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I. Introduction

In Q4 2021 US federal debt is 123% of US GDP. In some developed European and Asian

countries it is even higher. What is a maximum sustainable government debt-to-GDP ratio?

Under a good policy, how long will it take for the US debt to GDP ratio to attain that

maximum? How costly is it for a government to service its debt and how does that depend

on its current debt-GDP ratio? Should a government plan to borrow more when, as in the

US today, interest rates on government debt are lower than prospective GDP growth rates?

Under an optimal policy, how much will US tax rates have to rise over time in order to

finance the $29.6 trillion dollar debt outstanding as of Q4 2021?1

To answer such questions, we construct a tractable stochastic continuous-time model of

taxes and government debt that adds three features to a deterministic model of Barro (1979).

We retain a key assumption of Barro (1979) that deadweight losses from distortionary taxes

are convex in tax revenue and homogeneous of degree one in output and tax revenue. We

can write the household’s value as a function P (B, Y ) = p(b)Y , where Y is GDP, B is

government debt, and b = B/Y . The marginal cost of servicing debt, −PB(B, Y ) = −p′(b)
plays a key role in our analysis and motivates the title of this paper. A government optimally

smooths the household’s tax burdens over time by equating the marginal cost of taxing the

household with the marginal benefit of using tax proceeds to service government debt. While

in Barro (1979) a government solves a discounted deadweight loss minimization problem, the

structure of our model impels us instead to ask a government to maximize a risk-adjusted

present value of total cashflow payoffs to the household.2

In addition to being set within an explicitly stochastic environment, the three features

appearing in our model but not in Barro (1979) include options for the government to

default on its debt as in Eaton and Gersovitz (1981), complete financial spanning and risk

premia, and a government that is impatient relative to the representative household that is

paying taxes to the government as in Aguiar and Amador (2021).3 We show how our no-

1. The numbers quoted here are from Fred at https://fred.stlouisfed.org.
2. In Barro (1979), the household’s value maximization problem is equivalent to the tax distortion cost

minimization problem because the government full commits to repay its debt and output is exogenous.
Therefore, the solution in Barro (1979) is indeed welfare maximizing. However, in our model, we have to
work with the value maximization problem because the government’s limited commitment to repay its debt
makes output and debt capacity be endogenous. We cannot simply follow Barro (1979) to solve the distortion
cost minimization problem.
3. While there is no default in equilibrium in our model, the default option induces a limited-commitment

constraint. Outcomes in our model differ from Eaton and Gersovitz (1981). Aguiar and Amador (2021)
present sovereign debt models with limited commitment.
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commitment-to-repay assumption shapes a government’s equilibrium debt capacity.4 Upon

default, the government’s debt balance drops to zero, output decreases, and the government

permanently loses access to the debt market, with the consequence that thereafter it must

set the primary government surplus to zero each period and also face a more adverse tax

distortion function.5 As in Thomas and Worrall (1988), Worrall (1990), and Kehoe and

Levine (1993), adverse continuation values consequent upon default deter a borrower from

reneging on its debt while bounding from above its sustainable debt.6

Continuous time facilitates a sharp characterization of debt limits and debt dynamics.7

Two conditions allow us to characterize the maximally sustainable risk-free debt-to-GDP

ratio b: 1.) the government’s indifference condition between defaulting and servicing its debt

induced by its limited commitment and 2.) a zero-drift condition for the debt-GDP ratio b

at debt capacity b, which boils down to an equivalent perpetual (Gordon) growth valuation

formula at a steady state b.8 We find that the quantitative effect of the limited-commitment

constraint is substantial. Only by incorporating this limited-commitment constraint, can

we generate a debt-GDP capacity b in a plausible range of 150-300%. If we withdraw our

limited-commitment debt-market participation constraint, our model becomes a stochastic

version of Barro’s that shares his commitment-to-repay assumption. That version of the

model predicts debt capacity that we think is implausibly high, in the range of 10-15 times

GDP.

Our second amendment relative to Barro (1979) is that we assume that government debt

bears a risk premium that reflects the correlation between a country’s GDP growth rate and

an aggregate stock market return. In the spirit of arrangements proposed by Shiller (1994),

we assume that the government trades assets that allow it to insure itself against risk in GDP

4. Our model shares an emphasis on the effects of financial constraints on sovereign finance with Bolton
(2016), Bolton and Huang (2018), and Rebelo, Wang, and Yang (2021).

5. Our main qualitative results are robust to the detailed specification of punishments for default. The key
is that default is costly and hence the government faces a consequence from default. The costly default
supports a debt capacity. Otherwise, optimal debt capacity would be zero as shown by Bulow and Rogoff
(1989).

6. Our model shares some of the structure of the simple villager-money-lender model that Ljungqvist and
Sargent (2023, ch. 22) use to introduce some of the ideas in the closed economy model of Kocherlakota
(1996b) that builds on and reinterprets Thomas and Worrall (1988).

7. DeMarzo, He, and Tourre (2021) construct a continuous-time sovereign-debt model that generates equi-
librium debt ratcheting. Rebelo, Wang, and Yang (2021) construct a continuous-time sovereign-debt model
in which a country’s degree of financial development, defined as how easily it can issue debt denominated
in domestic currency in international capital markets, generates “debt intolerance” in the sense of Rogoff,
Reinhart, and Savastano (2003).

8. The zero-drift condition at b is an equilibrium argument based on local changes. The Gordon growth
model at the steady state is a forward-looking present value calculation argument for the determination of
b. They are equivalent. A non-zero drift of b at b would be inconsistent with the notion of debt capacity.
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growth rates. We take as exogenous a stochastic discount factor (SDF) process implied in

Black and Scholes (1973) and Merton (1973), a process that we assume is not affected by

the government’s tax and borrowing policy.9 Our use of a SDF brings insights about how

government debt is evaluated in complete markets settings in ways also studied empirically

by Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019).

Two important implications of our complete-market SDF formulation are that 1.) the

optimal debt-GDP ratio b process evolves deterministically and 2.) the risk premium has a

first-order effect on the dynamics of the debt-GDP ratio b. Both implications follow from the

government’s incentive to reduce the household’s tax burdens. Thus, to smooth taxes over

time and across states, it is optimal to make the b process deterministic – this follows from

applying Jensen’s inequality to the first-order condition for the tax rate. With complete

financial spanning, it is feasible to make contributions to the volatility of b from both the

systematic and idiosyncratic risks be zero; optimal risk management policies do indeed set

them both to zero. Finally, while it is costless to hedge idiosyncratic risk, the government

has to pay a risk premium to hedge the systematic risk component of its GDP shock by

trading in markets for GDP growth rate instruments like those described by Shiller (1994).10

Dynamics of the debt-GDP ratio b under optimal policies is deterministic and driven by

four forces. In addition to 1.) the primary deficit, 2.) interest payments, and 3.) GDP

growth, our model also features a fourth: hedging costs. We summarize the equilibrium

debt-GDP process b under optimality as follows:

change of b = primary deficit + interest rate (r) × b − growth (g) × b+ hedging cost. (1)

The first term on the right side of (1) is the scaled primary deficit, the difference between

government spending and tax revenues, divided by contemporaneous GDP. The second term

is the (scaled) interest payment, which equals b multiplied by the risk-free rate r. The third

term describes debt reduction due to growth, which equals b multiplied by the expected

GDP growth rate. These widely acknowledged three terms are discussed, for example, by

Blanchard (2019) and Mehrotra and Sergeyev (2021). In addition to those three terms,

our model contains a fourth terms because it is optimal for the government to hedge its

GDP process in a way that makes b evolve deterministically. The associated hedging cost,

the fourth term in (1), equals b multiplied by the risk premium of a risky asset whose

9. The SDF process that we use is the endogenous SDF that emerges from the equilibrium asset-pricing
model of Lucas (1978).
10. States in which the stock market return is high are also ones in which investors’ marginal utility (equiv-
alently the SDF) is low. That is why the SDF and the market return are negatively correlated.
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cash flow process is the same as the GDP process. Jiang, Lustig, Van Nieuwerburgh, and

Xiaolan (2020) put related risk-pricing formulas to work to value government debt. See Barro

(2020), Van Wijnbergen, Olijslagers, and de Vette (2020), Aguiar, Amador, and Arellano

(2021), Mian, Straub, and Sufi (2021), and Reis (2021) for more about ‘r − g’ and debt

sustainability.

A third amendment relative to Barro (1979) is that our government is impatient as in

Aguiar and Amador (2021). By impatience, we mean that a government’s discount rate

exceeds the interest rate. This situation is consistenent with the idea that US Treasury

bonds carry a convenience yield that lowers the US cost of borrowing below a risk-free rate

(Krishnamurthy and Vissing-Jorgensen, 2012).11 With impatience, our model generates a

backloaded tax schedule so that the optimal tax rate on output increases over time. This

makes fiscal deficits scaled by GDP decrease over time and eventually turn into fiscal sur-

pluses. The debt-GDP ratio moves towards a steady state in which it attains its maximally

sustainable level b. When it is sufficiently impatient, a government with a sufficiently low

level of debt immediately increases its b to an optimal target level b > 0 in which the gov-

ernment’s marginal cost of servicing debt equals one.12 Thus, optimal debt-GDP dynamics

reside in three disjoint regions:13 1.) a lumpy debt issuance and payout region in which

b < b; 2.) a default region in which debt is unsustainable (b > b); and 3.) the interior region

in which b ∈ [b, b].

An optimum is described by 1.) a first-order nonlinear ordinary differential equation

(ODE) for the government’s (scaled) value p(b); 2.) a first-order condition for the optimal

smooth tax rate τ(b); 3.) a zero-drift condition and the indifference condition between de-

faulting and not that characterize the steady state where debt is at the maximally sustainable

level b; 4.) value-matching and smooth-pasting conditions that characterize the lumpy debt

issuance and payout boundary b. The upper debt-capacity boundary b is an absorbing state

11. Since the US borrowing cost is lower than the risk-free rate, various investment projects and welfare
transfer programs, e.g., infrastructure, seem to become more attractive. One would still need to evaluate net
payoff streams for such projects, but with a lower cost of capital than the risk-free rate. Van Binsbergen,
Diamond, and Grotteria (2022) estimate the convenience yield to be about 40 basis points per annum.
12. To construct an optimal fiscal plan, our government uses both singular control (lumpy debt issuance and
payout to the household) and convex control (tax smoothing). The US government’s 2020 and 2021 covid
stimulus checks and related transfers might be interpreted as examples of such payouts financed by lumpy
debt issuances.
13. The lumpy debt issuance and payout region and the default region are only possible at time 0. If starting
in the lumpy debt issuance and payout region where b < b, the government increases its debt so that its b
instantly equals b after time 0 and then the b process is dictated by the law of motion in the interior region.
If starting in the default region where b > b, the government immediately defaults and sets taxes to its
expenditure so that its primary deficit is zero at all time.
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and the lower lumpy debt issuance boundary b is a reflecting barrier. These two are very

different types of boundaries that reflect different economic mechanisms for the government’s

maximally sustainable debt and its optimal policy for lumpy payouts to the household.14

The government’s marginal cost of servicing debt −PB(B, Y ) = −p′(b) measures how

much the household’s value decreases when government debt increases by one unit. Tax

distortions and limited commitment make −p′(b) exceed one. This marginal cost of debt

servicing appears in both the first-order condition for the optimal tax rate and an equation

restricting the government’s optimal value function.

We use a calibrated version of our model to approximate how long it will take for the

US to exhaust its debt capacity. Such calculations help sort through current debates about

debt sustainability. We show that the time to reach debt capacity critically depends both

on a government’s impatience and on the prevailing interest rate.15 Holding a government’s

impatience fixed, the lower is the interest rate, the higher is a government’s debt capacity.

So in an economy in which the interest rate on government debt is low, a government taxes

less and borrows more now, making the debt-GDP ratio increases at a faster rate. In this

situation, a direct debt-capacity effect dominates an indirect (debt-GDP ratio) drift effect

so that it takes longer time to reach its debt capacity. Such logic underlies an argument that

a government should borrow more when debt is cheap, e.g., Blanchard (2019).

