heterogeneity in returns to wealth which constitutes,

to date, one of the most compelling factors in explaining the high wealth concentration (Smith

et al. (2019a), Hubmer et al. (2020), Xavier (2020)).2 To do this, our model features two important

departures from existing frameworks. First, in the spirit of Gabaix et al. (2016) we explicitly in-

troduce two channels through which individuals differ in their returns to wealth: type and scale

dependence. Type dependence reflects the fact that wealthy individuals obtain high returns be-

cause they differ in their innate or persistent characteristics, e.g. outstanding investment skills

or high risk tolerance. Instead, scale dependence captures the fact that wealthier agents generate

higher returns, regardless of their specific type, e.g. due to costly access to high-yield investments

or decreasing relative risk aversion. This is especially relevant since recent contributions by Bach

et al. (2020) and Fagereng et al. (2020) show that both concepts explain a substantial part of the

cross-sectional correlation between returns to wealth and wealth. Second, we allow for the idea

that private returns to wealth may only partially reflect differences in investment productivity

due to some forms of rent-extraction. This may arise due to bargaining and market power, elite

connections, or an unequal opportunity to access certain investments or markets (Piketty et al.,

2014; Rothschild and Scheuer, 2016; Lockwood et al., 2017; Smith et al., 2019a).

We find that the optimal wealth tax rate in our benchmark model calibrated to the US economy

is positive and large, at a rate of 0.8 percent above an exemption level of $550K. Our first key result

is to show that this tax rate can be traced back to the underlying forces behind return heterogene-

ity and thus behind wealth accumulation. Specifically, the degree of type and scale dependence

1Abstracting from estate taxation and property taxes, twelve European countries levied an annual tax on net wealth
in 1990. By 2018, only France, Norway, Spain, and Switzerland still imposed such a tax (Scheuer and Slemrod, 2021).

2Heterogeneity in the portfolio allocation of households is a commonly used factor to explain heterogeneity in
returns to wealth (Calvet et al. (2019), Smith et al. (2019b), Meeuwis (2019), Xavier (2020)). Another factors that explain
wealth concentration include, for instance, differential saving rates (Straub, 2018; Hubmer et al., 2020).
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determines the sign and magnitude of the wealth tax. Under type dependence, a non-trivial selec-

tion effect of high-skilled investors at the top of the wealth distribution rationalizes a high wealth

tax rate. In such a world, a wealth tax has the potential to increase overall productivity. In contrast,

under scale dependence, a wealth tax substantially decreases wealth accumulation and productiv-

ity and provides a rationale for low wealth taxes or even a subsidy. Our second result shows that

the optimal tax rate is surprisingly almost unresponsive to the extent to which returns to wealth

reflect differences in investment productivity. When the strength of rent-extraction increases, the

opposing forces arising from type and scale dependence almost exactly offset each other in our

preferred benchmark calibration. We substantiate our quantitative results in two steps.

In a first step, we lay out the main concepts behind our results within an analytical two-period

model. In this model, households’ risk aversion is correlated with their initial wealth and their in-

nate type, which determines their willingness to invest in risky but more productive assets. With

a perfectly elastic supply of capital, aggregate productivity and output are determined in equi-

librium by aggregating risky and riskless capital investments. We isolate and clarify the key pa-

rameters that characterize the macroeconomic and welfare implications of a change in top wealth

inequality, due to, for instance, a wealth tax. We show that these implications depend on four

statistics; (i) the Pareto tail of the wealth distribution, (ii) the elasticity of risk-taking with re-

spect to wealth, i.e. scale dependence, (iii) the sorting of individuals with different investment

skill-types along the wealth distribution captured by the correlation between investor’s types and

wealth, i.e. type-dependence, and (iv) the extent to which returns to wealth reflect differences in

productivity of investments rather than rents. While (i) – (iii) can in principle be measured empir-

ically (Vermeulen, 2016; Bach et al., 2020; Fagereng et al., 2020), there is only little recent evidence

concerning (iv) (cf. Lockwood et al. (2017) and Smith et al. (2019a)).

Despite its simplicity, the analytical model provides key insights regarding the role of inequal-

ity on aggregate output. We derive an intuitive diagram which captures all the possible relation-

ships between changes in inequality and aggregate output or welfare resulting from the signs

and the magnitude of scale and type dependence. We view this representation as a compelling

device that can unify the existing literature studying, and disagreeing about, the relationship be-

tween inequality and output growth: a specific model can be classified in a particular region of

our diagram given the underlying – implicit or explicit – assumptions regarding the above key

parameters. For instance, models that incorporate mechanisms related to saving and investment

decisions with a type and/or scale dependence representation (see among others Galor and Zeira

(1993), Angeletos (2007), Cagetti and De Nardi (2006), Moll (2014), Gomez et al. (2016), Kaplan

et al. (2018), Guvenen et al. (2019), Hubmer et al. (2020)) fall in a particular decomposition of our

setup. This is especially important as scale dependence implies a strong behavioral response to a

change in household wealth and thus makes aggregate responses considerably more sensitive to
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wealth inequality changes.

In our framework, the welfare-maximizing top wealth tax, based on a utilitarian consumption-

equivalent variation welfare criterion, balances three effects. First, a marginal decrease in top

wealth inequality through wealth redistribution affects productivity, output, and equilibrium

wage rate, as it reallocates wealth among households who differ in their intrinsic investment

skill or risk tolerance type and wealth. Second, whenever returns to wealth imperfectly reflect

the productivity of investments, a change in inequality generates a change in the size of rents in

the economy. That is, some individuals benefit from extra-returns, without actually affecting pro-

duction. Therefore, aggregate returns adjust in equilibrium to ensure that the total capital income

received by households equalizes the total product of capital redistributed in the economy. Third,

redistribution from the top to the bottom induces a standard equity motive as wealth-rich and

wealth-poor households differ in their marginal utility of consumption.

In a second step, we extend the framework to a full-blown quantitative model to carefully

evaluate the implications of a wealth tax. The model is a variant of the standard incomplete-

markets model with heterogeneous agents facing uninsurable labor income risk pioneered by

Bewley (1986) – Huggett (1993) – Aiyagari (1994). Like in our simple model, heterogeneity in

investment decisions and associated returns to wealth is introduced through type and scale de-

pendence. In the spirit of Cagetti and De Nardi (2006), Moll (2014), and Benhabib et al. (2019), type

dependence arises as households differ in their intrinsic ability to undertake risky productive in-

vestments. Importantly, this ability evolves stochastically but is highly persistent. The higher the

persistence, the more likely high-skilled investors generate high returns during many periods,

and the more frequently they are represented at the top of the wealth distribution. Furthermore,

we incorporate two empirically relevant forms of scale dependence. First, conditional on being

investors, richer agents invest a larger fraction of their wealth (intensive margin). Second, follow-

ing Hurst and Lusardi (2004) or Fagereng et al. (2017), richer agents are more likely to become

investors (extensive margin). Finally, on top of the possibility that rent-seeking may explain het-

erogeneity in returns to wealth (Rothschild and Scheuer, 2016), we also introduce elements that

have been previously identified in the literature as having potential large implications for optimal

capital taxation, i.e. we add a life-cycle structure with endogenous labor supply (Conesa et al.,

2009; Kindermann and Krueger, 2014).

The model is calibrated to replicate the empirical labor income and wealth distributions and

moments regarding the observed heterogeneity in portfolio choices across households. We sepa-

rate risky but potentially more productive assets, such as private equity and public equity, from

safe assets using estimates of returns from the PSID. Like Cagetti and De Nardi (2006) and Gu-

venen et al. (2019), heterogeneity in returns to wealth reflects investment productivity differences

in our benchmark. We distinguish two types: highly skilled investors who manage a significant
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amount of risky equity assets, and non-investors who do not invest and constitute the vast ma-

jority of households in the SCF. As types are persistent, this approach generates an endogenous

type dependence within the model. Second, following Hurst and Lusardi (2004), we exploit the

panel dimension of the PSID to pin down scale dependence in the risky investment participation

with respect to wealth such that it aligns with its empirical counterpart. Third, the share of wealth

invested in risky equity, conditional on being an investor, is increasing along the wealth distri-

bution. To distinguish scale dependence in the share arising from net risky investments only, we

use detailed information from the SCF on the timing and the allocation of private equity business

investments. Specifically, a large proportion of the increase in equity investments at the top is

driven by recent additional private equity investments. To remain conservative, we only attribute

this margin to scale dependence in the risky share invested, with the underlying assumption being

that those additional investments are unlikely to drive the fortune of already rich households.

The benchmark model replicates the high concentration of returns at the top from both the

type and scale dependence channels. To further investigate the properties of the model, we study

alternative specifications with type or scale dependence only. We find that these alternatives are

almost observationally equivalent to the benchmark model regarding the distributions of returns

and wealth, i.e. both are able to generate high wealth concentration from persistent return het-

erogeneity. However, the aggregate responses to a wealth tax differ: the response is substantially

amplified under a high degree of scale dependence.

Within a restricted class of wealth tax functions, we use our benchmark model to compute the

long-run optimal one-time wealth tax reform, which we redistribute by lowering labor income

taxes to obtain revenue neutrality. We jointly determine the marginal wealth tax rate and the ex-

emption level above which it applies, which induces a common form of tax progressivity. Our

result of an optimal tax of 0.8 percent above an exemption level of 550K is the first quantitative

outcome of this setup. This reform generates a welfare gain equivalent to 0.14% of yearly con-

sumption with large heterogeneity: they are high below the 70th wealth percentile and negative

at the very top. We then extend the model to account for the presence of rents in returns. Fol-

lowing evidence in Lockwood et al. (2017) and Rothschild and Scheuer (2016), we attribute the

excess returns to wealth extracted from law and finance sectors to rent-seeking motives. Under

this calibration and fixing the exemption at its benchmark level, the optimal marginal tax rate only

slightly increases with the size of rents, to a rate of 0.92%. Dissecting our results, we find that they

depend critically on whether top wealth inequality is driven by type or scale dependence.

If we first suppose the absence of rent extraction motives and scale-dependence is the domi-

nant source of wealth concentration, then a higher wealth tax, by discouraging capital accumula-

tion, causes a snowball effect: as agents become less wealthy, their rate of return falls, which further

discourages productive investments. These self-enforcing effects imply that a wealth tax generates
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a large adverse behavioral response which decreases aggregate productivity. Instead, if we sup-

pose that type-dependence is the dominant force at play, the wealth tax has a disproportionately

large adverse effect on the investment of agents with high wealth but low returns, i.e. they dissave

at a higher rate. Thus, the wealth tax creates an environment where only the fittest survives at the

top, i.e. a selection effect whereby the top of the wealth distribution ends up being composed of

the most productive investors. In this last case, although households accumulate less, the wealth

tax has the property to raise aggregate productivity. In such a scenario, a wealth tax becomes a

powerful instrument and, as shown by Guvenen et al. (2019), even superior to a capital income

tax. In more concrete terms, fixing the exemption level at $550K, it is optimal to subsidy wealth

with a negative tax rate of −0.8 percent in a model featuring scale dependence only. In contrast, it

is optimal to heavily tax wealth at a rate of 2.4 percent in a model featuring type dependence only.

In a world where both dependencies coexist, such as in our benchmark economy, the optimal tax

rate falls in between those two bounds.

Now consider the case where high returns on wealth reflect rent extraction instead of more pro-

ductive investment opportunities. In that case, the above conclusions are reversed. Under scale

dependence, a wealth tax is desirable because it discourages inefficient rent-seeking behavior. Un-

der type dependence, by contrast, the endogenous selection mechanism from the implementation

of the wealth tax previously described still implies that agents with higher returns will be more

concentrated at the top; but those higher returns are now a reflection of higher rents rather than

higher productivity, thus making the wealth tax relatively undesirable. These two opposing forces

rationalize a low response of the wealth tax rate to the size of the rent in the benchmark economy,

as the two forces almost quantitatively offset each other.

Related literature Our work is related to a number of papers studying the relation between the

distribution of wealth and its strong interplay with macroeconomic aggregates. Many macroe-

conomic models incorporate mechanisms related to saving and investment decisions with a type

and/or scale dependence representation to generate realistic wealth distributions. For instance,

Benhabib et al. (2019) construct a quantitative model designed to identify the determinants of

wealth inequality and wealth mobility in the US. Their baseline model features wealth return het-

erogeneity due to type dependence only. Relatedly, Hubmer, Krusell and Smith Jr (2020) study

how several determinants, comprising heterogeneity in wealth returns, account for the recent

rise of wealth inequality in the US. They use estimates of returns from Bach et al. (2020) and

interpret the observed heterogeneity in wealth portfolio and returns as scale dependence only.

Other relevant examples include, among others, Cagetti and De Nardi (2006), Moll (2014), Ka-

plan et al. (2018), and Guvenen et al. (2019).3 Yet, surprisingly, their systematic distinction has

3Among many others, Kaldor (1956), Stiglitz (1969), or Bourguignon (1981) study the role of wealth inequality
in a neoclassical economy with convex scale dependence in saving behaviors. Other mechanisms include risk-taking
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been neglected thus far. This paper fills this gap. We show that while both mechanisms are inde-

pendently capable of generating large wealth inequality through return heterogeneity, they imply

distinct macroeconomic and welfare implications from wealth redistribution.

Generally, our paper is related to a large literature quantifying optimal taxation in general equi-

librium models with heterogeneity in household capital investments (see among others, Aiyagari

(1995); İmrohoroğlu (1998); Kitao (2008); Conesa et al. (2009); Kindermann and Krueger (2014);

Brüggemann (2020); Moll and Itskhoki (2019); Boar and Midrigan (2020)). Considering a tax on

the stock of wealth, Shourideh et al. (2012) shows that a positive progressive tax on savings is

optimal. Cagetti and De Nardi (2009) and De Nardi and Yang (2016) show that it is not welfare

improving to abolish the estate tax in the US. Such taxes can be reinterpreted as intergenerational

wealth taxes. Closer to our work is the recent contribution by Guvenen et al. (2019), which shows

that heterogeneity in returns has the property to break the equivalence result between taxing cap-

ital flow relative to taxing the stock of capital under homogeneous returns. They find that replac-

ing the capital income tax with a wealth tax reduces misallocation and increases overall welfare

in a model in which heterogeneity in returns comes mainly from differential entrepreneurial skill-

types. Our results point to the key role of type and scale dependence, together with whether

returns reflect the productivity of capital, in deriving the welfare implications of a wealth tax. Em-

pirically, Jakobsen et al. (2020) find a strong role of top wealth taxation on wealth accumulation.

To our knowledge, two papers discuss the role of type and scale dependence for capital taxation

in the spirit of Diamond (1998) and Saez (2001). Gerritsen et al. (2020) find that capital income tax

is positive with returns heterogeneity under both dependencies. In complementary work, Schulz

(2021) shows that the degree of scale dependence in returns significantly affects the capital income

tax. Relative to them, we rather follow a different approach by studying optimal wealth taxation

in a general equilibrium incomplete markets economy, and quantitatively show that it is critical

to model the endogenous selection of investment skill-types along the wealth distribution.

Layout In section 2, we construct an analytical two-period version of our model to lay out the

main concepts and forces at play. Section 3 sets out the quantitative dynamic model. Section

4 discusses the model’s calibration and section 5 investigate its properties. In section 6, we use

our model to study the welfare-maximizing wealth tax, and section 7 concludes the paper. The

appendix contains all proofs, empirical analyses, and computational details.

behavior (Peress (2004), Brunnermeier and Nagel (2008), Calvet et al. (2009), Robinson (2012), and Meeuwis (2019)) non-
convex investment cost and DRS (Banerjee and Newman (1993), Galor and Zeira (1993)), economies of scale in wealth
management (Kacperczyk et al., 2019), social status derived from wealth holdings (Roussanov, 2010), investment in
financial sophistication (Lusardi et al., 2017), wealth-dependent offshore investments (Alstadsæter et al., 2018), or non-
convex investment costs in high return assets (Kaplan et al., 2018). In contrast, Kihlstrom and Laffont (1979), Moll
(2014), Herranz et al. (2015), or Moll and Itskhoki (2019) introduce type dependence in which the distribution of types,
and their persistence, is crucial to deriving aggregate efficiency. Combined dependencies arise in Quadrini (2000)
and Cagetti and De Nardi (2006) through type dependence because entrepreneurs self-select at the top of the wealth
distribution and through scale dependence due to wealth-driven occupational choices and a DRS technology.
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2 An Analytical Two-Period Model

We begin with an analytical two-period framework to illustrate the conceptual distinction between

type and scale dependence and the main trade-offs. The purpose of this section is to provide

simple insights, and to introduce the notations used throughout the dynamic quantitative model.

2.1 Environment

Households A unit mass i ∈ [0, 1] of heterogeneous households lives for two periods, t ∈ {1, 2},
with initial wealth ai

0 and innate risk-taking type ϑi drawn from the joint distribution G0(ϑ, a0),

with marginal distributions gϑ(ϑ) and ga0(a0) defined over the support Θ ⊂ R+ and A0 ⊂ R+.

Households have CARA preferences over consumption ci, i.e.
(
1/αi) (1− e−αici

)
, where the ab-

solute risk aversion αi correlates with their initial wealth and risk-taking type, such that

αi ≡ ϑ ·
[
ϑi(ai

0)
γ
]−1

, (1)

where ϑ ≡ E[ϑ] scales the average economy-wide risk tolerance. The parameter γ ≥ 0 governs the

shape of the household’s risk tolerance in initial wealth. This preference specification captures in

a reduced form various mechanisms driving type and scale dependence in portfolio choices and

capital returns mentioned in the related literature.4 In period t = 1, households invest optimally

a share ωi
1 of their beginning of period wealth ai

1 = ai
0 − ta(ai

0) into a risky innovative asset with

stochastic gross return Ri
r, and the complementary share (1−ωi

1) into a risk-free asset with certain

gross return R f . The function ta(·) defines a wealth tax on initial wealth and T is a second period

lump-sum transfer. Agents inelastically supply one labor unit and obtain a wage w. In t = 2,

returns and wage realize and households consume ci
2. The objective of household i is given by

max
{ωi

1}

(
1/αi

) (
1−E1

[
e−αici

2

])
s.t. ci

2 ≤
(

r + R f (1−ωi
1) + Ri

rωi
1

)
ai

1 + w + T , (2)

where r is an aggregate return component, which is determined in equilibrium and common to all

households.

Production In period t = 2, a competitive final good producer uses aggregate labor n and a con-

tinuum j ∈ [0, 1] of intermediate good projects xj
s from two technologies s ∈ {N, I}, an innovative

technology I with risky returns and a safe non-innovative technology N. The aggregate produc-

4This special form of CARA preferences extends the utility functions used in Alpanda and Woglom (2007) or
Makarov and Schornick (2010) by specifying the wealth normalization with a power function. This form is also ul-
timately linked to Guiso and Paiella (2000) and Gollier (2001), who specify the shape of risk tolerance in terms of
consumption rather than wealth.
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tion function is given by Y = Xnϕ, where X =

(
∑
s

∫
j xj

s dj
)

and ϕ ∈ [0, 1).5 Profit maximization

follows

max
{n,{xj

s}j,s}
Xnϕ − wn−∑

s

∫
j
pj

s xj
s dj , (3)

where pj
s denotes the price of an intermediate good j in sector s.

An intermediate good producer uses risk-free capital kj
N and risky capital kj

I to run a project

j with linear technologies. Innovative projects produce xj
I = (φµ + A(1 − µ))kj

I , where φ > A

denotes the expected innovate asset net return and µ ∈ [0, 1]. Traditional projects operate with

technology xj
N = Akj

N . The revenue generated by a traditional safe project is pj
Nxj

N and the rev-

enue from an innovative project is pj
I x

j
I .

Market clearing The first order condition with respect to aggregate labor yields w = ϕXnϕ−1,

with n = 1. Substituting for labor demand, the objective of the profit maximization (3) can be

rewritten as (1− ϕ)Xnϕ−∑s
∫

j pj
s xj

s dj. As intermediate goods are perfect substitutes, their prices

are identical, and each unit is sold at a price pj
s = (1− ϕ).

The intermediate project i uses capital invested by household i to a run a project, such that

ki
N = ai

1(1−ωi
1) and ki

I = ai
1ωi

1. It redistributes revenues to household i as follows. Revenues from

riskless assets are redistributed such that their returns equal the marginal product of capital net of

wage payments, i.e. R f = (1− ϕ)A. In contrast, the returns to innovative investments are given

by Ri
r = (1− ϕ)κi, and may deviate from the net marginal product for two reasons. First, there

is an idiosyncratic luck component κi ∼ N (φ, σ2
κ ) that introduces return risk on the household

side. Second, we assume that there exists a return wedge between the expected risky return to

wealth, (1 − ϕ)φ , and the net marginal product of innovative capital (1 − ϕ) (φµ + A(1− µ)),

henceforth MPKr, on the production side.6 When µ = 1, expected returns to innovative capital

investments equal the MPKr. Whenever µ < 1, expected risky returns are higher than the MPKr.

In the extreme case where µ = 0, the risk premium (1− ϕ)(φ − A) observed on the household

side does not arise from productivity differences across asset classes.

A rationale for µ < 1 comes from the presence of rent-extraction motives due to some forms

of bargaining, market power or political connections of investors, i.e. in the words of Rothschild

5In Appendix OA 1.5 we derive the case with aggregate decreasing returns to scale in X. In this case the portfolio
choice is increasing in X, as a higher X tends to depress the dispersion of returns. Therefore, the risky capital supply in
this alternative model is upward-sloping.

6In our specification, idiosyncratic risk materializes as return risk on the investor side rather than idiosyncratic
production risk. In this respect, our framework deviates from the seminal incomplete market growth economies of
Angeletos and Calvet (2006); Angeletos (2007). We impose this assumption out of tractability. If the idiosyncratic
capital income risk is modeled as an idiosyncratic productivity shock, one needs to integrate over the joint distribution
of wealth and types to obtain aggregate output and productivity, similar to Gabaix (2011). In Appendix OA 1.2, we
show that the policy functions are isomorphic in both cases. Aggregation follows under the additional assumption that
there is a sub-continuum of agents in each state (ϑ, a0).
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and Scheuer (2016), "the pursuit of personal enrichment by extracting a slice of the existing economic

pie rather than by increasing the size of that pie".7 We view this return wedge as a stylized way to

reconcile two approaches by acknowledging that empirically measured returns to wealth can not

easily be partitioned into a rent component and the marginal product of capital. On the one hand,

some work disentangles returns to wealth from MPK, either because of their partial equilibrium

structure (Benhabib et al., 2019) or because of implicit full rent extraction (Hubmer et al., 2020).

On the other hand, models with capitalists often assume a perfect pass-through between MPK and

returns (see among others Cagetti and De Nardi (2006, 2009) or Guvenen et al. (2019)). Instead,

we derive results for a range of values for the return wedge µ.

Under this structure, whenever µ < 1, the aggregate return component r adjusts in equilibrium

to ensure that the total product of capital generated on the production side coincides with the total

capital income redistributed to the households by the intermediate good producer, such that

∫
i

(
r + R f (1−ωi

1) + Ri
rωi

1

)
ai

1 di︸ ︷︷ ︸
returns

=
∫

i

(
A(1− ϕ)ki

I + (φµ + A(1− µ)) (1− ϕ)ki
N

)
di︸ ︷︷ ︸

capital product

. (4)

Distributional assumption Individual terminal wealth is affine in κ, i.e. its distribution is Gaus-

sian ci
2 ∼ N

(
µi

c2
, σi

c2

)
with mean µi

c2
= ϕY + T + (A(1− ϕ) + r)ai

1 + (1− ϕ)ωi
1ai

1(φ− A) and vari-

ance σi
c2
=
(
(1− ϕ)ωi

1ai
1

)2
σ2

κ . Together with CARA preferences, this property ensures tractability

of the equilibrium allocation. Finally, the initial wealth is assumed to be Pareto distributed.

Assumption 1 (INITIAL WEALTH DISTRIBUTION). Initial wealth is drawn from a Pareto law with scale

a and shape η > max{γ, 1}, such that A0 ∼ Pa (a, η) with P(A0 ≥ a0) = (a/a0)
η , ∀a0 ≥ a .

While theoretically convenient, this assumption is consistent with well-known empirical ev-

idence documenting that the wealth distribution is right-skewed and displays an heavy upper

tail (Vermeulen, 2016; Klass et al., 2006). The shape parameter η is inversely related to wealth in-

equality.8 As changing η leads ceteris paribus to a change in aggregate wealth, we sometimes study

the effect of varying η (redistribution effect) while preserving the same aggregate wealth level by

adjusting the scale a (level effect).

2.2 Efficiency Gains and Redistribution

We begin by characterizing the inequality–efficiency trade-off in this economy. We focus on the

aggregate allocation when investment decisions are driven by type and scale dependence and

discuss wealth taxation at the end of this section. As such, we solve first for the case ta(a0) = 0.
7See notably the discussion in Scheuer and Slemrod (2020) and the work of Piketty et al. (2014) and Rothschild and

Scheuer (2016). In a related paper, Boar and Midrigan (2019) study a setup with entrepreneurs and workers in which
entrepreneurial returns to capital investment reflect partially market power.

