The Fast, the Slow, and the Congested: Urban Transportation in Rich and Poor Countries

Prottoy A. Akbar, Victor Couture, Gilles Duranton, Adam Storeygard

July 2022

- Simulate 600 million Google Maps trips to produce travel speed indices for 1,358 cities.
- Document how urban travel speed rises with economic development.
- Develop a model to decompose the contribution of different city attributes in accounting for why richer countries are faster.

### Introduction: What we find

- Urban travel is much faster in richer countries. •• SpeedGDP
  - Urban travel in the US is twice as fast as in Bangladesh.
  - Most speed variation is across countries, not within-country.
  - ▶ Country GDP per cap. explains more than 60% of cross-country speed variation.
- Decomposition to study why richer countries are faster:
  - Major impact: roads. Minor impact: land area
  - Effects through uncongested speed, not congestion. "UncongestedGDP CongestionGDP

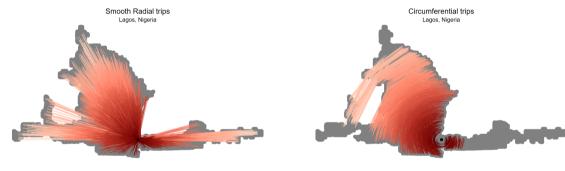
### Introduction: Why this matters

- Cities exist to let people interact. Slow mobility limits those interactions.
- Urban transportation is a policy concern in every large city.
- Existing urban transportation data are extremely limited, especially in poor countries.

### Creating an urban transportation database comparable across countries

- We define city boundaries consistently worldwide.
- We create trip samples within these cities using an app (Google Maps) available worldwide.
- We use a price index methodology to ensure comparable baskets of trips in each city.
- We create a dataset of city attributes from sources available worldwide (e.g, OSM).

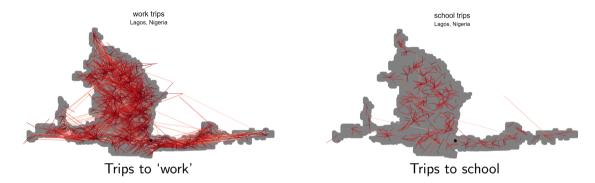
### Creating database: Delineating Cities


- City *points*: All 1,860 cities with projected 2018 population over 300,000 from UN World Urbanization Prospects
- City boundaries: Defined using GHS-SMOD 1-km layer circa 2015
  - Start with areas within 500m radius of 'built' (38m X 38m) pixels.
  - Merge secondary centers, separate attached primary centers, drop major mismatches etc. 1,795 cities remain.
- Drop countries without Google Maps (China, South Korea). 1,358 cities remain.

# Creating database: Designing trips

To obtain representative trips, we:

- Design trips that resemble actual trips.
- Use different design strategies and verify they lead to similar results.

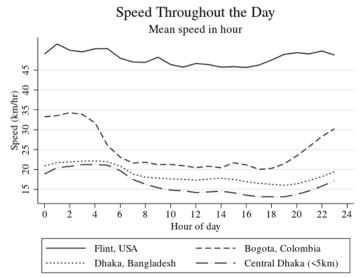

#### Creating database: Illustration, trips for Lagos, Nigeria



Radial trips

Circumferential trips

#### Creating database: Illustration, trips for Lagos, Nigeria




Combination of nearest and most popular according to Google

# Creating database: Sampling trips

- About 20M trips in total and about 30 instances of each trip
  - ▶ at random times following a time/day distribution inspired by various travel surveys
- Simulated on Google Maps (website, GM)
  - 'real time traffic' motor vehicle trip instances
  - between June and November 2019
- For each trip instance and recommended GM route, we collect:
  - trip duration and length ( $\Rightarrow$  speed)
  - duration in hypothetical state of no traffic ( $\Rightarrow$  uncongested speed)
- For each trip, we collect the recommended route of one instance.

### Creating database: Illustration, the Fast, the Slow, and the Congested



Limited to trips of length 5-10km.

# Creating database: Assessing Google Maps' data quality

Context:

- GM is the most popular mapping/navigation app in the world.
- Relies on GPS pings from Android cellphones and other GM users. 2.5 billion Android smartphones in May 2019.
- Worry: Poor cities may have fewer smartphones or receive less attention from Google.
  - > We perform extensive quality checks to validate and clean our data.

- Objective: Produce speed indices that are comparable across world cities.
- Problem: Determinants of trip speed vary systematically across cities, e.g. trip distance, distance to the center, etc
- Solution (Couture et al., 2018, Akbar et al., 2021): Price index methodology
  - Each trip is a 'good'.
  - Speed is the (inverse) price of a trip in units of time.
  - Use a comparable basket of trips in each city.

Simple approach to go from trips i to a speed index for each city c:

$$speed\_outcome_i = \alpha X_i + speed\_index_{c(i)} + \epsilon_i$$

• We use three outcomes to estimate three indices:

- **1** log (real-time) speed  $\Rightarrow$  speed index  $S_c$
- 2 log uncongested speed  $\Rightarrow$  uncongested speed index  $U_c$
- **③** (log uncongested speed log speed)  $\Rightarrow$  congestion index K<sub>c</sub>
- X: trip distance, distance to center, trip type, time of day, day of week, weather
- Property of OLS:  $\hat{S}_c = \hat{U}_c \hat{K}_c$

Simple approach to go from trips i to a speed index for each city c:

```
speed\_outcome_i = \alpha X_i + speed\_index_{c(i)} + \epsilon_i
```

- We use three outcomes to estimate three indices:
  - log (real-time) speed  $\Rightarrow$  speed index  $S_c$
  - ② log uncongested speed  $\Rightarrow$  uncongested speed index  $U_c$
  - **③** (log uncongested speed log speed)  $\Rightarrow$  congestion index K<sub>c</sub>
- X: trip distance, distance to center, trip type, time of day, day of week, weather
- Property of OLS:  $\hat{S}_c = \hat{U}_c \hat{K}_c$

