Convergence Across Castes

Viktoria Hnatkovska¹ Sev Hou² Amartya Lahiri¹

¹University of British Columbia ²CUHK-Shenzen

July 2022

Introduction

- ► How do historical inequalities behave during periods of rapid and large macroeconomic changes?
- ► Who gains and who loses?
- ► Does growth lift all boats?
- What are the key channels through which distributional changes occur?

Introduction

Indian experience provides a perfect environment:

- dramatic changes over the past 30 years
- ▶ GDP growth averaged 6-7 percent since the 1990s
- ▶ 1947 to 1980s growth averaged 3 percent

Introduction

India:

- long history of social division due to castes
- Caste identity by birth and immutable
- system often acted as a barrier to entry

This paper

- ► Focus on fortunes of SCSTs relative to others since 1983
- Describe the empirical evidence
- Develop a heterogenous agent model
 - examine quantitative effects of aggregate growth shocks on caste gaps
- ▶ Identify the mechanisms at play behind the caste convergence

Data

- National Sample Survey (NSS) of India
- ▶ 6 rounds: R38 (1983-84), R43 (1987-88), R50 (1993-94), R55 (1998-99), R61 (2004-05), R68 (2011-12)
- Average sample size: 40,000 households; 170,000 individuals

Worker Wage gaps: Non-SCST/SCST

Worker Education gaps (years)

Structural Transformation

Questions

- Can aggregate growth shocks explain the caste wage convergence?
- Can this be consistent with the sectoral dynamics?
- How important were affirmative action programs?
- Were selection effects important for the convergence?
- How large are the welfare costs of caste barriers?

Model

- One-period lived heterogenous agents of measure L
- \blacktriangleright Measure S of these agents belong to caste s for SC/ST
- ▶ Measure N = L S belong to caste n for non-SC/ST

Talent Misallocation

- Castes differ along two margins
 - cost of education
 - costs of accessing labor market
- ► All individuals draw from same innate ability distribution
- Caste-specific schooling and sectoral ability distribution
- Costly misallocation of talent

Agent Objective

- ▶ Each agent i maximizes utility from $u(c_i)$
- ➤ The final good is produced by agent's by combining three intermediates:

$$y_i = \left(y_i^A - \bar{y}\right)^{\theta} \left(y_i^M\right)^{\eta} \left(y_i^H\right)^{1-\theta-\eta}$$

 Final good used for consumption, schooling costs and sectoral entry costs

Endowments

- Agent i: one unit of labor time and ability endowment a_i
- Ability productive in both market work and skill acquisition
- Ability a_i drawn from i.i.d. process with cdf

$$G(a), a \in [\underline{a}, \overline{a}]$$

- ightharpoonup Assume that G(a) uniform distribution
- Ability distribution identical for both castes

Sectoral production technologies

▶ Output produced by agent *i* of caste j = n, s:

Sector **a**:
$$w_{ij}^a = Ae_{ij}$$

Sector
$$\mathbf{m}$$
: $w_{ij}^m = Me_{ij}$

Sector **h**:
$$w_{ij}^h = He_{ij}$$

ightharpoonup A, M, H: exogenous sectoral labor productivities

Human Capital and Sectoral Entry Costs

- ▶ Sectoral entry costs for agent *i* of caste j = n, s:
 - Sector a: $f_j^a = 0$
 - Sector m: $f_j^m(e_i) = \phi(\gamma_j^m \alpha e_i)$
 - ► Sector h: $f_j^h(e_i) = \phi(\gamma_j^h \alpha e_i)$
- $ightharpoonup e_i = a_i q_i^{\chi}$
 - schooling q raises human capital e
 - human capital reduces entry costs in sectors m, h
- ▶ Marginal cost of schooling: λ_j , j = n, s

Optimal Sector-Contingent Schooling

- Sectoral entry costs are caste and sector-specific
- Schooling costs are caste-specific
- Schooling choice reflects caste and expected sector of work

Sector Choice

- Agents maximize $\hat{c}_{ij} = \max\{\hat{c}^a_{ij}, \hat{c}^m_{ij}, \hat{c}^h_{ij}\}$
- Problem gives three ability thresholds

Lemma

All individuals $i \in caste \ j = n, s$ with ability a_{ij} prefer employment in sector-m to sector-a if $a_{ij} \geq \hat{a}_j^m$; employment in sector-b to sector-b if $a_{ij} \geq \hat{a}_j^b$; and employment in sector-b to sector-b if $a_{ij} \geq \tilde{a}_j^b$.