8The Pareto tail is also inversely related to the wealth share q(p) of the p wealthiest households by q(p) = p1−1/η .
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Lemma 1 (POLICY FUNCTIONS). Let us define ω̃ ≡ φ−A
(1−ϕ)σ2

κ
such that the standard CARA risky asset

share is (ω̃/ϑ). Under our extended preference form, household i′s risky asset share is given by

ωi
1 = ω̃ ·

(
ϑi/ϑ

)
· (ai

0)
γ−1 . (5)

If γ = 1 and ϑi = 1 ∀i, Lemma 1 provides the well-known result of Merton (1969) and Samuel-

son (1969), i.e. the share of risky asset holdings equals the baseline CARA solution captured by the

risk premium over the variance of the risky return times the risk tolerance. Conditional on type ϑi,

our CARA specification mimics IRRA (respectively DRRA) behavior if γ < 1 (respectively γ > 1).

When γ = 1, our CARA specification nests CRRA behavior with constant risky asset share, while

γ = 0 implies CARA behavior with constant risky asset holdings.9 Therefore, the parameter γ

pins down the elasticity of risky investments to initial wealth.

Using Lemma 1, we derive equilibrium quantities and prices.

Lemma 2 (AGGREGATE QUANTITIES). Given the joint distribution of types and wealth G0(ϑ, a0), ag-

gregate risky capital KI , output Y, productivity Z and the wage rate w satisfy10

KI =
∫

Θ×A0

ω1(ϑ, a0)a0 dG0(ϑ, a0) = (ω̃/ϑ)
(

Cov(ϑ, aγ
0 )−E [ϑ]E

[
aγ

0

] )
,

Y = ZE [a0] , with Z = µ(φ− A)
KI

E [a0]
+ A ,

and w = ϕY , r = (µ− 1)(φ− A)(1− ϕ)
KI

E[a0]
.

(6)

(7)

(8)

Due to the CRS structure of final good production, demand for intermediate goods is perfectly

elastic. Yet, its supply is bounded as households are risk-averse. Consequently, the risky portfolio

shares of households, together with the joint distribution of wealth and types G0(ϑ, a0), determine

aggregate productivity Z and output Y. Therefore, wealth redistribution impacts productivity to

the extent that it alters household i’s investment in risky assets. The second condition of (8) states

that µ < 1 implies r < 0, i.e. rent-extraction from risky investments induces a general equilibrium

effect that decreases the common component of wealth returns, rai
1, for all households.

We now formalize the effect of wealth redistribution on aggregate risky capital investment.

Proposition 1 (DISTRIBUTIONAL RELEVANCE). Consider without loss of generality a small mean pre-

9Recall that one can always approximate the demand for risky assets for an arbitrary von Neumann-Morgenstern

utility function as being proportional to risk tolerance, i.e. ωi
1ai

0 ≈
µ

p
a

vara
T (ai

0). Contrary, under generalized CARA
preferences risky investment is exactly proportional to our generalized risk tolerance T i(ϑi, ai

0) = (ϑi/ϑ)(ai
0)

γ.
10The second condition in (8) follows by assuming that there is a sub-continuum of households in each state (ϑ, ai

0).
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serving change in the Pareto tail η′ > η. Its effect on aggregate risky capital KI can be decomposed into

∆KI(η
′, η) = ∆aKI(η

′, η)︸ ︷︷ ︸
scale dependence in
portfolio holdings

+ ∆ϑKI(η
′, η)︸ ︷︷ ︸

type heterogeneity and
selection

,

where ∆aKI(η
′, η) is zero if γ ∈ {0, 1}, increasing in η′ if γ ∈ (0, 1) and decreasing in η′ if γ > 1. A

sufficient condition for ∆ϑKI(η
′, η) to decrease in η′ is

(
∂corr(ϑ,aγ

0 )

∂η
+

∂corr(ϑ,aγ
0 )

∂a
a

η(η−1)

)
1

corr(ϑ,aγ
0 )
≤ 0.

Proposition 1 establishes general conditions under which the wealth distribution is a relevant

equilibrium object by decomposing the effect of a change in the tail of the wealth distribution, η,

on aggregate risky capital KI into two terms: (i) a scale dependence term ∆aKI(η
′, η), which hinges

on the risk taking elasticity γ, and a (ii) type dependence term ∆ϑKI(η
′, η), which encapsulates the

selection of ϑ-types across the wealth distribution. A change in the Pareto tail is called distributional

relevant if both effects do not offset each other.

In the absence of type dependence, e.g. ϑi = ϑ ∀i, wealth redistribution from the top to

the bottom decreases (respectively increases) KI if γ > 1 (respectively 0 < γ < 1). When

γ = {0, 1}, distributional irrelevance arises as aggregate variables do not depend on the distribu-

tion of wealth, either because risky investments are constant (γ = 0), or because the share invested

is constant (γ = 1). For the sake of clarity, we refer to scale dependence as a situation in which

∆aKI(η
′, η) 6= 0, while a negative (respectively positive) scale dependence corresponds to the case

where ∆aKI(η
′, η) > 0 (respectively ∆aKI(η

′, η) < 0). Our notion of scale-dependence therefore

corresponds to cases in which scale effects, through γ, generate a distributional relevant link be-

tween wealth redistribution and aggregate quantities. This arises when the individual portfolio

policy function ωi
1 depends non-linearly on initial wealth.

In the presence of type selection, the sufficient condition in Proposition 1 provides the bound

on the change in the correlation between innate types and initial wealth such that ∆ϑKI(η
′, η) < 0.

Therefore, even if γ = 1, the distribution of wealth may be relevant through type dependence.

2.2.1 The Efficiency-Inequality Decomposition: A Closed-form Representation

Although Proposition 1 is general, we subsequently study a tractable representation of the equi-

librium and the effects of wealth redistribution by putting a structural assumption on Cov(ϑ, aγ
0 ).

Assumption 2 (JOINT DISTRIBUTION). Let ϑ ∼ Pa(ϑ, ε) such that ϑ = ϑε
(ε−1) . The joint cdf G0(ϑ, a0)

is constructed based on the Farlie-Gumbel Morgenstern copula with dependence parameter $ ∈ [−1, 1].

Under Assumption 2, when $ > 0 (respectively $ < 0), there is a positive (respectively nega-

tive) correlation of types and wealth, while $ = 0 induces no correlation.11 The level of $ translates
11The dependence parameter $ and the Spearman’s correlation, $s, are under the Farlie-Gumbel Morgenstern copula

related by $s = $/3.
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into the degree of selection, which is, for simplicity, exogenous in this section.

The following result decomposes the trade-off between inequality and efficiency into four

terms which capture type dependence, scale dependence, an interaction term and the extent to

which the excess return to wealth reflects productivity differences.

Proposition 2 (EFFICIENCY-INEQUALITY RELATION). Given Assumptions 1-2 and an aggregate pos-

itive riskless capital supply in equilibrium, i.e. KI
E[a0]

< 1, wealth-normalized output is given by Ỹ(η) =

A + µ(φ− A)ω̃
(

1 + $γ

(2ε−1)(2η−γ)

)
η−1
η−γ aγ−1 .12 The marginal effect of wealth redistribution on Ỹ(η) is

∂Ỹ(η; γ, $)

∂η
∝ −µ(φ− A)

(
Ωγ(η, γ) · (γ− 1)︸ ︷︷ ︸

scale dependence

+Ω$(η, γ) · $︸ ︷︷ ︸
type dependence

+Ω$γ(η, γ) · ρ(γ− 1)︸ ︷︷ ︸
interaction term

)
, (9)

where Ωγ(η, γ), Ω$(η, γ) and Ω$γ(η, γ) are strictly positive inequality multipliers.

A key property of Proposition 2 is the ambiguous effect of rising wealth inequality on nor-

malized output that depends on the relative strength of scale dependence, type dependence and

their interaction, respectively captured by the terms γ− 1, $ and $(γ− 1). If preferences mimic

DRRA behavior (γ > 1) and there is a positive selection of types ($ > 0), then output unambigu-

ously rises in response to higher wealth inequality, since it reallocates wealth to agents investing

in riskier and more productive assets (µ > 0). This effect is scaled to the degree to which returns

to investment reflect differential capital productivity, captured by the term µ(φ− A).

Importantly, variations of the Pareto tail exhibit highly nonlinear effects on output captured by

the inequality multipliers Ωγ(η, γ), Ω$(η, γ) and Ω$γ(η, γ). In practice, the precise decomposition

and the associated inequality multipliers are model-specific; however, as discussed below, the

general idea and mechanisms unify a number of frameworks. In complete unequal economies,

i.e. η → max{γ, 1}, small variations of the Pareto tail result in rather large output variations. In

contrast, in a complete egalitarian societies, i.e. η → ∞, small variations in η result in small output

variations. Intuitively, in more unequal economies, scale dependence and selection effects are

stronger in magnitude such that even small variations of η lead to strong investment reallocations.

Equation (9) also implies that, for a given level of inequality η, there exists an infinite number of

possible combinations of type and scale dependence on a bounded two-dimensional set consistent

with a given marginal effect of wealth redistribution on output. In Definition 1, we specify the

notion of iso-growth (a kind of isoquant) which describes all parameter pairs (γ, $) for which a

marginal variation of the Pareto shape η generates a given output response g.

Definition 1 (ISO-GROWTH OF INEQUALITY). For a given wealth Pareto tail η and µ > 0, the iso-growth

at level g is defined by the pair (γ, $) that satisfies isoG(η, g) ≡
{
(γ, $) ∈ Γ× [−1, 1] : − ∂Ỹ(η;γ,$)

∂η
= g

}
.

12The condition KI
E[a0]

< 1 is satisfied for a given a if
η−γ

η−1 ≥ ω̃
(

1 +
$γ

(2ε−1)(2η−γ)

)
aγ−1.
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A special case ensues for g = 0 for which the iso-growth curve separates the growth enhancing

region, i.e. − ∂Ỹ(η;γ,$)
∂η

> 0, from the growth dampening region, i.e. − ∂Ỹ(η;γ,$)
∂η

< 0. For this reason,

we label this special iso-growth curve the Growth Irrelevance Frontier of wealth inequality. Lemma

6 in Appendix A.1.7 provides conditions for its existence based on the strength of type and scale

dependence and the wealth Pareto tail η. If these parameter restrictions do not apply, an infeasible

pair (γ, $) 6∈ Γ× [−1, 1] would be required to obtain growth neutrality.13 On the Growth Irrelevance

Frontier (GIF) of wealth inequality, type and scale dependence exactly offset each other or are

absent. In Lemma 3, we provide key properties of the iso-growth; it is decreasing in the space (γ, $)

and rotates clockwise in the wealth Pareto shape η.

Lemma 3 (PROPERTIES OF THE GIF AND ISO-GROWTH). The GIF is strictly decreasing on the defined

set of Lemma 6, i.e. ∂γ
∂$ |dη=0 < 0. A higher tail η rotates the GIF such that dγ

dη |d$=0 > 0 for γ > 1 and
dγ
dη |d$=0 ≤ 0 for γ ≤ 1. Also, for a higher level g, isoG(η, g) is the translation of the GIF and dγ

dg |d$=0 > 0.

Figure 1 illustrates the iso-growth for two different Pareto tails η and output levels g. There

are four regions which are delimited by the sign of type and scale dependence. In the top-right

and bottom-left regions, the wealth-dependent risk-taking and the selection effect move in the

same direction. An increase in inequality therefore unambiguously induces more (respectively

less) economy-wide risk-taking and higher (respectively lower) productivity. In the top-left and

bottom-right regions, the wealth-dependent risk-taking and the selection effect move in opposite

directions. In these regions, there exist infinite combinations of type and scale dependence such

that both effects offset each other giving rise to the GIF. In the top-left region characterized by

{$ < 0, γ > 1}, an increase in inequality leads to higher output only if the positive scale depen-

dence is sufficiently strong. In contrast, in the bottom-right region characterized by {$ > 0, γ < 1}
an increase in inequality decreases output if the wealth-dependent risk-taking elasticity γ is suffi-

ciently low for a given selection $ > 0.

For a higher effect of wealth inequality on the level of output, i.e. an increase in g, the iso-

growth moves upward in the (γ, $) diagram; the higher effect of greater wealth inequality on

output can only be rationalized with higher degrees of positive type and/or scale dependence.

Finally, the level of wealth inequality changes the relative strength of type and scale dependence

effects; a higher inequality (lower η) reinforces the scale dependence effect relative to the selection

effect and, as a result, the GIF (and the translated iso-growth curve) flattens. Finally, for g > 0

(respectively g < 0), a given isoG(g, η) shifts downward (respectively upward) with an increase

in the productivity gap µ(φ− A) as less reallocation between the two productive sectors is needed

to achieve a certain level g.

13Notice that the isoG(η, 0) does not exist in a complete unegalitarian economy (η = max{1, γ}), since in this case
the absolute strength of scale dependence dominates the selection effect. However, in relatively egalitarian economies,
both effects are small in magnitude such that the isoG(η, 0) exists on a bounded set.
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Figure 1. The inequality–efficiency diagram.

Note: numerical parameter values are ε = 2.0, a = ϑ = 1.0, Ar = 1.1, σκ = 0.2, A = 1.0.
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Legend: The solid black line is the GIF with a Pareto tail η = 1.4, and the dotted grey line is the GIF with
η = 1.2. The solid green line is an iso-growth curve corresponding to a growth level of 0.5 percent.

Despite its simplicity, the analytical decomposition derived above allows to captures key mech-

anisms driving real-world household behavior, and carries over different quantitative models

with heterogeneity in household investments such as the one studied in section 3. It shows that,

in order to understand the effects of wealth redistribution on aggregates in a framework that

accounts for heterogeneous capital investments, there are four key parameters required: (i) the

Pareto tail of the wealth distribution, η, (ii) the elasticity of risk-taking with respect to wealth, γ,

and (iii) the selection or sorting of types along the wealth distribution, as captured by the depen-

dence, $, and (iv) the excess wealth return augmented by the extent to which higher returns reflect

higher capital investment productivity, µ(φ− A).

Discussion and practical implications A number of frameworks with type and scale depen-

dent mechanisms can be unified within the representation of the inequality-efficiency diagram

of Figure 1 and equation (9).14 In the basic Aiyagari (1994) economy, the distribution of wealth

is almost growth–irrelevant due to the quasi linearity of the decision to save of the wealth-rich

households. Angeletos (2007) studies an economy with linear portfolio policy functions and no

type heterogeneity, thereby implying distributional irrelevance. Those models are located respec-

tively at, and close to, the anchor point of the inequality-efficiency diagram (γ = 1 and $ = 0).

Models with capitalists/entrepreneurs (among others Cagetti and De Nardi (2006, 2009), Guve-

nen et al. (2019), Brüggemann (2021)) often display positive type dependence at the stationary

equilibrium, as entrepreneurs who invest in high-return private equity investments self-select at

the top of the wealth distribution ($ > 0). However, they feature decreasing marginal product

14In the Online Appendix OA 1.1, we hypothetically locate various theoretical and quantitative incomplete markets
models relative to the GIF.
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on those investments which can be reinterpreted as negative scale dependence effects (γ < 1). In

those models, wealth redistribution from the top to the bottom has thus an ambiguous effect on

output. Therefore, they are positioned in the bottom-right region. Similarly, the seminal paper by

Galor and Zeira (1993) with non-convex human capital investment costs can be reinterpreted as

a form of DRS (γ < 1) but without type heterogeneity ($ = 0). Finally, the model of Moll (2014)

displays only type dependence in households capital productivity with linear investment policy

functions. Such models therefore locate on the locus with γ = 1.15

From the above diagram, it is interesting to see that type and scale dependence cannot be

simply identified by using information on the effect of inequality on growth, as an infinite com-

bination of pairs (γ, $) may rationalize the relationship.16 To identify both dependencies, it is

ideal to have access to detailed panel data comprising portfolio decisions and associated returns

to wealth. This may for example allow an econometrician to infer individual types through fixed

effects, and scale dependence by estimating the effects of wealth variations on household behav-

ior. Recent papers, such as Fagereng et al. (2020) and Bach et al. (2020), pave the way for such an

empirical analysis. Without access to panel data and by relying only on cross-sectional data it is

however difficult to identify the distinction as both channels may in principle generate consistent

patterns regarding the portfolio allocation and associated returns to investment along the wealth

distribution.17 This is striking given that both effects result in substantially different elasticities

of macroeconomic aggregates to wealth redistribution and, as shown in the dynamic model of

section 3, to distinct implications for optimal wealth taxation.

A numerical example Consider two distinct models, i.e. the first with scale dependence only,

and the second with type dependence only. We normalize the non-innovative productivity A = 1

and assume µ = 1. We set the labor share ϕ = 0.67, the shape η = 1.4 consistent with estimates for

the US (Vermeulen, 2016), and the risk premium such that (1− ϕ)(φ− A) = 15%. The variance σ2
κ

is set to 0.16, which is consistent with estimates from the PSID discussed in section 3. We calibrate

type and scale dependence to generate a consistent cross-sectional pattern of risky equity shares,

15In Appendix OA 3.1, we show how a number of additional frameworks can be understood within this represen-
tation. Moreover, the representation above provides a rationale for the lack of clear empirical evidence on the role of
wealth inequality on growth (see for instance Perotti (1996); Forbes (2000); Barro (2008)). Recent panel data estima-
tions tend to find a weak positive relationship in developed countries (Forbes, 2000; Voitchovsky, 2005; Barro, 2008;
Frank, 2009) and a negative one in developing economies. The disparity of the estimates can be reconciled within our
framework as the relation crucially depends on the underlying selection of agents, as well as the direction of scale
dependence, which may of course be country-specific. In the Online Appendix OA 3.1, we investigate the relation-
ship between top wealth inequality and GDP growth using new estimates regarding wealth concentration and find a
positive link.

16They are, however, identified under particular conditions. Figure 1 shows that γ and $ are identified with two
different couples of observation (η1, g1) and (η2, g2), but this requires that type and wealth dependence are constant
over time. Moreover, estimating this relationship is somewhat complex as shown by the variety of empirical results in
this related literature. See among others Forbes (2000), Voitchovsky (2005) or Barro (2008).

17See Section 3 for a detailed discussion regarding the identification of type and scale dependence in micro datasets.
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thus targeting the equity share of the top 1% wealthiest households of 65% as observed in the 2010

SCF. Note that because the average risky equity share is increasing in wealth in the cross-section,

the two models are located respectively on the {$ = 0, γ > 1} and {$ > 0, γ = 1} loci.

In the type dependence model, we set the Pareto shape of types ε = 2 and vary the correlation

between types and wealth to match the top 1% risky share, such that corr(ϑ, a0) = 0.65.18 In

the scale dependence model, we match the same target by varying the wealth-dependent risk-

taking elasticity and obtain γ = 1.39. In Appendix A.2, we show that both models reproduce well

the overall cross-sectional pattern of portfolio shares, at the bottom and at the upper end of the

wealth distribution. However, the responses of output to a proportional top marginal wealth tax

of 1% on the top 1% wealthiest households, which is redistributed through lump-sum transfers,

differ substantially. We find that output drops by 0.43% under type dependence, which is in effect

substantially lower than the 0.70% reduction found under scale dependence. In Figure 2, we

report their respective iso-growth location. The difference in output responses originates from the

behavioral response triggered by scale dependence as wealth varies (cf. Lemma 1).

This simple numerical example illustrates the importance of unraveling the economic forces

behind capital investment heterogeneity. Notice that in a dynamic model, scale effects will be

further amplified, as future wealth is a function of current investment itself, and the selection of

skill-types along the distribution will be endogenous to inequality changes.

Figure 2. The inequality–efficiency diagram.

Note: numerical parameter values are ε = 2.0, a = ϑ = 1.0, Ar = 1.1, σκ = 0.2, A = 1.0.
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Legend: the solid black line is the GIF with an inequality level η = 1.4. The solid green lines are iso-growth
curves corresponding to the two orange dots illustrating the numerical example described in the main text.
The orange dashed line represents all combinations ($,γ) such that the model replicates the cross-sectional
portfolio shares and returns in the data, for a given η = 1.4.

18Instead, it is also possible to fix the correlation between types and wealth but vary the extent to which individuals
are different by varying the shape ε. There is marginal difference in considering one over the other alternative, as long
as the cross-sectional distribution of portfolio shares and wealth are well matched.
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2.3 From Efficiency to Welfare

We now shift our focus to a welfare analysis. For tractability, we consider the case of a constant

rate of progressivity (CRP) tax (Feldstein, 1969; Heathcote et al., 2017) on initial wealth such that

ta(ai
0) = ai

0 − (ai
0)

1−pa , where pa ∈ (−∞, 1) captures the progressivity of the wealth tax schedule.

We denote with "∼" post-tax variables. Under this assumption, individual choices are isomorphic,

replacing initial wealth ai
0 with ãi

1 = ai
0 − ta(ai

0), which implies an updated first period wealth

Pareto tail η̃ = η
1−pa

and scale ã = a1−pa , where pa → 1 implies a complete egalitarian economy.

We measure welfare in terms of consumption equivalents, defined as the amount ∆CE,i that makes

household i in the reformed economy as well off as in the initial status quo economy, such that

E[u(c̃i
2− ∆CE,i)] = E[u(ci

2)]. Under our CARA-Normal structure, this gives ∆CE,i = x̃i
c2
− xi

c2
+ ∆i

c
α̃i

,

where xi
c2

and x̃i
c2

denote certainty equivalents of the second period pre- and post-tax consump-

tion, and the term ∆i
c arises as the utility is a positive function of initial wealth through the risk

aversion αi. Given an utilitarian equivalent variation-based welfare measure, the planner solves

W = arg max
pa

∫
∆CE(ϑ, a0) dG0(ϑ, a0) s.t. T =

ηa
η − 1

− ηa1−pa

η − 1 + pa
. (10)

where the last equality balances the government budget constraint, such that
∫

ta(a0
i )di = T.19

Lemma 4 (OPTIMAL WEALTH REDISTRIBUTION). Assume that the excess return is sufficiently large,

i.e. φ− A− σ2
κ
2 (ω̃/ϑ) > 0. The optimal progressivity p∗a solves ∂W

∂pa
= 0, with

∂W
∂pa

=

(
ϕ

∂Ỹ(η̃; $, γ)

∂η̃
E[a0]︸ ︷︷ ︸

GE wage
efficiency if µ > 0

+
∂r(η̃; $, γ)

∂η̃
E[ã0]︸ ︷︷ ︸

GE rent component
if µ < 1

)
∂η̃

∂pa
+

∂T
∂pa︸︷︷︸

lump-sum
transfers

+
∫
R(a0, ϑ)dG0(a0, ϑ)︸ ︷︷ ︸

direct effects of the wealth tax

where R(ϑ, a0) captures the direct effects of the wealth tax on second period consumptions and on risk

aversion α̃i. The sign of ∂Ỹ(η̃;$,γ)
∂η̃ is characterized in Proposition 2 and sgn

(
∂r(η̃;$,γ)

∂η̃

)
= −sgn

(
∂Ỹ(η̃;$,γ)

∂η̃

)
.

Lemma 4 characterizes the main trade-offs of wealth taxation on welfare. First, there is an

equity channel as individuals differ in initial wealth, and thus in their marginal utility of con-

sumption. Welfare increases with the lump-sum transfers T, but decreases with the efficiency

losses from wealth taxation. The latter affects terminal wealth, captured by the term R, through

behavioral investment responses, i.e. changes in ωi
1 and changes in the curvature of the utility

function through the risk aversion αi. Second, a wealth tax affects efficiency, captured by ∂Ỹ
∂η̃ , by

reallocating wealth from the top to the bottom of the wealth distribution. Depending on the size

of type and scale dependence, this affects the amount of capital that is invested in the innovative
19Between periods t = 0 and t = 2, the government may in principle invest tax revenues in risky or riskless assets,

KN or KI , and obtain returns from those investments which affect the amount of second period lump-sum transfers T.
We simplify the exposition here and assume that the government does not invest.
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sector, and thus aggregate productivity and wage w. Third, whenever µ < 1, the size of the rents

in the economy responds to the inequality change induced by the wealth tax, captured by the ag-

gregate return component r. If rent-extraction increases, it lowers welfare as high capital return

investors obtain a larger fraction of the overall product of capital, such that risky private returns

to wealth become larger than their social value, i.e. the marginal product of capital investments.

This in turns lowers the aggregate capital return component r to ensure that the total product of

capital equalizes the amount of returns redistributed to households. In other words, the existence

of rents widens the dispersion of returns to wealth across households, without actually reflecting

dispersion in investment productivity.

The optimal proportional wealth tax thus trades-off equity and rent-extraction versus efficiency

considerations. In this static model with exogenous type dependence, a lower µ implies a higher

progressivity of the wealth tax. In the quantitative dynamic model in which the joint distribution

of skill-types and wealth is endogenous, we argue that this result crucially depends on how the

selection of skilled investors reacts to the implementation of a wealth tax in the long-run.