However, if we hold a government’s discount rate fixed, a lower interest rate also makes

a government more impatient – impatience introduces a wedge between the discount rate

and the interest rate. In a quantitative exercise in Section VII., we show that a govern-

ment reaches its debt capacity faster in a lower interest rate environment. This is because

when a government is sufficiently impatient the indirect drift effect dominates the direct

debt capacity effect. Cheaper debt (a lower interest rate) causes an impatient government

to accelerate its borrowing and consequently exhaust its debt capacity sooner. These com-

parative dynamic analyses with respect to impatience and interest rate highlight roles that

key structural parameters play in shaping policy responses.

By deploying a continuous-time contracting framework like that used by DeMarzo and

Sannikov (2006) and Sannikov (2008), we show how to formulate the government’s optimal

debt management problem as a dual problem for a planner facing a government that has

14. Our baseline model is amenable to extensions that will allow additional sources of randomness not
included in the baseline model – e.g., a Markov process for the government expenditures/GDP ratio rather
than the fixed ratio in the baseline model.
15. Bohn (1998) described measures that the US took in response to the accumulation of debt during the
1970s and 1980s that are broadly consistent with dynamics prescribed by our model.
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default opportunities.16 In the dual problem, the key state variable is the government’s

promised value and the well-diversified planner maximizes the present value of the cash

flows subject to optimally managing the government’s promised value.

Related Literature. By taking a stochastic discount factor process as exogenous, our

model contrasts with the Lucas and Stokey (1983) model in which a government’s tax and

borrowing strategy affects the stochastic discount factor process, motivating the government

to manipulate equilibrium prices of its debts. Like Lucas and Stokey (1983), we assume

complete financial markets that allow the government to make its debt fully state contin-

gent. By staying within the Barro tradition of an exogenous SDF process,17 we remove the

dynamic inconsistencies that arise from the price-manipulation motives central to models

in the Lucas-Stokey tradition. Thus, we focus on implications of limited commitment for

debt capacity and debt dynamics. Our model blends key building blocks from Lucas and

Stokey (1983) (complete state-contingent debt) and Barro (1979) (tax distortion costs) in a

tractable continuous-time framework with an exogenously specified SDF along lines of Black

and Scholes (1973), Merton (1973), and Harrison and Kreps (1979).

Bohn (1990) studies the role of hedging with financial instruments in shaping optimal

fiscal policy of a risk-neutral government in a stochastic reformulation of Barro (1979). A

difference between our paper and Bohn (1990) is that hedging costs play a key role in

debt-GDP dynamics in our model. Bohn (1995) was among the first researchers to value

government debt with an SDF like that of Lucas (1978). We extend Bohn’s insights by

incorporating effects of default opportunities on debt dynamics and sustainability. Jiang,

Lustig, Van Nieuwerburgh, and Xiaolan (2019) analyze how the covariance between an in-

tertemporal marginal rate of substitution and a primary government surplus ought to affect

the value of government debt.

Brunnermeier, Merkel, and Sannikov (2020, 2022) incorporate a bubble term within

a fiscal theory of the price level, develop a model of safe assets with a negative beta in

an incomplete-markets setting, and analyze implications for debt sustainability. Kocher-

lakota (2021) develops a model of government debt bubbles associated with tail risk in a

heterogeneous-agent incomplete-markets Aiyagari-Bewley-Huggett style model. Reis (2021)

studies debt capacity in a related model with a bubble on government debt. D’Erasmo,

Mendoza, and Zhang (2016) review the literature on government debt sustainability. Abel,

16. Ai and Li (2015) and Bolton, Wang, and Yang (2019) construct recursive contracts to cope with limited-
commitment problems in corporate finance.
17. Because the Barro (1979) model is deterministic, his SDF is an exponential function that decays at the
risk-free rate per unit of time.
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Mankiw, Summers, and Zeckhauser (1989) and Abel and Panageas (2022) analyze maximum

budget-feasible government debt in overlapping generations models with perpetually zero pri-

mary budget surpluses. Elenev, Landvoigt, Shultz, and Van Nieuwerburgh (2021) construct

a New Keynesian model that includes financial intermediation, risk premia, production, and

fiscal and (conventional and unconventional) monetary policies.

We call it a p theory of taxes and government debt because a key outcome in our model

is a marginal cost of servicing debt −p′(b) and also because we can invoke an analogy with

a q theory of investment. The convex tax distortion cost inherited from Barro (1979) in

our model serves as a counterpart to the convex capital adjustment cost in the q theory

of investment, e.g., Hayashi (1982). In q theory, marginal q (marginal value of capital)

equals the marginal cost of investing. In our p theory, the marginal cost of taxing equals

marginal cost of servicing government debt, −p′(b). In a q theory, a firm’s asset is productive

capital that generates a cash flow. In our p theory, government debt is both “backward” and

“forward looking”: it cumulates past primary government deficits and has to be serviced

from prospective primary surpluses. Marginal q exceeds one in q theory because it is costly

to adjust productive capital, while the marginal cost of servicing debt, −p′(b), exceeds one in

our p theory because the prospective taxes that service government are distortionary. Thus,

it is useful to watch our model enlist features and unleash forces that resemble ones appearing

in the q-theories of costly capital stock adjustment of Lucas and Prescott (1971), Hayashi

(1982), and Abel and Eberly (1994). Tax distortions in our model affect asset valuations

and act in ways similar to the costs of capital adjustment in the q theories.

II. The Setting

Time t ∈ [0,+∞) is continuous. Subject to a sequence of limited-commitment con-

straints, the government seeks an optimal taxation and financing plan. The government can

trade a complete set of history-contingent securities.We generalize Barro (1979) along three

lines. First, we introduce both idiosyncratic and systematic shocks that allow us to analyze

how risks affect taxation and debt management. Second, in the spirit of Thomas and Wor-

rall (1988), Worrall (1990), Kehoe and Levine (1993), Kocherlakota (1996b), Alvarez and

Jermann (2000), and Chien and Lustig (2010), the government cannot commit and is free

at each instant to default; that constrains its ability to borrow and induces an endogenous

debt capacity. Third, we assume that the government is impatient. We differ from Lucas

and Stokey (1983) in letting the quantity of debt at time 0 be endogenous and in assuming
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that the household is risk-neutral.18

We describe two interrelated “regimes”. In a “normal” regime, the government services

its debt obligations and chooses how much to tax. At every instant, the government can

default on its debt, with the consequence that it enters a “default” regime from which it can

never leave.

II.A. Output, Government Spending, and Taxation

After describing GDP, government spending, and taxation in the normal regime, we’ll

describe them in the default regime.

Output, Government Spending, and Taxation in the Normal Regime.

Output process. GDP {Yt; t ≥ 0} is exogenous and follows a geometric Brownian motion

(GBM) process

dYt
Yt

= gdt+ σY dZYt , (2)

where ZYt is a standard Brownian motion under the physical measure P, g is the expected

GDP growth rate, σY > 0 is the growth volatility, and Y0 > 0 is the known initial value of

Yt.

GDP Yt is subject to both idiosyncratic shocks that bear no risk premium, and systematic

shocks that bear a risk premium. Let the standard Brownian motion Zht represent the

idiosyncratic shock and the standard Brownian motion Zmt represent the systemic shock

under a physical measure P, respectively. We also refer to the systematic shock dZmt as the

market shock.19 Without loss of generality, we can decompose the output shock dZYt over

dt under the physical measure P as

dZYt =
√

1− ρ2 dZht + ρ dZmt , (3)

where ρ is the constant correlation coefficient between the output shock dZYt and the ag-

gregate (market) shock dZmt . For convenience, we also equivalently write the output process

18. In a sequel, we have generalized our model to include risk-averse consumers. We are able to solve this more
general model in closed form up to an ODE with economically interpretable boundary conditions. While
some of the results reported here are altered with risk-averse consumers, key results about equilibrium debt
capacity and optimal tax smoothing remain.
19. For mnemonic purposes, we use superscript m to refer to the market shock and the superscript h to refer
to the hedgeable idiosyncratic shock.
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{Yt; t ≥ 0} given in (2) as

dYt
Yt

= gdt+
(
ψhdZht + ψmdZmt

)
, (4)

where ψm and ψh are the systematic and idiosyncratic volatility parameters given by

ψm = ρσY and ψh =
√

1− ρ2 σY , (5)

respectively. Expressions (4)-(5) for {Yt; t ≥ 0} are convenient for analyzing distinct roles of

systematic and idiosyncratic shocks.

Government spending and debt. Let {Γt; t ≥ 0} denote the government spending process

that is exogenous and does not bring utils to the household. For tractability, we assume that

Γt depends on contemporaneous output Yt in the normal regime as

Γt = γtYt , (6)

where γt is exogenous. For expositional simplicity, we set γt = γ ∈ [0, 1] so that government

spending is proportional to GDP in the normal regime. The government finances its spending

Γt with taxes and debts.

Debt and taxes. Let {Bt; t ≥ 0} denote the government’s debt balance and {Tt; t ≥ 0}
denote the tax revenue process, respectively. As in Barro (1979), we assume that taxes are

distortionary. Let Ct = C(Tt, Yt) denote the deadweight loss in units of consumption goods

when the government collects tax revenue Tt and GDP is Yt in the normal regime. Following

Barro (1979), we assume that the deadweight loss function, C(Tt, Yt), is homogeneous in

output Yt and tax revenue Tt of degree one:

Ct = C(Tt, Yt) = c(τt)Yt , (7)

where τt = Tt/Yt is the (average) tax rate on output. As in Barro (1979), we assume that

the scaled deadweight loss, c(τ), is increasing, convex, and smooth.

As the tax revenue at any time t cannot exceed the contemporaneous net output, Yt−Γt,

we require Tt ≤ τ Yt, which is equivalent to the following constraint on the tax rate τt:

τt ≤ τ , (8)

where τ is a maximal politically feasible tax rate on GDP Yt in the normal regime. Keynes
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(1923, pp.56–62) inferred limits on a country’s debt-GDP ratio partly from an upper bound

like τ based on political considerations.

Output, Government Spending, and Taxation in the Default Regime. Defaulting causes an

output loss that proxies for associated disruptions in economic activity. Let Ŷt denote GDP

in the default regime and let TD denote an endogenous time when the government defaults.

Following Aguiar and Gopinath (2006) and Rebelo, Wang, and Yang (2021), we assume that

upon defaulting, the government completely reneges on its debt, GDP immediately drops

from YTD− = lims↑TD− Ys, the pre-default GDP level, to ŶTD = αYTD− , and the economy

permanently enters the default regime.20

In this regime (t ≥ TD), the government cannot issue debt at all (Bt = 0) and output Ŷt

follows the same GBM process (4) as in the normal regime. Therefore,

Ŷt = αYt , t ≥ TD , (9)

where α ∈ (0, 1) is a constant.21 So output in the default regime equals an α fraction of Yt

given in (2), where {Yt; t ≥ 0} would have been GDP had the economy permanently stayed

in the normal regime.

Let T̂t denote tax revenue in the default regime. Since the government has no debt in

the default regime, it has to finance its spending period by period according to

T̂t = Γt = γtYt , t ≥ TD . (10)

Note that government spending {Γt; t ≥ 0} is exogenous and solely depends on the exogenous

{Yt; t ≥ 0} process given in (2) regardless of the government’s default decision.

As in the normal regime, taxation is distortionary in the default regime. Let Ĉt =

Ĉ(T̂t, Ŷt) denote the deadweight loss in the default regime, when the government collects tax

revenue T̂t and output is Ŷt. We assume that Ĉ(T̂t, Ŷt) is also homogeneous of degree one in

tax revenue T̂t and output Ŷt:

Ĉt = Ĉ(T̂t, Ŷt) = ĉ(τ̂t)Ŷt , (11)

where τ̂t = T̂t/Ŷt is the tax rate in the default regime. We assume that ĉ(τ̂) is increasing,

convex, and smooth.

20. To ease exposition we assume that the economy upon default never exits from the default regime. We
can relax this assumption and allow the economy to return to the normal regime.
21. Hébert and Schreger (2017) provide supporting empirical evidence.
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Deadweight loss functions in the two regimes are connected as

ĉ( · ) = κ c( · ) . (12)

The parameter κ > 1 measures how much more costly taxation is in the default regime than

in the normal regime.