Sectoral Employment Gaps

$$\Delta s^a = rac{\hat{a}_n^m - \underline{a}}{\hat{a}_s^m - \underline{a}} \ \Delta s^m = rac{ ilde{a}_n^h - \hat{a}_n^m}{ ilde{a}_s^h - \hat{a}_s^m} \ \Delta s^h = rac{ar{a} - ilde{a}_n^h}{ar{a} - ilde{a}_s^h}$$

► Ability thresholds key for sectoral employment gaps

Sectoral Wage Gaps

$$\begin{split} \Delta w^{a} &= \left(\frac{\lambda_{s}}{\lambda_{n}}\right)^{\frac{\chi}{1-\chi}} \left(\frac{\left(\hat{a}_{n}^{m}\right)^{\frac{1}{1-\chi}+1} - \left(\underline{a}\right)^{\frac{1}{1-\chi}+1}}{\left(\hat{a}_{s}^{m}\right)^{\frac{1}{1-\chi}+1} - \left(\underline{a}\right)^{\frac{1}{1-\chi}+1}}\right) \left(\frac{\hat{a}_{s}^{m} - \underline{a}}{\hat{a}_{n}^{m} - \underline{a}}\right) \\ \Delta w^{m} &= \left(\frac{\lambda_{s}}{\lambda_{n}}\right)^{\frac{\chi}{1-\chi}} \left(\frac{\left(\tilde{a}_{n}^{h}\right)^{\frac{1}{1-\chi}+1} - \left(\hat{a}_{n}^{m}\right)^{\frac{1}{1-\chi}+1}}{\left(\tilde{a}_{s}^{h}\right)^{\frac{1}{1-\chi}+1} - \left(\hat{a}_{s}^{m}\right)^{\frac{1}{1-\chi}+1}}\right) \left(\frac{\tilde{a}_{s}^{h} - \hat{a}_{s}^{m}}{\tilde{a}_{n}^{h} - \hat{a}_{n}^{m}}\right) \\ \Delta w^{h} &= \left(\frac{\lambda_{s}}{\lambda_{n}}\right)^{\frac{\chi}{1-\chi}} \left(\frac{\bar{a}^{\frac{1}{1-\chi}+1} - \left(\tilde{a}_{n}^{h}\right)^{\frac{1}{1-\chi}+1}}{\bar{a}^{\frac{1}{1-\chi}+1} - \left(\tilde{a}_{s}^{h}\right)^{\frac{1}{1-\chi}+1}}\right) \left(\frac{\bar{a} - \tilde{a}_{s}^{h}}{\bar{a} - \tilde{a}_{n}^{h}}\right) \end{split}$$

► Ability thresholds and relative schooling costs are key

20/35

Relative Ability Thresholds

▶ Two key thresholds: \hat{a}_j^m and \tilde{a}_j^h

$$\frac{\hat{a}_{n}^{m}}{\hat{a}_{s}^{m}} = \left(\frac{\lambda_{n}}{\lambda_{s}}\right)^{\chi} \left(\frac{\gamma_{n}^{m}}{\gamma_{s}^{m}}\right)^{1-\chi} \\
\frac{\tilde{a}_{n}^{h}}{\tilde{a}_{s}^{h}} = \left(\frac{\lambda_{n}}{\lambda_{s}}\right)^{\chi} \left(\frac{\gamma_{n}^{h} - \gamma_{n}^{m}}{\gamma_{s}^{h} - \gamma_{s}^{m}}\right)^{1-\chi}$$

Relative schooling and entry costs are key for caste gaps

Can model generate the observed changes?

- ► Approach: calibrate model to match 1983 facts
- Hit it with observed sectoral productivity shocks
- What is the implied time path of the caste wage gap?

Calibration

- ► Targets: eight key data moments
 - three sectoral caste employment distribution gaps
 - three sectoral caste wage gaps
 - two mean schooling levels
- We choose eight parameters
 - lacktriangle schooling cost parameters $\left(\lambda_s, \frac{\lambda_s}{\lambda_n}\right)$
 - \blacktriangleright entry cost parameters $\left(\gamma_{s}^{m},\gamma_{s}^{h},\gamma_{n}^{m},\gamma_{n}^{h}\right)$
 - ightharpoonup human capital elasticity of schooling: χ
 - lacktriangleright scaling parameter for sectoral entry cost ϕ

