A *p* Theory of Government Debt and Taxes

Wei Jiang hkust

THOMAS J. SARGENT

NEW YORK UNIVERSITY AND NBER

NENG WANG

Columbia University and NBER

JINQIANG YANG

SHANGHAI UNIVERSITY OF FINANCE AND ECONOMICS (SUFE)

NBER Summer Institute 2022

JULY 19, 2022

MOTIVATION

- How much will US tax rates have to rise over time in order to finance the \$29.6 trillion dollar debt outstanding as of Q4 2021?
- What is a maximum sustainable debt-to-GDP ratio, the equilibrium debt capacity?
- How long will it take for the US to attain this debt capacity?
- How costly is it for a government to service its debt as a function of its debt-to-GDP ratio?
- Should a government borrow more when r < g (Blanchard, 2019) as in the US today?

MODEL KEY FEATURES

- A minimalistic, pedagogical stochastic continuous-time model of government debt and taxes with
 - ${\bf AS}\,$ complete financial spanning and risk premia
 - Arrow securities, Black and Scholes (1973), Merton (1971, 1973), Harrison and Kreps (1979), Lucas (1978), Shiller (1994), Bohn (1995), and Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019, 2022)
 - DT distortionary taxes: deadweight costs
 - ▶ Barro (1979)
 - LC limited commitment and option to default
 - Eaton and Gersovitz (1981), Thomas and Worrall (1988), Kehoe and Levine (1993), Kocherlakota (1996), Ai and Li (2015), Bolton, Wang, and Yang (2019), Rebelo, Wang, and Yang (2022)
 - **IP** households' **impatience**
 - Aguiar and Amador (2021), dynamic corporate finance/contracting literature (DeMarzo and Sannikov, 2006)

OUTPUT AND FINANCIAL MARKETS

▶ In the normal regime, output Y_t follows

$$\frac{dY_t}{Y_t} = gdt + \psi_h d\mathcal{Z}_t^h + \psi_m d\mathcal{Z}_t^m$$

\$\mathcal{Z}_t^h\$ and \$\mathcal{Z}_t^m\$: Idiosyncratic and systematic Brownian shocks
 Dynamic risk management:

- ► Idiosyncratic risk exposure: $-\Pi_t^h \cdot d\mathcal{Z}_t^h$
- Systematic risk exposure: $-\prod_t^m \cdot (\eta dt + d\mathcal{Z}_t^m)$
- \blacktriangleright Bonds that pay interests at the risk-free rate r
- ▶ Unique stochastic discount factor (SDF) \mathbb{M}_t
 - Arrow securities, Harrison and Kreps (1979), Black and Scholes (1973), Merton (1973), Lucas (1978), Duffie and Huang (1985), and Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019, 2022)

GOV'T SPENDING, TAXES, AND DEBT

Exogenous government spending: $\Gamma_t = \gamma Y_t$

• Distortionary taxes: $C_t = c(\tau_t)Y_t$, where $\tau_t = \mathcal{T}_t/Y_t$

Budget constraint:

$$B_0 \leq \underbrace{\mathbb{E}}_{0} \underbrace{\int_0^{T^{\mathcal{D}}} \mathbb{M}_t[(\mathcal{T}_t - \Gamma_t) \, dt - dU_t]}_{\text{PV of primary surpluses}}, \tag{1}$$

where dU_t is the (lumpy) transfer payment to households financed by debt issuance and B_0 is the initial debt level.

▶ Debt dynamics:

 $dB_t = \left(rB_t + \left(\Gamma_t - \mathcal{T}_t\right)\right)dt + \frac{dU_t}{dU_t} - \Pi_t^h d\mathcal{Z}_t^h - \Pi_t^m \left(\eta dt + d\mathcal{Z}_t^m\right)$

Tax-rate constraint (Keynes, 1923): τ_t ≤ τ
Can allow for nominal debt and will discuss if time permits

LIMITED COMMITMENT AND DEFAULT REGIME $(t \ge T^{\mathcal{D}})$

► Default is costly: $\hat{Y}_t = \alpha Y_t < Y_t$, as $\alpha < 1$

Taxes are more distortionary in the default regime than in the normal regime:

$$\widehat{c}(\,\cdot\,) = \widehat{C}_t / \widehat{Y}_t = \kappa \, c(\,\cdot\,) > c(\,\cdot\,) = C_t / Y_t, \quad \text{as} \quad \kappa > 1$$

Zero primary deficit:
$$\widehat{\mathcal{T}}_t = \Gamma_t = \gamma_t Y_t$$

• Obtain the off-the-equilibrium-path value function in the default regime: $\hat{P}(\hat{Y}_t)$, which appears in the limited-commitment constraint in the normal regime