As in the normal regime, we require T̂t ≤ τ Ŷt, which is equivalent to the following

constraint on the tax rate τ̂t in the default regime:

τ̂t ≤ τ , t ≥ TD , (13)

where τ is the same maximum politically feasible tax rate described above.

In sum, while the government enjoys debt relief via default, it has to bear three costs if

defaulting on its debt: 1.) a loss of output (as Ŷt = αYt < Yt); 2.) a worse deadweight loss

function than it faced in the normal regime (κ > 1); and 3.) the loss of the option to use

tax smoothing over time because it must balance its budget period by period.

Next, we introduce financial markets. In answering the question “what is the govern-

ment’s maximally sustainable debt,” we grant the government access to a complete set of

financial securities subject only to the participation constraint associated with the default

option. Equivalently, we assume that the government can dynamically trade a complete set

of Arrow securities subject to limited commitment in the normal regime (before defaulting).22

Thus, in terms of financial markets, we follow Lucas and Stokey (1983).

II.B. Financial Markets

In the normal regime, the government has the following investment and financing op-

portunities: (1) it can insure its idiosyncratic risk through actuarially fairly priced hedging

contracts; (2) it can invest in the market portfolio; and (3) it can issue debt in the interna-

tional market. We assume that debt that matures instantaneously and is continuously rolled

over. However, because markets are dynamically complete, outcomes would not changes if

we were to include longer term government debt too.

Idiosyncratic risk hedging asset. We assume that there is a perfectly competitive market

in a financial asset that is perfectly correlated with the idiosyncratic diffusive shock Zht .

An investor who holds one unit of this asset at time t receives no up-front payment, since

22. Our argument builds on the dynamic replicating portfolio argument used in Black and Scholes (1973)
and Harrison and Kreps (1979) under complete markets with full commitment.
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there is no risk premium for bearing idiosyncratic risk, and receives a gain or loss equal to

dZht =
(
Zht+dt −Zht

)
at time t + dt. We normalize the volatility parameter of this hedging

contract to be one. We denote the government’s holdings of this idiosyncratic risk hedging

asset at time t by −Πh
t , which implies that the government’s idiosyncratic risk exposure in

levels is −Πh
t dZht over dt.

Stock market portfolio and equivalent stock market futures contract. Investors, the

household, and the government can manage their exposures to the aggregate shock by in-

vesting in financial assets whose returns are solely driven by the aggregate shock. A natural

example is the stock market portfolio. As in Merton (1971) and Black and Scholes (1973),

we assume that the stock market return, which we denote by dRt over dt, is independently

and identically distributed (i.i.d) with the drift parameter µm and the volatility parameter

σm under the physical measure P:23

dRt = µmdt+ σmdZmt , (14)

where Zmt is a standard Brownian motion under the physical measure P.

We can rewrite the return process (14) as dRt = rdt + σmdZ̃mt , where η is the Sharpe

ratio of the market portfolio

η =
µm − r
σm

(15)

and Z̃mt represents the risk-adjusted aggregate shock24

dZ̃mt = ηdt+ dZmt . (16)

We interpret dZ̃mt = ηdt+ dZmt as the payoff on a unit of the futures contract on the stock

market (an example of a one-step-ahead Arrow security.) The value of this futures contract

on the stock market with payoff (16) is zero (Cox, Ingersoll, and Ross, 1981). Thus, a risk-

averse investor requires a payment of ηdt to bear a unit of the aggregate shock dZmt . Once

we add the drift payoff ηdt with the aggregate shock exposure dZmt , the investor is indifferent

between investing in this futures contract and not participating, implying that the value of

the futures contract is zero.

As for the idiosyncratic risk hedging position, we denote the government’s holdings of

23. This widely used geometric Brownian motion process for stock price is fully consistent with the asset
pricing model of Lucas (1978). We can generalize our model to allow for disasters/jumps as in Barro (2006).
All our insights will remain valid.

24. In Appendix B, we show that Z̃mt is a standard Brownian motion under the risk-neutral measure P̃. The

drift of the price of the stock futures contract is zero under P̃ (Duffie, 2001).
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this stock market futures contract at time t by −Πm
t , which implies that the government’s

systematic risk exposure in levels is −Πm
t (ηdt + dZmt ) over dt. A government or citizen

could just as well have used the stock market portfolio rather than stock futures to manage

aggregate shocks because financial market risk spanning is complete. We choose the futures

contract in order to preserve the expositional symmetry in our treatment of idiosyncratic

risk and systematic risk management.

Stochastic discount factor. To ease exposition, we have set up our model with only

one source of aggregate shock, Zmt , which drives the stock market portfolio.25 Using the

standard no-arbitrage argument for complete-markets economies, we obtain the following

unique stochastic discount factor (SDF), which we denote by Mt:

dMt

Mt

= −rdt− ηdZmt , M0 = 1 . (17)

No arbitrage requires that the drift of dMt/Mt equals −r. Additionally, in our one-factor

model, the volatility of dMt/Mt equals −η, where η = (µm − r)/σm is the market price of

risk, which is also the Sharpe ratio for the market portfolio (Duffie, 2001).

Next, we describe the government’s budget constraint and optimization problem.

II.C. Government Budget and Objective

Budget constraints. At t = 0, given the initial debt level (B0), the government has the

following budget constraint:

B0 + E0

∫ TD

0

MtdUt ≤ E0

∫ TD

0

Mt (Tt − Γt) dt , (18)

where {Ut; t ≥ 0} is the undiscounted (cumulative) debt issuances and hence dUt is the

net debt issuance over dt.26 The right side of (18) is the present value of the government’s

primary surplus (Tt − Γt). The left side of (18) is the sum of the initial debt level B0 and

the present value of all future state-contingent debt issuances dUt. When calculating present

values, we use the SDF Mt to discount payoffs for risk and remoteness in time. Inequality

(18) states that the present value of all debt issued until the default time TD cannot exceed

the present value of the primary government surplus. Upon default, creditors are assumed

to recover nothing.

25. We can generalize our model to allow for a richer model for aggregate risk.
26. Technically, {Ut; t ≥ 0} is a singular control process. As we will show, at an optimum Ut is non-decreasing.
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Flow payoffs to the household. Let 1Dt be an indicator function that equals one in the

default regime when t ≥ TD and zero in the normal regime when t < TD. In the default

regime (1Dt = 1), the government has no debt and the household continuously receives

payments at the rate of (Ŷt − (T̂t + Ĉt)) where T̂t = Γt. In the normal regime (1Dt = 0),

the household continuously receives payments at the rate (Yt − (Tt + Ct)), which equals the

difference between GDP Yt and the total taxation cost (Tt + Ct). The household may also

occasionally receive a lumpy payment dUt if the government issues debt dUt and distributes

the proceeds. As we show later, this lumpy payment can occur under an optimal government

plan when the household is impatient.

In sum, the household receives flow payments from three sources: 1.) lumpy payments to

the household financed by debt issuance dUt in the normal regime; 2.) recurrent payments

in the normal regime (Yt − (Tt + Ct)); and 3.) recurrent payments in the default regime

(Ŷt − (T̂t + Ĉt)).

Intertemporal discounting and risk premium specifications. Let (ζ + r) denote the rate

at which the household discounts future payoffs. We assume that the household values

risk in the same way as investors and hence use the same market price η for the aggregate

risk.27 As a result, when ζ = 0, the government and the market are equally patient. In this

case, the household and investors use the same SDF Mt to value their respective payoffs.

However, when the household is impatient (ζ > 0), a common assumption in the sovereign

debt literature (e.g., Aguiar and Gopinath, 2006), the government front loads consumption

and tilts debt repayments towards the future generations.

In sum, for intertemporal discounting and risk specifications, we use e−ζtMt as the effec-

tive SDF for the household to value their risky payoffs, which differs from the SDF Mt price

investors use to price payoffs. In Appendix B, we provide additional technical details.

Government objective. Combining our assumptions about flow payoffs and the effective

SDF for the household, we obtain the expression for the household’s value function:

E0

∫ ∞
0

e−ζtMt

(
dUt + (Yt − (Tt + Ct))

(
1− 1Dt

)
dt+ [Ŷt − (T̂t + Ĉt)]1

D
t dt
)
, (19)

where ζ ≥ 0 measures the household’s impatience. The government chooses debt issuance

(dUt), tax rates (τt and τ̂t), and idiosyncratic and systematic risk hedging demands (Πh
t and

Πm
t ) to maximize (19) subject to budget constraint (18), constraint (8) on the tax rate τ

27. Technically speaking, the household and the investors use the same Radon-Nikodym derivative that links
the physical measure P to the risk-neutral measure P̃ (Duffie, 2001). Because of complete markets, this
Radon-Nikodym derivative is unique.
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in the normal regime, and constraint (13) on τ̂ in the default regime. Availability of full

financial spanning and inefficiency of default means that government debt is risk free and

the government chooses never to default. Optimal risk-free debt capacity Bt is part of an

optimal plan.

Let Pt = P (Bt, Yt) denote the household’s time-t value function.28 Let Vt = V (Bt, Yt)

denote the sum of debt value Bt and the household’s value P (Bt, Yt):

Vt = V (Bt, Yt) = P (Bt, Yt) +Bt . (20)

To obtain an optimal policy in the normal regime, we need the household’s value function

in the default regime, since the household’s value function after a default affects the house-

hold’s value and optimal decisions before it ever defaults. Since government debt is always

zero in the default regime, the household’s value function in that regime only depends on

contemporaneous GDP Ŷt = αYt; we denote this value function P̂ (Ŷt). Because default is

costly, the government wants to manage its state-contingent debt dynamics to avoid default.

That gives rise to the following participation constraint:

P (Bt, Yt) ≥ P̂ (Ŷt) . (21)

Before deducing an optimal government plan, we temporarily shut down all three of our

frictions in order to recover a manifold of tax-debt profiles that support the same optimal

plan, in the spirit of the Ricardian equivalence logic of Barro (1974).

III. Ricardian Equivalence

To uncover Ricardian equivalence, we turn off three frictions by 1.) setting ζ = 0; 2.)

endowing the government with the ability to commit always to repay its debt by setting

TD = ∞ and equivalently 1Dt = 0 at all t; and 3.) removing deadweight losses by setting

Ct = 0 for all t. Simplifying (19), we write the household’s value as

P0 = E0

∫ ∞
0

Mt [dUt + (Yt − Tt) dt] , (22)

28. The value function Pt = P (Bt, Yt) is analogous to the levered “equity” value for a firm.
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subject to the following simplified budget constraint:

B0 + E0

∫ ∞
0

MtdUt ≤ E0

∫ ∞
0

Mt (Tt − Γt) dt . (23)

Combining (22) and (23), the latter of which binds due to local non-satiation, yields

P0 +B0 = E0

∫ ∞
0

Mt (Yt − Γt) dt . (24)

Expression (24) states that the total value V FB
0 = P0 + B0 is independent of policies

{Ut, Tt; t ≥ 0}, an assertion of Ricardian equivalence. We use superscript FB for the total

value V to denote the value attained when none of our three frictions is active.

In the spirit of Shiller (1994), consider a financial asset whose cash flow is almost surely

equals net output {Yt − Γt; t ≥ 0} process. The value of this financial asset equals the right

side of (24). Let rV and ξ denote this asset’s expected return and risk premium, respectively.

The unique SDF (17) implies that the CAPM holds for this asset:

rV = r + ξ = β × (µm − r) , (25)

where β = ρσY /σm is the coefficient of regressing this asset’s return on the market portfolio

return. Equivalently, we can write this asset’s risk premium ξ as follows:

ξ = ψmη = ρσY η . (26)

Since tax and debt policies are irrelevant here, the total value V FB
t = Pt+Bt under Ricardian

equivalence equals the value of this financial asset:

V FB
0 = E0

∫ ∞
0

Mt (Yt − Γt) dt =
1− γ
rV − g

Y0 . (27)

For the integral above to converge, we require the expected return rV to be larger than the

GDP growth rate g:

rV > g . (28)

We can rewrite budget constraint (18) in terms of rV as

B0 ≤ E0

[∫ ∞
0

Mt (Tt − Γt) dt−
∫ ∞

0

MtdUt

]
= E0

[∫ ∞
0

e−rV t ((Tt − Γt) dt− dUt)
]
.(29)
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Although debt is risk free, it is backed by a stochastic stream of primary surpluses. That

explains the presence of risk premium ξ and the use of rV to discount the primary surplus

in (29).