Simple approach to go from trips i to a speed index for each city c:

$$speed\_outcome_i = \alpha X_i + speed\_index_{c(i)} + \epsilon_i$$

• We use three outcomes to estimate three indices:

- **1** log (real-time) speed  $\Rightarrow$  speed index  $S_c$
- ② log uncongested speed  $\Rightarrow$  uncongested speed index  $U_c$
- **◎** (log uncongested speed log speed)  $\Rightarrow$  congestion index  $K_c$
- X: trip distance, distance to center, trip type, time of day, day of week, weather
- Property of OLS:  $\hat{S}_c = \hat{U}_c \hat{K}_c$

Simple approach to go from trips i to a speed index for each city c:

$$speed\_outcome_i = \alpha X_i + speed\_index_{c(i)} + \epsilon_i$$

• We use three outcomes to estimate three indices:

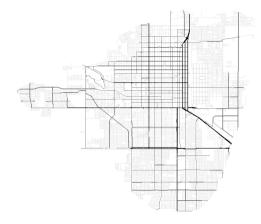
- **1** log (real-time) speed  $\Rightarrow$  speed index  $S_c$
- 2 log uncongested speed  $\Rightarrow$  uncongested speed index  $U_c$
- (log uncongested speed log speed)  $\Rightarrow$  congestion index  $K_c$
- X: trip distance, distance to center, trip type, time of day, day of week, weather
- Property of OLS:  $\hat{S}_c = \hat{U}_c \hat{K}_c$

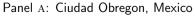
### Creating database: Fastest and slowest cities

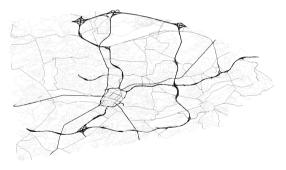
|      | Fas                     | test          |       | . S           | lowest      |       |
|------|-------------------------|---------------|-------|---------------|-------------|-------|
| Rank | City                    | Country       | Index | City          | Country     | Index |
| 1    | Flint                   | United States | .47   | Dhaka         | Bangladesh  | 64    |
| 2    | Greensboro              | United States | .43   | Lagos         | Nigeria     | 58    |
| 3    | Little Rock             | United States | .43   | Manila        | Philippines | 53    |
| 4    | Wichita                 | United States | .42   | lkorodu       | Nigeria     | 53    |
| 5    | Huntsville              | United States | .41   | Kolkata       | India       | 51    |
| 6    | Lancaster-Palmdale      | United States | .41   | Bhiwandi      | India       | 51    |
| 7    | Victorville             | United States | .40   | Mumbai        | India       | 45    |
| 8    | Ogden                   | United States | .40   | Phnom Penh    | Cambodia    | 44    |
| 9    | Lansing                 | United States | .40   | Chittagong    | Bangladesh  | 44    |
| 10   | Knoxville               | United States | .38   | Bangalore     | India       | 43    |
| 11   | Visalia                 | United States | .38   | Dar es Salaam | Tanzania    | 43    |
| 12   | Khamis Mushayt          | Saudi Arabia  | .38   | Kumasi        | Ghana       | 43    |
| 13   | Tulsa                   | United States | .38   | Jakarta       | Indonesia   | 43    |
| 14   | Shreveport              | United States | .37   | Aba           | Nigeria     | 42    |
| 15   | Winston-Salem           | United States | .37   | Bihar Sharif  | India       | 42    |
| 16   | Port St. Lucie          | United States | .37   | Bacoor        | Philippines | 42    |
| 17   | Youngstown              | United States | .36   | Arrah         | India       | 42    |
| 18   | Toledo                  | United States | .36   | Mymensingh    | Bangladesh  | 41    |
| 19   | Fayetteville-Springdale | United States | .36   | Lima          | Peru        | 41    |
| 20   | Rockford                | United States | .36   | Patna         | India       | 41    |

### Creating database: Most and least congested cities

|      | Мо             | st Congested   |       | Lea          | st Congested  |       |
|------|----------------|----------------|-------|--------------|---------------|-------|
| Rank | City           | Country        | Index | City         | Country       | Index |
| 1    | Bogotá         | Colombia       | .21   | Nazret       | Ethiopia      | 17    |
| 2    | Krasnodar      | Russia         | .19   | Gondar       | Ethiopia      | 17    |
| 3    | Moscow         | Russia         | .18   | Dire Dawa    | Ethiopia      | 17    |
| 4    | Bucharest      | Romania        | .17   | Matadi       | Congo (DRC)   | 17    |
| 5    | Ulaanbaatar    | Mongolia       | .17   | Potiskum     | Nigeria       | 17    |
| 6    | Manila         | Philippines    | .17   | Mekele       | Ethiopia      | 17    |
| 7    | Bangkok        | Thailand       | .17   | Birnin Kebbi | Nigeria       | 16    |
| 8    | Bangalore      | India          | .17   | Tshikapa     | Congo (DRC)   | 16    |
| 9    | Vladivostok    | Russia         | .15   | Chitungwiza  | Zimbabwe      | 16    |
| 10   | Mexico City    | Mexico         | .15   | Pointe-Noire | Congo         | 16    |
| 11   | London         | United Kingdom | .15   | Saki         | Nigeria       | 16    |
| 12   | Lagos          | Nigeria        | .15   | Ogbomosho    | Nigeria       | 14    |
| 13   | Mumbai         | India          | .14   | Abakaliki    | Nigeria       | 14    |
| 14   | Yekaterinburg  | Russia         | .14   | Baaqoobah    | Iraq          | 13    |
| 15   | Guatemala City | Guatemala      | .14   | Gombe        | Nigeria       | 13    |
| 16   | New York       | United States  | .14   | Ondo         | Nigeria       | 13    |
| 17   | Delhi          | India          | .13   | Bouake       | Côte d'Ivoire | 13    |
| 18   | Sochi          | Russia         | .13   | Nasiriyah    | Iraq          | 12    |
| 19   | Panama City    | Panama         | .13   | Minna        | Nigeria       | 12    |
| 20   | Nairobi        | Kenya          | .13   | Kasur        | Pakistan      | 11    |