2.4 Generalization

The assumptions made throughout the special case allowed to isolate risk-taking decisions arising

from type and scale dependence. We now briefly extend the analysis to saving decisions, alternative

sources of scale dependence, and aggregate productivity shocks.20

2.4.1 Portfolio choice with explicit saving decision

Households now consume over the two periods, ci
1 and ci

2, and preferences have a recursive form

ui
1 = U(ci

1) + βU
(

G−1
(

E
[

G
(

U−1(ui
2)
)]))

, where it holds that ui
2 = U(ci

2), U(ci) = c1−1/σ

1−1/σ
and

G(ci) =
(
1/αi) (1− e−αici

)
. As a result, the maximization objective becomes

max
{ci

1, ωi
1, ai

1≥0}

1
1− 1/σ

(
(ci

1)
1−1/σ + β

{
− 1

αi
log
(

E
[
e−αici

2

])}1−1/σ
)

,

s.t. ci
1 + ai

1 ≤ ai
0 − ta(ai

0) , ci
2 ≤

(
r + R f (1−ωi

1) + Ri
rωi

1

)
ai

1 + w + T ,

(11)

where σ > 0 and β ∈ (0, 1) define, respectively, the intertemporal elasticity of substitution (IES)

and the discount rate. In this case, the joint heterogeneity in marginal propensities to save and

marginal propensities to take risk (Kekre and Lenel, 2020) is key to studying aggregate allocations

and gives rise to generalized iso-growth curves. For simplicity, we neglect wealth taxation in the

following, i.e. ta(a) = T = 0.

20Additional extensions include uninsurable labor income risk and participation decisions. We relegate those addi-
tional analyses to the online appendix OA 1.8.
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Lemma 5 (INDIVIDUAL PORTFOLIO CHOICE). Denote β̃ = (R̃β)σ + R̃ where R̃ = r + R f and let us

assume an interior solution to (11) such that ci
1 > 0. Individual portfolio choices of risky and riskless assets

are denoted, respectively, ki
1 = ωi

1ai
1 and bi

1 = (1−ωi
1)ai

1, and given by

ki
1 = ω̃

ϑi

ϑ
(ai

0)
γ , bi

1 =
1
β̃

(
(R̃β)σai

0 − ((R̃β)σ + r + φ)ki
1 − ϕY︸ ︷︷ ︸

Intertemporal substitution

+
1
2

αiσ2
ci

2︸ ︷︷ ︸
Precautionary savings

)
.

Lemma 5 is a generalized counterpart to Proposition 1 in Angeletos and Calvet (2006) derived

under a baseline CARA specification. The two-period structure leads to an intertemporal substi-

tution effect due to the risky asset holdings and a precautionary savings effect that arises from

uncertainty about the realization of second period consumption ci
2. In this economy, the effects

of a change in the shape of the wealth distribution on output can be characterized by means of

sufficient statistics.

Corollary 1 (EFFICIENCY AND INEQUALITY). The second period output in this economy is given by

Y = E[b1(ϑ, a0)]A + (µφ + (1 − µ)A)E[k1(ϑ, a0)]. The effect of a change in inequality on wealth-

normalized output is

∂Ỹ
∂η

= A · Cov

(
mpsi,

dai
0

E[a0]

)
+ µ(φ− A) · Cov

(
mpri ×mpsi,

dai
0

E[a0]

)
,

where mpsi ≡ ∂ai
1

∂ai
0

and mpri ≡
(

∂ki
1

∂ai
1

)
/
(

∂ai
1

∂ai
0

)
are the marginal propensity to save and to take risk.

Corollary 1 characterizes the overall effect of a wealth inequality change on aggregate effi-

ciency into sufficient statistics in an economy with capital accumulation. In such an economy, type

and scale dependence determine the extent to which agents invest in risky assets, captured by the

distribution of mpri, and also how much they accumulate wealth, captured by the distribution of

mpsi. As such, both covariance terms depend on γ, ρ and η in the aggregate. The quantitative

setting in Section 3 also incorporates an explicit saving decision into a dynamic framework.

2.4.2 Extensions

Other sources of scale dependence Appendix OA 1.3.1 introduces an entrepreneurship type of

model along the lines of Cagetti and De Nardi (2006), Guvenen et al. (2019) or Brüggemann (2021).

The model is shown to map into the representation of equation (9). In this setting, we show that

wealth-normalized output depends negatively on wealth inequality due to decreasing returns to

scale on private equity investments (negative wealth-dependence γ < 1), but positively with

the selection of entrepreneurs at the top of the distribution (positive type-dependence $ > 0). As

stated before, such models are located in the bottom-right area of the inequality-efficiency diagram

of Figure 1. Second, we consider the case of wealth-dependent borrowing constraint and show
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that it generates similar results as the one derived above under wealth-dependent risk-aversion.

Aggregate shocks Throughout the paper, we assumed that investment return risk is idiosyn-

cratic following the findings of Bach et al. (2020) on private equity, which represents the largest

share of wealth in the hands of the wealthy. We now check how our insights change under the

assumption of aggregate production risk. Therefore, we assume that the productivity of innova-

tive projects is stochastic and given by z(µφ + (1− µ)A) with z ∼ N (1, σ2
z ) an aggregate shock.

In this case, a growth – variance trade-off arises as an increase in wealth inequality does not only

affect expected growth, but also its volatility. A social planner seeking to redistribute wealth has

an additional incentive to stabilize the wage rate, pushing towards less inequality when higher in-

equality is linked to higher aggregate risky investments. Under the special case of Section 2.2, this

creates a positive link between inequality and wealth-normalized output volatility σ2
Ỹ
(η) if a cer-

tain model economy falls into the growth-enhancing region regarding type and scale dependence.

Overall, the main insights and trade-offs of interest remain valid under this assumption.

3 A Dynamic Quantitative Model with Investment Heterogeneity

Section 2 derived an analytical representation of the link between wealth inequality, aggregate

output and welfare. We isolated four key parameters: (i) the Pareto tail of the wealth distribution,

(ii) the elasticity of risk-taking to wealth, (iii) the sorting of types along the wealth distribution,

and (iv) the extent to which returns to wealth reflects higher investment productivity. Focusing

on those elements, we now build a quantitative model in which the wealth distribution arises

endogenously, and study the distinct effects of type and scale dependence for wealth taxation.

3.1 Environment

The distribution of wealth arises endogenously from two empirically relevant features: hetero-

geneity in labor productivity as in a standard incomplete markets model (Aiyagari, 1994) and

heterogeneity in capital investment and associated returns. While Benhabib et al. (2011, 2019) and

Hubmer et al. (2020) show that the latter is key to generate the right tail of the wealth distribution,

we study the role of the sources of this heterogeneity, type and/or scale dependence, for wealth

accumulation and redistribution. We also introduce a life-cycle structure with endogenous labor

supply which has been previously demonstrated in the literature to have potential for generating

positive capital taxes (Conesa et al., 2009). Apart from those elements, the rest of the model is kept

deliberately parsimonious.
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3.1.1 Demographics, preferences and endowments

Time is discrete. Households derive a per period flow of utility u(ci
t, `

i
t) from consumption ci

t and

labor supply `i
t. At the beginning of each period agents differ in their wealth ai

t, their age bracket

ji
t, their permanent component of labor productivity hi

t, and their innate risk taking or investment

skill type ϑi
t. They discount future periods at rate β ∈ (0, 1) and die with probability di

j ≡ d(ji
t).

The expected life-time utility is given by

W i = E0

[
∞

∑
t=0

βt(1− di
j
)tu(ci

t, `
i
t)

]
. (12)

Unless necessary, we drop the time and households indexes. Our model incorporates stochas-

tic aging to capture the dynamics of income and wealth accumulation over the life-cycle. We thus

assume that agents live through a discrete number of stages, i.e. j ∈ J ≡ [1, . . . , J]. From stage

1 to J − 1 households participate in the labor market. Stage J comprises households beyond re-

tirement. The probability of switching between age brackets j and j + 1 is denoted by πj(j + 1|j).
Upon death, a household is replaced by a newborn household who inherits their wealth. There

are no annuity markets such that households leave unintended bequests.

Individuals who work earn pre-tax labor income defined by wyH(h)ζ j`, where w is the equi-

librium wage rate, y ∼ Fy(y) and H(h) denote respectively the transitory and the persistent labor

productivity components, while ζ j is the age component of earnings. The evolution of the persis-

tent component follows a first order Markov chain with transition probability πh(h′|h). At retire-

ment, we assume that the working ability h stays constant over time, such that pensions are given

by wH(h)ζ J , with ζ J defining the replacement rate. Upon death, a newborn imperfectly inherits

the persistent component of her parents. With probability ph she draws her parent’s persistent

labor productivity, and with probability (1− ph) she draws her productivity from the invariant

distribution Fh(h) generated by πh(h′|h).
The risk-taking type ϑ ∈ {ϑ1, ..., ϑS} ∈ Θ follows a Markov chain with transition probabil-

ity πϑ(ϑ
′|ϑ). A newborn draws her parent’s risk-taking type with probability pϑ and from the

invariant distribution Fϑ(ϑ) otherwise.

Households are heterogeneous in their capital investments. They split their savings into safe

and risky assets. An agent with risk-taking type ϑ and wealth a invests a share ω(a, ϑ) in the risky

asset. For the sake of clarity, our portfolio specification should be understood as a reduced form

of a more elaborated portfolio choice. Let rF and rR, with rR > rF be the safe and risky net returns

determined in equilibrium, respectively. The pre-tax return on total investment is given by

r(a, ϑ, κ) = r + rF · (1−ω(a, ϑ)) + (rRκ) ·ω(a, ϑ) , (13)
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where r is an aggregate return component and κ ∼ Fκ(κ) an idiosyncratic element of luck. The

variance of returns is therefore given by σ2
r = (rRω(a, ϑ))2σ2

κ and implies that households with

higher equity shares experience higher portfolio risk. Such a feature is supported in the PSID,

and documented by Bach, Calvet and Sodini (2020) and Fagereng, Guiso, Malacrino and Pistaferri

(2020). From equation (13), it is clear that returns are correlated over time through wealth itself,

and through the process governing the evolution of investment skill-type ϑ.

Agents optimally choose their saving a′, labor supply `, consumption c and cannot borrow.

Their recursive program is

v(a, ϑ, h, j) = Eκ,y

{
max

c>0, a′≥0, `≥0

{
u(c, `) + β(1− dj)Ej′,h′,ϑ′|j,h,ϑ

[
v(a′, ϑ′, h′, j′)

]}
s.t. c + tc(c) + a′ = Y inc − tw(Y inc) + r(a, ϑ, κ)a− tr(r(a, ϑ, κ)a) + a− ta(a) ,

Y inc = wH(h)
(

1{j<J}ζ jy`+ 1{j=J}ζ J

)
,

(14)

(15)

(16)

where the functions tr(·), tw(·), tc(·) and ta(·) are taxes on capital income, labor income, consump-

tion and wealth. Upon death, bequests are taxed such that achild = aparents − tb(aparents).21

3.1.2 Production, government, and equilibrium

Production The production sector is similar to the one in section 2. An intermediate producer

operates at no cost a continuum of projects in sectors s ∈ {N, I}. Each project uses assets supplied

by a household with wealth holdings a and skill type ϑ to produce x intermediate goods with

technology

xN(a, ϑ) = A[(1−ω(a, ϑ))a]νN , xI(a, ϑ) = (φµ + A(1− µ))[ω(a, ϑ)a]νI , (18)

where φ > A holds and (νN , νI) ∈ R2
+ are returns to scale on the technologies. Similar to section 2,

µ is a wedge capturing the extent to which returns on risky investments reflect the associated cap-

ital productivity. The intermediate producer sells intermediate goods to a final good producer at

price ps(a, ϑ) and obtains revenues Π(a, ϑ) = ∑s ps · xs (a, ϑ), which are redistributed to investors.

Recall that intermediate producers do not face any risk, however, investors are exposed to the

investment shock κ.

A competitive final good producer uses labor L and intermediate goods X = ∑s

( ∫
i xs

i di
)

to

produce with technology Y = F (X, L), where F(·) satisfies the Inada conditions. Profit maximiza-

tion, i.e. maxxs
i ,L Y−∑s

∫
j (ps

i + δ)xs
i di−wL, yields the following set of prices: ps

i =
∂F(X,L)

∂X
∂X
∂xs

i
− δ,

21The outer expectation comes from the fact that y and κ are iid. An alternative way to write this value function is

v(a, ϑ, h, j, κ, y) = max
c>0, a′≥0,`≥0

{
u(c, 1− `) + β(1− dj)Ej′ ,κ′ ,y′ ,h′ ,ϑ′ |j,h,ϑ

[
v(a′, ϑ′, h′, j′, κ′, y′)

]}
. (17)
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and w = ∂F(X,L)
∂L , where δ ∈ (0, 1) is the depreciation rate. As intermediate goods are perfect

substitutes, it follows that ps
i = p ∀i, s.

Given the intermediate goods equations (18), the return wedge and the profit maximization,

the returns to wealth to safe and risky asset investments are given by

rF :=
pxN(a, ϑ)

(1−ω(a, ϑ))a
= MPKF = pA[(1−ω(a, ϑ))a]νN−1 ,

rR :=
pxI(a, ϑ)

ω(a, ϑ)a
= pφ[ω(a, ϑ)a]νI−1 ≥ MPKR = p(φµ + A(1− µ))[ω(a, ϑ)a]νI−1 ,

(19)

(20)

where µ < 1 implies rR > MPKR. This thus describes the case in which risky returns to wealth do

not only reflect investment productivity but also some form of rent-extraction, for example.

Government The government finances an exogenous expenditure level G as well as social se-

curity retirement pensions. It raises total revenues from consumption, capital income, bequest,

wealth, and labor income taxes. Consumption, capital income and labor income are subject to a

linear tax, respectively tc(x) = xτc, tr(x) = xτr, and tw(x) = xτw. There is no wealth tax in the

baseline economy, i.e. ta(x) = 0. We will however study the case of a progressive wealth tax in

section 6. The bequest tax is also linear, tb(x) = τb(x− ta(x)), where we assume that the wealth

tax is paid first. Consequently, the government budget is given by

G +
∫
(a,ϑ,h)

wH(h)ζ J dG(a, ϑ, h, j = J) =
∫
(a,ϑ,h,j)

(
τw

∫
y

1{j<J}w`H(h)yζ j dFy(y)+

+ τr

∫
κ

r(a, ϑ, κ)a dFκ(κ) + τcc(a, ϑ, h, j)

+ τa(a) + τbdj(a− ta(a))
)

dG(a, ϑ, h, j) .

(21)

3.2 Equilibrium

In each period t, the aggregate state of the economy is described by the joint measure Gt over asset

positions, labor productivity, investment skill-type and age.

Definition 2. Denote the state space by s = (a, ϑ, h, j) ∈ S ≡ R+ × Θ ×H × J . A steady-state

equilibrium of this economy is a vector of quantities {Y, X, L}, a set of policy functions {c(s), a′(s), `(s)},
a set of prices {p, w, r}, a set of tax functions {tw, tr, tc, tb, ta}, and a probability distribution of households

G defined over S, such that

(1) The representative final producer maximizes profits, i.e. max{X,L} F(X, L)− (p + δ)X−wL, where

p and w are given by their respective marginal products.

(2) Given prices, households solve the stationary version of their decision problem (14), giving rise to an

invariant distribution G(s).22

22At each state (a, ϑ, h, j), there is a continuum of individuals experiencing the iid shocks y and κ. The stationary
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(3) The government budget constraint (21) is satisfied.

(4) Labor and intermediate goods markets clear, i.e.

L =
∫

y

∫
(a,ϑ,h,j)

1{j<J}w`H(h)yζ j dG(a, ϑ, h, j) dFy(y) ,

X =
∫
(a,ϑ,h,j)

(
A[(1−ω(a, ϑ))a]νN + (φµ + A(1− µ))[ω(a, ϑ)a]νI

)
dG(a, ϑ, h, j) .

(22)

(23)

(5) The total capital product distributed by the intermediate producer for each project Π(a, ϑ) is consis-

tent with the total capital income received by households, i.e.

pX =
∫

κ

∫
(a,ϑ,h,j)

(
r + rF(a, ϑ)(1−ω(a, ϑ)) + rR(a, ϑ)κω(a, ϑ)

)
a dG(a, ϑ, h, j) dFκ(κ). (24)

Finally, by Walras Law, the good market clears. Moreover, our measure of total wealth in this economy

is given by K =
∫
(a,ϑ,h,j) a dG(a, ϑ, h, j).

Condition (23) states that the total efficiency units of capital used in the production sector must

correspond to the total capital supplied by households given their investment choice between

risky and safe assets. When µ < 1, each unit of risky investment yields returns to wealth higher

than its corresponding marginal product. As such, the equilibrium base return r must be negative

to satisfy condition (24). Therefore, besides X/L that pins down p and w, the aggregate return

component r in equation (13) is the second object that adjusts in equilibrium.

3.2.1 Numerical solution

The model admits no analytical solution. We solve it numerically using a version of the endoge-

nous grid method (Carroll, 2006). Appendix C.2 describes the algorithm. Under certain calibra-

tions, e.g. the one of the benchmark economy, the model induces a Pareto distribution of wealth at

the top. As a consequence, the support of the stationary distribution of wealth is unbounded from

above. To circumvent this issue in practice, we use a large value for the upper bound on wealth in

our numerical implementation.23

distribution is obtained using non-stochastic simulations.
23To check the size of the error implied by this truncation, we estimate the Pareto tail, η̂ξ , of the model-generated

wealth distribution at the top above the aξ wealth threshold, which is chosen large enough such that the upper part
of the distribution is indeed Pareto. The details of the estimation procedure are similar to the one implemented in
Appendix B.1. In the truncated model, for a ≥ aξ , there is a mass Gξ of households at the top with total wealth Kξ who
thus hold a fraction θK = Kξ /K of total wealth in the economy. We then reconstruct a Pareto distribution with shape
η̂ξ and scale aξ , and compute the implied fraction θ̂K from this theoretical distribution. We increase the upper bound of
the grid on wealth until |θ̂K − θK | is negligible.

24



4 Taking the Model to the Data

Before studying wealth taxation, we first choose a parameterization that allows the model to

closely replicate key features of the US economy. We begin with a discussion of the data used.

4.1 Capital Heterogeneity: A First Glance into the Data

We use the SCF and the PSID micro datasets. Our concept of wealth is net worth, which is defined

as the market value of all assets minus total liabilities. Assets comprise riskless assets (deposits,

savings, cash), direct and indirectly (mutual funds, individual retirement accounts) held public

equities, net private equity business investments, primary and secondary residences, and other

non-financial assets. Liabilities comprise student loans, mortgages, consumer credits and other

loans. We restrict the sample population to those aged 20–70, essentially to focus on decision

makers. We define private and public equity as productive risky assets while assets such as risk-

less assets, residential properties and other non-financial assets are considered as safe productive

assets.24 This classification is in line with the literature; for example, Cagetti and De Nardi (2006)

separate private equity assets from other investments into corporate firms, while Kaplan et al.

(2018) consider only equity and commercial or business real estate as productive assets.

Our SCF waves span from 1989 to 2019 and include detailed information on households’ port-

folio composition, comprising a number of very wealth-rich households. When computing mo-

ments related to wealth inequality, we will sometimes refer to the adjusted SCF. The adjustments

are made using the method of Vermeulen (2016) for all periods. First, we correct for underreport-

ing of assets by adjusting survey estimates of real assets, financial assets, and liabilities such that

they align with aggregate national balance sheets. Second, we adjust for under-representation at

the very top by merging the SCF with households from the Forbes World’s Billionaires lists and

extrapolate wealth shares based on estimating a Pareto Law. Appendix B.1 details the procedure.

Additionally, we use PSID waves from 1998 to 2018 to compute empirical moments of in-

vestment returns and extract complementary information on investors. The PSID constitutes a

large and representative biennial survey with a long panel dimension that contains information

by broad asset classes on capital income and costs, asset prices, inflows and outflows.25

Portfolio composition. In Figure 3 we first use the SCF to get a full cross-sectional picture of the

average household’s portfolio composition across the US wealth distribution. As already docu-

mented in the literature, private and public equity investments correlate strongly and positively

24Our motivation for classifying housing in safe assets comes from the fact that returns from housing assets are less
volatile than other assets. Moreover, their volatility relates mostly to differential mortgage interest rates.

25See Pfeffer et al. (2016) for an excellent comparison between both surveys and Flavin and Yamashita (2002) for a
discussion about returns estimated from the PSID. Appendix B.2 provides further details. A drawback of the PSID is
the presence of only a small number of households at the very top (within the top 1%) of the wealth distribution.
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with wealth in the cross-section. The top 1% in the US hold on average 65% of wealth in risky

equity, while the corresponding share for the median household is 7%.26. As it can be seen, the

noticeable increase in risky equity share at the very top of the wealth distribution (above the 95th

percentile) is mostly driven by assets held in private equity business investments.

Figure 3. Average portfolio share of gross assets by wealth percentile.
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Source: adjusted SCF from 1989 to 2019, averaged from different SCF imputations.

Returns to wealth. We measure returns to wealth in the US using the PSID. We compute returns

for each broad asset class l ∈ {risk f ree, home, secondary, priv, public, other}, where risk f ree assets

bundle savings, bonds and checking accounts, and home denotes assets linked to the primary

residence. As stated before, risky assets comprise public equities and non-financial private equity

business investments. The return on asset class l for household i in year t is given by

ri,l,t =
RK

i,l,t + RI
i,l,t − RD

i,l,t

ag
i,l,t−1 + Fi,l,t/2

, (25)

where ag
i,l,t−1 is the beginning-of-period amount of asset class l held and Fi,l,t are inflows minus

outflows (i.e. net investment), that we divide by two assuming that they occur in mid-year.27

The values RK
i,l,t and RI

i,l,t and RD
i,l,t correspond respectively to capital gains, asset income such as

dividends, interests and other payments and to the cost of debts (if any). Returns to total net worth

are similarly computed as ri,net worth,t =
∑l RK

i,l,t+RI
i,l,t−RD

i,l,t

∑l(ag
i,l,t−1+Fi,l,t/2)

. Finally, nominal returns are converted to

real returns using the consumer price index for each year. The complete and detailed procedure

regarding the construction of returns is provided in Appendix B.2.

26These numbers are comparable to estimates from detailed Swedish administrative data as in Bach et al. (2020),
who use a similar definition of risky assets

27This is mostly due to reduce the bias due the acquisition and sale that generate large returns (i.e. division by zero).
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Table 1 provides selected descriptive statistics on the returns to net worth (before-tax), to risk-

less asset, to public equity and to private equity. Notably, returns to private equity display the

highest expected returns (15.6%) with substantial heterogeneity and skewness to the right. To a

lower extend, public equity generates also substantial returns (5.8%). Despite the absence of very

wealthy households in the PSID, our results are comparable to estimates in Fagereng et al. (2020)

in Norway and Bach et al. (2020) in Sweden using administrative data. As a direct comparison

to US estimates, Xavier (2020) evaluates, using cross-sectional information from the SCF, that ag-

gregate returns are 13.6% for private equity, 6.4% for public equity, and between 0.4%-2.1% on the

different safe assets.28 A noticeable difference, however, is that our aggregate estimate of returns

to net worth (before-tax) is 3.3%, which is substantially lower than the one evaluated by Xavier

(2020) (6.8%), but closer to the ones estimated using a quantitative structural model of inequality

by Benhabib et al. (2019) (3.1%) and to the empirical estimates in Fagereng et al. (2020) for Norway

(3.8%). In comparison to Sweden, Bach et al. (2020) find a median return to net worth of 4.5% with

a standard deviation of 13% per year. We attribute this discrepancy to the fact that the PSID does

not account for very wealthy households and to using different methodologies.

Table 1. Returns to wealth in the PSID.

WEALTH COMPONENT DESCRIPTIVE STATISTICS

Mean St.Dev. Skewness Kurtosis 20th perc. 80th perc.

Net worth (before-tax) 0.033 0.158 0.897 6.243 -0.035 0.089
Private equity 0.156 0.614 2.071 10.967 -0.225 0.500
Public equity 0.058 0.417 -0.122 0.085 -0.248 0.385
Riskless assets 0.004 0.009 3.234 10.267 0.000 0.003

Note: we apply a trimming of 0.5% at the top and the bottom for each asset class.

Figure 4 documents the before-tax returns to wealth by wealth quantile in the PSID. Returns

to wealth positively correlate with wealth in the cross-section, which is likely to be driven by

heterogeneity in household’s portfolio composition, as documented above.29 These findings are

consistent with existing work establishing a positive correlation between private equity owner-

ship and wealth (Quadrini, 2000; Cagetti and De Nardi, 2006). Of course, those numbers are not

informative on whether the correlation is driven by type or scale dependence. In practice, there
28Her methodology is very different from ours. We use the panel dimension of the PSID to compute returns of

a given household over time, while she computes returns from the SCF waves using cross-sectional information on
capital income and stocks, averaged by wealth percentile. A drawback of her analysis is sample selection, as individuals
may in principle move in and out of a given wealth percentile over time, as shown in Gomez et al. (2018). Contrary, a
drawback of our analysis is the under-representation of very wealthy households in the PSID.