In the next section, we provide a stochastic formulation of Barro (1979).

IV. Stochastic Version of Barro (1979)

Our stochastic Barro model only has one friction: tax distortions/deadweight losses as

in Barro (1979). We turn off the other two frictions in our baseline model of Section II. by

1.) setting ζ = 0 and 2.) imposing full commitment by setting TD = ∞ and equivalently

setting 1Dt = 0 at all t. The government chooses a policy to maximize

E0

∫ ∞
0

Mt [dUt + (Yt − (Tt + Ct)) dt] , (30)

subject to the same budget constraint as (23) from our section III. Ricardian equivalence

setting and the constraint for the tax rate (8).

Substituting budget constraint (23), which binds under optimality, into the objective

function (30), we obtain the following expression for the value of the government:

E0

∫ ∞
0

Mt (Yt − Γt − Ct) dt−B0 . (31)

Maximizing (31) is equivalent to minimizing the present value of deadweight losses, E0

∫∞
0

MtCtdt,

by choosing {Tt; t ≥ 0} subject to the constraint of honoring its outstanding debt B0, which

satisfies (23) with equality. That equivalence was Barro’s justification for recasting the gov-

ernment’s value maximization problem as a deadweight loss minimization problem. However,

an analogous equivalence does not prevail in our model with its limited commitment; a gov-

ernment’s option to default contributes endogenous distortion costs. For this reason, unlike

Barro we have to work with a value-maximization problem rather than a cost-minimization

problem.

It is useful to scale variables by contemporaneous GDP. Let bt denote a debt-GDP ratio:

bt =
Bt

Yt
. (32)
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Similarly, let

p(bt) =
P (Bt, Yt)

Yt
and v(bt) =

V (Bt, Yt)

Yt
= p(bt) + bt . (33)

Next, we summarize an optimal plan for our stochastic formulation of Barro (1979).

Proposition 1. Stochastic Barro (1979) Model. Assuming ζ = 0 and government

commitment to service its debt, the optimal debt-GDP ratio bt is constant over time, i.e.,

bt = b0 for all t; the optimal tax rate τt is constant over time and depends only on b0:

τ(bt) = τ(b0) = (rV − g)b0 + γ . (34)

The government’s scaled value function, f(bt), is also constant over time and given by

p(bt) = p(b0) =
1− τ(b0)− c(τ(b0))

rV − g
. (35)

Any initial debt level b0 satisfying b0 ≤ b
∗

is sustainable, where b
∗

is the maximally

sustainable debt-output ratio given by:

b
∗

=
τ − γ
rV − g

. (36)

We relegate a proof of Proposition 1 to Appendix A. In our stochastic Barro economy, the

initial condition is the steady state, since bt = b0 and p(bt) = p(b0). Therefore, the present

value of the (scaled) primary surplus τ(bt)− γ equals the (scaled) debt bt at all t:

τ(bt)− γ
rV − g

= bt = b0 . (37)

Notice that the discount rate that appears in present value equation (37) is rV and not the

risk-free rate r. The optimal tax rate τ(bt) also satisfies the following first-order condition:

1 + c′(τ(bt)) = −p′(bt) . (38)

The government optimally equates the marginal cost 1 + c′(τ(bt)) of taxing the household

with the marginal benefit −p′(bt) > 0 of reducing debt. This is a version of Barro’s tax

smoothing recommendation.

Were it to be given an option to choose its initial debt level, a government would optimally
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set b0 = 0 because doing so maximizes v(b0) = p(b0) + b0. Using (38), we obtain v′(b0) =

p′(b0) + 1 = −c′(τ(b0)) ≤ 0. Therefore, b0 = 0, which follows from the assumption that

c( · ) is increasing and convex. The intuition is that issuing lumpy debt yields no benefit but

induces distortionary debt servicing costs.

Next we show that when the government has the option to default as it does in our Section

II. model, equivalence between the government’s value maximization and cost minimization

problem no longer holds .

V. Optimal Government Plan

We formulate the optimum problem of our section II. government as a dynamic program.

V.A. Normal Regime

First, we introduce the government’s dynamic debt and risk management problem. Then

we characterize the government’s decisions in interior and lumpy payout regions.

Dynamic State-Contingent Debt Management. When managing its debt dynamics, the

government also actively engages in idiosyncratic and systematic risk management by choos-

ing Πh
t and Πm

t . The value of government debt Bt evolves as follows:

dBt = (rBt + (Γt − Tt)) dt+ dUt − Πh
t dZht − Πm

t (ηdt+ dZmt ) . (39)

The first term on the right side of (39) is government savings where Γt − Tt is the primary

deficit and rBt is the interest payment. The second term dUt is the government’s lumpy

debt issuance. The third and fourth terms are gains or losses from government holdings of

the idiosyncratic risk-hedging asset and stock market futures, respectively.

By trading an idiosyncratic risk hedging asset and stock market futures, the government

makes its debt state-contingent. Its optimal use of these risk management tools shapes the

government’s debt capacity and also ensures that government debt ends up being risk-free

at all time and across all states. While government debt is risk free, equation (39) shows

that the quantity of debt is stochastic.

Let Bt denote the government’s endogenous debt capacity (the maximally sustainable

debt level), to be determined in Section V.B. We show later that the government’s optimal

(lumpy) debt issuance policy {dUt} is characterized by an endogenous debt threshold level,

Bt, below which it issues and makes a payout to the household (dUt > 0).
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Next, we characterize the optimal policies and value function for the interior region

(Bt ∈ [Bt, Bt]).

Interior Region (Bt ≤ B ≤ Bt). In this region, the government relies exclusively on risk

hedging strategies and taxation to manage its state-contingent debt dynamics. It abstains

from making lumpy payouts to the household financed from a lumpy debt issuances, so

dUt = 0.

Dynamic programming. The government chooses tax revenue T , idiosyncratic-risk hedg-

ing demand Πh, and the systematic risk hedging demand Πm to maximize the value function

P (B, Y ) by solving the following Hamilton-Jacobi-Bellman (HJB) equation:

(ζ + r)P (B, Y ) = max
T ≤τY,Πh,Πm

(Y − T − C(T , Y )) + [rB + Γ− T ]PB(B, Y ) (40)

+
(Πh)2 + (Πm)2

2
PBB(B, Y ) + (g − ρησY )Y PY (B, Y )

+
σ2
Y Y

2

2
PY Y (B, Y )−

(
ψhΠ

h + ψmΠm
)
Y PBY (B, Y ) .

The first term on the right side of (40), (Y − T − C(T , Y )), is the net flow payment to

the household. The second and third terms are the drift and diffusion volatility effects of

increasing debt B on P (B, Y ). The fourth and fifth terms reflect the drift and volatility

effects of GDP, Y , on P (B, Y ). The sixth term captures the effect of the intertemporal

idiosyncratic and systematic risk hedging demands on P (B, Y ).

First-Order conditions. Tax revenue T satisfies the FOC:

1 + CT (T , Y ) = −PB(B, Y ) . (41)

It equates the marginal cost of taxing the household, 1+CT (T , Y ), with the marginal benefit

of using taxes to reduce debt, −PB(B, Y ) > 0.

As in Merton (1971), systematic risk intertemporal hedging demand Πm satisfies:

Πm = ψm
Y PBY (B, Y )

PBB(B, Y )
. (42)

Similarly, the FOC for the intertemporal diffusion risk hedging demand is

Πh = ψh
Y PBY (B, Y )

PBB(B, Y )
. (43)

The cross partial derivative PBY shapes the government’s idiosyncratic and systematic risk
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intertemporal hedging demands in equations (42) and (43). Note the symmetry between

(42) and (43).

We can use the FOCs (41), (42), and (43) to represent the HJB equation (40) as

(ζ + r)P (B, Y ) = max
T ≤τY

Y − T − C(T , Y ) + [rB + Γ− T ]PB(B, Y ) (44)

+ g̃Y PY (B, Y ) +
σ2
Y Y

2

2
PY Y (B, Y )− σ2Y 2

2

P 2
BY (B, Y )

PBB(B, Y )
,

where g̃ = g − ρησY is a risk-adjusted growth rate.29 We can verify that the household’s

value function P (B, Y ) is homogeneous of degree one in B and Y . Consequently the following

expression holds:30

PY Y (B, Y ) =
P 2
BY (B, Y )

PBB(B, Y )
. (45)

Using (45) to simplify (44), we obtain the following first-order partial differential equation:

(ζ + r)P (B, Y ) = max
T ≤τY

(Y − T − C(T , Y )) + (rB + Γ− T )PB + (g − ρησY )Y PY . (46)

The first term on the right side of (46) is the flow payoff to the household. The second term

captures the effect of fiscal deficit (rB + Γ− T ) on its value function P (B, Y ) and the last

term describes the risk-adjusted growth effect of Y on the household’s value. Optimality

implies that the sum of these three terms equals (ζ + r)P (B, Y ), the household’s value

P (B, Y ) multiplied by its discount rate (ζ + r). Full financial spanning allows the the

government optimally to hedge so that its debt is risk free, so there are no diffusion terms

(no PBB, no PY Y , and no PBY ) in (46). Systematic volatility of output growth ψm appears

in the last term because it influences the household’s value via the standard discount rate

channel as in CAPM.

Next, we turn to the region (0 ≤ Bt < Bt), where the government issues a lumpy amount

of debt and pay out to the household.

Lumpy Debt Issuance and Payout Region (0 ≤ Bt < Bt). In this region the debt-output

ratio bt = Bt/Yt is so low that it is optimal for the government immediately to issue debt

and pay out the proceeds to the household. The optimal lumpy debt-issue and payout policy

29. Technically, it is the growth rate under the risk-neutral measure P̃.
30. Using the homogeneity property P (B, Y ) = p(b)Y , we obtain PB = f ′(b), PBB = p′′(b)/Y, PY =
p(b)−p′(b)b, PY Y = p′′(b)bB/Y 2 = p′′(b)b2/Y , and PBY = −p′′(b)b/Y . Therefore, we can verify PBBPY Y =
(p′′(b)b/Y )2 = P 2

BY .
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for a given Bt is

dUt = max {Bt −Bt, 0} . (47)

Equation (47) implies the following value-matching condition when Bt < Bt:

P (Bt, Yt) = P (Bt, Yt) + (Bt −Bt) . (48)

Rewriting (48) and using the definitions V (Bt, Yt) = P (Bt, Yt)+Bt and V (Bt, Yt) = P (Bt, Yt)+

Bt, we find that V (Bt, Yt) = V (Bt, Yt), so that sums of the household’s value and debt value

are equated before and after new debt issuances.

The government optimally chooses a new debt level Bt ≥ 0 (or equivalently the new debt

issuance dUt) to solve:

max
B≥0

V (Bt, Yt) = P (Bt, Yt) +Bt . (49)

If the optimal Bt is interior (i.e., if Bt > 0), it satisfies the FOC:

PB(Bt, Yt) = −1 equivalently VB(Bt, Yt) = 0 . (50)

Otherwise, the government issues no lumpy debt and Bt = 0.

V.B. Debt Capacity Bt and Default Regime (Bt > Bt)

Here we characterize the value function in the default regime where Bt > Bt and deter-

mine debt capacity Bt.