### Creating database: Cities with fastest and slowest uncongested speed


|      | Fastest Unc        | ongestd Speed |       | Slowest Un     | congested Spe | ed    |
|------|--------------------|---------------|-------|----------------|---------------|-------|
| Rank | City               | Country       | Index | City           | Country       | Index |
| 1    | Flint              | United States | .42   | lkorodu        | Nigeria       | 53    |
| 2    | Little Rock        | United States | .39   | Dhaka          | Bangladesh    | 53    |
| 3    | Greensboro         | United States | .39   | Aba            | Nigeria       | 49    |
| 4    | Victorville        | United States | .38   | Khulna         | Bangladesh    | 44    |
| 5    | Wichita            | United States | .37   | Lagos          | Nigeria       | 43    |
| 6    | Knoxville          | United States | .36   | Kolkata        | India         | 43    |
| 7    | Lancaster-Palmdale | United States | .36   | Bhiwandi       | India         | 41    |
| 8    | Huntsville         | United States | .36   | Port-au-Prince | Haiti         | 41    |
| 9    | Ogden              | United States | .36   | Bihar Sharif   | India         | 41    |
| 10   | Visalia            | United States | .36   | Mymensingh     | Bangladesh    | 40    |
| 11   | Tulsa              | United States | .35   | La Paz         | Bolivia       | 40    |
| 12   | Lansing            | United States | .35   | Dar es Salaam  | Tanzania      | 39    |
| 13   | Shreveport         | United States | .35   | Mombasa        | Kenya         | 38    |
| 14   | Bakersfield        | United States | .35   | Comilla        | Bangladesh    | 38    |
| 15   | Winston-Salem      | United States | .34   | Darbhanga      | India         | 37    |
| 16   | Windsor            | Canada        | .34   | Bhagalpur      | India         | 37    |
| 17   | Memphis            | United States | .34   | Chittagong     | Bangladesh    | 37    |
| 18   | Grand Rapids       | United States | .33   | Quetta         | Pakistan      | 37    |
| 19   | Stockton           | United States | .33   | Arrah          | India         | 37    |
| 20   | Chattanooga        | United States | .33   | Dhanbad        | India         | 37    |


# Creating database: Country income and six city attributes

- Country Income:
  - ► Country GDP per capita: World Bank, 2017 PPP \$Int
- City Size:
  - Population: WorldPop (Population per 90m X 90m pixel)
  - Area: Our city boundaries
- Infrastructure:
  - ▶ Major Road Length: *OpenStreetMaps* sum of motorways, primary, secondary, tertiary roads
  - ▶ Griddiness: OpenStreetMaps share of road conforming to main grid orientation.
- Topography:
  - ▶ Water body length: *OpenStreetMaps*, sum of lakeshores, coastlines, river centerlines
  - Elevation Variance: *Google Maps API* measured at each intersection.
- Other attributes not shown.

# Creating database: OSM Most and Least Griddy City







Panel B: Charleroi, Belgium

# Mobility and Economic Development: City-level regressions

|                      | Speed<br>all | Speed<br>all                 |
|----------------------|--------------|------------------------------|
| log country GDP (pc) |              | 0.13 <sup>a</sup><br>(0.022) |
| country FE           | Y            | N                            |
| Observations         | 1,190        | 1,190                        |
| $R^2$                | 0.71         | 0.44                         |

### Mobility and Economic Development: City-level regressions

|                      | Speed<br>all | Speed<br>all                 |
|----------------------|--------------|------------------------------|
| log country GDP (pc) |              | 0.13 <sup>a</sup><br>(0.022) |
| country FE           | Y            | N                            |
| Observations         | 1,190        | 1,190                        |
| $R^2$                | 0.71         | 0.44                         |

- Country FE explains > 70% of speed variation across cities.
- Country GDP explains  $\frac{0.44}{0.71} = 62\%$  of speed variation across countries.

### Mobility and Economic Development: City-level regressions

|                      | Speed<br>all | Speed<br>all                 |
|----------------------|--------------|------------------------------|
| log country GDP (pc) |              | 0.13 <sup>a</sup><br>(0.022) |
| country FE           | Y            | N                            |
| Observations         | 1,190        | 1,190                        |
| $R^2$                | 0.71         | 0.44                         |

- Country FE explains > 70% of speed variation across cities.
- Country GDP explains  $\frac{0.44}{0.71} = 62\%$  of speed variation across countries.

### Model of how income affects urban travel speed

- Elements of the model:
  - Production function for travel and travel demand
  - Taxation to pay for roads
  - Endogenous land supply and population
- Model-based decomposition of impact of income on speed:
  - Contribution of city attribute to explaining speed-income relationship proportional to: speed elasticity × income elasticity of attribute.
  - Corresponds to exact empirical decomposition in Gelbach (2016).
- Structural interpretation of elasticities.
  - Compare to existing estimates from literature and introduce new parameters.

|           |                      | Spee              | d index              | GDP               | $Speed\timesIncome$ |
|-----------|----------------------|-------------------|----------------------|-------------------|---------------------|
|           |                      | Base              | Full                 | Auxiliary         | elasticities        |
|           | log country GDP (pc) | 0.13 <sup>a</sup> | 0.055 <sup>a</sup>   |                   |                     |
|           |                      | (0.022)           | (0.012)              |                   |                     |
| City size | log population       |                   | -0.14 <sup>a</sup>   | -0.073            | 0.010               |
|           |                      |                   | (0.018)              | (0.050)           | (0.0070)            |
|           | log area             |                   | 0.073 <sup>a</sup>   | 0.24 <sup>a</sup> | 0.018 <sup>a</sup>  |
|           |                      |                   | (0.022)              | (0.059)           | (0.0085)            |
| Торо-     | Elevation variance   |                   | -0.0025 <sup>a</sup> | -0.10             | -0.000              |
| graphy    |                      |                   | (0.00091)            | (0.22)            | (0.00057)           |
|           | Asinh water length   |                   | -0.082 <sup>a</sup>  | $0.11^{a}$        | -0.009 <sup>a</sup> |
|           |                      |                   | (0.021)              | (0.026)           | (0.0028)            |
| Infra-    | Asinh road length    |                   | 0.062 <sup>a</sup>   | 0.67 <sup>a</sup> | 0.042 <sup>a</sup>  |
| structure |                      |                   | (0.013)              | (0.060)           | (0.0081)            |
|           | Network griddiness   |                   | 0.19 <sup>a</sup>    | 0.032             | 0.006               |
|           |                      |                   | (0.057)              | (0.025)           | (0.0058)            |
|           | Observations         | 1,190             | 1,190                | 1,304             |                     |
|           | $R^2$                | 0.44              | 0.70                 |                   |                     |