29This inference is shared by Bach et al. (2020) while Fagereng et al. (2020) find that there remains substantial hetero-
geneity within a broad asset class, which may reflect an important role for heterogeneity in skills. In fact, conditional
on a broad asset class, it is difficult to disentangle whether higher returns are due to specific skills or due to higher risk-
taking. For private equity investments, the latter may arise due to diversification motives (Penciakova, 2018) or due to
the interaction between business risk-taking and borrowing limits (Robinson, 2012). In Appendix B.2, we decompose
the cross-sectional relation and find that this correlation is not observed within asset classes.
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is no obvious way to disentangle the two as both channels are likely to drive the observed cross-

sectional relationship, as we will demonstrate subsequently.

Figure 4. Average return on wealth by gross wealth quantile.

0.81

3.57
2.98 2.65 2.76

4.13

7.79

9.46
10.58

13.28

mean

0

5

10

[20:40] [40:50] [50:60] [60:70] [70:80] [80:90] [90:95] [95:97.5][97.5:99] 99+
Wealth quantile

R
et

ur
ns

 to
 c

ap
ita

l (
%

)

To sum up, the increasing share of risky assets at the top of the wealth distribution is sub-

stantially driven by private and public equity holdings displaying the highest expected returns.

Among other possible determinants, the positive correlation between returns to wealth and wealth

itself is thus likely to be driven by differing portfolio composition.

4.1.1 Type and scale dependence in capital investments in the US economy

Exploiting the panel dimension of the PSID by controlling for individual characteristics, Hurst

and Lusardi (2004) find evidence for scale dependence in the propensity to select into private

equity business ownership among the top 5% wealthiest households. Their estimates show that

the average probability is flat at a rate of 3 percent for the bottom 80%. It increases to 4 percent for

the 95th percentile and reaches 7% for the 98th percentile.

Using information on returns to capital endowments of US universities, Piketty (2018) (Chap-

ter 12) finds that returns substantially increase with wealth and argue that this may arise from

economies of scale in portfolio management.30 However, US universities may not be representa-

tive of the US population as their investment strategies may substantially differ.

Bach et al. (2020) use Swedish administrative panel data and test for scale dependence in re-

turns to wealth. According to them, even within a sample of twins and controlling for twin-pair

fixed effects, there is strong evidence of scale dependence, especially at the top of the wealth dis-

tribution (Table 9, p. 2738). They argue that scale dependence is likely driven by changes in the

individual portfolio composition, e.g. due to returns to scale on management costs or DRRA be-

havior. Controlling for individual and year fixed effects, Fagereng et al. (2020) use a Norwegian

30In Piketty’s words, "The most obvious one is that a person with 10 million euros rather than 100,000, or 1 billion euros
rather than 10 million, has greater means to employ wealth management consultants and financial advisors.".
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administrative panel on wealth tax records and regress the average return to wealth on the indi-

vidual’s wealth percentile at the beginning of the period. Both wealth (scale) and individual fixed

effects are found to be statistically significant. Their estimates imply that scale dependence alone

explains 48% of the 18 percentage point return difference between the 10th and 90th net worth

percentiles.

Finally, Robinson (2012) shows that wealthier private equity business owners tend to start

relatively riskier business investments, with higher expected profitability. Penciakova (2018) con-

firms a similar pattern with data on US firms using the Census Bureau’s Longitudinal Business

Database, patenting data, and Compustat. She documents that private equity investors who di-

versify start riskier additional private equity investments. As we will show, this diversification

among private equity owners occurs mostly among the wealthiest households.

All in all, this leads us to conclude that both type and scale dependencies are likely to drive

the observed correlation between returns to wealth and wealth.

4.2 Functional Forms and Calibration

The benchmark model aims to capture features of the SCF and PSID described above. Apart from

this, the model is parameterized to account for realistic government policy, demographics, labor

income process and production technology.

We map the stationary equilibrium of the quantitative model to US data in two steps. We

first fix some parameters based on model-exogenous information. In a second step, we calibrate

the remaining parameters endogenously by numerically simulating the model to match particular

empirical moments. Table 2 summarizes all parameters.

4.2.1 Exogenously set common parameters

Preferences and technology The model is calibrated to the US economy and the period is one

year. Preferences over consumption c and labor supply ` are represented by a standard time-

separable utility function of the form

u(c, `) =
c1− 1

σ

1− 1
σ

− χ
`1+ 1

λ

1 + 1
λ

. (26)

We set the IES σ = 0.5, and the Frisch labor elasticity λ = 0.6 following Brüggemann (2021) and

Kindermann and Krueger (2014). The disutility cost χ is chosen so that households spend, on

average, 1/3 of disposable time on market work. The discount factor β matches a capital-output

ratio K
Y of 2.6, which is consistent with Kitao (2008).

Demographics We model four age brackets. The first three brackets span from age 20 to age 65,

each with a length of 15 years. The probability of switching from age bracket j to the next one
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Table 2. Calibrated parameters.

PARAMETER SYMBOL VALUE SOURCE/TARGET

Demographics and Preferences
Survival probability dj in text Data (US social security statistics) a

Discount factor β 0.925 Capital-output ratio of 2.6
Risk aversion σ−1 2.0 Conesa et al. (2009)
Frisch elasticity λ 0.6 Kindermann and Krueger (2014)
Disutility of labor χ 18 1/3 of time on market work

Labor productivity process
Age component ζ j in text Guvenen et al. (2021)
Permanent component {ρh, σh} {0.95, 0.2} Storesletten et al. (2004)
Transitory component {σy} 0.15 Heathcote et al. (2010)
Pareto tail {ηh, qh} {1.9, 0.9} Piketty and Saez (2003)
Intergenerational corr. h ph 0.35 Chetty et al. (2014)
Low income state y0 0.08 12% households with zero wealth (SCF)

Investment
Intergenerational corr. ϑ pϑ 0.15 Fagereng et al. (2020)
Risky share param. – scale in text in text Shape of portfolio distribution (SCF)
Risky share param. – type ω 0.4 Conditional risky share (SCF)
Transition between types in text in text Data (PSID)
Excess wealth return φ 6.2 Top 1% wealth share of 0.36

Technology
Labor share 1− α 0.67 Data
Depreciation δ 0.045 Assumption
Safe technology constant A 1.0 Normalization
Returns to scale {νN , νI} 1.0 Assumption

Government policy
Consumption tax τc 0.05 Conesa et al. (2009)
Labor income tax τw 0.225 Guvenen et al. (2019)
Capital income tax τr 0.25 Guvenen et al. (2019)
Bequest tax τb 0.4 Data, statutory tax rate

a See https://www.ssa.gov/oact/STATS/table4c6.html.

j + 1 equals accordingly 1
15 for agents in the first three age brackets, while retired households stay

in the terminal bracket J until death. The death probability dj for each age bracket j is taken from

the US social security statistics and is reported in Table 3.

Technology We specify F(X, L) = XαL1−α with α = 0.33 and set the depreciation rate to 4.5%.

We normalize A = 1. In the baseline, we set µ = 1 such that rF = MPKr, and consider later cases

with µ < 1 when analyzing the aggregate effects of wealth taxation.

As already stressed above, micro returns to scale on investment (νN , νI) constitute another im-

portant form of scale dependence on returns. Existing data from Bach et al. (2020) find no evidence

on the presence of increasing or decreasing returns on risky investments, especially on private eq-
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Table 3. Life cycle earning profile, mortality and transition probabilities.

ζ j dj πj(j + 1|j) conditional on survival

[20, 35) [35, 50) [50, 65) ≥ 65

[20, 35) 0.81 0.15% 0.933 0.067 0.0 0.0
[35, 50) 1.00 0.4% 0.0 0.933 0.067 0.0
[50, 65) 1.35 1.1% 0.0 0.0 0.933 0.067
≥ 65 0.40 9.9% 0.0 0.0 0.0 1.0

uity returns.31 We thus set νN = νI = 1. However, it contrasts with the variety of entrepreneurship

models assuming a DRS technology on risky private equity businesses investment (Cagetti and

De Nardi, 2006; Brüggemann, 2021; Guvenen et al., 2019). Therefore, as CRS is not a standard

assumption, we will also investigate the case where νI < 1.

Government policies The government levies consumption, labor income, capital income and

bequest taxes which approximately equal the current rates of the US economy. Labor income and

capital income tax rates are set to τw = 22.5% and τr = 25%, which is consistent with Guvenen

et al. (2019). The bequest tax rate is fixed to τb = 40% according to the corresponding statutory tax

rates. Finally, the consumption tax is set to 5%, which is consistent with the value used in Conesa

et al. (2009). Given the tax rates in place, the share of total government expenditure to GDP is

equal to 0.24 in the stationary equilibrium, respectively 0.17 without social security payments.

Labor income process As stated above, a household’s labor productivity depends on three com-

ponents: an age-dependent component ζ j, a persistent component h and a transitory component

y. The natural logarithm of the individual hourly wage of a household writes

log(w) + log(H(h)) + log(y) + log(ζ j) . (27)

The life-cycle average earning profile ζ j is taken from Guvenen et al. (2021) (Supplementary

Appendix, Figure C.36). Table 3 provides the parameter values used throughout this paper for

each age bracket, including the transition probability matrix across age brackets.

The processes for labor productivity aim to generate a realistic earning distribution and con-

tribute to the overall wealth inequality. We follow Hubmer et al. (2020) and improve the fit of the

earnings distribution by assuming that the persistent componentH(h) follows a lognormal AR(1)

process with persistence ρh and variance σ2
h . However, at the top of the income distribution, h is

31Furthermore, we use our PSID sample and estimate, fixing the broad asset class l, the effect of asset holdings ai,l,t
on asset returns ri,l,t according to log(ri,l,t) = βl log(ai,l,t)+ FEi + FEt + εi,l,t, where βl reflects the returns to scale, while
FEi and FEt stand for household and year fixed effects. If βl does not statistically differ from zero, the CRS hypothesis
on returns cannot be rejected. Our estimates suggest that there is no statistical evidence for either IRS or DRS, even
among private equity business holdings.
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drawn from a Pareto distribution with shape ηh > 1,

H(h) =

eh if Fh(h) ≤ qh ,

F−1
Pareto(ηh)

(
Fh(h)−qh

1−qh

)
otherwise ,

(28)

where Fh(h) is the CDF of h and F−1
Pareto(ηh)

(·) the inverse CDF for a Pareto distribution with lower

bound F−1
h (qh) with qh ∈ [0, 1]. The persistent component is discretized into nine bins h ∈ H ≡

{h1, ..., h9}. We set the threshold of the Pareto distribution to qh = 0.9 and the shape to ηh = 1.9,

consistent with 1990-2010 estimates for the US (Piketty and Saez, 2003). In line with Storesletten,

Telmer and Yaron (2004), parameters of the persistent labor productivity component are set to

ρh = 0.95 and σh = 0.2.32 The correlation between parents’ labor productivity with the one of their

heir is ph = 0.35, which is consistent with Chetty et al. (2014).

Following Heathcote et al. (2010), the transitory process follows a log-normal distribution, i.e.

y ∼ LN (0, σ2
y ), where σy = 0.15. The process y is discretized into three states using Gauss-Hermite

quadratures. We further add a low income state y0 that occurs with probability πy(y0) = 7.5%

and reflects for instance involuntary unemployment or part-time work, independently of (y, h)

and over time. We choose y0 to generate a realistic fraction of individuals with zero wealth.

4.2.2 Calibrating capital heterogeneity and wealth returns

We now calibrate variables associated with returns to wealth. The standard deviation of risky

returns σκ is set to 0.45; a value consistent with our PSID estimates for public and private equity

(Table 1) and, for instance, Fagereng et al. (2020). The excess return parameter φ = 6.2 generates a

top 1% wealth share of 36% by controlling the dispersion of returns to wealth between households.

As we will show later on, this value also produces a realistic distribution of returns to wealth.

To carefully pin down the type and scale dependence, one would need sufficiently detailed

panel data on investment decisions to test for a statistical relation between portfolio composition,

investment returns and wealth while controlling for household characteristics. Fagereng et al.

(2020) and Bach et al. (2020) follow this strategy using administrative data, and find strong support

that returns feature both type and scale dependence, acknowledging a crucial role for portfolio

composition.33 However, the results are conditioned by the statistical model used to estimate type

and scale dependence, e.g. a linear model with fixed effects (type) and wealth percentiles (scale).

We pursue another strategy by recognizing that there are two common ways to generate scale

32For the sake of transparency, we reduce the computational burden by using a reduced transition matrix Π̂h(h′|h)

such that: Π̂h(h′|h) =

{
Πh(h′|h) if Πh(h′|h) ≥ ε,
0 otherwise. with ε = 10e−6 and normalizing the matrix ∑h′ Π̂h(h′|h) = 1.

This allows us to exploit the sparsity of the transition matrix.
33Moreover, notice that the role of private equity is substantial in Fagereng et al. (2020): "All in all, heterogeneity in

our most comprehensive measure of returns to wealth can be traced in the first place to heterogeneity in returns to private equity
and the cost of debt and only partially to heterogeneity in returns to financial wealth".
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dependence in models featuring private or public equity investments. On one hand, the extensive

margin decision to invest might be wealth-dependent. This is the case in many occupational choice

models in the presence of borrowing constraint (Cagetti and De Nardi, 2006; Brüggemann, 2021)

or models with fixed participation cost (Fagereng et al., 2017). On the other hand, conditional on

being an equity investor, there might be an intensive margin effect such that the portfolio share of

investors is itself a function of wealth.

To capture both margins, we first assume that there are two investment skill-types, ϑ ∈ {ϑ1 =

0, ϑ2 = 1}, i.e. those with investment skills, and those without, respectively. The probability of

switching from an unskilled to a skilled investor type is a function of wealth, such that

πϑ(ϑ
′|ϑ, a) =

[
1− πϑ − λ(a) πϑ + λ(a)

πϑ 1− πϑ

]
, (29)

where the components πϑ and πϑ capture switching probabilities that are unrelated to wealth,

e.g. time-variations in skills or preferences. In the data, the fraction of public equity investors is

substantially larger than the fraction of private equity holders. Moreover, the adjustment margin

of portfolio allocation at the top of the wealth distribution comes mainly from private equity busi-

ness investments (cf. Figure 3). As such, households investing in public equity and who do not

invest in private equity are counted as investor only when they hold more than 50 percent of their

wealth in public equity. This assumption means that 15% of households are investors. We set the

exit probability πϑ = 0.10 consistent with the PSID and choose πϑ = 0.018 to match the fraction

of investors. We calibrate λ(a) using the following parametric form:

λ(a) = min{λ1(max{a− aλ, 0})γλ , λ2} . (30)

Using the results in Hurst and Lusardi (2004) derived from the PSID, parameters {aλ, λ1, λ2, γλ}
are chosen to generate the increasing probability to become an investor as a function of wealth,

conditional on household’s characteristics.34 Consistent with the data, aλ is set such that the prob-

ability to become an investor starts to be a function of wealth only above the wealth level corre-

sponding to the 80th wealth percentile. Below this wealth percentile, the participation rate is only

generated through the process governing the ϑ-type, i.e. through πϑ. The level and the shape

parameters of the transition probability with respect to wealth are endogenously set to λ1 = 0.071

and γλ = 0.30 in order to replicate the average transition rate of 3.2% for households within the

[95-97.5] wealth quantile, and of 6.1% for households within the [99-99.9] wealth quantile. A max-

imal value of λ2 = 0.045 matches a transition rate of 7% for the top 1% wealthiest households.

We calibrate the intensive margin of risky investment as follows. In the SCF, conditioning on

34To save on space, we relegate the full empirical analysis of this observed relationship to Appendix B.3.
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being private equity investor, the share of risky equity increases with wealth in the cross-section.

One practical issue, however, is to distinguish whether the share of private equity held by those

owners increases because of systematic capital gains or whether it is the result of net investments.

Even in the latter case, it is difficult to disentangle whether private equity owners who obtain

higher returns are more likely to end up at the top, or whether wealth itself induces households

to undertake riskier investments. To circumvent those issues, we use the SCF and exploit detailed

information on the biggest three household’s private equity business investments and a bundle of

the remaining ones, including their acquisition date and the share of wealth in each private equity.

Figure 5. Average share held in equity (top panel) and average number of private equity business invest-
ments (bottom panel), conditioning on investors.
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Source: SCF (1989-2019). The dashed line represents the median.

The top panel of Figure 5 shows the average share of private equity investments per net worth

quantile, decomposed in different business investments. The average share of private equity in-

vestment over total gross wealth appears to be strongly correlated with wealth, especially above

the top 5%. This relation is driven by diversification at the top. From our standpoint, this pattern

cannot be solely driven by type dependence. First, borrowing constraints are likely to prevent rel-

atively wealth-poor households to invest in multiple businesses, limiting the concern regarding

the possible reverse causality that an owner of multiple businesses is more likely to select over

time at the top of the wealth distribution. Second, those additional businesses are generally newly

founded; 85% of the second businesses were created in the past ten years relative to the survey
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date, and 67% were created within the past five years. As a comparison, 47% of the first main busi-

ness of those private equity owners were created within the past ten years. Therefore, given that

wealth accumulation is a slow process, it seems unlikely that multiple business owners at the top

became rich due to multiple private equity investments. Instead, the decision to open additional

private equity investments is likely, among other determinants, to be wealth-driven.35

We further elaborate on this point using two additional pieces of evidence. First, as shown in

the bottom panel of Figure 5, the average number of private equity business investments substan-

tially rises at the upper end of the wealth distribution. Again, looking at the timing of those ad-

ditional businesses, the last acquired business is particularly recent relative to the main business.

Finally, despite the lack of observations at the very top in the PSID, we use its panel dimension and

confirm that investment in additional private equity business investments, conditional on being a

business owner and controlling for individual characteristics, is statistically positively correlated

with net worth. To save on space, we defer this additional evidence to Appendix B.3.

We attribute the part of the observed increase in equity investments due to diversification in

private equity investments in the top panel of Figure 5 to scale dependence in the model. We view

this choice as conservative as it constitutes a lower bound on the effect of wealth on the equity share

of investors. To match this increase within the model, we specify the portfolio share as:

ω(a, ϑ) = ϑ
(

ω + v(a)
)

, v(a) = min
{

ω1 (max {a− aω, 0})γω , ω2

}
, (31)

where ω = 0.4 is the average share invested in equity, conditional on being an investor.36 From

Figure 5, aω is chosen to correspond to the wealth level of the 70th wealth percentile in the model,

such that there is no scale dependence in risky portfolio observed below this percentile. The level

and the shape parameters are endogenously set to ω1 = 0.072 and γω = 0.30 to replicate the aver-

age share invested in risky equity (through additional investments) of 11% for households within

the [95-97.5] wealth quantile, and of 20% for households within the [99-99.9] wealth quantile. A

maximal value of ω2 = 0.20 matches the average risky portfolio share above the top 0.1%.

In Appendix C.1, we report the model fit regarding the scale and type dependence parameters.

35This result is not due to composition effects. Even when focusing on single households, private equity investments
increase with wealth through diversification. Moreover, additional businesses are different than the first established
business: 70% of additional private equity investments are made in a different sector. Additionally, they are only
slightly more represented in finance-related industries, thereby limiting the concern that it may constitute a financial
affiliate company. Those facts challenge the widely held view that business owners are poorly diversified (Moskowitz
and Vissing-Jørgensen, 2002) and are consistent with Penciakova (2018). Diversification occurs, but only at the very
top. In numbers, 12% of business owners own multiple managed businesses in the US. Among the top 1%, however,
this number increases to 40%.

36In an alternative calibration strategy, we used longitudinal information of returns to wealth in the PSID to calibrate
portfolio shares ω(a, ϑ) such that they are consistent with the shape of returns to net worth. However, it is difficult,
given the small number of observations in the PSID, to test for non-linearity of scale-dependence at the top of the dis-
tribution. Moreover, empirical evidence suggests that scale-dependence occurs in both the extensive and the intensive
margins of equity investments, thus introducing important interactions which are captured within our specification.
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5 Properties of the Model

Before turning to the main wealth taxation experiment, we first discuss key properties of the cal-

ibrated model regarding wealth inequality and returns to wealth. To isolate the driving forces

behind the results of our benchmark model, we describe versions of our model with various com-

binations of type and scale dependence. In these versions, parameters are always recalibrated to

match the same targets as in the benchmark economy. We find that several combinations of both

dependencies deliver close to observationally equivalent cross-sectional moments with respect to

wealth and return distributions, but they imply distinct aggregate responses to a wealth tax.

Comparison with alternative models We will subsequently compare our benchmark model (de-

noted M1) with the following model versions:

(M2) A pure scale dependence model (scale-model) in line with the information acquisition model

of Peress (2004) and the incomplete markets models of Meeuwis (2019) and Hubmer et al.

(2020). In this version, we shut down type-dependence. All households in the economy now

invest in risky assets (i.e. ϑ = 1), yet the amount depends on wealth only. Parameters ω1, ω2

and γω match the average portfolio of risky equity observed in the SCF data (cf. Figure 3).

(M3) A pure type dependence model (type-model) that resembles a stylized version of the capi-

talist/entrepreneur framework along the lines of Moll (2014) or Gomez et al. (2016). There

are no scale dependence effects, i.e. the wealth-dependent propensity to select as an investor

is set to λ(a) = 0, the wealth-dependent portfolio component to v(a) = 0, and parameters

πϑ and ω are recalibrated to match the fraction of investors and the average portfolio share.

(M4) Despite our focus on type versus scale dependence, one may ask how a version of the widely

used capitalist/entrepreneur framework (Cagetti and De Nardi, 2006; Kitao, 2008; Guve-

nen et al., 2019) with heterogeneity in household investments and returns compares to our

benchmark model and the data. The key difference relative to our benchmark stems from

the assumption of decreasing returns to scale (DRS) on private equity investments. For this

reason, we denote this alternative version the type–DRS entrepreneur model. Apart from

this, there is limited scale dependence in equity investment, as those investments are often

tight to a borrowing constraint proportional to wealth.37 To closely replicate such a model

version, we impose a risky asset investment share ω = 1, no return risk σκ = 0, DRS on the

entrepreneurial technology νI = 0.9, a transition matrix of entrepreneur skill-type ϑ taken

37To be precise, those frameworks may feature additional scale dependence in the selection into private equity
business investments through an occupational choice (worker versus entrepreneur). A given entrepreneur, however,
can invest at most a fixed fraction of her wealth, k ≤ λa, where λ captures the tightness of the borrowing constraint. In
Cagetti and De Nardi (2006), this borrowing limit is endogenous, but turns out to be quasi-linear in wealth.
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from Cagetti and De Nardi (2006) to obtain a fraction of entrepreneurs of 8%.38

(M5) A no return heterogeneity model that is characterized by ω(a, ϑ) = 0. In this version, it is

not possible to replicate the observed high concentration of wealth at the very top.

In each version, φ and β are recalibrated to match the K
Y ratio and the top 1% wealth share.

5.1 Wealth Inequality and Returns to Wealth

As demonstrated in the analytical framework of section 2, it is important that the quantitative

model captures well the shape of the wealth distribution, especially at the very top, as this con-

ditions the relative strength of type and scale dependence effects. In Table 6, we first assess the

models’ accuracy in generating a realistic wealth distribution relative to its empirical counterpart.

A striking result is that, beyond the targeted top 1% wealth share, the benchmark model and the

alternatives (i.e. models M1 to M4) account remarkably well for the empirical top wealth shares.

We do not consider the ability of our model to reproduce the wealth distribution as a success per

se, since return heterogeneity has been shown to generate high concentration of wealth (Benhabib

et al., 2011). However, the fact that our benchmark economy indeed successfully replicates wealth

inequality allows us to appropriately study tax experiments that are highly redistributive across

the wealth distribution. Moreover, our results point to the observation that type and scale de-

pendence may not be distinguishable based on their ability to generate high inequality, as both

mechanisms actually deliver a good fit of top wealth shares.39

Table 4. Wealth distribution in the data and models.a

Gini c Share of wealth (in %) held by the top x%

40 20 10 5 1 0.1 0.01

US data (World Inequality Database) 0.82 97.5 85.1 70.6 57.7 35.5 18.0 9.0
US data (adjusted SCF)b 97.2 86.4 72.7 59.7 37.2 17.8 7.3

M1 benchmark model 0.80 93.4 84.2 71.9 59.3 35.4 18.2 8.9
M2 scale model 0.82 94.6 85.7 73.6 60.3 35.2 20.7 11.7
M3 type model 0.78 92.5 82.0 67.1 56.2 35.7 20.2 10.9
M4 type–DRS entrepreneur model 0.78 93.3 82.0 68.9 56.6 35.9 14.7 4.9

a The top one percent wealth share is targeted.
b Adjusted for under-representation and underreporting using the procedure in Vermeulen (2016).
c The wealth Gini is based on the average estimated from the SCF waves from 1989 to 2019.