Default Regime (Bt > Bt). When government debt Bt exceeds debt capacity Bt, the gov-

ernment defaults and enters the (permanently) absorbing default regime.31 The household’s

value function P (Bt, Yt) at Bt > Bt satisfies

P (Bt, Yt) = P̂ (Ŷt) , (51)

where Ŷt = αYt and P̂ (Ŷ ) is the household’s value in the default regime given by

(ζ + r)P̂ (Ŷ ) =
(
Ŷ − Γ− Ĉ(Γ, Ŷ )

)
+ (g − ρησY )Ŷ P̂ ′(Ŷ ) +

σ2
Y Ŷ

2

2
P̂ ′′(Ŷ ) . (52)

31. We can generalize our model to allow for the possibility where the government has a probability to exit
the default regime and return to the normal regime.
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The first term on the right side of (52) gives the net flow payment received by the household

in the default regime. Since the government can neither borrow nor lend in this regime,

its spending equals tax income, Tt = Γt. The second and third terms capture the impact

of the risk-adjusted drift and volatility of output on the household’s value function P̂ (Ŷ ),

respectively. The default regime is absorbing. Here for t ≥ TD, output equals Ŷt = αYt, and

there is no debt (Bt = 0). Let p̂t = P̂ (Ŷt)/Ŷt. Later we’ll show that p̂t = p̂, a constant. To

ensure that the value function in the default regime is non-negative, we impose:32

1− γ/α− κc(γ/α) ≥ 0 . (53)

Debt Capacity B. What is the maximal level of debt that the government can issue

without provoking default? We refer to this debt level, denoted by Bt, as the government’s

debt capacity. To characterize Bt, we must respect two constraints: 1.) the government’s

incentive to renege on its debt, which gives rise to a limited-commitment constraint; and 2.)

the “Keynesian” tax constraint τ ≤ τ , where τ is the maximal rate at which the government

can tax the household to support its debt repayment (again see Keynes (1923, pp.56–62).)

Two outcomes are possible, depending on which one of these two constraints binds. If the

government’s default incentive is strong, the limited-commitment constraint binds at its

debt capacity. If the government has limited power to tax output (i.e., when the maximally

feasible tax rate on output, τ , is relatively low), the tax constraint τ ≤ τ binds at debt

capacity.

When limited-commitment constraint binds at Bt. When the government is indifferent

between making its debt payments and defaulting, it has reached its debt capacity, Bt, and

the following value-matching condition prevails:

P (Bt, Yt) = P̂ (Ŷt) , (54)

where Ŷt = αYt− and P̂ (Ŷt) satisfies (52). Here we obtain the government’s risk-free debt

limit (capacity) by adapting to our setting an off-an-optimal-path default consequence in the

spirit of Worrall (1990), Kehoe and Levine (1993), and Kocherlakota (1996b).33

32. The value function in the default regime is non-negative if and only if the condition Ŷ −Γ− Ĉ(Γ, Ŷ ) ≥ 0

holds, which is equivalent to the condition given in (53) after we use the homogeneity property and Ŷt = αYt.
33. Our approach is similar to but different from Bolton, Wang, and Yang (2019) and Rebelo, Wang, and
Yang (2021) who incorporate the limited-commitment constraints into corporate finance and international
finance in their continuous-time models.

23



When tax constraint T (B, Y ) ≤ τY binds at Bt. When the government has limited power

to tax output (i.e., when τ is not high), the tax constraint τt ≤ τ binds at debt capacity:

T (Bt, Yt) = τYt . (55)

In sum, either (54) or (55) holds at debt capacity Bt. Because Bt is a free boundary,

we require one more condition to pins down its value. We supply this condition in the next

subsection after describing some simplifications.

V.C. Exploiting the Homogeneity Property

We take the debt-output ratio b as state variable. Let dut = dUt/Yt be the scaled lumpy

debt issuance and bt = Bt/Yt be the maximally feasible debt-GDP ratio.

Optimal tax rate τ(b). Substituting P (B, Y ) = p(b)Y into FOC (41) for tax revenue T ,

we obtain the following simplified FOC for the tax rate τ(b):34

1 + c′(τ(b)) = −p′(b) . (56)

Since c′′( · ) > 0, we can invert the marginal tax distortion cost function c′( · ) to obtain the

unique tax rate τ(b) for a given b.

Debt-GDP (bt) dynamics in the interior region: b ∈ [b, b]. When the debt-GDP ratio is

not too low, i.e., b ≥ b, where b is endogenous, the government makes no lumpy payments

to the household : dut = 0, because the marginal benefit of financing an immediate payout

to the household is smaller than the marginal cost (including deadweight losses) of financing

debt. Using Ito’s Lemma, we can show that in this interior region bt evolves deterministically

at the rate

ḃt ≡ µbt = µb(bt) = γ − τ(bt)︸ ︷︷ ︸
primary deficit

+ r × bt︸ ︷︷ ︸
interest payment

− g × bt︸ ︷︷ ︸
growth

+ ξ × bt︸ ︷︷ ︸
hedging cost

. (57)

The first term on the right side of (57) is the scaled primary fiscal deficit γ−τ(b), also known

as the scaled net-of-interest fiscal deficit. The second term is the interest cost of servicing

debt. The sum of these two terms is the scaled fiscal deficit, gross of interest payments.

The third term is a debt-GDP ratio reduction effect due to output growth. The last term

34. This condition holds regardless of whether the tax constraint (8) binds or not. The reason is that the
tax constraint may only bind at b. Tax smoothing implies that the FOC (56) holds also at the boundary b.
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captures the hedging cost due to the risk premium payment, a new term also included by

Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019) in a different setting. This new term

arises because current debt Bt is backed by future stochastic primary surpluses that are

discounted at rV , the sum of the risk-free rate r and the risk premium ξ defined in (26).

Endogenous debt-GDP ratio limit b and the steady state. How do we pin down debt

capacity b? We set the drift for the debt-GDP ratio bt to zero: ḃt = 0 at b according to the

following logic. To be consistent with the notion that b is debt capacity, b cannot exceed b,

which implies µb(b) ≤ 0. Additionally, with ζ ≥ r, the government weakly has incentives at

the margin to postpone tax burdens, which suggests µb(b) ≥ 0. These two inequalities jointly

imply that the drift of b at debt capacity is zero: µb(b) = 0.

Substituting this µb(b) = 0 condition for bt into (57) yields

b =
τ(b)− γ
rV − g

. (58)

Equation (58) asserts that at the maximal sustainable debt-GDP ratio b equals the present

value of the primary deficit (τ(b) − γ) evaluated at discount rate rV = r + ξ. This is

the appropriate discount rate because the optimal primary deficit is risky and bears a risk

premium of ξ. Condition (58) is condition that in Section V.B. we promised to deliver to

pin down the endogenous debt-GDP capacity b.

Next, we characterize the government’s lumpy debt issuance and payout decisions.

Scaled lumpy debt issuance boundary b and payout policy dut. We can use the homogeneity

property to simplify (49) and verify that the lumpy debt boundary b solves

max
b≥0

v(b) = p(b) + b . (59)

If the optimal b is interior (i.e., b > 0), the cost of debt issuance must be zero at b: v′(b) = 0.

Otherwise, the government issues no lumpy debt and b = 0, as v′(b) < 0. Thus, an optimal

lumpy debt issuance policy satisfies

dut = max{b− bt, 0}. (60)

Conditions characterizing optimal upper and lower boundaries embody distinct economic

forces. The lower boundary b is about optimal lumpy debt issuance and payout, which is

characterized by value-matching and smooth-pasting conditions. The upper boundary b is

absorbing and can only be reached from the left where b < b. That b is absorbing and can
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be reached only from the left certifies it as the maximally sustainable level of debt per unit

of GDP.

If at t = 0 initial government debt is zero and if an optimal b > 0, a government

immediately issues debt and uses the proceeds to finance a lumpy immediate payment dU0 =

bY0 to the household.35 Afterwards, the government’s b equals the optimal target level b and

remains inside [b, b] until it reaches the maximally sustainable debt capacity b.

V.D. Optimal Fiscal Plan

The following proposition describes an optimal tax and debt plan.

Theorem 2. Under the rV > g restriction (28), κ > 1, α ≤ 1, and the condition 1− γ/α−
κc(γ/α) ≥ 0 given in (53), the scaled value function in the normal regime, p(b), satisfies

the first-order nonlinear differential equation:

[ζ + (rV − g)] p(b) = 1− τ(b)− c(τ(b)) + [(rV − g)b+ γ − τ(b)] p′(b) , (61)

subject to the debt-sustainability condition (58) and one of the following two conditions

for the scaled debt capacity b:

p(b) = αp̂ , when the tax rate constraint (8) does not bind ; (62)

τ(b) = τ , when the tax rate constraint (8) binds . (63)

The scaled value in the default regime, p̂, is

p̂ =
1− γ/α− κc(γ/α)

ζ + (rV − g)
. (64)

The lumpy debt issuance boundary b is given by (59), and the optimal lumpy debt

issuance policy, dut, is given by (60). The optimal tax rate policy τ(b) is given by (56)

and the debt-output ratio {bt} evolves deterministically at the rate of ḃt given by (57).

Next, we report an optimal plan in closed-form for the special case with no impatience

(ζ = 0).

35. When the optimal b is strictly positive (b > 0), there is no deadweight cost of debt and the marginal
cost of servicing debt, −p′(b), equals one. This outcome differs from the zero fiscal cost of debt asserted in
Blanchard (2019) and Sims (2022). “Debt is cheap” statements like ones in those two papers apply when
b < b. Here the government has not borrowed enough and should increase its debt-GDP ratio to b > 0.
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Lemma 3. When ζ = 0, bt = b0 and the optimal tax rate τ(bt) is linear in bt for all t:

τ(bt) = τ(b0) = (rV − g)b0 + γ . The scaled value function in the normal regime, p(b), is

constant and given by

p(bt) = p(b0) =
1− τ(b0)− c(τ(b0))

rV − g
. (65)

The scaled value under autarky, p̂ , is p̂ = 1−γ/α−κc(γ/α)
rV −g

> 0 . There is no lumpy debt-

issuance and hence b = 0. The scaled debt capacity is given by b = p−1(αf̂), when the

tax constraint (8) does not bind. Otherwise, b = τ−γ
rV −g

. Combining the two cases, we

obtain the following expression for b:

b = min

{
p−1(αp̂),

τ − γ
rV − g

}
. (66)

Thus, with ζ = 0, an optimal plan entails complete tax smoothing result as in Barro

(1979). However, unlike the full-commitment to repay assumption of Barro (1979), our

model contains an endogenous debt capacity. This turns out to be important quantitatively.

Later we offer calculations with calibrated parameter values that show that debt capacity is

much smaller in our model than it would be in Barro (1979) . Further, because our model

contains shocks to GDP growth rates, debt-GDP ratio dynamics and debt capacity depend

on a risk premium. Moreover, the debt balance, Bt, is volatile and non-stationary since

Bt = b0Yt; Bt follows the same geometric Brownian motion process (2) as Yt.

VI. A Dual Profit-Maximization Problem

In this section, we display a profit-maximizing government’s optimal taxation problem

and show that outcomes are identical to those in the benevolent government’s dynamic debt

management problem from Section V.. The government maximizes the present value of its

future primary surpluses subject to a sequence of participation constraints that induce the

representative household to continue to consent the government’s fiscal plan.

VI.A. Government’s Value and Household’s Promised Value

Consider a long-term resource allocation (contracting) problem between a planner and the

household. The output process {Yt; t ≥ 0} given in (2) is publicly observable and verifiable.

The government spending process {Γt; t ≥ 0} is exogenous.
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Optimal contracting problem. The contract specifies a tax revenue process {Tt; t ≥ 0} that

implies a smooth flow payment (Yt −Tt −Ct) to the impatient household, and a cumulative

payment process to the household {Jt; t ≥ 0}. Optimal policies, {Tt; t ≥ 0} and {Jt; t ≥ 0},
depend on an entire history of both idiosyncratic and systematic shocks {Zht ,Zmt ; t ≥ 0}.
The maximum feasible tax rate that the planner can impose on the output process is τYt for

all t ≥ 0, i.e., Tt ≤ τYt, the same as the constraint (8) that appeared in our primal dynamic

debt management problem.

The planner maximizes the risk-adjusted present value of (Ts − Γs) ds − dJs, the differ-

ence between the government’s primary surplus ((Ts − Γs) ds) and its distribution to the

household (dJs), at time 0. Let Ft denote the planner’s value function at time t:

Ft = max Et

[∫ TD

t

Ms

Mt

[(Ts − Γs) ds− dJs]

]
. (67)

We adopt the assumption of Green (1987), Phelan and Townsend (1991), and Atkeson (1991)

that the planner is risk-neutral or has access to complete insurance markets. To accomplish

this we use the same unique SDF M given in (17), as the one in our primal debt management

problem. We assume that there is zero continuation value for the planner after TD. This

assumption corresponds to our earlier assumption of no debt recovery upon default in the

debt management problem.