 Straightforward to extend the model to allow for stochastic exit from the default regime

The same tax-rate constraint (Keynes, 1923): $\hat{\tau}_t \leq \overline{\tau}$

Debt, Taxes, and Risk Management Problem

- ► Impatience-adjusted SDF for households: $e^{-\zeta t} \mathbb{M}_t$
- Choose lumpy debt issuance (dU_t) , tax rates $(\tau_t \text{ and } \hat{\tau}_t)$, and idiosyncratic and systematic risk hedging demands $(\Pi_t^h \text{ and } \Pi_t^m)$ to maximize households' value $P(B_0, Y_0)$:

$$\mathbb{E}\int_0^\infty e^{-\zeta t} \mathbb{M}_t \left[(1 - \mathbf{1}_t^{\mathcal{D}}) [dU_t + (Y_t - (\mathcal{T}_t + C_t)) dt] + \mathbf{1}_t^{\mathcal{D}} (\widehat{Y}_t - (\widehat{\mathcal{T}}_t + \widehat{C}_t)) dt \right]$$

subject to

- 1. the budget constraint (1)
- 2. limited-commitment constraint for all $t \ge 0$: $P(B_t, Y_t) \ge \widehat{P}(\widehat{Y}_t)$, where $\widehat{P}(\widehat{Y}_t)$ is households' value function in the default regime.
- 3. tax-rate constraint: $\tau \leq \overline{\tau}$

Solution: 3 Regions

• Three regions of the debt-to-GDP ratio $b_t = B_t/Y_t$:

▶ In the tax-smoothing region

$$\dot{b}_t \equiv \mu^b(b_t) = \underbrace{\gamma - \tau(b_t)}_{\text{primary deficit}} + \underbrace{r \times b_t}_{\text{interest payment}} - \underbrace{g \times b_t}_{\text{growth}} + \underbrace{\xi \times b_t}_{\text{hedging cost}}$$

Solution: 3 Regions

• Three regions of the debt-to-GDP ratio $b_t = B_t/Y_t$:

▶ In the tax-smoothing region

$$\dot{b}_{t} \equiv \mu^{b}(b_{t}) = \underbrace{\gamma - \tau(b_{t})}_{\text{primary deficit}} + \underbrace{r \times b_{t}}_{\text{interest payment}} - \underbrace{g \times b_{t}}_{\text{growth}} + \underbrace{\xi \times b_{t}}_{\text{hedging cost}}$$

$$scaled \text{ households' value, } p(b_{t}) = P(B_{t}, Y_{t})/Y_{t}, \text{ solves}$$

$$[\underbrace{(r + \xi + \zeta)}_{\text{discount rate}} - g]p(b) = \underbrace{1 - \tau(b) - c(\tau(b))}_{\text{CF to households}} + \underbrace{[(r + \xi - g)b + \gamma - \tau(b)]}_{\text{drift of } b: \ \mu^{b}(b)} \cdot p'(b)$$
(2)

Solution: 3 Regions

• Three regions of the debt-to-GDP ratio $b_t = B_t/Y_t$:

▶ In the tax-smoothing region

$$\dot{b}_{t} \equiv \mu^{b}(b_{t}) = \underbrace{\gamma - \tau(b_{t})}_{\text{primary deficit}} + \underbrace{r \times b_{t}}_{\text{interest payment}} - \underbrace{g \times b_{t}}_{\text{growth}} + \underbrace{\xi \times b_{t}}_{\text{hedging cost}}$$

$$\mathbf{scaled households' value, } p(b_{t}) = P(B_{t}, Y_{t})/Y_{t}, \text{ solves}$$

$$[\underbrace{(r + \xi + \zeta)}_{\text{discount rate}} - g]p(b) = \underbrace{1 - \tau(b) - c(\tau(b))}_{\text{CF to households}} + \underbrace{[(r + \xi - g)b + \gamma - \tau(b)]}_{\text{drift of } b: \ \mu^{b}(b)} \cdot p'(b)$$
(2)

First-order condition for taxes: $1 + c'(\tau(b)) = -p'(b)$

Solution: 2 + 2 + 2 Equations

• Three regions of the debt-to-GDP ratio $b_t = B_t/Y_t$:

▶ Lumpy debt issuance region $(b < \underline{b})$ where 'debt is cheap'

▶
$$p'(\underline{b}) = -1$$
 and $p''(\underline{b}) = 0$ if $\underline{b} > 0$; otherwise, $\underline{b} = 0$

• Off-the-equilibrium default region $(b > \overline{b})$:

► zero drift: $\mu^b(\overline{b}) = 0$ or equivalently $\overline{b} = \frac{\tau(\overline{b}) - \gamma}{r + \xi - q}$

• $p(\overline{b}) = \alpha \widehat{p}$ or $\tau(\overline{b}) = \overline{\tau}$, whichever is tighter

Why p theory?

q theory of investment	\boldsymbol{p} theory of debt and taxes	
capital stock	government debt	
capital adjustment costs	tax deadweight costs	
marginal $q = MC$ of investing	- marginal $p = MC$ of taxing	
MM holds	limited commitment	
marginal $q \ge 1$	marginal $p \ge 1$	

 q theory of investment (Lucas and Prescott, 1971; Hayashi, 1982; Abel and Eberly, 1994)

PARAMETERS

Parameter	Symbol	Value
A. Calibration inputs		
risk-free rate	r	1%
risk premium (Jiang et al., 2022)	ξ	4%
average output growth rate	g	3%
government spending-GDP ratio	γ	20%
output loss (Hebert and Schreger, 2017)	$1 - \alpha$	5%
B. Calibration outputs		
impatience	ζ	0.1%
tax deadweight loss	φ	2.9
default deadweight loss	κ	1.2

• Quadratic deadweight loss function (Barro, 1979): $c(\tau) = \frac{\varphi}{2}\tau^2$

• Scaled total value: $v(b_t) = \frac{V(B_t, Y_t)}{Y_t} = p(b_t) + b_t$

RICARDIAN EQUIVALENCE (AS)

FIGURE: r = 1%, $\xi = 4\%$, g = 3%, and $\gamma = 20\%$.

Stochastic Barro (AS + DT)

FIGURE: r = 1%, $\xi = 4\%$, g = 3%, $\gamma = 20\%$, and $\varphi = 2.9$.

LC MODEL (AS+DT+LC)

FIGURE: r = 1%, $\xi = 4\%$, g = 3%, $\gamma = 20\%$, $\varphi = 2.9$, $\alpha = 0.95$ and $\kappa = 1.2$.

FULL MODEL (AS+DT+LC+IP)

FIGURE: r = 1%, $\xi = 4\%$, g = 3%, $\gamma = 20\%$, $\varphi = 2.9$, $\alpha = 0.95$, $\kappa = 1.2$, and $\zeta = 0.1\%$.

DUALITY: GOVERNMENT'S VALUE MAXIMIZATION

• Government's value $F_t = F(W_t, Y_t)$:

$$F(W_t, Y_t) = \max \quad \mathbb{E}_t \quad \int_t^{T^{\mathcal{D}}} \frac{\mathbb{M}_s}{\mathbb{M}_t} \underbrace{\left[(\mathcal{T}_s - \Gamma_s) \, ds - dJ_s \right]}_{\text{primary surplus}}.$$

• Household's promised value W_t as in dynamic contracting models (e.g., Sannikov, 2008):

 $dW_t = \left[(\zeta + r)W_t - (Y_t - \mathcal{T}_t - C_t) - \eta \Phi_t^m \right] dt - dJ_t - \Phi_t^h d\mathcal{Z}_t^h - \Phi_t^m d\mathcal{Z}_t^m$

Scaled household's value $w_t = W_t/Y_t$ and scaled government's value:

$$f(w_t) = F(W_t, Y_t) / Y_t$$

Equivalence:
$$w = p(b), b = f(w)$$

Equivalence:
$$w = p(b), b = f(w)$$

Equivalence:
$$w = p(b), b = f(w)$$

Duality: p(b) = w and f(w) = b

Marginal Cost of Servicing Debt -p'(b)and Tax Rate $\tau(b)$

Effects of interest rate r

Effects of risk premium ξ

Predicting b_t

FIGURE: Steady-state debt capacity for our baseline calulation (blue lines in panels B, C, and D): $\bar{b} = 199\%$ within the plausible range of 150 - 300%. The US debt-GDP ratios in 2000 and 2020 are 57.5% and 108.1%, respectively.

SUMMARY AND ON-GOING WORK

- First pass at developing a pedagogical p theory to organize our thoughts about government debt and taxes:
 SDF/intertemporal budget (with risk premium and no bubble) approach with endogenous debt capacity due to limited commitment and Barro's distortionary taxes
- Quantify the effects of interest rate (r), risk premium (ξ), growth (g) on transition dynamics, equilibrium debt capacity, taxes, and MC of servicing debt -p'(b)
- On-going and future work
 - Interaction of fiscal and monetary policies (Sargent and Wallace, 1981): inflation tax and nominal debt
 - Endogenous SDF (Lucas and Stokey, 1983) and general equilibrium analysis