This high concentration of wealth can be traced back to substantial heterogeneity in wealth
38In our view, this specification is close to the traditional entrepreneur/capitalist type of model where entrepreneurs

invest the total amount of their assets in private equity investments subject to a DRS technology. It induces an optimal
amount of equity that a household would like to invest. This maximum is never reached under our parameterization.
Notice that DRS is often imposed as a relevant assumption in the firm dynamics literature (Lucas Jr, 1978).

39This observation goes back to Benhabib, Bisin and Luo (2019) (Table 9). They find that including scale dependence
in returns to wealth in a model with type dependence does not provide further explanatory power on the model ability
to match top wealth inequality.
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returns implied by the different equity portfolio allocations among households. Table 5 shows that

consistent with estimates from various data sources, the benchmark model and the alternatives

produce average returns to wealth which increase along the wealth distribution.

In the type-model (M3), the increase in returns to wealth is driven by selection only. As in-

vestment skill-types are persistent, households with a high propensity to invest in equity have

higher expected returns for several periods and are thus more likely to be represented at the top

of the distribution, hence driving the observed cross-sectional relationship.40 In the scale-model

(M2), the relationship is generated intuitively, as higher levels of wealth are associated with higher

risk-taking and higher expected returns. In the benchmark model (M1), both scale and type de-

pendence drive the observed pattern. To see this, we report the average returns to wealth across

the wealth distribution assuming that the pure orthogonal type component in (43) is zero, i.e. ω = 0,

and assuming no scale dependence on the intensive margin, i.e. v(a) = 0. In line with the afore-

mentioned empirical evidence in Fagereng et al. (2020) and Bach et al. (2020), we find that both

forces shape average returns along the wealth distribution. In contrast, in the type–DRS model

(M3) the scale dependence shifts sign due to the DRS specification, and the overall shape of re-

turns across the wealth distribution is now hump-shaped, i.e. it decreases at the very top. Such

a negative dependence in returns is not observed in data.41 Finally, it should be noted that the

idiosyncratic luck component κ contributes to the overall wealth inequality (Benhabib et al., 2011).

In the benchmark model, the standard deviation of returns to wealth is 12.5%, compared to 15%

in the PSID. Finally, in Appendix C.3 we show that the 5 years wealth mobility matrices from the

models M1 – M3 are comparable to the one obtained from the PSID.

Decomposition In Table 6, we then ask how much type and scale dependence contribute to the

observed wealth inequality in the calibrated benchmark model. Specifically, we shut down one

component at a time and recompute the stationary distribution without this component, keeping

everything else unchanged. Counterfactual (D1) isolates the orthogonal type dependent compo-

nent by assuming ω = 0. Counterfactual (D2) isolates the effects of scale dependence by shutting

down both intensive and extensive margin scale effects. Lastly, type and scale dependence in

portfolio choices are jointly shut down in counterfactual (D3). Both type and scale dependence

are important drivers of wealth inequality, as evidenced by the lower top wealth shares under

those counterfactuals. As expected, a model without heterogeneity in capital investments fails

to account for the high wealth concentration observed in the data. In such cases, the tail of the

wealth distribution inherits the (lower) tail of the labor income distribution. In the model, the

income Pareto tail is 1.9 against 1.4 for the empirical wealth distribution from the adjusted SCF.

40See Benhabib et al. (2011) and Moll (2014) for a theoretical illumination on the role of persistence in capital returns.
41In Bach et al. (2020), there is a slight decrease in private equity returns with respect to wealth due to leverage.
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Table 5. Mean returns to wealth (in %) along the wealth distribution: data and model.

Dataa Model

PSID SCF Norway Sweden benchmarkb scale type type–DRS

Wealth
group M1

type
v(a)=0

scale
ω=0 M2 M3 M4 scale

effect

P40-P50 REF REF REF REF REF REF REF REF REF REF REF
P50-P60 −0.6 | ∼ 1.0 0.2 0.0 0.0 0.3 0.0 0.1 0.1 −0.2
P60-P70 −0.9 −0.4 0.3 0.3 0.3 0.6 0.0 0.6 0.7 −0.5
P70-P80 −0.8 0.0 ∼ 2.5 0.3 0.9 0.9 1.0 0.3 1.3 1.6 −0.7
P80-P90 0.5 0.2 0.5 1.7 1.7 1.6 1.4 2.1 2.7 −1.0
P90-P95 3.8 1.4 ∼ 4.0 0.8 3.6 1.5 2.0 3.8 2.7 3.4 −1.4
P95-P97.5 5.8 2.6 ∼ 6.0 1.1 4.6 1.3 3.3 5.9 2.9 5.6 −1.6
P97.5-P99 6.9 3.8 1.5 7.9 3.9 4.0 7.8 7.4 9.9 −1.9
Top 1% 9.6 4.6 ∼10.0 2.5 12.5 7.0 5.5 12.2 9.8 7.0 −2.4

Note: "REF" stands for reference wealth bracket, i.e. returns are computed as the difference to the REF.
a Estimates are our own for the PSID. They are taken from Xavier (2020) for the SCF, from Bach et al. (2020)
for Sweden and from Fagereng et al. (2020) and Halvorsen et al. (2021) for Norway.
b The returns are computed assuming ω = 0 in the no type model and v(a) = 0 in the no scale model.

Table 6. Wealth distribution under alternative model counterfactuals.a

Gini Share of wealth (in %) held by the top x%

40 20 10 5 1 0.1 0.01

benchmark model 0.80 93.4 84.2 71.9 59.3 35.4 18.2 8.9
D1 no pure type dependence, w = 0 0.76 93.5 81.3 68.0 48.5 17.0 3.3 0.1
D2 no scale, λ(a) = v(a) = 0 0.75 91.1 77.8 63.9 51.5 31.7 16.3 8.0
D3 no portfolio heterogeneity 0.63 86.4 68.2 48.4 31.3 8.7 1.1 0.0

5.2 Wealth Inequality – Output Relationship

We now analyze the response to a permanent wealth redistribution. Conditional on the strength of

type and scale dependence, our goal is to give a sense of how the alternative model versions locate

relative to a situation in which inequality is neutral (cf. the GIF in Figure 1). To do so, we compute

the long-run effects of a 1 percent tax levied on the wealth of the top 1% wealthiest households.

We report the responses in Table 7.

While models M1–M4 produce close to observationally equivalent wealth distributions, they

substantially differ in terms of output response. Moving from the scale (M2) to the type (M3)

model reduces output losses from −1.19 percent to −0.64 percent. Under scale-dependence, risky

asset holdings and thus future wealth are a function of current wealth level itself. This generates

a quantitatively strong behavioral dynamic self-enforcing multiplier, which leads to lower returns

of the richest households and thus lowers top inequality. In the Type model, the responses are

an order of magnitude lower as individuals continue to invest a given share of their wealth into

equity, and thus experience high capital returns. The benchmark model (M1), a composite of pos-
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itive type and scale dependence, falls in between the previous two alternatives. Interestingly, the

type–DRS entrepreneur model (M4) generates a lower response, as the negative scale dependence

coming from the DRS assumption counterbalances the positive type dependence arising from the

sorting of skilled entrepreneurs at the top of the distribution. Finally, a model without portfolio

heterogeneity (M5) (a standard Aiyagari (1994) type of model) produces a slight reduction in out-

put of−0.10 percent and is much closer to growth neutrality. In that case, the response comes from

a reduction of capital accumulation (K) and is small due to the quasi-linearity of saving decisions

for individuals sufficiently far away from the borrowing constraint.

Table 7. Responses to a permanent 1% wealth tax levied on the top 1% wealthiest households.

∆GDP (in %) ∆ Top 1% (in pp deviation) Semi elasticity

M1 benchmark −0.77 −1.82 0.42
M2 scale −1.19 −3.50 0.34
M3 type −0.64 −1.77 0.36
M4 type–DRS −0.36 −1.48 0.24
M5 no portfolio heterogeneity −0.10 −0.80 0.13

Additional validation from cross-country evidence In the Online Appendix OA 3.1, we revisit

the empirical cross-country relationship between inequality and GDP growth. We extend previous

results relying mostly on the Gini coefficient and top income shares to a sample of 29 developed

countries by complementing existing estimates of wealth concentration measures with own esti-

mates constructed based on survey data.42 An increase by 1 percentage point of the top 1% wealth

share is associated with a 0.27 percent increase in the subsequent five years average GDP growth.43

Using data from the most recent Penn World Table, a decomposition of the inequality-growth re-

lationship shows that GDP growth responses to changes in the top 1% wealth shares are mainly

reflected in changes of the Solow residual and physical capital accumulation, while the relation is

not significant regarding human capital. These findings are in line with the reallocation channel

between productive capital investment outlined in this paper.

Using estimates in Table 7, we find that in the type (M3) and scale (M2) dependence models, a

1 percentage point decrease in the top 1% wealth share is respectively associated with a decrease

in long-run GDP of 0.36 and 0.34 percent. In contrast, in absence of portfolio heterogeneity (M5),

the relation substantially falls, to 0.13 percent. It is worth noting that the benchmark model (M1)

produces a slightly stronger association. Among other things, this may be due to the fact that
42A wide range of empirical papers studies the link between inequality and growth. For instance, Forbes (2000),

Barro (2000) and Halter et al. (2014) use the income Gini coefficient as measure of inequality, while Barro (2008) and
Voitchovsky (2005) use quintile and decile income shares. None of the previous papers explore the Inequality-Growth-
slope using wealth concentration measures. To the best of our knowledge, only Voitchovsky (2005) and Frank (2009)
look at the impact of income concentration at different quantiles.

43Note that we do not claim any causal relationship in here. Even in the model, a negative wealth shock at the top
of the distribution affects inequality and GDP, and their combined change in turn feeds back into inequality and GDP.
Therefore, it is hard to identify causality even based on our simulated results.
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return heterogeneity may imperfectly reflect productivity differences due to some forms of rent-

extraction, i.e. µ < 1. In the next section, we study optimal wealth taxation while we allow returns

to imperfectly reflect investment productivity.

Implications for the dynamics of wealth inequality While Gabaix et al. (2016) show that type

and scale dependence account for the recent rise of income/wealth inequality, their analysis is

uninformative on whether the two are equivalent when both channels are calibrated to match the

same empirical moments. Our results substantiate the idea that various degrees of type and scale

dependence that are consistent with portfolio and return heterogeneity produce large difference

when it comes to understanding the dynamics of wealth inequality. We find that the response of

the top 1% wealth share to a wealth tax in the scale model (M2) is twice as large as the one found

under the type model (M3). This may have large consequences, as Hubmer et al. (2020) find

that changes in top capital income taxes are a key driver of the recent rise in wealth inequality

observed in the US. In their words, "the marked decrease in tax progressivity is by far the most powerful

force for the cumulative increase in wealth inequality". However, this result is derived based on a

model that features scale dependence in portfolio choices only. In the Online Appendix OA 2.1,

we support our results in table 7 and show that changes in capital income taxes in the US since 1980

have substantially large differences on the dynamics of wealth inequality depending on whether

returns are driven by scale or type dependence.

6 Wealth Taxation: the Role of Type and Scale Dependence

We now proceed to our main experiment and assess the quantitative implications of taxing house-

hold wealth at the steady state. We conduct our experiment in three steps. First, we compute the

optimal wealth tax in our benchmark economy and decompose the resulting welfare gains. We

find that a positive wealth tax above the top 80th percentile is optimal. Second, we deviate from the

benchmark calibration and study cases for which returns to wealth imperfectly reflect differences

in capital productivity. We numerically argue that the existence of rents does not substantially

change the welfare-maximizing tax rate relative to the one obtained under the benchmark cali-

bration. Third, we dissect the key underlying forces behind our results and unravel the distinct

effects arising from type and scale dependence.

Thought experiment We assume that tax rates cannot be personalized. The government uses a

restricted class of wealth tax functions described by

ta(a; τa, amax) = 1a≥amax τa(a− amax) , (32)
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and optimizes over the exemption level amax and the marginal wealth tax rate τa. Imposing restric-

tions on the class of wealth tax functions the government can choose from is necessary to ensure

that the maximization objective is computationally feasible.44 In equilibrium, the labor income tax

τw adjusts to ensure that the government budget is balanced. In the Online Appendix OA 1.6, we

provide further results when using alternative tax instruments to balance the government budget.

The main trade-offs shaping optimal redistribution are those identified in section 2. The wealth

tax balances: (i) equity by reallocating wealth from households with low to high marginal utili-

ties of consumption, (ii) efficiency as wealth-rich households trigger general equilibrium effects

through asset reallocation and thus affect productivity and wages, and (iii) rent-extraction, as

whenever µ < 1, higher risky asset investments lead to an overall downward adjustment in the

aggregate component r of returns to wealth.

The criterion to rank different wealth tax functions is based on a consumption-equivalent vari-

ation (henceforth CEV) approach. After solving for the stationary equilibrium of a specific tax

reform (τa, amax), we compute the variation ∆CEV of consumption that makes every household in

the post-reform economy on average as well-off as in the pre-reform economy. Under this util-

itarian criterion, aggregate welfare in the post-reform economy, W post(τa, amax), has to be equal

to aggregate welfare in the status quo economy without wealth tax W pre(∆CEV), where optimal

consumption has been changed by ∆CEV percent, such that

W post(τa, amax) =W pre(∆CEV) ,∫
s

E0

[
∞

∑
t=0

β̃tu
(

cpost
t (s), `post

t (s)
)]

dG post(s) =
∫

s
E0

[
∞

∑
t=0

β̃tu
((

1 + ∆CEV)cpre
t (s), `pre

t (s)
)]

dG pre(s) ,

where β̃ = β(1− dj). Given our time-separable utility function, it is straightforward to show that

the government problem can be stated as follows

arg max
{τa,amax}

∆CEV(τa, amax) =

 W post(τa, amax)−W pre(0)∫
s E0

[
∑∞

t=0 βt(1− dj)t cpre
t (s)1−σ

1−σ

]
dG pre(s)

+ 1

 1
1−σ

− 1 .

This welfare criterion is widely used in the quantitative macroeconomics literature (among

many others Conesa et al. (2009), Guvenen et al. (2019) or Brüggemann (2021)). In our setting,

this criterion relies, however, on a "representative utility" that ranks people according to the same

preferences whatever the underlying scale or type dependent mechanism is. As such, we do not

claim that this criterion captures all relevant welfare effects associated with a wealth tax, which

may arise in reality due to a particular scale or type dependent mechanism. Our criterion implic-

44Furthermore, many developed countries adopted this wealth tax schedule. A typical wealth tax features an ex-
emption level ranging from the wealth level corresponding to the top 50% (in Switzerland) to the top 5 to 1% wealthiest
households (in France).
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itly assumes, for instance, that type and scale dependence do not alter household preferences. It

should thus be understood as a transparent way to compare welfare consequences among vari-

ous economies with different degrees of type and scale dependence without actually changing the

underlying planner objective.

6.1 Results

The optimal wealth tax system in the benchmark economy is given by a positive marginal tax rate

of 0.82 percent with an exemption level of $550K. To put these numbers into context, the reform

is equivalent to imposing a wealth tax on the top 20 percent wealthiest households, that currently

hold approximately 85 percent of total wealth in the US economy.

In Table 8, we report that under the optimal tax reform capital and productivity fall below the

level of the benchmark economy. Consequently, aggregate output falls as well. This is an imme-

diate implication of the wealth tax, which disproportionately concerns individuals contributing

to risky and more productive assets. Additionally, their saving rate drops substantially. The tax

reform also induces adjustments in aggregate labor supply arising from two opposite forces. First,

wealth-rich households become richer over time which induces a negative wealth effect on la-

bor supply. Second, wealth-rich households become poorer, which induces them to work more.

Finally, notice that under the wealth tax, the top 0.1% wealth share increases.

Table 8. Aggregate variables after optimal tax reform.

Percent change relative to status quo

Total labor supply L 0.26
Capital stock X −6.19
Productivity X/K −0.08
Output Y −2.10
Top 0.1% wealth share (in pp) 0.50
∆CEV 0.14

6.1.1 Decomposing the welfare gains

The consumption equivalent variation in response to the optimal tax reform is modest with an

average of 0.14 percent of yearly consumption. This number, however, conceals important het-

erogeneous effects across the wealth distribution. In Figure 6, we document that the largest drop

in terms of CEV occurs within the top 1% wealth bracket, in which wealth is largely above the

exemption level. In contrast, welfare gains of wealth brackets below the 70th wealth percentile

are on average positive, in between 0.3 to 0.45 percent of yearly consumption. Furthermore, the

CEV is slightly hump-shaped across the wealth redistribution, as revenues that are raised from

the wealth tax are balanced with a lower labor tax which disproportionately benefits households

with relatively high labor incomes. Finally, the reform is also politically feasible as the majority of
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households benefits in terms of CEV.

Figure 6. Consumption equivalent variation ∆CEV across wealth distribution.

0.3 0.35 0.37 0.4 0.45 0.44

0.06 −0.86 −2.07 −2.87

−3

−2

−1

0

[0:30] [30:40] [40:50] [50:60] [60:70] [70:80] [80:90] [90:95] [95:99] 99+
Wealth quantile

∆C
E

V
 (

in
 p

er
ce

nt
)

6.1.2 The effects of rent-extraction

To what extent do differential returns reflect the productivity of capital investments? So far, our

baseline results abstract from rents in private returns to wealth. However, private returns may

reflect both the productivity of capital investments (MPK) and some form of rents. For exam-

ple, Smith et al. (2019a) observe for private businesses that the share of value added allocated to

owners has increased over time, irrespective of productivity gains. Incorporating this feature into

a quantitative exercise is challenging as it requires detailed data allowing to link household in-

vestments to their marginal productivity, which must then be compared to private returns of the

corresponding household.

Despite this limitation, we show how the presence of a realistic amount of rent extraction

would alter the top marginal wealth tax rate. Specifically, we distinguish two types of risky assets.

On the one hand, rent-seeking investments, and on the other hand, investments linked to higher

productivity and output.45 Lockwood et al. (2017) report that an increase in the aggregate income

share of finance service and law sectors is associated with a decrease in aggregate income. They

interpret this finding as indirect evidence for a negative externality from those sectors on aggre-

gate income. Using their estimates, Rothschild and Scheuer (2016) derive an optimal labor income

tax taking into account rent-seeking. Following their lead and for the sake of illustration, we make

the assumption that returns to wealth obtained from investments in finance and law sectors are

associated to rent-seeking activities.

To calibrate the degree of returns associated to rent extraction motives, we use our SCF sample

and compute the average share of household equity investments into law and finance sectors

between 1998 and 2019. Those equity investments account for roughly 20% of total equity, which

45It should be noticed that both Piketty et al. (2014), Rothschild and Scheuer (2016) and Lockwood et al. (2017) focus
mainly on rent-seeking from labor income. Moreover, the recent studies by Piketty et al. (2014) and Lockwood et al.
(2017) focus on the case where externalities from rent-seeking reduce everyone else’s income in a lump-sum fashion
rather than the proportional reduction that we consider here through r. Relatedly, Scheuer and Slemrod (2021) discuss
the role of rent-extraction in capital returns.
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justifies our choice to set the return wedge to µ = 0.8.46 Again, the aggregate return component

r adjusts in equilibrium to ensure that total revenues obtained by households coincide with total

revenues distributed by the intermediate good producer. As a higher return wedge, i.e. a lower

value of µ, increases the dispersion of returns between households, we recalibrate the values for

φ and β such that the model matches the top 1% wealth share and a capital-output ratio of 2.6.

To have a direct comparison to our baseline results without rent extraction, i.e. the case of

µ = 1, we preserve the wealth exemption threshold to the wealth level corresponding to the 80th

wealth percentile, hereafter referred to as amax = F−1
a (0.80), and optimize our welfare criterion

over the marginal tax rate τa. We find that the optimal top marginal wealth tax rate increases

slightly relative to the case without rent-extraction, to a rate of 0.92 percent. Implementing this tax

reform leads to overall welfare gains equivalent to 0.2 percent of yearly consumption. Therefore,

the marginal wealth tax rate slightly increases in the degree of rent extraction. In fact, simulat-

ing various model versions with different degrees for µ < 1 shows that the marginal tax rate τa

monotonously increases in the return wedge. This implies that our benchmark tax rate of 0.82

percent, derived when private returns from investment coincide with their associated marginal

productivity, constitutes a conservative lower bound.

6.2 Dissecting the Effects from Type and Scale Dependence

We now isolate the driving forces behind our two main quantitative results while fixing the wealth

exemption level, that is

(A) the optimal marginal wealth tax rate is positive,

(B) the optimal marginal wealth tax rate slightly increases in the degree of rent-extraction.

Subsequently, we demonstrate that results (A) and (B) depend on the quantitative importance

of type and scale dependence, and how both mechanisms interact with the extent to which returns

to wealth reflect the productivity of capital investments. To unravel the driving forces, we compare

the aggregate equilibrium statistics relative to the status quo along several model alternatives

where various combinations of type and scale dependence and the return wedge µ are adopted.

Under all alternatives, the parameters φ and β are always recalibrated to match the same targets

regarding the top 1% wealth share and the capital-output ratio.

46The share of equity invested into both sectors displays substantial heterogeneity across the wealth distribution.
Notably, it is particularly important at the top of the wealth distribution, from 15% at the bottom 99% to 22% for the
top 1% wealthiest households. In an alternative experiment, we capture this non-linearity by assuming that the return
wedge is wealth dependent, i.e µ(a) = µ1aµ2 , for some positive parameters µ1 and µ2. We find similar results.
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6.2.1 The role of type and scale dependence

We first shed light on the role of type and scale dependence in driving our quantitative results. We

compute the aggregate implications of taxing wealth at the optimum of the benchmark economy,

characterized by µ = 1, τa = 0.0082 and amax = F−1
a (0.80), in the scale model (M2) and in the

type model (M3). Table 9 displays the aggregate responses. A striking result is that scale and type

models exhibit opposite responses to a positive wealth tax with respect to aggregate labor supply

and productivity. Moreover, the welfare gains turn out to be significant and positive under the

type model, and negative under the scale model.

Table 9. Aggregate variables after the optimal tax reform derived under the benchmark economy.

Percent changes relative to status quo
scale model (M2) benchmark model (M1) type model (M3)

Total labor supply L 0.50 0.26 −0.08
Capital stock X −7.33 −6.19 −4.84
Productivity X/K −1.55 −0.08 1.27
Output Y −2.39 −2.10 −1.82
Top 0.1% wealth share (in pp) −0.15 0.50 0.16
∆CEV −0.36 0.14 0.52

Two forces rationalize the above findings. First, the scale model (M2) triggers important gen-

eral equilibrium effects in response to wealth taxation. As shown in Table 9, this manifests in

relatively large output losses relative to the type model (M3). The reason is that risky investment

behavior is itself a function of wealth, and thus any change in wealth is accompanied by strong

contemporaneous behavioral responses in terms of portfolio allocation and savings which trans-

mit across periods. This snowball effect induced by the wealth tax reduces wealth accumulation

and the amount of risky asset investments undertaken by wealth-rich households, translating into

permanent lower productivity and equilibrium wage w. Nevertheless, households work more in

the post reform equilibrium, as they face lower marginal labor income taxes and the income effect

is sufficiently strong compared to the substitution effect. Finally, these efficiency losses generated

by the aforementioned general equilibrium effects outweigh the equity gains from redistribution

such that the average consumption equivalent variation turns out to be negative.

Second, under the type model (M3), we find opposite effects on labor, productivity and wel-

fare gains. To understand the underlying mechanisms, it is important to bear in mind that the

persistence of types is crucial for engendering a selection of households with high returns more

frequently into the top of the wealth distribution, as they experience high returns to their wealth

during several consecutive periods. When wealth-rich households face a tax on the stock of their

wealth, those with high returns to wealth are relatively less affected by the wealth tax. As a re-

sult, they dissave at a lower rate relative to wealth-rich households who invest in less risky assets

46



and experience lower returns to wealth.47 Therefore, by taxing the stock of wealth of the rich-

est households, the government creates an environment where only the fittest survive at the top.

Wealth taxation thus reinforces the selection of agents with higher capital income – associated

with higher capital productivity – even further. In Figure 7, we show that the wealth tax indeed

selects a higher fraction of investors at the top, both in the benchmark model (M1) (left panel) and

the type model (M3) (right panel). Note that the hump-shaped pattern at the top in the benchmark

economy comes from the scale dependence effects on the risky investment participation margin.

In the end, highly skilled investors hold a higher fraction of total wealth, which raises productiv-

ity. This effect outweighs the negative effects of a lower capital accumulation on GDP such that

welfare gains are large relative to the ones obtained in the benchmark economy.