|           |                      | Spee              | d index              | GDP               | $Speed\timesIncome$ |
|-----------|----------------------|-------------------|----------------------|-------------------|---------------------|
|           |                      | Base              | Full                 | Auxiliary         | elasticities        |
|           | log country GDP (pc) | 0.13 <sup>a</sup> | 0.055 <sup>a</sup>   |                   |                     |
|           |                      | (0.022)           | (0.012)              |                   |                     |
| City size | log population       |                   | -0.14 <sup>a</sup>   | -0.073            | 0.010               |
|           |                      |                   | (0.018)              | (0.050)           | (0.0070)            |
|           | log area             |                   | 0.073 <sup>a</sup>   | 0.24 <sup>a</sup> | 0.018 <sup>a</sup>  |
|           |                      |                   | (0.022)              | (0.059)           | (0.0085)            |
| Торо-     | Elevation variance   |                   | -0.0025 <sup>a</sup> | -0.10             | -0.000              |
| graphy    |                      |                   | (0.00091)            | (0.22)            | (0.00057)           |
|           | Asinh water length   |                   | -0.082 <sup>a</sup>  | $0.11^{a}$        | -0.009 <sup>a</sup> |
|           |                      |                   | (0.021)              | (0.026)           | (0.0028)            |
| Infra-    | Asinh road length    |                   | 0.062 <sup>a</sup>   | 0.67 <sup>a</sup> | 0.042 <sup>a</sup>  |
| structure |                      |                   | (0.013)              | (0.060)           | (0.0081)            |
|           | Network griddiness   |                   | 0.19 <sup>a</sup>    | 0.032             | 0.006               |
|           |                      |                   | (0.057)              | (0.025)           | (0.0058)            |
|           | Observations         | 1,190             | 1,190                | 1,304             |                     |
|           | $R^2$                | 0.44              | 0.70                 |                   |                     |

• Six city attributes explain  $\frac{0.13-0.055}{0.13} = 60\%$  of why richer countries are faster

- Major roads explain a lot:
  - Large speed elast.×
    Very large income elast.
- Population doesn't explain:
  - Very large speed elast.×
    Insignificant income elast.

|           |                      | Spee              | d index              | GDP               | $Speed\timesIncome$ |
|-----------|----------------------|-------------------|----------------------|-------------------|---------------------|
|           |                      | Base              | Full                 | Auxiliary         | elasticities        |
|           | log country GDP (pc) | 0.13 <sup>a</sup> | 0.055 <sup>a</sup>   |                   |                     |
|           |                      | (0.022)           | (0.012)              |                   |                     |
| City size | log population       |                   | -0.14 <sup>a</sup>   | -0.073            | 0.010               |
|           |                      |                   | (0.018)              | (0.050)           | (0.0070)            |
|           | log area             |                   | 0.073 <sup>a</sup>   | 0.24 <sup>a</sup> | 0.018 <sup>a</sup>  |
|           |                      |                   | (0.022)              | (0.059)           | (0.0085)            |
| Торо-     | Elevation variance   |                   | -0.0025 <sup>a</sup> | -0.10             | -0.000              |
| graphy    |                      |                   | (0.00091)            | (0.22)            | (0.00057)           |
|           | Asinh water length   |                   | -0.082 <sup>a</sup>  | 0.11 <sup>a</sup> | -0.009 <sup>a</sup> |
|           |                      |                   | (0.021)              | (0.026)           | (0.0028)            |
| Infra-    | Asinh road length    |                   | 0.062 <sup>a</sup>   | 0.67 <sup>a</sup> | 0.042 <sup>a</sup>  |
| structure |                      |                   | (0.013)              | (0.060)           | (0.0081)            |
|           | Network griddiness   |                   | 0.19 <sup>a</sup>    | 0.032             | 0.006               |
|           |                      |                   | (0.057)              | (0.025)           | (0.0058)            |
|           | Observations         | 1,190             | 1,190                | 1,304             |                     |
|           | $R^2$                | 0.44              | 0.70                 |                   |                     |

- Six city attributes explain  $\frac{0.13-0.055}{0.13} = 60\%$  of why richer countries are faster
- Major roads explain a lot:
  - Large speed elast.×
    Very large income elast.
- Population doesn't explain:
  - Very large speed elast.×
    Insignificant income elast.