Despite the rich history dependence of optimal policies, we can formulate the planner’s

optimization problem as a time consistent and recursive one using the household’s promised

value, denoted by {Wt; t ≥ 0}, as the key state variable.36

Household’s promised value {Wt; t ≥ 0}. The household’s promised value at time t, Wt,

equals the present value of all future payments:

Wt = Et
∫ ∞
t

e−ζ(s−t)
Ms

Mt

(
dJs + (Ys − (Ts + Cs))

(
1− 1Ds

)
ds+ [Ŷs − (T̂s + Ĉs)]1

D
s ds
)
.

(68)

Using the Martingale Representation Theorem, without loss of generality, we can represent

the dynamics of {Wt; t ≥ 0} as:

dWt = [(ζ + r)Wt − (Yt − Tt − Ct)− ηΦm
t ] dt− dJt − Φh

t dZht − Φm
t dZmt . (69)

36. See DeMarzo and Sannikov (2006) and Sannikov (2008) for pioneering work on continuous-time recursive
contracting formulations. See Ai and Li (2015) and Bolton, Wang, and Yang (2019) for continuous-time
recursive formulations of contracting problems with limited commitment in Corporate Finance.
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The planner chooses {Φh
t ; t ≥ 0} and {Φm

t ; t ≥ 0}, exposures of the household’s promised

value {Wt; t ≥ 0} to idiosyncratic and systematic risks exposures, respectively.37

The government’s problem is thus subject to a sequence of constraints that require the

household to continue to participate. Let W t = W (Yt) denote the minimal threshold for

the household’s promised value Wt at which the household is willing to participate. The

participation constraints are:

Wt ≥ W (Yt), t ≥ 0 . (70)

We’ll determine W (Yt) soon.

Next, we turn to the planner’s choice of a lumpy payout to the household and the associ-

ated upper boundary for W . There is a cost of deferring payments to the household because

it is impatient (ζ ≥ 0) and has a higher discount rate than the planner. Deferring payments

to the household increases Wt, which relaxes the participation constraint. This trade-off sug-

gests an endogenous threshold level, W t = W (Yt), above which it is optimal for the planner

to make a payment to the household and to defer payments otherwise. Therefore, we set

dJt = max{Wt −W (Yt), 0} . (71)

Let F (Wt, Yt) denote the planner’s value function that solves the optimization problem

(67). In the payout region where Wt > W (Yt),

F (Wt, Yt) = F (W (Yt), Yt)−
(
Wt −W (Yt)

)
, (72)

and the threshold level W solves

max
W

F (W,Y ) +W . (73)

In the interior region where W ∈ [W,W ], the planner optimally sets dJt = 0 and the

37. As in our primal debt management problem, the government and household both diversify away idiosyn-
cratic risks and optimally choose aggregate risk exposures. So we use the same risk adjustments, i.e., ones
called for by the SDF M given in (17), to evaluate risk premia for both of them. Note that the household is
impatient, having a discount rate that exceeds the risk-free rate r by ζ ≥ 0.
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value function F (W,Y ) satisfies the HJB equation:

rF (W,Y ) = max
T ≤τY,Φh,Φm

(T − Γ) + ((ζ + r)W − (Y − T − C(T , Y )))FW (74)

+ (g − ρησY )Y FY +
σ2
Y Y

2FY Y
2

+
((Φh)2 + (Φm)2)FWW

2
−
(
ψhΦ

h + ψmΦm
)
Y FWY .

See Appendix C for details.

VI.B. Planner’s Optimal Value Function

Using the homogeneity property, we can simplify the planner’s problem to a one-dimensional

problem. Let wt = Wt/Yt denote the scaled household’s value and let

F (Wt, Yt) = f(wt) · Yt . (75)

Let wt = W t/Yt denote the scaled upper boundary of w. We can show that wt is constant

so that we can drop the time subscript.

The scaled optimal lumpy payout to the household for wt, djt = dJt/Yt, at any t is

djt = max{wt − wt, 0}. (76)

Interior region: wt ∈ [w,w]. Here there is no lumpy payout: djt = 0. Let θt = θ(wt) =

Tt/Yt denote the optimal tax rate. Substituting (75) into (74) and simplifying yields the

following implicit equation for θ(w):

1 + c′(θ(w)) = −1/f ′(w). (77)

Using the optimal tax policy (77) and the optimal hedging strategies, (C.38) and (C.39), we

obtain the following deterministic dynamics for the scaled promised value wt:

ẇt ≡ µwt = µw(wt) = (ζ + rV − g)wt − (1− θt − c(θt)) . (78)

Substituting F (Wt, Yt) = f(wt) · Yt from (75) and the optimal policy functions (77), (C.38),

and (C.39) for θ(w), φh(w), and φm(w), respectively, into the HJB equation (74), we obtain
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the following first-order nonlinear differential equation for the planner’s scaled value f(w):

(rV − g)f(w) = τ(w)− γ + [(ζ + rV − g)w − (1− θ(w)− c(θ(w)))] f ′(w) . (79)

Lumpy-payout region: w > w. Here the planner’s value function is f(w) = f(w)+w−w.

The upper boundary w is constant and solves

max
w

f(w) + w . (80)

Participation constraint and autarky. At any time t, the household is free to enter autarky,

in which case output immediately drops to Ŷt = αYt and the household pays for public

spending period-by-period so that T̂t = Γt. The household’s value in this regime, Ŵ (Ŷt), is

Ŵ (Ŷt) = E
∫ ∞
t

e−ζ(s−t)
Ms

Mt

(
Ŷs − Γs − Ĉ(Γs, Ŷs)

)
dt . (81)

The participation constraint requires that the lower boundary of Wt in the interior region,

W (Yt), is greater than or equal to the value function in the default regime Ŵ (Ŷt):

Wt ≥ W (Yt) ≥ Ŵ (Ŷt) . (82)

The inequalityW (Yt) ≥ Ŵ (Ŷt) holds with equality when the tax constraint (8) is not binding.

Otherwise, the tax constraint (8) pins down the lower boundary W (Yt).

Let ŵt = Ŵ (Ŷt)/Ŷt. Using the homogeneity property and solving (81), we obtain:

ŵ =
1− γ/α− κc(γ/α)

ζ + rV − g
. (83)

Then the scaled promised outside value w is

w = αŵ , when the tax constraint (8) does not bind. (84)

Otherwise, (8) binds at the boundary and w is the root of the following equation:

θ(w) = τ . (85)

To ensure that w ≥ w, using the same reasoning as in our primal formulation, we obtain
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the following zero-drift condition for w at w:

µw(w) = (ζ + rV − g)w − (1− θ(w)− c(θ(w))) = 0. (86)

The following theorem describes the optimal contract.

Theorem 4. Under the rV > g condition given in (28), κ > 1, α ≤ 1, and the condition

1 − γ/α − κc(γ/α) ≥ 0 given in (53), the scaled value function in the normal regime,

f(w), satisfies the first-order nonlinear differential equation:

(rV − g)f(w) = τ(w)− γ + [(ζ + rV − g)w − (1− θ(w)− c(θ(w)))] f ′(w) , (87)

subject to the zero-drift condition (86) and one of the following two conditions for the

scaled promised outside value w:

w = αŵ , when the tax constraint (8) does not bind ; (88)

θ(w) = τ , when the tax constraint (8) binds . (89)

The scaled value in the default regime, ŵ, is given by

ŵ =
1− γ/α− κc(γ/α)

ζ + (rV − g)
. (90)

The lumpy-payout boundary w is given by (80), and the optimal lumpy-payout policy,

djt, is given by (76). The optimal tax rate policy θ(w) is given by (77) and the scaled

promised value {wt} evolves deterministically at the rate of ẇt described by (78).

VI.C. Equivalence of Taxes and Debts in Primal and Dual Prob-

lems

The primal and dual problems yield identical outcomes with probability one. The state

variable in the primal government debt management problem (scaled debt, b) equals the value

function (scaled dual planner’s value, f(w)) in the dual planner’s problem. By symmetry, the

state variable in the dual planner’s problem (promised value for the household, w) equals the

value function (investors’ value, p(b)) in the primal government debt management problem.

Thus, the following two equations hold:

b = f(w) and w = p(b). (91)
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Together these equations imply f ◦ p(b) = b. The composition of p( · ) from the primal debt

management problem with f( · ) from the dual planner’s problem equals an identity function.

Table I summarizes the one-to-one mapping for state variables, value functions, policy rules

in the two problems.

TABLE I

Comparison of Primal and Dual Optimization Problems

Primal Dual
Debt Management Planner’s Allocation

A. State variables b w

Drift ḃt given in (57) ẇt given in (78)

Admissible region b ∈ [b, b] w ∈ [w,w]
B. Value function p(b) f(w)

Interior region ODE given in (61) ODE given in (79)
C. Policy rules

Lumpy payouts du given in (60) dj given in (76)
Payout boundaries b given in (59) w given in (80)
Tax rates τ(b) given in (56) θ(w) given in (77)

D. Limited commitment

Boundary condition µb(b) = 0 µw(w) = 0
Default value p̂ given in (64) ŵ given in (83)

Non-binding-tax-constraint case p(b) = αp̂ w = αŵ

Binding-tax-constraint case τ(b) = τ θ(w) = τ

VII. Quantitative Analysis

To prepare the way for some quantitative illustrations of some of our model’s salient

properties, we first describe how we set key parameters.

VII.A. Parameters

We set the mean and volatility of output growth to g = 3% per annum in line with

the estimates in Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2020). We set the annual

risk-free rate r to 1%, the risk premium ξ to 4%, and the government spending/output ratio

to γ = 20%, in line with the estimates in Jiang, Lustig, Van Nieuwerburgh, and Xiaolan

(2019).38 Our choice of a 4% annual risk premium aligns with an equilibrium consumption

CAPM analysis.39 Consider a Lucas (1978) equilibrium asset pricing model in which the

38. We do not need to choose the value for output growth volatility σY once we calibrate risk premium ξ.
39. See Kocherlakota (1996a) for a critical review of the early literature on the equity risk premium.
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source of aggregate risk is the world stock market and the β of a financial claim on the US

aggregate output proposed by Shiller (1994) is between 1/2 and one, which seems plausible

in light of sizes of the US stock market and the US economy relative to the world’s. With

a 6% annual world stock market risk premium and a β of 2/3 for the financial claim on the

US output, we obtain a risk premium of ξ = 4% for a financial claim on US output.

We set the parameter that governs output loss after default to 5% by choosing α = 0.95

(see Hébert and Schreger (2017) and Rebelo, Wang, and Yang (2021)). We set the upper

bound for the maximum politically feasible tax rate τ at 50%.40 As benchmarks, Denmark

has the highest average tax-output ratio: 46.3% and the average tax rate in OECD countries

is 33.8%. We calibrated Ξ = {ζ, κ, ϕ} from the US debt data from 2000 to 2020 (see

Appendix D). The impatience parameter is ζ = 0.1% per annum.

TABLE II

Parameter Values

This table summarizes the parameter values for our baseline quantitative analysis.
Whenever applicable, parameter values are continuously compounded and annualized.

Parameter Symbol Value
A. Calibration inputs
risk-free rate r 1%
risk premium ξ 4%
average output growth rate g 3%
government spending to output ratio γ 20%
output recovery in the default regime α 0.95
B. Calibration outputs
impatience ζ 0.1%
tax deadweight loss ϕ 2.9
default deadweight loss κ 1.2

We follow Barro (1979) in using a quadratic deadweight loss function:

c(τ) =
ϕ

2
τ 2 , (92)

where the parameter ϕ > 0 measures the deadweight cost caused by distortionary taxes.

We calibrated tax distortion parameter at ϕ = 2.9. We assumed that the deadweight loss

function (holding the tax rate on output fixed, τ = τ̂) increases from c( · ) to ĉ( · ) = κc( · )
by 20% if the government defaults: κ = 1.2. Table II summarizes parameter values deployed

in our baseline quantitative analysis.