Due to those two opposing forces from scale and type dependence, aggregate productivity is

approximately irresponsive to the implementation of a wealth tax in the benchmark economy. In

the next section, we show that these distinct implications on the aggregates also shape the optimal

marginal wealth tax rate.

Figure 7. Fraction of high investor type (ϑ = 1) relative to the status quo per wealth decile.
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6.2.2 Optimal wealth tax under type and scale dependence

In our second experiment we optimize over the marginal wealth tax rate under the scale model

(M2) and under the type model (M3), keeping the wealth exemption level constant such that it

corresponds to the 80th percentile. As shown in the left panel of Figure 9, the optimal marginal

wealth tax rate under the scale model is negative, at a rate of−0.88 percent, while it is substantially

positive under the type model, at a rate of 2.41 percent. Which mechanisms explain these different

implications for optimal redistribution under the two polar cases?
47The fact that higher returns lead individuals to save at a higher rate is a reminiscence of previous findings in the

literature, in which entrepreneurs with high returns on their capital save at a higher rate relative to workers with low
returns (see, for instance, Cagetti and De Nardi (2006)). This point is also formalized in Fagereng et al. (2019) in the
absence of return risk.
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In the right panel of Figure 8, we plot the capital productivity, i.e. the ratio X/K, as a func-

tion of the marginal wealth tax rate τa. Under type dependence, the change in the selection of

skilled types along the wealth distribution leads to an increase in productivity despite the nega-

tive effects on capital accumulation. The welfare maximizing wealth tax rate is large with sizable

welfare gains equivalent to 0.96 percent of yearly consumption. The reasoning behind this finding

is in line with the optimal wealth tax result stated in Guvenen et al. (2019), in which return het-

erogeneity stems mostly from heterogeneous entrepreneurial skills among households, i.e. from

type-dependence. In contrast, scale dependence triggers a strong behavioral response on risky

asset investments, such that productivity decreases in the marginal wealth tax, and so do welfare

gains as well.

Those distinct forces on productivity rationalize Result (A) under our benchmark economy:

the welfare-maximizing wealth tax rate is positive. In this economy, type and scale dependence

outweigh each other and the productivity becomes roughly irresponsive to the implementation of

a wealth tax. As such, the optimal welfare-maximizing wealth tax rate is positive but far below

the one implied under pure type dependence.

Figure 8. CEV welfare as function of τa under type and wealth dependence.
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Remark: results are derived by comparing the welfare measure within different long-run stationary economy in which
the marginal tax rate τa varies.

6.3 The Interaction between Type and Scale Dependence and Rents

We now show how the share of rents in private returns affects the welfare-maximizing wealth

tax rate under the scale, the type and the benchmark models (M1–M3). Again, we set the wealth

exemption level to the one implied by the optimal exemption level under the benchmark model

assuming µ = 1. We then compute the optimal marginal tax rate τa in the presence of rent-
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extraction by fixing µ = 0.8 and recalibrate φ and β such that the alternative model versions

match a top 1% wealth share of 0.36 and a capital-output ratio of 2.6.

In Figure 9 we show that the optimal wealth tax rate is increasing in the presence of pure rents in

returns to wealth under the scale model (M2). In contrast, the optimal wealth tax rate is decreasing

in the presence of pure rents in returns to wealth under the type model (M3). This finding mirrors

our productivity result, but goes in the opposite direction concerning welfare.

In the Scale model M2, wealth-rich households invest in risky assets, but only a share of those

assets are associated with higher productivity, while the remainder is associated with higher rent-

extraction. As discussed earlier, in that case, it is optimal to lower the subsidy relative to the case

without rent-extraction. The optimal tax rate τa thus rises from −0.88 percent to −0.36 percent.

In the type model (M3), highly skilled investors obtain high returns because they systemati-

cally invest a higher share of their wealth in riskier investments which now partly reflects produc-

tivity and rents. As before, taxing wealth leads high return investors to be even more represented

at the top, raising in this case both productivity and the size of rents in the economy. Productivity

gains are, however, lower than in the baseline case with µ = 1. Therefore, everything else equal,

a wealth tax in this economy is less powerful relative to the case of a type model (M3) without

rents. On top of this, due to rent-extraction, the stronger selection of high return investors induces

a general equilibrium adjustment of the aggregate return r for all individuals in the economy,

which pushes towards a lower wealth tax. Those two forces lead the optimal wealth tax rate to

decrease with the size of rents, from a rate of 2.41 percent without rent-extraction to a rate of 2.06

percent when µ = 0.8.

Quite surprisingly, we find that, again, type and scale dependence effects outweigh each other

in the benchmark economy, such that the marginal wealth tax rate is almost not responding to

the presence of rent-extraction. This leads to Result (B): the welfare-maximizing wealth tax rate is

slightly increasing in the share of rents in returns.

Finally, notice that our results under pure scale or type dependence with µ = 1, i.e. in the

absence of a return wedge, can be viewed as lower and upper bounds on the optimal marginal

wealth tax. Our results point out that depending on the relative strength of scale and type depen-

dence consistent with the observed return heterogeneity in the data, the welfare-maximizing tax

rate lies in between [−0.8, 2.4] percent.

To summarize, a key take away is that in order to understand the consequences of wealth tax-

ation in an economy where returns to wealth may or may not coincide with capital productivity, it

is essential to take into account the relative importance of type and scale dependence in household

investments and associated returns to wealth.
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Figure 9. CEV welfare as function of τa under type and wealth dependence: sensitivity rent-extraction.
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Remark: results are derived by comparing the welfare measure within different long-run stationary economies in which
the marginal tax rate τa varies.

6.4 Further Robustness

In addition to the previous analysis, we have also explored the role of particular elements of our

quantitative model including (i) the life-cycle structure with the mortality rate dj > 0, the age-

dependent earnings component ζ j 6= 1 and the social security pension ζ J , (ii) the endogenous

labor choice, (iii) the tax instrument used to balance the government budget, (iv) the presence of

idiosyncratic return risk. We do so by reassessing the optimal wealth tax in versions of our model

where various combinations of these elements are shut down. We found that (i) and (ii) have

little influence on our main qualitative message regarding the distinction between type and scale

dependence. Concerning (iii), we find that redistribution through a lump-sum tax provides similar

results, while redistribution through capital income tax reinforces even further the selection of

high types at the top. Removing the risky component κ in returns lowers wealth inequality in the

stationary equilibrium. This is compensated by increasing the excess wealth return φ to match the

top 1% wealth share. More importantly, under all previously discussed model alternatives, we

find that our results do not hinge on particular elements. A high positive wealth tax is optimal

under type dependence and a low or negative wealth tax is optimal under scale dependence.

7 Conclusion

In this paper, we first develop a conceptual framework to study the macroeconomic and welfare

implications of wealth redistribution, unraveling and clarifying the key economic forces behind
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many heterogeneous agents incomplete markets models. Despite its stylized nature, our analytical

two-period model identifies four statistics that are crucial for understanding these implications:

(i) the Pareto tail of the wealth distribution, (ii) the elasticity of risk-taking to wealth (scale de-

pendence), (iii) the sorting of types along the wealth distribution (type dependence), and (iv) the

extent to which returns to wealth reflects investment productivity.

In a second step, we construct a full-blown quantitative model and analyze the key elements

that we identified as particularly relevant within our theoretical framework. The model accounts

for the highly concentrated wealth and returns distributions through type and scale dependence

in portfolio choices. Our model is consistent with empirical evidence from the SCF and PSID.

We show that the underlying force behind wealth accumulation and inequality, i.e. type or scale

dependence, shapes distinct aggregate responses to a top wealth tax, both qualitatively and quan-

titatively. The aggregate responses of productivity and inequality are large under pure scale de-

pendence. Under type dependence, however, the joint distribution of investor-types and wealth

non-trivially reacts to the implementation of a wealth tax, as a top marginal wealth tax selects high

capital income households more effectively into the top of the wealth distribution.

The welfare implications of a wealth tax depend on the degree of scale and type dependence

together with the extent to which returns to wealth reflect the productivity of investments. In our

benchmark economy, the optimal top marginal wealth tax rate is 0.8 percent above an exemption

level of $550K, as long as the model features scale and type dependence consistent with data.

Future research is needed to understand the relationship between the joint distribution of

wealth, returns, and portfolio allocation. Specifically, empirical studies are helpful in disentan-

gling scale and type dependence in the decision of agents, and, in turn, to determine the optimal

taxation of wealth-rich households. Moreover, future research should attempt to empirically eval-

uate the pass-through between the productivity of investments and returns to wealth along the

lines of Lockwood et al. (2017) or Smith et al. (2019a). Finally, we abstracted from tax avoidance

motives. Substantial amounts of wealth are held abroad (Alstadsæter et al., 2018), and a wealth

tax may foster incentives for tax avoidance. Such considerations induce a form of negative scale

dependence that our quantitative model may additionally consider. These are important and, to a

large extent, unexplored issues that we leave for future work.
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Appendix

We organize the appendix as follows. Section A contains appendix of the simple analytical model.

Section B contains details regarding our empirical work. Section C contains the computational

appendix and calibration details.

A Theoretical appendix

A.1 Proofs for Section 2

A.1.1 Final producer maximisation

For clarity, we detail the steps of the final good producer who maximizes the use of labor n and

intermediate goods xj
s, with

max
{n,xj

s}

(
∑

s

∫
j

xj
s dj

)
nϕ − wn−∑

s

∫
j
pj

s xj
s dj .

Taking the first order condition with respect to labor gives w = ϕ
(

∑s
∫

j xj
s dj
)

nϕ−1. Plugging this

condition together with the assumption that n =
∫

i hidi = 1 into the profit function yields

Π f = (1− ϕ)

(
∑

s

∫
j

xj
s dj

)
nϕ −∑

s

∫
j
pj

s xj
sdj = (1− ϕ)

(
∑

s

∫
j

xj
s dj

)
−∑

s

∫
j
pj

s xj
sdj .

A.1.2 Terminal Wealth Distribution

Proof. Because of u′(ci
2) > 0, we know that the second period budget constraint holds in equi-

librium with equality. Thus, second period consumption is given by ci
2 = rai

1 + w + T + R f ai
1 +

ωi
1ai

1(R f − Ri
r). Substituting from the wage rate w = ϕY and returns R f and Ri

r, we get

ci
2 = rai

1 + ϕY + A(1− ϕ)(1−ωi
1)ai

1 + κi(1− ϕ)ωi
1ai

1 + T .

We obtain that ci
2 ∼ N

(
µi

c2
, σi

c2

)
, with

µi
c2
= rai

1 + ϕY + T + A(1− ϕ)(1−ωi
1)ai

1 + φ(1− ϕ)ωi
1ai

1,

σi
c2
= σ2

κ (1− ϕ)2(ωi
1ai

0)
2 .

In the Online Appendix OA 1.8, we extend the results with a case in which we introduce labor

income risk.
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A.1.3 Proof of Lemma 1

Proof. We first need to derive E
[
u(ci

2)|I1
]

analytically. To do so, we use an arbitrary Gaussian

distribution with mean µi
c2

and variance (σi
c2
)2. Using terminal wealth distribution, we obtain

E
[
u(ci

2)|I1

]
=

1
αi
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1− e−αici

2
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× 1√
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e
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2 α2
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e
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2

Recognizing that the term in the integral is the pdf of a normally distributed random variable with

mean µi
c2
− αi(σ

i
c2
)2 and variance (σi

c2
)2, we finally obtain

E
[
u(ci

2)|I1

]
=

1− e−αiµ
i
c2
+ 1

2 α2
i (σ

i
c2
)2

αi
.

Under the additional set of assumptions within the special case section, we have ai
1 ≡ ai

0 and ci
2 =

ϕY + T + R f (1− ωi
1)ai

0 + Ri
rωi

1ai
0 such that µi

c2
= ϕY + T + A(1− ϕ)(1− ωi

1)ai
0 + φ(1− ϕ)ωi

1ai
0

and σi
c2
= ωi

1ai
0σκ(1− ϕ). We solve for the maximization problem given by

max
{ωi

1}

[
1− exp

{
− αi

(
µi

c2
− αi

2
σi

c2

)}]
α−1

i ,

Denoting V = exp
{
− αi

(
µi

c2
− αi

2 σi
c2

)}
, the corresponding first order condition is given by

− 1
αi

V
[
−αi(φ− A)(1− ϕ)ai

0 + α2
i (ai

0)
2ωi

1σ2
κ (1− ϕ)2

]
= 0 ,

which results after rearranging

ωi
1 =

φ− A
(1− ϕ)αiσ2

κ

(ai
0)
−1 =

φ− A
(1− ϕ)σ2

κ

ϑi

ϑ
(ai

0)
γ−1 .

To ensure that the solution is indeed a maximum, we derive the second order condition as

− 1
αi

V
[
−αi(φ− A)(1− ϕ)ai

0 + α2
i (ai

0)
2ωi

1σ2
κ (1− ϕ)2

]2
− 1

αi
Vα2

i σ2
κ (1− ϕ)2(ai

0)
2 < 0 .

which completes the proof.
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A.1.4 Proof of Proposition 2

Proof. The expression for aggregate innovative asset holdings follows straightforward from inte-

grating over household dynamics while applying the covariance formula

KI = (ω̃/ϑ)E
[
ϑaγ

0

]
=

φ− A
(1− ϕ)ϑσ2

κ

(
cov(ϑ, aγ

0 ) + E [ϑ]E
[
aγ

0

])
=

φ− A
(1− ϕ)ϑσ2

κ

(
ρϑ,aγ

0
σϑσaγ

0
+ µϑµaγ

0

)
.

Aggregate output is given by Y =
(

∑s
∫

j xj
s dj
)

nϕ, where n =
∫

i ei di = 1. Given that KN +

KI = E[a0], this can be rewritten after integrating over intermediate goods xj
s as

Y =
∫

j
xj

I dj +
∫

j
xj

N dj

=
[
φµ + A(1− µ)

] ∫
i

ωi
1ai

0 di + A
∫

i
(1−ωi

1)ai
0 di

= µ(φ− A)KI + AE[a0] =
[
µ(φ− A)(KI/E[a0]) + A

]
︸ ︷︷ ︸

:=Z

E[a0]

The price r ensures that total capital distributed to households coincide with the total revenue

distributed by the intermediate producer, such that∫
i

(
R f (1−ωi

1) + Ri
rωi

1 + r
)

ai
1di =

∫
i

(
A(1− ϕ)(1−ωi

1) + (φµ + A(1− µ))(1− ϕ)ωi
1

)
ai

1di ,

φ(1− ϕ)KI + rE[a0] = (φµ + A(1− µ))(1− ϕ)KI ,

r = (µ− 1)(φ− A)(1− ϕ)(KI/E[a0]) .

where the last equality, regarding the integration of
∫

i Ri
rai

1ωi
1di, follows from the simplifying as-

sumption that there is a sub-continuum of households in each state (ϑi, ai
0).

A.1.5 Proof of Proposition 1

Proof. To prove the result regarding the effect of a mean preserving change in wealth inequality

on KI , we compare the aggregate innovate asset holdings for two economies with different Pareto

tails η′ 6= η while keeping aggregate wealth µa0 = E[a0] constant. We then proceed by case dis-

tinction.

CASE 1: ρϑ,aγ
0
= 0
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The difference in aggregate innovative asset holdings between the two economies is written as

∆aKI(η
′, η) = (ω̃/ϑ)µϑ

(
η′

η′ − γ
(a′)γ − η

η − γ
aγ

)
= ω̃

η

η − γ
aγ

(
η′

η′ − γ

η − γ

η

(
a′

a

)γ

− 1
)

.

Making use of the mean preserving assumption, i.e. a η
η−1 = a′ η′

η′−1 , we obtain

∆aKI(η
′, η) = ω̃

η

η − γ
aγ

(
η′

η′ − γ

η − γ

η

(
η′ − 1

η′
η

η − 1

)γ

− 1
)

.

Defining χ(η, γ) ≡ η−γ
η

(
η

η−1

)γ
and taking the derivative of the inner expression w.r.t. η′, we get

χ(η, γ)

(
η′ − 1

η′

)γ [
− γ

(η′ − γ)2 +
γ

(η′ − γ)(η′ − 1)

]
= χ(η, γ)

(
η′ − 1

η′

)γ γ(1− γ)

(η′ − γ)2(η′ − 1)
.

As a result, we obtain finally

∂∆aKI(η
′, η)

∂η′
= ω̃µaγ

0
χ(η, γ)

(
η′ − 1

η′

)γ γ(1− γ)

(η′ − γ)2(η′ − 1)
.

The Lemma then follows by recognizing that ∂∆aKI(η
′,η)

∂η′ = 0 if γ ∈ {0, 1}. Similarly, we obtain
∂∆aKI(η

′,η)
∂η′ > 0 if γ ∈ (0, 1) and ∂∆aKI(η

′,η)
∂η′ < 0 if γ > 1.

CASE 2: ρϑ,aγ
0
6= 0

In the case of an arbitrary correlation between innate risk aversion types and wealth, we obtain

∆KI(η
′, η) = ∆ϑKI(η

′, η) + ∆aKI(η
′, η) ,

where the first term denotes distributional relevance arising from the selection effect, whereas the

second term resembles distributional relevance arising from wealth dependent risk taking. Notice

that the latter is equivalent to Case 1. Contrary, the first effect can be written as

∆ϑKI(η
′, η) = (ω̃/ϑ)ρϑ,aγ

0
σϑσaγ

0

(
ρϑ,aγ

0
(η′, a′, ·)

ρϑ,aγ
0
(η, a, ·)

σaγ
0
(η′, a′)

σaγ
0
(η, a)

− 1

)
.

Using the relation a η
η−1 = a′ η′

η′−1 , a change in the Pareto tail η′ preserves the mean wealth if

a′(η′) = a
(

η
η−1

)(
η′−1

η′

)
. Using a first order Taylor approximation of ρϑ,aγ

0
(η′, a′(η′), ·) around η,
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we obtain:

ρϑ,aγ
0
(η′, a′(η′), ·) ≈ ρϑ,aγ

0
(η, a, ·) +

∣∣∣∣∣∣
∂ρ1

ϑ,aγ
0
(η′, a′(η′), ·)

∂η
+

∂ρ2
ϑ,aγ

0
(η′, a′(η′), ·)
∂a′(η′)

∂a′(η′)
∂η′

∣∣∣∣∣∣
η′=η

(
η′ − η

)

≈ ρϑ,aγ
0
(η, a, ·) +

(
∂ρϑ,aγ

0
(η, a, ·)
∂η

+
∂ρϑ,aγ

0
(η, a, ·)
∂a

a
η(η − 1)

) (
η′ − η

)
.

Substituting the previous expression into the one for ∆ϑKI(η
′, η) we arrive at

∆ϑKI(η
′, η) ≈ (ω̃/ϑ)ρϑ,aγ

0
σϑσaγ

0


1 +

(
∂ρ

ϑ,aγ
0
(η,a,·)

∂η +
∂ρ

ϑ,aγ
0
(η,a,·)

∂a
a

η(η−1)

)
ρϑ,aγ

0
(η, a, ·) (η′ − η)

 σaγ
0
(η′, a′)

σaγ
0
(η, a)

− 1

 .

With a slight abuse of notation, we can take the derivative w.r.t. η′ to obtain

∂∆ϑKI(η
′, η)

∂η′
≈ (ω̃/ϑ)ρϑ,aγ

0
σϑσaγ

0

 1
σaγ

0

∂σ′aγ
0

∂η′
+

∂ρ
ϑ,aγ

0
∂η +

∂ρ
ϑ,aγ

0
∂a

a
η(η−1)

ρϑ,aγ
0

(
σ′aγ

0

σaγ
0

+ (η′ − η)
1

σaγ
0

∂σ′aγ
0

∂η′

) .

To get an impression about the sign of the previous derivative, let us first analyze the sign of
∂σ′

aγ
0

∂η′ .

Notice that it is straightforward to show that aγ
0 follows a Pa(aγ, η

γ ) distribution. As a result, the

variance is given by

σ′aγ
0
= (a′)2γ

η′

γ(
η′

γ − 1
)2 ( η′

γ − 2
) =

(
a

η

η − 1

)2γ (η′ − 1
η′

)2γ η′

γ(
η′

γ − 1
)2 ( η′

γ − 2
) ,

where again the last equality follows from using a η
η−1 = a′ η′

η′−1 . Defining the auxiliary variable

χ̃(η, γ, a) ≡
(

a η
η−1

)2γ
, we obtain:

∂σ′aγ
0

∂η′
=χ̃(η, γ, a)

2γ

(
η′ − 1

η′

)2γ−1 1
(η′)2

η′

γ(
η′

γ − 1
)2 ( η′

γ − 2
)


+ χ̃(η, γ, a)
(

η′ − 1
η′

)2γ


1
γ

(
η′

γ − 1
)2 ( η′

γ − 2
)
− η′

γ

[
2
γ

(
η′

γ − 1
) (

η′

γ − 2
)
+ 1

γ

(
η′

γ − 1
)2
]

(
η′

γ − 1
)4 ( η′

γ − 2
)2

 .
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Collecting terms leads to

∂σ′aγ
0

∂η′
= χ̃(η, γ, a)

(
η′ − 1

η′

)2γ 1(
η′

γ − 1
)2 ( η′

γ − 2
) [ 2

η′ − 1
+

1
γ
− 2η′

γ(η′ − γ)
− η′

γ(η′ − 2γ)

]

=
1
η′

σ′aγ
0

[
1 +

2γ

η′ − 1
− 2η′

(η′ − γ)
− η′

(η′ − 2γ)

]
.

In order to determine the sign of the bracket term, one can simplify to

∂σ′aγ
0

∂η′
=

2
η′

σ′aγ
0

[
γ(1− 2γ)(η′ − γ)− η′(η′ − 1)(η′ − 2γ)

(η′ − 1)(η′ − γ)(η′ − 2γ)

]
.

It is straightforward to show that the previous term is (weakly) negative if

η′ ≥ 2γ + γ
(1− 2γ)(η′ − γ)

η′(η′ − 1)
.

The left hand side of this expression is increasing in η′, whereas the right hand side is decreasing

if γ ≤ 1
2 and increasing if γ > 1

2 . Hence, for the case of γ ≤ 1
2 , we obtain after substituting

η′ = 2γ an upper limit of the right hand side given by η = 3
2 γ. Contrary, in the case of γ > 1

2

a straightforward application of L’Hopital’s rule results in η = 2γ. As a result, we obtain that
∂σ′

aγ
0

∂η′ ≤ 0 ∀η′ ≥ η = max{ 3
2 γ, 2γ} = 2γ, which trivially holds due to the implicit assumed finite

variance of the Pa(aγ, η
γ ) distribution. Consequently, the result of proposition 1 follows (given a

small change in the wealth Pareto tail).

A.1.6 Proof of Proposition 1

Proof. The Farlie-Gumbel-Morgenstern (FGM) copula can be written for two arbitrary cumulative

distribution functions {F(x1), F(x2)} as

F(x1, x2) = CFGM(F(x1), F(x2)) = F(x1)F(x2) + $F(x1)F(x2)(1− F(x1))(1− F(x2)) ,

where $ ∈ [−1, 1]. The joint probability density function of f (x1, x2) is the obtained by

f (x1, x2) = (1 + $ (1− 2F(x1)) (1− 2F(x2))) f (x1) f (x2)

= (1 + $ + 2$ (2F(x1)F(x2)− F(x1)− F(x2))) f (x1) f (x2) .

Under this assumption that ϑ ∼ Pa(ϑ, ε) and a0 ∼ Pa(a, η) this provides us with

f (ϑ, a0) = (1 + $) f (ϑ) f (a0) + 2$

[
2
(

ϑ

ϑ

)ε ( a
a0

)η

−
(

ϑ

ϑ

)ε

−
(

a
a0

)η]
f (ϑ) f (a0) .
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where the marginals are given by f (ϑ) and f (a0). Given the Pareto assumptions, we have µϑ ≡
ϑ = ϑ ε

ε−1 and µaγ
0
= aγ η

η−γ . In order to derive cov(ϑ, aγ
0 ), we need to compute E

[
ϑaγ

0

]
:

E
[
ϑaγ

0

]
=

∞∫
ϑ

∞∫
a

ϑaγ
0 f (ϑ, a0)dϑda0 .

Using the FGM copula, we proceed in four steps:

(1 + $)ϑεaηεη

∞∫
ϑ

∞∫
a

ϑ−εaγ−η−1
0 dϑda0 = (1 + $)ϑ

ε

ε− 1
aγ η

η − γ
,

4$ϑ2εa2ηεη

∞∫
ϑ

∞∫
a

ϑ−2εaγ−2η−1
0 dϑda0 = 4$ϑ

ε

2ε− 1
aγ η

2η − γ
,

− 2$ϑ2εaηεη

∞∫
ϑ

∞∫
a

ϑ−2εaγ−η−1
0 dϑda0 = −2$ϑ

ε

2ε− 1
aγ η

η − γ
,

− 2$ϑεa2ηεη

∞∫
ϑ

∞∫
a

ϑ−εaγ−2η−1
0 dϑda0 = −2$ϑ

ε

ε− 1
aγ η

2η − γ
.