|           |                      | Spee              | d index              | GDP               | $Speed\timesIncome$ |
|-----------|----------------------|-------------------|----------------------|-------------------|---------------------|
|           |                      | Base              | Full                 | Auxiliary         | elasticities        |
|           | log country GDP (pc) | 0.13 <sup>a</sup> | 0.055 <sup>a</sup>   |                   |                     |
|           |                      | (0.022)           | (0.012)              |                   |                     |
| City size | log population       |                   | -0.14 <sup>a</sup>   | -0.073            | 0.010               |
|           |                      |                   | (0.018)              | (0.050)           | (0.0070)            |
|           | log area             |                   | 0.073 <sup>a</sup>   | 0.24 <sup>a</sup> | 0.018 <sup>a</sup>  |
|           |                      |                   | (0.022)              | (0.059)           | (0.0085)            |
| Торо-     | Elevation variance   |                   | -0.0025 <sup>a</sup> | -0.10             | -0.000              |
| graphy    |                      |                   | (0.00091)            | (0.22)            | (0.00057)           |
|           | Asinh water length   |                   | -0.082 <sup>a</sup>  | 0.11 <sup>a</sup> | -0.009 <sup>a</sup> |
|           |                      |                   | (0.021)              | (0.026)           | (0.0028)            |
| Infra-    | Asinh road length    |                   | 0.062 <sup>a</sup>   | 0.67 <sup>a</sup> | 0.042 <sup>a</sup>  |
| structure |                      |                   | (0.013)              | (0.060)           | (0.0081)            |
|           | Network griddiness   |                   | 0.19 <sup>a</sup>    | 0.032             | 0.006               |
|           |                      |                   | (0.057)              | (0.025)           | (0.0058)            |
|           | Observations         | 1,190             | 1,190                | 1,304             |                     |
|           | $R^2$                | 0.44              | 0.70                 |                   |                     |

- Six city attributes explain  $\frac{0.13-0.055}{0.13} = 60\%$  of why richer countries are faster
- Major roads explain a lot:
  - Large speed elast.×
    Very large income elast.
- Population doesn't explain:
  - Very large speed elast.×
    Insignificant income elast.

|                      | Spee              | d index              | Unconge           | ested speed        | Congest            | ion factor          |
|----------------------|-------------------|----------------------|-------------------|--------------------|--------------------|---------------------|
|                      | Base              | Full                 | Base              | Full               | Base               | Full                |
| log country GDP (pc) | 0.13 <sup>a</sup> | 0.055 <sup>a</sup>   | 0.15 <sup>a</sup> | 0.086 <sup>a</sup> | 0.018 <sup>a</sup> | 0.031 <sup>a</sup>  |
|                      | (0.022)           | (0.012)              | (0.018)           | (0.010)            | (0.0050)           | (0.0052)            |
| log population       |                   | -0.14 <sup>a</sup>   |                   | -0.11 <sup>a</sup> |                    | 0.035 <sup>a</sup>  |
|                      |                   | (0.018)              |                   | (0.017)            |                    | (0.0050)            |
| log area             |                   | 0.073 <sup>a</sup>   |                   | 0.062 <sup>a</sup> |                    | -0.010              |
|                      |                   | (0.022)              |                   | (0.018)            |                    | (0.0078)            |
| Elevation variance   |                   | -0.0025 <sup>a</sup> |                   | -0.0013            |                    | 0.0012 <sup>a</sup> |
|                      |                   | (0.00091)            |                   | (0.0010)           |                    | (0.00039)           |
| Asinh water length   |                   | -0.082 <sup>a</sup>  |                   | -0.068ª            |                    | 0.014 <sup>c</sup>  |
|                      |                   | (0.021)              |                   | (0.018)            |                    | (0.0072)            |
| Asinh road length    |                   | 0.062ª               |                   | 0.056ª             |                    | -0.0063             |
|                      |                   | (0.013)              |                   | (0.012)            |                    | (0.0060)            |
| Network griddiness   |                   | 0.19 <sup>a</sup>    |                   | 0.13ª              |                    | -0.054 <sup>a</sup> |
|                      |                   | (0.057)              |                   | (0.047)            |                    | (0.014)             |
|                      | 1 100             | 1 100                | 1 100             | 1 100              | 1 100              | 1 100               |
| Observations         | 1,190             | 1,190                | 1,190             | 1,190              | 1,190              | 1,190               |
| $R^2$                | 0.44              | 0.70                 | 0.62              | 0.75               | 0.10               | 0.48                |

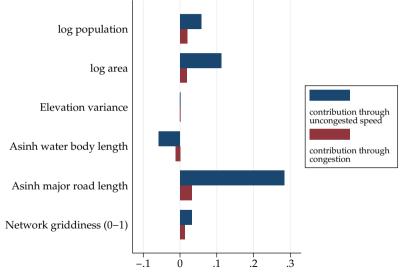
|                      | Speed index       |                      | Uncongested speed |                    | Congest            | tion factor         |
|----------------------|-------------------|----------------------|-------------------|--------------------|--------------------|---------------------|
|                      | Base              | Full                 | Base              | Full               | Base               | Full                |
| log country GDP (pc) | 0.13 <sup>a</sup> | 0.055 <sup>a</sup>   | 0.15 <sup>a</sup> | 0.086ª             | 0.018 <sup>a</sup> | 0.031ª              |
|                      | (0.022)           | (0.012)              | (0.018)           | (0.010)            | (0.0050)           | (0.0052)            |
| log population       |                   | -0.14 <sup>a</sup>   |                   | -0.11 <sup>a</sup> |                    | 0.035 <sup>a</sup>  |
|                      |                   | (0.018)              |                   | (0.017)            |                    | (0.0050)            |
| og area              |                   | 0.073 <sup>a</sup>   |                   | 0.062 <sup>a</sup> |                    | -0.010              |
|                      |                   | (0.022)              |                   | (0.018)            |                    | (0.0078)            |
| Elevation variance   |                   | -0.0025 <sup>a</sup> |                   | -0.0013            |                    | 0.0012 <sup>a</sup> |
|                      |                   | (0.00091)            |                   | (0.0010)           |                    | (0.00039)           |
| Asinh water length   |                   | -0.082 <sup>a</sup>  |                   | -0.068ª            |                    | $0.014^{c}$         |
|                      |                   | (0.021)              |                   | (0.018)            |                    | (0.0072)            |
| Asinh road length    |                   | 0.062 <sup>a</sup>   |                   | 0.056 <sup>a</sup> |                    | -0.0063             |
|                      |                   | (0.013)              |                   | (0.012)            |                    | (0.0060)            |
| Network griddiness   |                   | 0.19 <sup>a</sup>    |                   | 0.13ª              |                    | -0.054 <sup>a</sup> |
|                      |                   | (0.057)              |                   | (0.047)            |                    | (0.014)             |
| Observations         | 1,190             | 1,190                | 1,190             | 1,190              | 1,190              | 1,190               |
| $R^2$                | 0.44              | 0.70                 | 0.62              | 0.75               | 0.10               | 0.48                |