40. In the 1920’s, Keynes had guessed .25 for this parameter.
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VII.B. Primal and Dual Problems

Figure I

Household’s Value p(b), Planner’s Value f(w), Marginal Cost of (Servicing)
Debt −p′(b), and Marginal Cost of Compensating Household −f ′(w)

Debt capacity is b = 1.99 and there is no lumpy debt issuance: b = 0. Parameter value are
reported in Table II.
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Some graphs illustrate the equivalence between the (primal) government debt manage-

ment problem and the (dual) government profit-maximization problem. Panels A and C

of Figure I plot the household’s value p(b) and the marginal cost (MC) of servicing debt

−p′(b) = PB(B, Y ), respectively. The household’s value p(b) is decreasing and concave in

b, since as b increases the household becomes more constrained. As we increase b from its

lower bound b = 0 to the government’s debt capacity b = b = 1.99, p(b) decreases from
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Figure II

Optimal Tax Rate τ(b), Optimal Tax Rate θ(w), Drift of Debt-GDP Ratio
µb(b), and Drift of Scaled Promised Value µw(w).

Lower bound of promised value w = 32.23 and lumpy payment boundary: b = 35.37.
Parameter value are reported in Table II.
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p(0) = 35.4 to p(b) = 32.2 and the MC of servicing debt −p′(b) increases from −p′(0) = 1.51

to −p′(b) = −p′(1.99) = 1.69 (panel C). That the MC of servicing debt exceeds one reflects

costs of tax distortions and limited commitment. At the current US debt-GDP ratio of

1.08, the MC of servicing debt is about −p′(1.08) = 1.58 dollars, 58 cents higher than the

monetary cost of one dollar.

Panels B and D of Figure I plot the government’s value f(w) and the marginal cost

(MC) of compensating households −f ′(w) = −FW (W,Y ), respectively for the government’s

dual profit-maximizing problem. The planner’s value f(w) is decreasing and concave in the
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Figure III

Value of Commitment and Ricardian Equivalence.

For all three cases in this figure, there is no impatience (ζ = 0). All other parameter value
are reported in Table II. In the stochastic Barro (full-commitment) model, debt capacity is
b = 15 with τ = 0.5. In our limited-commitment model, debt capacity is b = 1.99. Under
Ricardian equivalence, an outcome prevails at which v(b) = vFB = 40 and v′(b) = 0.
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(scaled) household’s promised value w. As the participation constraint limits the government

more, a higher MC of compensating households −f ′(w) emerges

We can illustrate equivalence of primal and dual problems by rotating panel A (away

from its plane) and swapping x and y axes. Doing so generates panel B. As a result, the red

dot in panel A corresponds to the red dot in panel B: p(b) = w and f(w) = b. Similarly, the

black square in panel A corresponds to the black square in panel B. Indeed, for all b ∈ [0, b],

we have f ◦ p(b) = b so that the composition of p( ·) from the primal debt management

problem with f( ·) from the dual planner’s problem is an identity function.

Since the equivalence between primal and dual two problems implies f ◦ p(b) = b, we

also have p′(w) × f ′(b) = 1. Since tax distortions make the MC of servicing debt exceeds

one (−f ′(b) > 1), the marginal cost (MC) of compensating households by cutting taxes
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must be less than one −p′(w) < 1. As we increase w from w = 32.2 to w = 35.4, the MC

−f ′(w) increases from −f ′(w) = 0.59 at w = w = 32.2 to −f ′(w) = 0.66 at w = w = 35.4.

The MC of cutting taxes is less than one for the dual government because cutting taxes

also reduces distortions and relaxes the household’s participation constraint. The higher the

value of household’s promised value w, the less financially constrained is the household and

the smaller the benefit from reducing distortions by cutting taxes.

In panels A and B of Figure II, we plot optimal tax rate function τ(b) and θ(w) in

the primal and dual formulations. The optimal tax rate τ(b) increases with b and reaches

its maximum value τ(b) = 0.24 at the debt limit b = 1.99 (panel A). For sufficiently low

b, the government runs a primary deficit by keeping taxes low. When debt is sufficiently

high (b > 1.06), the government runs a primary surplus by increasing the tax rate (at an

increasing rate) in order to bring down the drift of b (panel C). In the limit, the economy

settles at b = 1.99. At the current debt-output ratio (1.08), the optimal tax rate on output

is about τ(1.08) = 20%.

The dual panel B shows that θ(w) decreases with w. This happens because the govern-

ment’s power to tax the household decreases as the household’s value w increases. Red dots

in panels A and B describe the same outcomes, as do black squares.

Panels C and D plot the drift of b and the drift of w, respectively. Note that ḃt, the rate

at which the debt-GDP ratio b increases, decreases with the level of bt. As b increases, both

the marginal cost of servicing debt −p′(b) and the tax rate τ(b) increase. As a result, the

debt-GDP ratio increases at a slower rate (i.e., ḃt decreases) until it eventually reaches zero

at debt capacity: µb(b) = 0 (panel C). This occurs because the government cannot exceed its

debt limit. Correspondingly, the drift of scaled promised value in the absolute value |µw(wt)|
decreases as wt decreases. As w decreases, the promised value w decreases at a slower rate

until it reaches zero at the lowest promised value w: µw(w) = 0 (panel D).

Figure III shows that limited commitment significantly reduces the government’s debt

capacity (compare the solid blue with the dashed red lines). To isolate the effect of limited-

commitment, we set ζ = 0 in our baseline model. Notice that for all levels of b up to b = 1.99,

the optimal government plan in our limited-commitment model coincides with that for our

stochastic version of a Barro model, which assumes commitment and ζ = 0); here b = 1.99

is debt capacity in our limited-commitment model. A notable result from this figure is that

the government’s debt capacity is reduced by 87% from b = 15 in the stochastic Barro model

to 1.99 in our model.41 This 87% reduction of debt capacity is attributable solely to the

41. The government’s debt capacity for the stochastic Barro model equals b
∗

= τ−γ
rV −g = 0.5−0.2

5%−3% = 15.
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government having the option to default in our model.

Figure III also shows how taxes are distortionary. An undistorted outcome is attained

under the special section III. version of our model that we used to deliver a Ricardian

equivalence outcome. In our model, the total scaled value in this case is vFB = (1−γ)/(rV −
g) = 40. Under Ricardian equivalence, tax and debt policies are irrelevant and therefore the

marginal deadweight cost of debt, −v′(b) = 0, is zero for all admissible levels of b (panel

B). The gap between the solid blue line (the v(b) solution for the stochastic Barro model)

and the horizontal Ricardian (dotted black) line v(b) = vFB = 40 increases with b. In the

special section IV. stochastic Barro (1979) version of our model, the marginal deadweight

cost of debt increases with b and reaches −v′(b) = 1.45 at its debt limit b = 15. To sustain

such a high level of debt, the government has to tax output at the very distortionary 50%:

τ(b) = 0.5.

VII.C. Comparative Dynamics

Effects of impatience ζ. The parameter ζ measures the degree of the government’s impa-

tience. A higher ζ indicates more impatience. It introduces a wedge in first-order conditions

that has quantitatively important effects on taxes and value functions. Figure IV compares

outcomes in our baseline (ζ = 0.1%) case with those from a ζ = 4% case in which the

government is much more impatient.

As ζ increases from 0.1% to 4%, the total value p(b) decreases by about two thirds at

all admissible levels of b (panel A.) This outcome emerges mostly from a typical discounting

channel. More interesting to us is that both the marginal cost of debt (−p′(b)) and the

optimal tax rate (τ(b)) decrease substantially for most values of b (panels B and C). This

happens because it is much less costly for the government to defer taxation. As a result, the

marginal cost of debt (−p′(b)) at b = 0.42 is one when ζ = 4% but equals 1.54 dollars in our

baseline ζ = 0.1% case. The optimal tax rate (τ(b)) at b = 0.42 is zero when ζ = 4% but

equals 18% in our baseline ζ = 0.1% case.

For both cases, as b increases, the tax rate τ(b) and the marginal cost of debt increase

until debt has reached debt capacity b = 1.99. While increasing ζ does not change the

government’s debt capacity, it does substantially increase the drift of the debt-GDP ratio

µb(b), which in turn changes the time it takes for a government to reach its debt capacity,

as we describe in Section VII.D..

Effects of risk-free rate r. Figure V compares outcomes in our baseline (r = 1%) case

with those in an r = 0.5% case. When r decreases across economies from 1% to 0.5%, a
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Figure IV

Effects of Impatience ζ.

All parameter values other than ζ are reported in Table II.
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government’s debt capacity b increases substantially from 1.99 to 2.66. Importantly, both

the marginal cost of debt −p′(b) and the tax rate τ(b) decrease substantially for the lower r

economy. Because interest payments are smaller, debt burden is smaller and tax distortions

are also smaller. As a result, a government is more willing to borrow causing the drift of the

debt-GDP ratio µb(b) to increase as r falls for all levels of b (panel D).

Effects of risk premium ξ. Figure VI compares outcome under our baseline (ξ = 4%)

case with those of a ξ = 3% case. When across economies ξ decreases from 4% to 3%, a

government’s debt capacity b doubles from 1.99 to 3.99. Importantly, both the marginal

cost of debt −p′(b) and the tax rate τ(b) decrease markedly as the risk premium ξ falls.

Because systematic risk management costs are smaller, the debt burden and tax distortions

are smaller. As a result, a government is more willing to borrow causing the drift of the

debt-GDP ratio ḃt = µb(b) to increase as risk premium falls for all levels of b (panel D).
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Figure V

Effects of Interest Rate r.

All parameter values other than r are reported in Table II.
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Effects of Output Growth Rate g. Figure VII compares outcomes under our baseline

(g = 3%) case with those from a g = 2% economy. When the growth rate across economies

decreases from 3% to 2%, a government’s debt capacity b decreases by about one third

from 1.99 to 1.33. The marginal cost of debt −p′(b) and the tax rate τ(b) both increase

substantially as the growth rate falls from 3% to 2%. With slower growth, a government is

less willing to borrow against the future, causing drift of the debt-GDP ratio ḃt = µb(b) to

fall for all levels of b (panel D). That government response has important implications about

the time it takes for a government to reach its debt limit.

Effects of tax distortion cost ϕ. The parameter ϕ governs tax distortions in the dead-

weight loss function c( · ). Figure VIII compares outcomes under our baseline (ϕ = 2.9) case

with those from a ϕ = 0.05 case. When ϕ decreases from 2.9 to 0.05, a government’s debt ca-

pacity b increases a little from 1.99 to 2.18 and the household’s value function p(b) increases.

The marginal cost of debt −p′(b) and the tax rate τ(b) both decrease. When taxes are less
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Figure VI

Effects of Risk Premium ξ.

All parameter values other than ξ are reported in Table II.
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distortionary, a government is more willing to borrow against the future, causing lumpy debt

issuance threshold b to increase from 0 to 1.05 (panel A), and drift of the debt-GDP ratio

ḃt = µb(b) to increase at all levels of b (panel D).

Effects of default costs: (increasing tax distortion costs κ > 1). The parameter κmeasures

how much more distortionary taxes are in the default regime than in the service-debt regime.

Figure IX compares outcomes under our baseline (κ = 1.2) case with those under a κ = 1.5

case. When across economies κ increases from 1.2 to 1.5, a government’s debt capacity b

increases from 1.99 to 2.53 and the household’s value function p(b) increases slightly. The

marginal cost of debt −p′(b) and the tax rate τ(b) both decrease. That is because when

default is more costly, a government is more willing to repay debt, allowing it to borrow

more. As κ increases across economies, the drift of the debt-GDP ratio ḃt = µb(bt) is higher

for all levels of b (panel D).
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Figure VII

Effect of Average Output Growth Rate g.

All parameter values other than g are reported in Table II.
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Effects of default costs: output loss (1 − α). The parameter α measures the recovery of

output in the default regime. Figure X compares outcomes under our baseline (α = 0.95)

case with those under an α = 0.9 case. When across economies output loss (1−α) increases

from 5% to 10%, a government’s debt capacity b increases markedly from 1.99 to 3.55,

but the household’s value function p(b) increases only slightly. The marginal cost of debt

−p′(b) and the tax rate τ(b) both decrease. This is because when default is more costly, the

government is more willing to repay debt and hence is able to borrow more. Finally, the

drift of the debt-GDP ratio ḃt = µb(bt) is higher as we increase output loss (1 − α) for all

levels of b (panel D).