Combining the previous four equations gives

cov(ϑ, aγ
0 ) = E

[
ϑaγ

0

]
−E [ϑ]E

[
aγ

0

]
= ϑaγ

[
$

ε

ε− 1
η

η − γ
+ 4$

ε

2ε− 1
η

2η − γ
− 2$

ε

2ε− 1
η

η − γ
− 2$

ε

ε− 1
η

2η − γ

]
Further simplifications result in

cov(ϑ, aγ
0 ) = ϑaγ$

ε

(ε− 1)(2ε− 1)
ηγ

(η − γ)(2η − γ)
.

As a result, aggregate innovative asset holdings from Lemma 2 are given by

KI = (ω̃/ϑ)

(
1 +

$γ

(2ε− 1)(2η − γ)

)
ϑ

ε

ε− 1
aγ η

η − γ
.

Aggregate risk free capital holdings from Lemma 1 are (weakly) positive if the condition µa0 ≥ KI

holds, which can be rewritten as

η − γ

η − 1
≥ (ω̃/ϑ)

(
1 +

$γ

(2ε− 1)(2η − γ)

)
ε

ε− 1
ϑaγ−1 .

Finally, as µϑ = E[ϑ] = ϑ, let ω̃ = (ω̃/ϑ)µϑaγ−1 = ω̃aγ−1, B = −µω̃(φ− A) and C = (2ε− 1),
we derive the marginal effect of a change in the Pareto tail η on wealth-normalized output Ỹ(η) ≡
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Y(η)
µa0

= A + µω̃(φ− A)Ψ(η) with Ψ(η) =
(

1 + $γ

(2ε−1)(2η−γ)

)
η−1
η−γ as:

∂Ỹ(η)
∂η

= −B
∂Ψ(η)

∂η

= −B
[(

1
η − γ

)(
1 +

$γ

C(2η − γ)

)
−
(

η − 1
(η − γ)2

)(
1 +

$γ

C(2η − γ)

)
− 2

(
$γ

C(2η − γ)2

)(
η − 1
η − γ

)]

= B

(γ− 1)
(

1
(η − γ)2

)
︸ ︷︷ ︸

:=Ωγ

+$(γ− 1)
(
(γ(2η − γ) + 2(η − γ)(η − 1))

C(2η − γ)2(η − γ)2

)
︸ ︷︷ ︸

:=Ω$γ

+$

(
2(η − 1)

C(2η − γ)2(η − γ)

)
︸ ︷︷ ︸

:=Ω$


= B

(
1

C(2η − γ)2(η − γ)2

) [
(γ− 1)C(2η − γ)2 + $(γ− 1)2(η − 1)(η − γ) + $(2η(η − 1) + γ)

]

where the before last line follows from $γ = $ + $(γ− 1). In order to determine the sign of

the derivatives, we need to know the sign of
(

1 + $γ
(2ε−1)(2η−γ)

)
. To do so, let us assume that

1 +
$γ

(2ε− 1)(2η − γ)
≤ 0⇔ 1 ≤ − $γ

(2ε− 1)(2η − γ)
≤ γ

(2ε− 1)(2η − γ)
,

where the last inequality follows from $ ∈ [−1, 1]. As we have ε > 1 and η > γ, an upper bound

of γ
(2ε−1)(2η−γ)

is given by γ
εη , which is strictly smaller than one. Hence, we obtain a contradiction

and conclude that 1 + $γ
(2ε−1)(2η−γ)

is strictly positive. This completes the proof of Proposition

1.

A.1.7 Existence of the Growth Irrelevance Frontier of Wealth Inequality

Lemma 6 (EXISTENCE GIF). For a tail of wealth η and of type ε, type dependence $, and wealth-dependent

risk taking γ ∈ (γ, γ) with γ = 2(2ε−1)
1+2(2ε−1) and γ = 2, there exists a η∗ which lies on the GIF.

(a) For γ ∈ (1, γ) and −1 ≤ $ ≤ 2 (2ε−1)(1−γ)
γ , the GIF exists for a unique η∗ ∈ (γ, ∞).

(b) With γ = 1 and $ = 0, any Pareto tail η∗ ∈ (γ, ∞) lies on the GIF.

(c) For γ ∈ (γ, 1), and 2 (2ε−1)(1−γ)
γ ≤ $ ≤ 1, the GIF exists for a unique η∗ ∈ (ηdc, ∞), ηdc > 1.

item a. proves that a negative type dependence ($ < 0) is needed for the existence of an

economy which lies on the GIF if the scale dependence is positive (γ > 0). Conditions in item

b. without type dependence requires no scale dependence for an economy to lie on the GIF, and

conditions in item c. with positive type dependence shows that an economy with some γ < 0 can

be located on the GIF.
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A.1.8 Proof of Lemma 6: Existence of the isoG(η, 0)

Proof. Using Lemma 1, the iso-growth at level g can be implicitly defined as

(φ− A)g = −(φ− A)
[
(γ− 1)Ωγ + $(γ− 1)Ω$γ + $Ω$

]
(33)

Which, for a level g = 0 can be rewritten as:(
1 +

$γ

(2ε− 1)(2η − γ)

)
1− γ

(η − γ)2 − 2
η − 1
η − γ

$γ

(2ε− 1)(2η − γ)2 = 0 ,

which we can rearrange to

$γ

(2ε− 1)(2η − γ)2(η − γ)2

(
(1− γ)(2η − γ)− 2(η − 1)(η − γ)

)
= − 1− γ

(η − γ)2 ,

If (1− γ)(2η − γ)− 2(η − 1)(η − γ) 6= 0 (which only occurs in the case of γ < 1) we can state the

GIF algebraically as

$(γ, η, ε; g = 0) =
(2ε− 1)(1− γ)

γ

(2η − γ)2

2(η − 1)(η − γ)− (1− γ)(2η − γ)
. (34)

The sign of the derivative w.r.t. to the Pareto tail is determined by

sgn
(

∂$

∂η

)
= sgn

(
(1− γ)

)
sgn
(

4(2η − γ)
(

2(η − 1)(η − γ)− (1− γ)(2η − γ)
)
− (2η − γ)2

(
4(η − 1)

))
= sgn

(
(1− γ)

)
sgn
(
(γ− η)(2− γ)

)
.

Hence, we obtain due to η > γ

∂$

∂η



< 0 if γ > 2 ,

= 0 if γ = 2 ,

> 0 if 1 < γ < 2 ,

= 0 if γ = 1 ,

< 0 if 0 < γ < 1 .

Before turning to the existence of ηGIF, we first study the limits of (34). Thus, we obtain

lim
η→γ+

$(γ, η, ε) = − (2ε− 1)(1− γ)

γ

(2η − γ)

1− γ
= −(2ε− 1) .

Similarly, we have

lim
η→1+

$(γ, η, ε) = − (2ε− 1)(1− γ)

γ

(2− γ)

1− γ
= − (2ε− 1)(2− γ)

γ
.
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Finally, by an application of L’Hopitals rule we derive

lim
η→∞

$(γ, η, ε) =
(2ε− 1)(1− γ)

γ

2η − γ

η − 1
|η=∞ = 2

(2ε− 1)(1− γ)

γ
.

As a result, we obtain the following bounds on the copula dependence parameter

− (2ε− 1) < $ < 2
(2ε− 1)(1− γ)

γ
if γ > 1

$ = 0 if γ = 1

− (2ε− 1)(2− γ)

γ
< $ < 2

(2ε− 1)(1− γ)

γ
if γ < 1

It is straightforward to see for γ > 2 that the required $ /∈ R such that the GIF is empty (i.e.

@ η∗ ∈ (γ, ∞) s.t. GIF(η∗) = 0). Contrary, for 1 < γ < 2 there exists by an application of the

intermediate value theorem a unique η∗ ∈ (γ, ∞) such that GIF(η∗) = 0 if −1 < $ < ρFGM < 0,

where ρFGM ≡ 2 (2ε−1)(1−γ)
γ . Additionally, in the case of γ = 1, being on the growth irrelevance

frontier requires $ = 0. As a result, for any η ∈ (1, ∞) the GIF goes through the point {γ = 1, $ =

0}. Finally, in the case of γ < 1 we can show that the growth irrelevance frontier is discontinuous

at the points (cf. denominator of equation (34))

η1,2
dc = 1±

√
1− 1

2
(3γ− γ2) .

Recognizing that 3γ − γ2 is strictly increasing in γ on the interval (0, 1), we conclude that the

expression in the square brackets is strictly positive and lies on the interval (0, 1). Due to the

imposition of η > 1, we can hence exclude the smaller solution. Let us subsequently denote by

η∗dc ∈ (1, 2) the only feasible discontinuity point. As ∂$
∂η < 0, the denominator of (34) is strictly

increasing in η and lim
η→1+

< −1 for γ ∈ (0, 1), we conclude that $ > 0 is a necessary condition

for the existence of a GIF solution. This implies that the feasible set of Pareto tails reduces to

η ∈ (η∗dc, ∞). Ensuring that $ ≤ 1 gives us finally a lower bound on the wealth dependent risk

taking parameter such that γ ≥ γ = 2(2ε−1)
1+2(2ε−1) . As a result, for all γ < γ a GIF solution does

not exists. Contrary, by an application of the intermediate value theorem an unique η∗ ∈ (η∗dc, ∞)

exists for γ ≤ γ < 1. This completes the proof of Lemma 6.
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A.1.9 Proof of Lemma 3: Properties of the GIF and iso-growth

Proof. Using equation (34) from Lemma 6, we obtain

∂$

∂γ
=− (2ε− 1)

1
γ2

(2η − γ)2

2(η − 1)(η − γ)− (1− γ)(2η − γ)

+ (2ε− 1)
1− γ

γ

−2(2η − γ) [2(η − 1)(η − γ)− (1− γ)(2η − γ)]− (2η − γ)2 [2(1− γ) + 1](
2(η − 1)(η − γ)− (1− γ)(2η − γ)

)2 .

Hence, the sign of the previous expression is determined by the sign of

sgn
( ∂$

∂γ

)
=
(
−(2η − γ)2

[
2(η − 1)(η − γ)− (1− γ)(2η − γ)

])
+
(
(1− γ)γ(2η − γ)

[
−4(η − 1)(η − γ) + 2(1− γ)(2η − γ)− 2(2η − γ)(1− γ)− 2(η − γ)

])
.

Simplifying terms provides us with

sgn
( ∂$

∂γ

)
= sgn

(
−(2η − γ)

[
2(η − 1)(η − γ)− (1− γ)(2η − γ)

]
︸ ︷︷ ︸

≡A

+ (1− γ)γ
[
−4(η − 1)(η − γ)− 2(η − γ)

]
︸ ︷︷ ︸

≡B

)
.

Let us begin with the case γ = 1. It is straightforward to see that

sgn
( ∂$

∂γ

)
|γ=1 = sgn(A) = sgn

(
−2(2η − γ)(η − 1)(η − γ)

)
< 0 ,

such that the GIF is strictly decreasing in the point γ = 1. For the case γ < γ < 1, the reasoning

is slightly more evolved. First, notice that B < 0 in this case. Second, requiring that the inner

bracket of A is weakly positive is equivalent to requiring that

2(η − 1)(η − γ)− (1− γ)(2η − γ) ≥ 0⇔ 2
(
η2 − ηγ− η + γ

)
− 2η + γ + 2ηγ− γ2 ≥ 0

Collecting terms gives us the following condition

2η2 − 4η + 3γ− γ2 ≥ 0 . (35)

We know from Lemma 6 that the GIF is only defined in this case if η > η∗dc = 1+
√

1− 1
2 (3γ− γ2).

Substituting this expression into the former inequality yields

LHS = 2

(
1 +

√
1− 1

2
(3γ− γ2)

)2

− 4

(
1 +

√
1− 1

2
(3γ− γ2)

)
+ 3γ− γ2

= 2 + 4

√
1− 1

2
(3γ− γ2) + 2

(
1− 1

2
(
3γ− γ2))− 4− 4

√
1− 1

2
(3γ− γ2) + 3γ− γ2

= 0 .
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As the left hand side of the inequality (35) is strictly increasing in η on the set η > η∗dc > 1, we

know that the above inequality is always strictly satisfied. Hence, we conclude thatA < 0. Finally,

this provides us with

sgn
( ∂$

∂γ

)
|γ≤γ<1 = sgn (A+ B) < 0 .

Let us finally consider the case 1 ≤ γ < γ. It is evident that sgn(A) < 0 and sgn(B) > 0 hold in
this case. Hence, the sign of the derivative is a priori undetermined. To show our claim, let us first
rewrite the claim on the sign of our initial inequality as

− (2η − γ)
[
2(η − 1)(η − γ)− (1− γ)(2η − γ)

]
+ (1− γ)γ

[
−4(η − 1)(η − γ)− 2(η − γ)

]
< 0

⇔(2η − γ)(η + γ− 2) + 2(η − 1)γ(1− γ) > 0 . (36)

We know that η > γ has to hold. Substituting η = γ into the previous inequality yields

2γ(γ− 1) > 2γ(γ− 1)2 ,

which is trivially satisfied for γ < 2. Hence, it suffices to show that the left hand side of (36) is

increasing in η. To do so, let us take the derivative of (36) w.r.t. η and let us simultaneously impose

that the derivative is positive:

Q(η) ≡ 2(η + γ− 2) + 2η − γ + 2γ(1− γ) = 4(η − 1) + 3γ− 2γ2 > 4(γ− 1) + 3γ− 2γ2 ≡ Q(γ),

where the second last inequality holds due to η > γ. Hence, Q(γ) > 0 implies also 4(η − 1) +

3γ− 2γ2 > 0. To show the validity of the previous inequality, let us compute the values of γ of

the second order polynomialQ(γ) for which the function equals exactly zero: γ̃1,2 = −7±
√

49−32
−4 =

7
4 ±

1
4

√
17. As a consequence, we have that γ̃1 < 1 and γ̃2 > 2 such that Q(γ) is due to continuity

strictly positive on the interval γ ∈ [1, 2]. As a result, we know that Q(η) is also strictly positive

on the entire interval γ ∈ [1, 2] which proves that equation (36) is satisfied. This shows

sgn
( ∂$

∂γ

)
|1<γ<γ = sgn (A+ B) < 0 ,

such that we overall obtain

sgn
( ∂$

∂γ

)
|γ≤γ<γ = sgn (A+ B) < 0 .

Let us finally define the growth irrelevance equation (34) by $ ≡ G(γ), where {ε, η} enter the

G function as constants. Recognize that G is strictly decreasing on the interval γ ≤ γ < γ and

thus injective. Additionally, it is differentiable at G−1($) and hence continuous on the interval G.

As a result, we can define the inverse function of the growth irrelevance frontier equation (34) by
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γ ≡ G−1($) . Consequently, it is straightforward to obtain

∂γ

∂$
=

∂G−1($)

∂$
=

1
G ′(G−1($))

=
1
G ′(γ) < 0 ,

which completes the first part of the proof of Lemma 3.

PART 2. Let us consider now the general growth irrelevance frontier at an arbitrary growth level

g, possibly different from zero. Without loss of generality let us further assume that a = 1. The

GIF is then implicitly characterized by

(1− γ)(2η − γ)− 2(η − 1)(η − γ)

(2ε− 1)(2η − γ)2(η − γ)2 γ$ +
1− γ

(η − γ)2 = χgg ,

where χg denotes a strictly positive constant which is independent of {$, γ}. Total differentiation

of the previous equation yields

χρd$ + χγdγ = χgdg .

Rearranging the previous condition results in

dγ = −
χρ

χγ
d$ +

χg

χγ
dg .

On the restricted set of Lemma 6, we have χρ < 0. Additionally, we have that χρ

χγ
= − 1

G ′(γ) , which

implies χγ < 0. Hence, an increase in g (i.e. lower growth rate) decreases γ, conditional on $. As

a result, the GIF shifts downwards. Similarly, if g decreases (i.e. higher growth rate), γ increases

conditional on $ which shifts the GIF upwards. This concludes the proof.

A.1.10 Proof of Lemma 4

We first solve for the consumption equivalent variation ∆CE,i, defined as the amount of consump-

tion that makes an individual indifferent between the reformed economy with progressivity pa

and the initial status quo situation, such that E[u(c̃i
2 − ∆CE,i)] = E[u(ci

2)]. We get:

E[(1− exp(−α̃i(c̃i
2 − ∆CE,i)))]/α̃i = E[(1− exp(−αici

2))]/αi ,

which is, under the generalized CARA and ∆α =
(
1/α̃i − 1/αi), equivalent to

∆α − exp
(
−α̃i(x̃i

2 − ∆CE,i)
)

/α̃i = −exp
(
−αixi

2

)
/αi

exp
(
−α̃i(xi

2 − ∆CE,i) + αixi
2

)
=
[
1 + ∆αexp

(
αixi

2

)
αi
]
(α̃i/αi)

−α̃i(x̃i
2 − ∆CE,i) + αixi

2 = ∆c ,
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where x̃i
2 and xi

2 denote the certainty equivalents. Rearranging terms, this yields

∆CE,i = x̃i
2 − xi

2 +
∆c

α̃i ,

with ∆c = −α̃i
(

αi

α̃i − 1
)

xi
2 + ln

(
1 +

(
αi

α̃i − 1
)

exp
(
αixi

2
))

+ ln
(

α̃i

αi

)
, a term that arises because a

change in the progressivity pa affects ai
0 which impacts the curvature of the utility function through

a change in the risk aversion α̃i.

We now analyze the effects of introducing a proportional tax on each component. First, let us

analyze the effect on x̃i
2 = µ̃i

2 − (α̃i/2)(σ̃i
2)

2, with

µ̃i
2 = ϕY + T + rãi

0 + A(1− ϕ)ãi
0 + (φ− A)(1− ϕ)ωi

1 ãi
0

((α̃i/2)(σ̃i
2)

2) =
1
2

σ2
κ (ãi

0)
γω̃2 ϑi

ϑ
(1− ϕ)2 ,

we get

∂µ̃i
2

∂pa
= ϕ

∂Y
∂η̃

∂η̃

∂pa
+

∂r
∂η̃

∂η̃

∂pa
ãi

0 +
∂T
∂pa

+
∂ã0

i

∂pa

[
A(1− ϕ) + r + γω̃

ϑi

ϑ
(ãi

0)
γ−1(1− ϕ)(φ− A)

]
∂((α̃i/2)(σ̃i

2)
2)

∂pa
=

∂ã0
i

∂pa

[
γ(1/2)σ2

κ (ãi
0)

γ−1ω̃2 ϑi

ϑ
(1− ϕ)2

]
,

which yields:

∂x̃i
2

∂pa
= ϕ

∂Y
∂η̃

∂η̃

∂pa
+

∂r
∂η̃

∂η̃

∂pa
ãi

0 +
∂T
∂pa

+
∂ã0

i

∂pa

[
A(1− ϕ) + r + γ

ϑi

ϑ
(ãi

0)
γ−1xr

]
,

where xr = ω̃(φ− A)(1− ϕ)− 1
2 σ2

κ ω̃2(1− ϕ)2.

Concerning the term ∆c, notice that:

ln
(

1 +
(

αi

α̃i − 1
)

exp
(

αixi
2

))
=

(
αi

α̃i − 1
)

exp
(

αixi
2

)
+ E(ai

0) ,

where since
(

αi

α̃i − 1
)
< 0 we have E(ai

0) < 0 an approximation error to the transformation ln(1 +

x) ≈ x. Using this, we can rewrite:

∆c = −α̃i
(

αi

α̃i − 1
)

xi
2 +

(
αi

α̃i − 1
)

exp
(

αixi
2

)
+ E(ai

0) + ln(α̃i/αi)

=

(
αi

α̃i − 1
)(

exp
(

αixi
2

)
− α̃ixi

2

)
+ E(ai

0) + ln(α̃i/αi) ,

using ln(α̃i/αi) ≈ −
(

αi

α̃i
− 1
)

α̃i

αi , we get

∆c ≈
(

αi

α̃i − 1
)(

exp
(

αixi
2

)
− α̃i

αi (α
ixi

2 + 1)
)
+ E(ai

0) .
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Using the welfare function, the optimal progressivity pa solves:

∂W
∂pa

=
∫

s(a0, ϑ)
∂∆CE(a0, ϑ)

∂pa
G(a0, ϑ) = 0 ,

which can be rewritten

∫
s(a0, ϑ)

[
ϕ

∂Y
∂η̃

∂η̃

∂pa
+

∂r
∂η̃

∂η̃

∂pa
ãi

0 +
∂T
∂pa

+
∂ã0

i

∂pa

[
A(1− ϕ) + r + γ

ϑi

ϑ
(ãi

0)
γ−1xr

]
+

∂(∆c/α̃i)

∂pa

]
G(a0, ϑ)

= 0 ,

or equivalently using
∫

s(a0, ϑ)G(a0, ϑ) = 1,

ϕ
∂Y
∂η̃

∂η̃

∂pa︸ ︷︷ ︸
efficiency

+
∂r
∂η̃

∂η̃

∂pa

∫
s(a0, ϑ)ã0G(a0, ϑ)︸ ︷︷ ︸

rent extraction

+
∂T
∂pa︸︷︷︸

lump-sum transfers

+
∫

s(a0, ϑ)

∂ã0
i

∂pa

[
A(1− ϕ) + r + γ

ϑi

ϑ
(ãi

0)
γ−1xr

]
︸ ︷︷ ︸

direct effect on level ai
0

+
∂(∆c/α̃i)

∂pa︸ ︷︷ ︸
direct effect on αi

 G(a0, ϑ) = 0 .

A.1.11 Proof of Lemma 5

Proof. Let us first observed that we can rewrite the utility function as:

max
k1

i ,bi
1

(
1

1− 1/σ

) [(
ai

0 − ki
1 − bi

1

)1−1/σ
+ β

(
µi

c2
(ki

1, bi
1)−

αi

2
σi

c2
(ki

1, bi
1)
)1−1/σ

]
, (37)

with ki
1 = ωi

1ai
1 and bi

1 = (1−ωi
1)ai

1. To do that, notice that

U
(

G−1
(

E
[

G
(

U−1(u2)
))

=
(

G−1
(

E
[

G(ci
2)
]))1−1/σ

/(1− 1/σ) ,

using the fact that x = −(1/αi) ln(1− αiG(x)) and E
[
G(ci

2)
]
= (1/αi)(1− exp(−αixi

c2
)) as shown

above, we get:

G−1
(

E
[

G(ci
2)
])

= −(1/αi) ln
(

1− αi(1/αi)
(

1− exp(−αixi
c2
)
))

= xi
c2

.

Hence the program of the agent can be rewritten as in (37).

Combining both the first order conditions with respect to ki
1 and bi

1 yields

ki
1 =

(φ− A)(1− ϕ)

αi(1− ϕ)2σ2
κ

= ω̃
ϑi

ϑ
(ai

0)
γ−1 .
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Using the condition with respect to bi
1, we get

(ai
0 − bi

1 − ki
1) = xi

c2
(R̃β)−σ ,

where R̃ = r + A(1− ϕ). Using the expression of µi
c2
= ϕY + T + (r + A(1− ϕ))bi

1 + (r + φ(1−
ϕ))ki

1 and xi
c2
= µi

c2
− αi

2 σi
c2

, we obtain

bi
1(R̃β)σ + R̃) = ai

0(R̃β)σ − ki
1

[
(R̃β)σ + r + φ(1− ϕ)

]
− ϕY− T +

αi

2
σi

c2

bi
1 = (R̃β)σ + R̃)−1

(
ai

0(R̃β)σ − ki
1

[
(R̃β)σ + r + φ(1− ϕ)

]
− ϕY− T +

αi

2
σi

c2

)
.

A.2 Fit of the Static Model under pure type/scale dependence

Figures 10a and 10b show the fit of the type and scale dependence models regarding the distri-

bution of risky asset shares across the wealth distribution. To fit this shape, we fix inequality to

η = 1.4. The parameter γ = 1.39 is used to match the average risky asset share of the top 1% in

the pure scale dependence model. In the pure type dependence model, we use the parameter con-

trolling the correlation (to 0.65) between the two distributions and fix the Pareto shape of types to

ε = 2. The two models produce an extremely close fit of the observed distribution of the average

portfolio allocations across the wealth distribution relative to the one observed in Figure 3.
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B Empirical Appendix

B.1 Adjusted Survey of Consumer Finance

Throughout the paper, we use the Survey of Consumer Finance (SCF) from 1998 to 2019 (eight

waves). Each wave provides cross-sectional data on U.S. households’ income and wealth, includ-

ing detailed information regarding portfolio allocation as well as demographic characteristics.

B.1.1 Details on sampling

Households in the SCF are selected from a double sampling procedure. A first sample is selected

from a standard sampling procedure, providing a good representativity of the population. A sec-

ond sample selects very high income families from the tax records of the Internal Revenue Service

(IRS), with some that are also likely to be very wealthy. The SCF weights are used to combine

individual characteristics from the two samples to make estimates for the full U.S. population.