|                      | Speed index       |                      | Unconge           | sted speed         | Congestion factor  |                     |
|----------------------|-------------------|----------------------|-------------------|--------------------|--------------------|---------------------|
|                      | Base              | Full                 | Base              | Full               | Base               | Full                |
| log country GDP (pc) | 0.13 <sup>a</sup> | 0.055 <sup>a</sup>   | 0.15 <sup>a</sup> | 0.086 <sup>a</sup> | 0.018 <sup>a</sup> | 0.031 <sup>a</sup>  |
|                      | (0.022)           | (0.012)              | (0.018)           | (0.010)            | (0.0050)           | (0.0052)            |
| log population       |                   | -0.14 <sup>a</sup>   |                   | -0.11 <sup>a</sup> |                    | 0.035 <sup>a</sup>  |
|                      |                   | (0.018)              |                   | (0.017)            |                    | (0.0050)            |
| log area             |                   | 0.073 <sup>a</sup>   |                   | 0.062 <sup>a</sup> |                    | -0.010              |
|                      | (0.022)           |                      |                   | (0.018)            |                    | (0.0078)            |
| Elevation variance   |                   | -0.0025 <sup>a</sup> |                   | -0.0013            |                    | 0.0012ª             |
|                      |                   | (0.00091)            |                   | (0.0010)           |                    | (0.00039)           |
| Asinh water length   |                   | -0.082 <sup>a</sup>  |                   | -0.068ª            |                    | $0.014^{c}$         |
|                      |                   | (0.021)              |                   | (0.018)            |                    | (0.0072)            |
| Asinh road length    |                   | 0.062 <sup>a</sup>   |                   | 0.056 <sup>a</sup> |                    | -0.0063             |
|                      |                   | (0.013)              |                   | (0.012)            |                    | (0.0060)            |
| Network griddiness   |                   | 0.19 <sup>a</sup>    |                   | 0.13 <sup>a</sup>  |                    | -0.054 <sup>a</sup> |
|                      |                   | (0.057)              |                   | (0.047)            |                    | (0.014)             |
| Observations         | 1,190             | 1,190                | 1,190             | 1,190              | 1,190              | 1,190               |
| R <sup>2</sup>       | 0.44              | 0.70                 | 0.62              | 0.75               | 0.10               | 0.48                |

Urban crowding elasticity  $\mu$ 

Congestion elasticity  $\theta$ 

Population elasticity  $-\mu - \theta$ 


|                      | Speed index       |                      | Uncongested speed |                    | Congest            | ion factor          |
|----------------------|-------------------|----------------------|-------------------|--------------------|--------------------|---------------------|
|                      | Base              | Full                 | Base              | Full               | Base               | Full                |
| log country GDP (pc) | 0.13 <sup>a</sup> | 0.055 <sup>a</sup>   | 0.15 <sup>a</sup> | 0.086 <sup>a</sup> | 0.018 <sup>a</sup> | 0.031 <sup>a</sup>  |
|                      | (0.022)           | (0.012)              | (0.018)           | (0.010)            | (0.0050)           | (0.0052)            |
| log population       |                   | -0.14 <sup>a</sup>   |                   | -0.11 <sup>a</sup> |                    | 0.035 <sup>a</sup>  |
|                      |                   | (0.018)              |                   | (0.017)            |                    | (0.0050)            |
| log area             |                   | 0.073 <sup>a</sup>   |                   | 0.062 <sup>a</sup> |                    | -0.010              |
|                      |                   | (0.022)              |                   | (0.018)            |                    | (0.0078)            |
| Elevation variance   |                   | -0.0025 <sup>a</sup> |                   | -0.0013            |                    | 0.0012 <sup>a</sup> |
|                      |                   | (0.00091)            |                   | (0.0010)           |                    | (0.00039)           |
| Asinh water length   |                   | -0.082 <sup>a</sup>  |                   | -0.068ª            |                    | $0.014^{c}$         |
|                      |                   | (0.021)              |                   | (0.018)            |                    | (0.0072)            |
| Asinh road length    |                   | 0.062 <sup>a</sup>   |                   | 0.056 <sup>a</sup> |                    | -0.0063             |
|                      |                   | (0.013)              |                   | (0.012)            |                    | (0.0060)            |
| Network griddiness   |                   | 0.19 <sup>a</sup>    |                   | 0.13 <sup>a</sup>  |                    | -0.054 <sup>a</sup> |
|                      |                   | (0.057)              |                   | (0.047)            |                    | (0.014)             |
| Observations         | 1,190             | 1,190                | 1,190             | 1,190              | 1,190              | 1,190               |
| R <sup>2</sup>       | 0.44              | 0.70                 | 0.62              | 0.75               | 0.10               | 0.48                |

Urban crowding elasticity  $\mu$ 

Congestion elasticity  $\boldsymbol{\theta}$ 

Population elasticity  $-\mu - \theta$ 

=

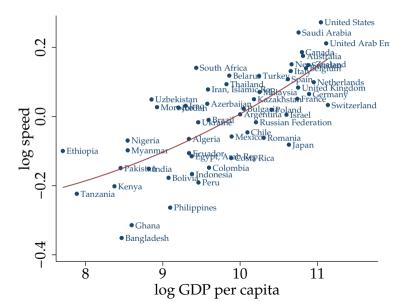


Contribution to speed - GDP relationship

#### Two more decompositions

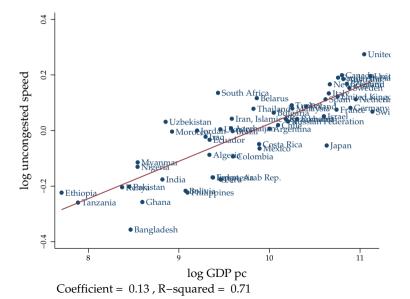
• Why is United States so much faster than other rich countries? • Table • Figure