Parameterization for 1983

VARIABLE	BLE VALUE VARIABLE		Value		
<u>c</u>	0.5	θ	0.46		
η	0.15	α	1		
<u>a</u>	1	ā	50		
M/A	/A 1.2 H/A		1.1		
L	1	S	0.25		
Calibrated variables for 1983					
γ_s^m	20.14	γ_s^h	299.14		
$\frac{\gamma_n^m}{\gamma_s^m} = \frac{\lambda_s}{\lambda_n}$	1.04	$\frac{\gamma_n^h - \gamma_n^m}{\gamma_s^h \gamma_s^m}$	1.33		
$\frac{\lambda_s}{\lambda_s}$	1.55	ϕ	0.53		
λ_s^n	2.53	χ	0.61		
PRODUCTIVITY GROWTH 1983-2012					
Agriculture	Manufacturing Service				
1.14	4	2.41			

Model Results: 1983 and 2012

	1983		20	012
Variable	Data	Model	Data	Model
	Targeted			
Δw^a	1.04	1.04	1.08	1.05
Δw^m	1.20	1.20	1.14	1.20
Δw^h	1.45	1.45	1.33	1.16
Δs^a	0.80	0.85	0.79	0.85
Δs^m	1.43	1.43	1.57	2.15
Δs^h	1.61	1.60	1.21	1.32
Mean edu ST	1.81	1.75	4.73	3.78
Mean edu Non-ST	4.08	3.86	5.78	6.59
	Not Targeted			
Δw	1.45	1.34	1.30	1.24

Non-Targeted Moments: 1983 and 2012

	1983		2012	
Variable	Data	Model	Data	Model
Edu: Pareto shape param ST	0.57	0.77	1.33	1.19
Edu: Pareto shape param NST	1.12	1.16	1.52	1.58

Overview

- Model fits targeted 1983 distributional data quite well
- ▶ Productivity growth can explain over 70% of the observed caste wage convergence between 1983 and 2012
- We consider this suggestive of the power of growth in narrowing historical inequalities

Counterfactuals

- ► Model has number of built-in features
 - affirmative action
 - selection effects
 - caste distortions
- ► How important were each of these aspects?

Affirmative Action: Equalize entry costs

			1983		
Variable	Data	Baseline	γ_m	γ_{h}	both
Δs^a	0.80	0.85	0.84	0.85	0.84
Δs^m	1.43	1.43	1.54	0.79	0.84
Δs^h	1.61	1.60	1.58	93.37	82.78
Δw^a	1.04	1.04	1.01	1.04	1.01
Δw^m	1.20	1.20	1.18	1.01	1.00
Δw^h	1.45	1.44	1.45	1.26	1.26
Δw	1.45	1.34	1.31	1.62	1.58
			2012		
Δs^a	0.79	0.85	0.84	0.85	0.84
Δs^m	1.57	2.15	2.54	0.77	0.84
Δs^h	1.21	1.33	1.31	3.90	3.84
Δw^a	1.08	1.05	1.01	1.05	1.01
Δw^m	1.14	1.20	1.18	1.02	1.00
Δw^h	1.33	1.16	1.16	1.02	1.02
Δw	1.30	1.24	1.22	1.33	1.31

Affirmative Action Takeaway

- ► Affirmative action reduced wage gap in 1983
- Dynamics of wage gap driven by growth
- ► Convergence would have been greater without protections

Selection Effects: Random Re-Sorting

Wage Gaps and Growth					
Variable	Baseline 1983	Baseline 2012	Random Sorting 2012		
Δw^a	1.04	1.05	1.07		
Δw^m	1.20	1.20	1.197		
Δw^h	1.45	1.16	1.14		
Δw	1.34	1.24	1.25		
	Sectoral average ability				
Ee _{nst}	17.06	17.69	17.85		
Ee_{nst}^m	38.00	37.68	38.01		
Ee_{nst}^h	46.49	45.54	44.67		
Ee_{st}^a	19.86	20.57	20.67		
Ee_{st}^m	42.19	41.72	42.18		
Ee _{st}	47.81	46.64	45.84		

Selection Effects

- ▶ Role of selection in wage convergence is quantitatively small
- Most of the convergence is due to
 - ► falling labor gaps in services
 - differential increase in education

Removing Caste Distortions

- No rebate
 - Consumption gains are 10.2% (1983) and 10.3% (2012)
 - Output gains are 11.4% (1983) and 8.4% (2012)
- ► With lump-sum rebates
 - Output side unaffected
 - Consumption gains: 3.3% (1983) and 2.5%

Other mechanisms

Non-homotheticity: not important

Differential sectoral growth: not important

Structural transformation: needed

► Education re-sorting: *key for results*

Conclusions

- ▶ India has seen a catch-up in education and wages of SC/STs
- Productivity growth can explain 72% of the wage convergence
- Convergence mostly driven by education
- Affirmative action policies and selection effects have played minimal roles
- ▶ Growth has mitigated caste-based talent misallocation