B.1.2 Correcting for under-representation and under-reporting

Wealth and income concentration measures from survey data face two common issues: (i) under-

representation, meaning that wealth-rich households are generally under-represented in survey

data, and (ii) underreporting of assets, meaning that individuals tend to under-report wealth,

especially financial wealth.

We correct for those issues using the procedure described in Vermeulen (2016). The method

is iterative and proceed by assuming that the wealth distribution can be well approximated by

a Pareto Law at the top. While this assumption is questionable, most countries admit a linear

log-log relationship between wealth level and its empirical CCDF at the top of the distribution,

indicating that a Pareto Law can well describe the distribution. The method employs this property

to estimate a country-specific Pareto tail and use it to extrapolate estimates for top wealth shares.

First, observation at the top of the wealth distribution in the SCF (above a given threshold of

wealth) are supplemented by an external source – such as the Forbes World’s Billionaires lists – in

order to estimate a Pareto Law using additional observations at the very top. It can be shown that

an estimate of the Pareto tail can be obtained by regressing:

ln(n(ai)/n) = −ηln(ai/amin) , (38)

where n(ai) is the number of sample observations that have wealth at or above ai, i.e. the rank of

the observation, and amin is the minimum wealth level at which we assume that the wealth distri-

bution is Pareto (we fix it to 1 million of dollars). ln(n(ai)/n) is the log of the relative frequency

(or empirical ccdf). Figure 11 shows the resulting Pareto tail η̂ estimates without and with the 2010

Forbes World’s Billionaires lists using the 2010 SCF. From this, we generate corrected for missing
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value wealth shares by reconstructing a theoretical Pareto distribution at the top.

Figure 11. Pareto shape estimation for the United States using the SCF.
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Empirical CCDF in the US combining SCF (2010) and the Forbes World’s Billionaires lists. The dashed line corresponds
to the estimate of the Pareto tail without the Forbes observations. The solid line includes observations from the rich list.

Second, aggregate estimates from the entire wealth distribution, below and above the thresh-

old of wealth, are computed for total, financial and non-financial assets. Households’ wealth are

then adjusted such that aggregate estimates from the survey data supplemented with the Forbes’s

list coincide with national households balance sheet.

The procedure iterates until the distribution of wealth is invariant.48

B.2 Measuring Returns to Wealth in the PSID

We use the PSID to compute returns to wealth along the wealth distribution. Our sample spans

the period from 1998 to 2019. Every two years, there is a new wave (thus ten in total). The initial

period is lost when we compute the returns.

We follow closely the procedure of Fagereng et al. (2020). Our sample considers households

whose the head is aged between 20 and 70. This is to ensure that the financial decision maker is

the holder of the assets. Moreover, our model abstracts from many decisions that may occur at the

end of life (voluntary bequests, health expenditures etc). We restrict our attention to households

with at least $1000 of net worth. This ensures that returns to wealth are finite.

B.2.1 Portfolio composition in the PSID

Before turning to the analysis of returns, we first display in Figure 12 the average portfolio com-

position across the wealth distribution in the PSID. As can be seen, and consistent with our SCF

48While there is no reason to think that this procedure converges to a fixed point, it appears that this is indeed the
case for the US economy and all European countries from the HFCS (see the Online Appendix OA 3.1.3).
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sample, the share of risky assets is increasing along the wealth distribution, reaching around 60%

within the top 5% (25% in private equity and 35% in public equity).

Figure 12. Portfolio composition in the PSID.
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B.2.2 Returns to wealth

We compute returns to net worth and for three categories: safe assets, public equity and private

equity. Following our justification in the core paper, safe assets include housing (primary and

secondary residence including rental properties or cottages), riskfree assets (checking/saving ac-

counts, money market funds, certificates of deposits, government bonds, or treasury bills) and

other assets (boats, motor homes, cars, cash value in a life insurance policy, a valuable collection,

or rights in a trust or estate). Private equity includes businesses and farms, and public equity

includes direct holdings in publicly held corporations and indirect holdings in mutual funds, in-

vestment trusts and through employer-based pensions or IRAs.

Our definition of net worth is the amount the household would receive if they would sold their

assets and paid off all debts associated with the asset. Total liabilities include loans, mortgages,

consumer credits and other loans.

We define the total amount of gross assets as:

ag
i,t = ai,risk f ree,t + ai,home,t + ai,secondary,t + ai,other,t + ai,priv,t + ai,public,t . (39)

The PSID reports inflows and outflows from each assets. Inflows represent all investments,

additions and upgrades of assets, while outflows represent all disinvestment, liquidation, and

asset sales. We denote Fi,l,t the net inflow (total inflows minus total outflows) for asset l ∈
{risk f ree, home, secondary, priv, public, other}.
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Asset values are available for each period for holdings of public equities and for primary res-

idences. Unfortunately, asset values for private businesses and secondary housing are only ob-

served from 2011 onward. Prior to 2011, only the equity value (marketable asset value minus total

debt associated with the asset ei,l,t = ai,j,t − dj,l,t) is observed for secondary housing and private

business assets. We impute the asset value using backward induction using ∆a
i,l,t = ai,l,t− aj,l,t−2 ≈

ei,l,t − ei,l,t−2 and net inflows Fi,l,t, such that:

ai,l,t−2 = ai,l,t − ∆a
i,l,t − Fi,l,t , l ∈ {priv, secondary} ,

which implies that any variation in debt di,l,t translates one-to-one into variations in the value of

the asset ai,l,t. We now compute the pre-tax returns to wealth using our PSID sample. To do so, we

make a number of steps to compute capital gains, income and costs.

Capital gains We compute (unrealized and realized) capital gains by comparing the value of

each asset at two consecutive waves while taking into account inflows and outflows from this

asset. Specifically, we compute capital gains of a household i, period t and asset l as follows.

• For primary residence (home), unrealized capital gains are defined as the difference between

the current marketable value ai,home,t minus the past one (in the previous wave) ai,home,t−2.

Realized capital gains are defined as the selling price psell
home less the marketable value in the

previous wave, ai,home,t−2. To isotate the variations due to capital gains, we take into account

inflows and outflows. Inflows are all additions and upgrades, denoted Ii,home,t. Outflows

take into account that the stock of housing depreciate, at a rate of δh = 2.0% which is the

average maintenance and repair cost over the marketable asset value available from 2005

onward, such that: Fi,home,t = Ii,home,t − δh(ai,home,t + ai,home,t−2). We obtain that capital gains

for the primary residence are given by:

RK
i,home,t =

1{sold=1}psell
home + 1{sold=0}ai,home,t − ai,home,t−2 − Fi,home,t

2
,

where we divide by 2 to annualize the capital gains.

• For other assets (public equity, private equity and secondary housing), unrealized and re-

alized capital gains RK
i,l,t are defined as the difference between the current marketable asset

value and the one observed in the previous wave, minus net inflows Fi,l,t, such that:

RK
i,l,t =

ai,l,t − ai,l,t−2 − Fi,l,t

2
l ∈ {priv, public, secondary} ,

Notice that in case of new business acquisition of a value equals to A, we obtain Fi,priv,t = A

ai,l,t−2 = 0 and ai,l,t = A. Therefore, RK
i,priv,t = 0. We obtain the reverse in case of liquidation.

As such, our measure of capital gains accommodates for new acquisitions and total sales.
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Capital income For each category, capital income refers to the sum of capital income earned by

the head and the spouse. We define capital income for each asset category l as follows.

• Capital income from primary residence, RI
i,home,t, takes into account maintenance cost and

the rental value in the calculation. Lacking evidence on those two components, we assume:

RI
i,home,t = rhai,home,t−2 + incrent

i,home,t − δhai,home,t−2

where incrent
i,housing,t is the rental income reported to all housing assets. We attribute rental in-

come to the primary residence when the household has no secondary residence, in such case

we subtract 0.5 utilsi,home,t from the rents, and to secondary residence otherwise. Finally, con-

sistent with Flavin and Yamashita (2002), we assume that the housing yield have an interest

component with rate rh = 5%. Again, δh denotes the depreciation rate. Apart from the fact

that we directly observe net inflows, it should be noticed that our approach is different from

Flavin and Yamashita (2002). Adopting exactly their specification would shift upward re-

turns for primary residence, but turns to be less consistent with values reported in Fagereng

et al. (2020) and Bach et al. (2020).

• Capital income from secondary residence, RI
i,secondary,t, depends on whether the property is

rented, occupied by the household, or not occupied. We assume that

RI
i,secondary,t = 1{occupied}rhai,secondary,t−2 + 1{rented}incrent

i,secondary,t − δhai,secondary,t−2}

• Capital income from private equity businesses, RI
i,priv,t is computed as follows. Private eq-

uity income is split evenly between labor and asset income if the household actively partici-

pates in a private business and only to asset income otherwise.

• Capital income from riskfree assets, RI
i,risk f ree,t, is obtained from interest income reported in

the PSID. As there is no distinction between the fraction of interest income coming from

safe assets relative to public equity, we proceed as follows. We assume that interest income

from riskfree assets is given by the maximum between the reported interest income incinterest
i,t

and income derived from the 1-year Treasury bill secondary market rate times the value

reported from bond interest, i.e. rtreasury
i,t × ai,bond,t, such that: RI

i,risk f ree,t = min{rtreasury
i,t ×

ai,bond,t, incinterest
i,t }. A positive difference ∆interest

i,t = incinterest
i,t − RI

i,risk f ree,t is then associated to

public equity. Results are not very sensitive to this assumption.

• Capital income from public equity, RI
i,public,t, is equal to the sum of dividends, income from

stocks held into IRAs and pension accounts, other interest income and trusts. We obtain

income from public equity as: RI
i,public,t = ∆interest

i,t + incdividend
i,t + incIRA

i,t + inctrust
i,t + incother f in

i,t .
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Capital debt cost The last important component of our definition of returns are debts. For pri-

mary residence, the cost of debt, RD
i,home,t corresponds to the repayment of mortgages. The PSID

contains information for two mortgages. We compute the average mortgage interest rate as a

weighted average between them and deflate this rate using the CPI index. We follow Flavin and

Yamashita (2002) and assume that interest payment are deductible, such that the household pays

a real after-tax interest rate of rD
i,home,t =

1+(1−τ)rmortgage
i,t

1+in f lationt
− 1, where we set τ = 33%. All other costs

of debt are computed assuming an interest rate of 5% on other remaining debts.

Return measure Following Fagereng et al. (2020), our reference measure of return of an asset l is:

ri,l,t =
RK

i,l,t + RI
i,l,t − RD

i,l,t

ai,l,t−1 + Fi,l,t/2
(40)

The numerator is the sum of income, RI
i,l,t, capital gains, RK

i,l,t, minus the cost of debt, RD
i,l,t accrued

by household i on asset l in year t. The denominator is defined as the sum of beginning-of-period

stock of gross wealth and net flows of gross wealth during the year. In the PSID, wealth is ob-

served only at the time of the interview while income for each asset are observed for the past year.

Because the periodicity of the data is biennial, we need to impute the beginning-of-period asset

level corresponding to the income derived from the asset. We do so by assuming that beginning-

of-period asset is the interpolation between the current wealth level and the wealth level reported

in the previous wave, such that: ai,l,t−1 = (ai,l,t−2 + ai,l,t)/2. The second term on the denominator,

Fi,j,t, accounts for the fact that asset yields are generated not only by beginning-of-period wealth

but also by additions/subtractions of assets during the year. Without this adjustment, we may

bias our estimates if the beginning-of-period wealth is small but capital income is large due to

positive net asset flows occurring during the period (for example, a business acquisition). As the

flows occur during the year, we make the assumption that they occur on average in mid-year.

In equation (40), we express the dollar yield on net worth as a share of gross wealth (or total

assets) to ensure that the sign of the return reflect the sign of the yield.

Notice that for net worth, we define:

rnetworth
i,t =

∑l(RK
i,l,t + RI

i,l,t − RD
i,l,t)

ag
i,t−1 + ∑l Fi,l,t/2

rgross
i,t =

∑l(RK
i,l,t + RI

i,l,t)

ag
i,t−1 + ∑l Fi,l,t/2

(41)

We convert all nominal returns to real returns using the consumer price index (CPI) from the

Federal Reserve, using: r̃i,l,t =
1+ri,l,t

1+in f lationt
− 1.

Trimming Finally, we trim the distribution of returns in each year t and for each asset category l

at the top and the bottom by 0.5%. This ensures that there is no outlier polluting the estimates of

the mean of returns and aim to reduce measurement errors.

79



B.2.3 Scale dependence in returns

In this section, we use the PSID to evaluate the presence of scale dependence in the returns to

wealth. To do so, we follow Gabaix et al. (2016) and Fagereng et al. (2020) representation and

estimate the following statistical model:

rgross
i,t = θgPa(ag

i,t−1) + ft + fi + ε
g
i,t , rnetworth

i,t = θnPa(an
i,t−1) + ft + fi + εi,t , (42)

where rgross
i,t and rnetworth

i,t are respectively the return to gross and net wealth, Pa(·) is the percentile

of beginning-of-period gross/net wealth (capturing scale dependence), f g
i , f n

i are the individual

fixed effect (capturing persistent heterogeneity), f g
t , f n

t are time fixed effects capturing aggregate

return components, and ε
g
i,t, εn

i,t are error terms. Scale dependence is measured by the parameter θg

for gross returns and by the parameter θn for net returns, while type dependence is captured by the

individual fixed effect. Thus, similar to Fagereng et al. (2020), the scale dependence (comprising

all sources of scale dependence, direct and indirect) parameters are identified from household-

specific time variations in the wealth percentile.

Table 10. Scale dependence regression

percentile log specification

Gross Return Net Return Gross Return Net Return

θ 0.152 0.121 0.034 0.024
Time FE Yes Yes Yes Yes

Observations 9286 7491 9286 7491

We find a positive and statistically significant degree of scale dependence in returns to wealth

in the PSID, confirming the findings of Fagereng et al. (2020) and Bach et al. (2020) who use Scan-

dinavian administrative data. Moreover, the estimates are surprisingly close to the ones obtained

by Fagereng et al. (2020) using Norwegian data. Notice that we obtain a similar qualitative mes-

sage regarding the relationship between returns to wealth and wealth if we regress log(ag
i,t−1) and

log(an
i,t−1) on gross and net returns, respectively.

B.3 PSID participation and diversification

In Figure 13, we use our PSID sample to show the unconditional average probability to switch

from a non private equity investor state to a private equity investor state (black line), and the

unconditional fraction of private equity investors who invest in a new additional private equity

investment (red line). Focusing on the black line, it is apparent that there is an increasing and con-

vex relationship between risky investment participation and wealth, a feature which is consistent

with Hurst and Lusardi (2004). Focusing on the red line, it appears that, conditional on being al-
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ready private equity investor, new additional investments in private equity occur essentially at the

very top. We interpret this as evidence for diversification among the wealthy households, which

is consistent with the recent paper by Penciakova (2018). We now investigate these relationships

while controlling for household’s characteristics.

Figure 13. Private equity (PE) investment participation and diversification in the PSID.

investor entry rate investor w new PE invest.
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Conditional relationships In the main text, we model the fact that the entry into "investor" state

increases with wealth. To this, Hurst and Lusardi (2004) estimate the probability to become a

private equity investor as a function of wealth while controlling for household’s characteristics.

They then compute the predicted probability to participate into private equity investments along

the wealth distribution. They find that only the wealthy households (above the top 95th percentile)

are more likely to switch to private equity business ownership when their wealth increases. Fol-

lowing their lead and using similar controls, we update their estimation using our sample period.

In Figure 14, we report the predicted probability as estimated in Hurst and Lusardi (2004) as well

as our update. Results are found to be very similar.

Finally, we report in Figure 15 the predicted probability of acquiring a new private equity busi-

ness investment, conditional on being an investor. Consistent with what is observed in the Survey

of Consumer Finance, we find that the probability to invest in multiple businesses increases at the

top of the wealth distribution. While we cannot control for household’s characteristics in the SCF,

our results from the PSID reveal that this relationship between new acquisition of a private equity

business investment and wealth is robust and do not hinge on an observed household character-

istic (which may be a proxy for "type") only.
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Figure 14. Scale dependence in investment participation.
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C Quantitative Appendix

In this section, we show additional details regarding the quantitative model, the calibration, the

computational algorithm and additional moments of interest.

C.1 Calibration

Benchmark economy (M1) Table 11 displays the scale dependence in the intensive margin of

portfolio allocation, conditional on being an investor, in the data and in the benchmark economy.

In the benchmark economy, the parameter {aω, ω1, ω2, γω} are used to match the following mo-

ments. aω is chosen to correspond to the wealth level of the 70th wealth percentile in the model,

such that there is no scale dependence in risky portfolio observed below this percentile. The level

and the shape parameters are endogenously set to ω1 = 0.072 and γω = 0.30 in order to replicate

the average share invested in risky equity (through additional investments) of 11% for households

within the [95-97.5] wealth quantile, and of 20% for households within the [99-99.9] wealth quan-

tile. A maximal value of ω2 = 0.20 is set to guarantee that the wealth distribution is stationary

and to match the average risky portfolio share above the top 0.1%, as observed in Figure 5.

Table 11. Resulting scale dependence in risky portfolio share: benchmark model and data

Wealth quantile [0–80] [90–95] [95–97.5] [97.5–99] [99–99.9] top 0.1%

SCF average risky share 0% 6% 11% 15% 20% 20%
Benchmark model ω(a, 1) 0% 6.7% 10.3% 12.6% 16.9% 20%
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Figure 15. Scale dependence private equity business investment.
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Table 12 reports the scale dependence in the risky investment participation in the benchmark

economy and in the PSID (see Figure 14 and Hurst and Lusardi (2004)). In the benchmark econ-

omy, the parameters {aλ, λ1, λ2, γλ} are used to match the following moments. aλ is chosen such

that it corresponds to the wealth level of the 80th wealth percentile in the model, such that there is

no scale dependence in the risky investment participation below this percentile. In this case, the

participation rate of 1.8% is only generated through the process governing ϑ-types. The level and

the shape parameters of the transition probability with respect to wealth are endogenously cho-

sen to be λ1 = 0.071 and γλ = 0.30 to replicate the average transition rate of 3.2% for households

within the [95-97.5] wealth quantile, and of 6.1% for households within the [99-99.9] wealth quan-

tile. A maximal value of λ2 = 0.045 is set to guarantee that the wealth distribution is stationary

and to match the maximum transition rate of 7% at the very top (within the top 0.1%).

Table 12. Resulting scale dependence in the risky investment participation: benchmark model and data

Wealth quantile [0–80] [90–95] [95–97.5] [97.5–99] [99–99.9] top 0.1%

PSID entry rate into "investor" state 1.8% 2.1% 3.2% 4.5% 6.1% 7.0%
Benchmark model entry rate πϑ + λ(a) 1.8% 2.2% 3.2% 4.4% 6.3% 7.0%

Scale model (M2) In this model, we follow Hubmer et al. (2020) and match the increasing aver-

age risky asset shares along the wealth distribution through scale dependence only. In this model,

the only source of scale effects comes from the intensive margin of risky portfolio shares such that

equation (43) in the main text becomes:

ω(a, ϑ) ≡ ω(a) = ω + v(a) = ω + min
{

ω1 (max {a− aω, 0})γω , ω2
}

, (43)
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The parameters {ω, aω, ω1, ω2, γω} are recalibrated to replicate the following moments. aω is cho-

sen to correspond to the wealth level of the 80th wealth percentile in the model, such that there

is no scale dependence in the risky portfolio share below this percentile. In this case, the average

risky portfolio share is fixed to ω = 10%, following our estimates from the SCF. The level and

the shape parameters of the portfolio allocation with respect to wealth are endogenously set to

ω1 = 0.057 and γω = 0.57 to replicate an average portfolio share of 37% for households within

the [95-97.5] wealth quantile, and of 60% for households within the [99-99.9] wealth quantile. A

maximal value of ω2 = 0.75 is set to guarantee that the wealth distribution is stationary and to

match the maximum average portfolio share invested at the very top (within the top 0.1%).

Type model (M3) In the type model, there are no scale effects (λ(a) = v(a) = 0). In this model,

we recalibrate ω such that the average risky share in the economy corresponds to the one observed

in the SCF. The switching probability πϑ is set to match the fraction of investors.

C.2 Computational appendix

C.2.1 State space and grid definition

In our model, an household is fully characterized by a state vector s = (a, ϑ, h, j) ∈ S ≡ R+ ×
Θ ×H× J . We compute the household problem using a grid of asset a of 350 points (adding

more points only marginally increase our accuracy) spaced according to an exponential rule. We

truncate the grid for asset to Amax = 1500000 and we impose the borrowing constraint such that

Amin = 0. Due to the finite upper bound on wealth and the Pareto property coming from het-

erogeneous returns (see Benhabib et al. (2011)), the resulting distribution of wealth is not always

ergodic. In the main text, we describe a procedure to verify the size of the approximation error

generated by this upper bound on wealth and conclude that it is small.

We discretize the process h with 9 grid points spaced according to the following quantiles of the

persistent income component distribution: qh = [0.01 0.15 0.30 0.45 0.60 0.75 0.9 0.95 0.99] .

Following Hubmer et al. (2020), the values h corresponding to these quantiles follow the log-

normal/Pareto mixture described in the core paper. Given the calibration, h values attached to

households within the top 10% highest earners are drawn from a Pareto distribution, and from a

log-normal distribution otherwise.

C.2.2 Algorithm

We organize the algorithm in steps.

1. Initialize a full dimension grid space over asset values (a), productivity level (h), age bracket

(j), and innate investment skill (ϑ).

2. Guess initial tax rates τ and equilibrium quantities {X
L , r}. Compute p and w.
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3. Given prices, solve the consumption-saving-leisure problem. We use a modified version of

the EGM algorithm introduced by Carroll (2006).

Specifically, the budget constraint can be written as c =
whyζ j(1−τw)`−a′+F (a,ϑ)

1+τc
. Given the

utility function u(c, `), the optimality conditions are given by

`(c) = c−σλ

[
whyζ j(1− τw)

χ(1 + τc)

]λ

, c−σ = β(1− dj)(1 + τc)E[va(a′, ϑ′, h)] .

We compute va numerically. To use the endogenous grid method, we invert the consumption-

leisure intratemporal condition and express ` as a function of c. We plug the solution in the

budget constraint, such that:

(1 + τc)c + a′ = [whyζ j(1− τw)]
1+λ

(
1

(1 + τc)χ

)
c−σλ +F (a, ϑ) .

To gain in speed and avoid any root-finding within the policy function iteration, we pre-

compute all possible realizations of (c, `) on an exogenous grid of cash on hand F (a, ϑ). The

EGM is performed on an endogenous grid defined as:

F̃ (a, ϑ) = (1 + τc)c(a′, ϑ, h) + a′ − [whyζ j(1− τw)]
1+λ

(
1

(1 + τc)χ

)
c(a′, ϑ, h)−σλ .

4. Construct the transition matrix M generated by Πh, Πϑ, Πκ and Πy, a′(s) and `(s, y). Com-

pute the associated stationary measure of individuals G(s); by first guessing an initial distri-

bution, and then by iterating on G ′(s) = MG(s) until convergence.

5. Compute the resulting total efficiency units of capital X, total labor supplied L, the return

component r and government expenditures and revenues.

6. With a relaxation, update the vector of prices; {p, w} are obtained using the first order con-

ditions of the representative final good producer, r is adjusted to ensure that total returns to

capital distributed in the economy is equal to total product of capital in the economy, and

the tax rate τw is adjusted to balance the government budget if necessary.

Back to step 2 and iterate until convergence on the equilibrium prices is reached.

C.3 Wealth Mobility

In this section, we investigate how the intra-generational wealth mobility matrix in our model

alternatives compares with its empirical counterpart. We take as a reference the estimates by

Klevmarken et al. (2003), who compute a five-state (quintiles) five-year transition matrix from the

1994–1999 PSID waves. Table 13 reports the results for the benchmark economy (M1), the type-
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model (M2) and the scale-model (M3). We find that the three models overstate the persistence

of wealth-rank in the top quintiles while being broadly consistent with the U-shaped diagonal

transition rate. Interestingly, adding portfolio heterogeneity helps in generating an empirically

consistent wealth mobility. Overall, we find that it is hard to distinguish models M1, M2 and M3

based on the resulting wealth mobility matrix.

Table 13. Wealth mobility: data and model

5-years transition Diagonal element (quintile – quintile)

Q1 – Q1 Q2 – Q2 Q3 – Q3 Q4 – Q4 Q5 – Q5

PSID (1994-1999), Klevmarken et al. (2003) 0.58 0.44 0.42 0.48 0.71

M1 – Benchmark model 0.57 0.46 0.34 0.42 0.79
M2 – Scale-model 0.57 0.37 0.34 0.47 0.81
M3 – Type-model 0.57 0.45 0.41 0.42 0.78
M5 – No portfolio heterogeneity 0.64 0.40 0.52 0.60 0.84
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