- ▶ Model explains 83% of speed difference between US and rest of OECD.
- ▶ US cities: Smaller pop (+), larger area (+), griddier network (+), more major roads (+)
- ► Explanatory Power: City Size > Infrastructure ≫ Topography
- Why is Bangladesh so much slower than other poor countries? Table Figure
  - ▶ Model explains 88% of speed difference between Bangladesh and other poor countries.
  - ▶ Bangladesh cities: More water bodies (-), more populous (-), fewer major roads (-)
  - Explanatory power: Topography > City Size > Infrastructure


# Robustness: Impact of explanatory variables within and across countries

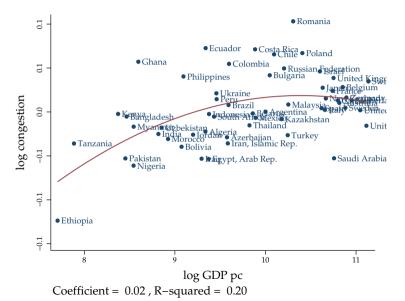
|                                 | Speed                | Speed Speed Sp      |                     | Speed               | Speed               | Speed              |  |
|---------------------------------|----------------------|---------------------|---------------------|---------------------|---------------------|--------------------|--|
|                                 | all                  | all                 | OECD                | Poor Countries      | US                  | India              |  |
| log country GDP (pc)            | 0.055 <sup>a</sup>   |                     |                     |                     |                     |                    |  |
|                                 | (0.012)              |                     |                     |                     |                     |                    |  |
| log population                  | -0.14ª               | -0.12 <sup>a</sup>  | -0.18 <sup>a</sup>  | -0.12 <sup>a</sup>  | -0.15 <sup>a</sup>  | -0.14 <sup>a</sup> |  |
|                                 | (0.018)              | (0.016)             | (0.026)             | (0.013)             | (0.021)             | (0.019)            |  |
| log area                        | 0.073 <sup>a</sup>   | 0.040 <sup>b</sup>  | 0.085 <sup>a</sup>  | 0.047 <sup>c</sup>  | 0.099ª              | 0.10 <sup>a</sup>  |  |
|                                 | (0.022)              | (0.016)             | (0.019)             | (0.025)             | (0.024)             | (0.025)            |  |
| Elevation variance              | -0.0025 <sup>a</sup> | -0.0026ª            | -0.0024             | -0.0028             | -0.0017             | -0.026ª            |  |
|                                 | (0.00091)            | (0.00094)           | (0.0015)            | (0.0017)            | (0.0020)            | (0.0066)           |  |
| Asinh water body length         | -0.082 <sup>a</sup>  | -0.055 <sup>a</sup> | -0.055 <sup>a</sup> | -0.069 <sup>c</sup> | -0.064 <sup>a</sup> | -0.15 <sup>a</sup> |  |
|                                 | (0.021)              | (0.020)             | (0.010)             | (0.040)             | (0.0095)            | (0.030)            |  |
| Asinh major road length         | 0.062ª               | 0.052ª              | 0.075 <sup>a</sup>  | 0.051*              | 0.043 <sup>b</sup>  | 0.053 <sup>a</sup> |  |
|                                 | (0.013)              | (0.011)             | (0.019)             | (0.0074)            | (0.020)             | (0.018)            |  |
| Network griddiness (0-1)        | 0.19 <sup>a</sup>    | 0.15 <sup>a</sup>   | 0.14 <sup>a</sup>   | 0.28 <sup>a</sup>   | 0.15 <sup>a</sup>   | 0.25 <sup>b</sup>  |  |
|                                 | (0.057)              | (0.029)             | (0.0075)            | (0.028)             | (0.025)             | (0.10)             |  |
| Country FE                      | N                    | Y                   | Y                   | Y                   | N                   | N                  |  |
| Observations                    | 1,190                | 1,209               | 285                 | 483                 | 139                 | 174                |  |
| $R^2$                           | 0.70                 | 0.84                | 0.89                | 0.70                | 0.67                | 0.43               |  |
| Within (Between) R <sup>2</sup> |                      | 0.45 (0.57)         | 0.65 (0.64)         | 0.42 (0.52)         |                     |                    |  |

### Conclusion


- We assemble an urban transportation database comparable across world cities.
- We identify robust correlates of urban travel speed within and across countries.
- We develop an urban model that decomposes the speed-income relationship into the contribution of city size, infrastructure, and topography.
- Policy implications:
  - Congestion policy won't close urban travel speed gap between rich and poor countries.
  - Economic development brings faster travel through road building and urban area expansion.
  - Infrastructure not always the main reason countries are fast or slow: e.g., Bangladesh constrained by challenging topography and large urban population.

#### Appendix: Speed vs.GDP pc, country ...



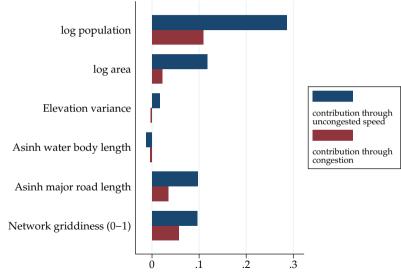

28 / 35

### Appendix: Uncongested speed vs.GDP pc, country ...



29 / 35

### Appendix: Congestion vs.GDP pc,country ...

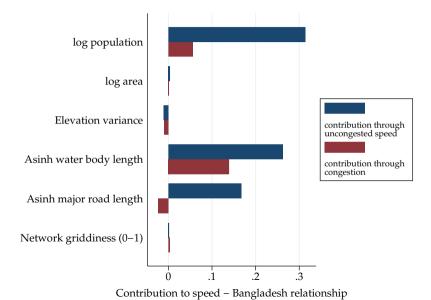



30 / 35

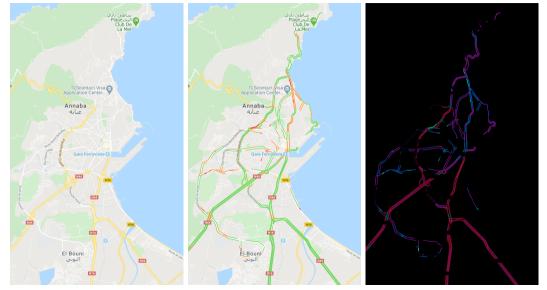
### Appendix: Why is US faster than rest of OECD? ...

|                          | Speed index       |                     | Unconge           | ncongested speed    |                     | Congestion factor   |                    |
|--------------------------|-------------------|---------------------|-------------------|---------------------|---------------------|---------------------|--------------------|
|                          | Base              | Full                | Base              | Full                | Base                | Full                | Auxiliary          |
| United States            | 0.23 <sup>a</sup> | 0.038 <sup>c</sup>  | 0.20 <sup>a</sup> | 0.057 <sup>a</sup>  | -0.031 <sup>a</sup> | 0.019 <sup>a</sup>  |                    |
|                          | (0.020)           | (0.020)             | (0.018)           | (0.017)             | (0.0053)            | (0.0060)            |                    |
| log population           |                   | -0.21 <sup>a</sup>  |                   | -0.15 <sup>a</sup>  |                     | 0.056ª              | -0.44 <sup>a</sup> |
|                          |                   | (0.027)             |                   | (0.023)             |                     | (0.0053)            | (0.10)             |
| log area                 |                   | 0.087 <sup>a</sup>  |                   | 0.073 <sup>a</sup>  |                     | -0.014              | 0.37 <sup>a</sup>  |
|                          |                   | (0.030)             |                   | (0.024)             |                     | (0.015)             | (0.088)            |
| Elevation variance       |                   | $-0.0036^{b}$       |                   | $-0.0043^{b}$       |                     | -0.00070            | -0.87              |
|                          |                   | (0.0014)            |                   | (0.0017)            |                     | (0.00055)           | (0.53)             |
| Asinh water body length  |                   | -0.038 <sup>c</sup> |                   | -0.030 <sup>b</sup> |                     | 0.0083              | 0.094              |
|                          |                   | (0.021)             |                   | (0.014)             |                     | (0.0073)            | (0.072)            |
| Asinh major road length  |                   | 0.093 <sup>a</sup>  |                   | 0.069 <sup>b</sup>  |                     | -0.025 <sup>c</sup> | 0.32 <sup>a</sup>  |
|                          |                   | (0.031)             |                   | (0.027)             |                     | (0.012)             | (0.099)            |
| Network griddiness (0-1) |                   | 0.13 <sup>a</sup>   |                   | 0.081 <sup>a</sup>  |                     | -0.047 <sup>a</sup> | 0.27 <sup>a</sup>  |
|                          |                   | (0.019)             |                   | (0.017)             |                     | (0.0040)            | (0.0100)           |
| Observations             | 285               | 285                 | 285               | 285                 | 285                 | 285                 | 286                |
| $R^2$                    | 0.52              | 0.83                | 0.60              | 0.82                | 0.15                | 0.66                |                    |

# Appendix: Why is US faster than rest of OECD? ...




Contribution to speed - United States relationship


### Appendix: Why is Bangladesh slower than other poor countries? ...

|                          | Speed index        |                      | Unconge            | Uncongested speed   |                    | Congestion factor  |                    |
|--------------------------|--------------------|----------------------|--------------------|---------------------|--------------------|--------------------|--------------------|
|                          | Base               | Full                 | Base               | Full                | Base               | Full               | Auxiliary          |
| Bangladesh               | -0.24 <sup>a</sup> | -0.029               | -0.22 <sup>a</sup> | -0.048 <sup>b</sup> | 0.016 <sup>b</sup> | -0.019             |                    |
|                          | (0.023)            | (0.035)              | (0.022)            | (0.021)             | (0.0061)           | (0.018)            |                    |
| log population           |                    | -0.15 <sup>a</sup>   |                    | -0.13 <sup>a</sup>  |                    | 0.023 <sup>a</sup> | 0.58 <sup>a</sup>  |
|                          |                    | (0.016)              |                    | (0.015)             |                    | (0.0051)           | (0.089)            |
| log area                 |                    | 0.069 <sup>a</sup>   |                    | 0.049 <sup>b</sup>  |                    | $-0.019^{b}$       | -0.018             |
|                          |                    | (0.025)              |                    | (0.021)             |                    | (0.0095)           | (0.074)            |
| Elevation variance       |                    | -0.0029 <sup>a</sup> |                    | -0.0016             |                    | $0.0014^{b}$       | -1.66 <sup>a</sup> |
|                          |                    | (0.0010)             |                    | (0.0013)            |                    | (0.00064)          | (0.52)             |
| Asinh water body length  |                    | -0.12 <sup>a</sup>   |                    | -0.079 <sup>a</sup> |                    | 0.042 <sup>b</sup> | 0.79 <sup>a</sup>  |
|                          |                    | (0.031)              |                    | (0.023)             |                    | (0.017)            | (0.028)            |
| Asinh major road length  |                    | 0.077 <sup>a</sup>   |                    | 0.090 <sup>a</sup>  |                    | $0.012^{b}$        | -0.44 <sup>a</sup> |
|                          |                    | (0.0097)             |                    | (0.0071)            |                    | (0.0049)           | (0.13)             |
| Network griddiness (0-1) |                    | 0.100                |                    | 0.034               |                    | -0.066ª            | -0.012             |
|                          |                    | (0.060)              |                    | (0.056)             |                    | (0.019)            | (0.0086)           |
| Observations             | 483                | 483                  | 483                | 483                 | 483                | 483                | 592                |
| R <sup>2</sup>           | 0.04               | 0.51                 | 0.05               | 0.48                | 0.00               | 0.41               |                    |

### Appendix: Why is Bangladesh slower than other poor countries? ...



### Appendix: Traffic color comparison for Annaba, Algeria .