Our comparative static results with respect to (1−α) and κ are similar because increasing

(1 − α) directionally has the same effect as increasing κ. Both make default more costly,

which in turn improves incentives to repay and therefore debt capacity.

Effects of government spending-GDP ratio γ. The parameter γ measures a government
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Figure VIII

Effect of Tax Distortion Cost ϕ.

All parameter values other than ϕ are reported in Table II.
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spending as a fraction of output. Figure XI compares outcomes under our baseline (γ = 0.2)

case with those under a γ = 0.3 case. When across economies government spending γ

increases from 0.2 to 0.3, a government’s debt capacity b increases slightly from 1.99 to

2.18, but the household’s value function p(b) decreases markedly. The marginal cost of

debt −p′(b) and the tax rate τ(b) both increase substantially. That is because when the

government spending fraction is higher, a household’s value in the default regime becomes

lower. Hence, a government is more willing to tax more in order to repay its debt. Then

enables it to borrow more. For all levels of b, the drift of the debt-GDP ratio ḃt = µb(bt) is

higher when the government spending fraction γ is higher (panel D).

Effects of expected autarky duration 1/χ. In our baseline Section II. model, the govern-

ment permanently stays in autarky once it enters. In reality, a sovereign after defaulting on

its debt stochastically regains its access to capital markets. To capture the finite stochastic

duration of autarky, we assume that the government exits autarky at a constant (annual)
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Figure IX

Effects of Default Costs: (Increasing Tax Distortion Costs κ > 1).

All parameter values other than κ are reported in Table II.
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rate, denoted by χ, following the sovereign-debt literature.42 We set χ = 1/5 per annum

as a sovereign after default on average stays in autarky for four or five years (e.g., see the

estimate in Aguiar and Gopinath, 2006). In Figure XII, we compare this χ = 0.2 case with

our baseline χ = 0 case in which autarky is an absorbing state.

As we decrease the expected duration of autarky 1/χ from∞ to five years, the equilibrium

debt capacity b decreases from 1.99 to 1.21 while the marginal cost of debt −p′(b) and the tax

rate τ(b) both increase. With a lower debt capacity (for the χ = 0.2 case), the government

has less room to smooth taxes and hence has to tax more in order to honor its debt. Because

higher taxes cause more distortions, the government’s marginal cost of debt is higher. As a

result of higher taxes, the government pays back its debt at a faster rate (for all admissible

levels of b) causing the drift of its debt-GDP ratio ḃt = µb(bt) to be lower for the χ = 0.2

case than for our baseline χ = 0 case (panel D).

42. In Appendix B, we provide technical details.
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Figure X

Effect of Default Costs: Output Recovery α.

All parameter values other than α are reported in Table II.
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VII.D. Time to Reach Debt Capacity

Our model asserts that a government’s debt-output ratio bt evolves deterministically at

rate ḃt = µb(bt) described by (57). For a given initial b0, the time it takes for the government

to reach its debt capacity b is

∫ b

b0

dbt

ḃt
=

∫ b

b0

1

(rV − g)bt + γ − τ(bt)
dbt. (93)

Figure XIII shows that as governments become more impatient across economies (i.e., as

ζ increases), the time it takes for the government to exhaust its debt capacity decreases. Even

for seemingly small increase of impatience, effects of impatience are large In our calculation,

starting from the current US debt level of b = 108%, it will takes about 68 years to reach the

debt limit in 2088 if ζ = 0.1%, but it would takes less than 20 years to reach the debt limit

in 2039 if impatience were to increases to ζ = 1%. If we interpret populism as impatience,
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Figure XI

Effect of Government Spending γ.

All parameter values other than γ are reported in Table II.
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these comparative dynamics are consistent with a commonly held view that debt capacity

is smaller for a populist government.

Figure XIV plots time it takes for the government to reach its debt capacity as a function

of interest rate r. First recall that when facing a lower interest rate, a forward-looking gov-

ernment can finance its debt repayment with a lower tax rate τ(b), which is less distortionary

(a lower marginal cost of debt, −p′(b)). As a result, debt is more sustainable, which means a

larger debt capacity b, but the debt-GDP ratio also drifts upward at a faster rate ḃt, ceteris

paribus. Holding impatience ζ fixed, we see that it takes longer to reach the steady state

and exhaust its debt capacity if interest rate is lower (panel A). This is because the debt

capacity force is stronger than the drift effect. Across economies, the level of the interest

rate has big consequences. With our parameter settings, starting from the current US debt

level of b = 108%, it takes about 90 years to reach the debt limit in 2110 if r = 0.5%, but

takes about 68 years to reach the debt limit in 2088 if r = 1%. This pattern is in line with

47



Figure XII

Effect of intensity to exit autarky χ.

All parameter values other than χ are reported in Table II.
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reasoning of Blanchard (2019) and Furman and Summers (2020).

We now perform a distinct calculation that holds a government’s discount rate should

be fixed even though we alter the interest rate. Under such an assumption, we hold a

government’s discount rate (ζ+r) fixed and plot time to reach debt capacity as a function of

r in panel B of Figure XIV. Evidently, it takes less time to reach steady-state debt capacity

if interest rate is lower. This is because the drift effect (due to a corresponding increase in

impatience ζ) becomes much stronger than the debt capacity effect. For a fixed value of

ζ + r = 1.1%, starting from the current US debt level of b = 108%, it would take about 33

years to reach the debt limit in 2053 if r = 0.5%; but if r = 1%, it would take about 68 years

to reach the debt limit in 2088.

A key takeaway from the two panels of Figure XIV is that time to reach the steady-state

debt capacity crucially depends on both how impatient the government is and the level of

interest rate.
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Figure XIII

Time to Reach Debt Capacity as a Function of Impatience ζ.

All other parameter values are reported in Table II. The initial
the debt-GDP ratio is b0 = 108.1% and debt capacity is 199%.
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Time to Reach Debt Capacity as a Function of Interest Rate r.

For both panels, the initial b is b0 = 108.1%. In panel A, the impa-
tience parameter is fixed at ζ = 0.1%. In panel B, the discount rate is
fixed at ζ + r = 1.1%. All other parameter values are reported in Table II.
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VII.E. Quantitative Debt-GDP Ratio Dynamics

Next, we analyze the predicted debt-GDP ratio dynamics using our calibrated parameter

values. Since we are interested in both the maximum sustainable debt b at the optimal

steady state and transition dynamics towards b, we assume that a government can completely

hedge its exposures to risks, with the consequence that dynamics of the debt-GDP ratio are

deterministic. We have designed our model parsimoniously in a way that can capture a
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long-run trend and the steady state of debt dynamics.

Panel A of Figure XV plots the implied debt-GDP ratio dynamics from 2000 to 2020 using

parameters from our baseline calibration.43 Our model (the blue solid line) does a good job

of approximating the trend of debt-GDP ratio dynamics {bt} over this 20-year period in the

US (the black dashed line). Panels B, C, and D of Figure XV plot the predicted debt-output

ratio {bt} processes starting from 2021 until the government exhausts its debt capacity and

reaches the steady state for various scenarios where we change interest rate r, growth rate

g, and risk premium ξ.

Figure XV

Predicting Debt-GDP Ratio Dynamics for a Few Scenarios.

The US debt-output ratios in 2000 and 2020 are 57.5% and 108.1%, respec-
tively. For all model-predicted b processes in panels B, C, and D, the left-
end points of the horizontal lines are the corresponding levels of debt capacity b.
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43. Recall that our calibration procedure did not target the debt-GDP ratio leverage dynamics that we plot,
which only conditions on the initial condition. Our calibration procedure minimizes the sum of the squared
of the difference between one-step-ahead model-predicted bt and the realized bt.
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Panel B shows that the government can be expected to reach its debt capacity (b = 1.99)

in 2088 if r = 1% as we noted earlier. The debt-GDP ratio gradually builds up until

reaching the steady state where b = 1.99 (the solid blue line.) But if the interest rate were

unexpectedly and permanently decrease to r = 0.5%, the debt-GDP ratio would increase at

a much faster rate, so that a steady state b = 2.66 (the dotted red line) would be reached in

2110.

Panel C shows that if a government’s growth rate permanently drops to 2% from 3%, the

government will reach its reduced debt capacity (b = 1.33 from 1.99) in 2050. This result

confirms the intuition that economic growth is a key source of servicing debt.

Panel D shows that if the risk premium ξ were unexpectedly and permanently to drop

to 3% from 4%, the government’s debt capacity would then increase to b = 3.99 from 1.99;

it would take almost 110 years to exhaust its debt limit around 2140. This result shows

that the risk premium ξ has a very large quantitative effect on both debt capacity and on

transition dynamics to a steady state.

VIII. Concluding Remarks and Extensions

To construct streamlined formulas that allow us to isolate salient forces that determine

optimal fiscal policy, debt capacity, and debt dynamics, we purposefully chose to work with a

complete-markets limited-commitment model with only one aggregate shock (i.e., the stock

market). We have neglected other sources of aggregate risks that governments face including

stochastic interest rates, a stochastic government spending-GDP ratio γ, and market prices

of risk (Jiang, Lustig, Van Nieuwerburgh, and Xiaolan, 2019). We can extend our model to

include such risks by making γ, the risk-free rate r, or GDP growth g an n-state Markov

process. The mathematical structure of such an extended model closely remains tractable.

That extended model has richer dynamics of debt, debt capacity, and taxes and can be used

to study various long-run risks that confront a government.
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Appendix

A Stochastic Barro Model (Section IV.)

In this appendix, we compute an optimal fiscal policy for the Section IV. model, which is a stochastic

formulation of Barro (1979). This model is a special case of our general model formulation with full com-

mitment and no impatience (ζ = 0). We characterize the household’s value function and show that the

government’s tax policies are time consistent.

To solve the government’s optimization problem given by (30) subject to the budget constraint (18), we

introduce the following Lagrangian L

L = max
Tt,Ut;t≥0

E0

∫ ∞
0

Mt [dUt + (Yt − (Tt + Ct)) dt]

+λ

[
E0

∫ ∞
0

Mt (Tt − Γt) dt− E0

∫ ∞
0

MtdUt −B0−

]
, (A.1)

where λ is the Lagrangian multiplier for the government’s budget constraint (18).

The first order condition for the optimal tax rate at time t is given by

1 + CT (T , Y ) = λ . (A.2)

Using the homogeneity property of the tax deadweight cost function (7) to simplify the FOC (A.2), we obtain

c′(τ∗t ) = λ − 1 for the optimal tax rate τ∗t at any time t. Since λ is a constant, the optimal tax rate τ∗t is

constant at all t: τ∗t = τ∗ for all t, where τ∗ satisfies:

c′(τ∗) = λ− 1 . (A.3)

The (strict) convexity of the deadweight loss function c′(τ) implies that the Lagrangian multiplier for

the government budget constraint is (strict) larger than one: λ > 1. Because tax is distortionary and there

is no incentive for the government to front load consumption (as ζ = 0), there is no lumpy debt issuance at

any time t: dUt = 0. (Moreover, the optimal debt target should be zero: b = 0, if the government were given

the option to chooses its initial debt b0.) We obtain λ by using (A.3): λ = 1 + c′(τ∗). Next, we determine

τ∗.

Because the government’s budget constraint (18) holds with equality (as λ > 1), the present value of

primary surplus {(τ∗ − γ)Yt; t ≥ 0}, discounted at the rate of rV , the sum of the risk-free rate r and risk

premium ξ, equals the outstanding debt balance, B0. This calculation yields the following explicit equation:44

τ∗ = b0(rV − g) + γ . (A.5)

44. The present value formula is
τ∗ − γ
rV − g

=
B0

Y0
≡ b0 (A.4)

under the condition that the tax policy τ∗ is feasible.
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Substituting (A.3) and dUt = 0 into the Lagrangian (A.1) and using the homogeneity property, we obtain

the following expression for the value function (also the Lagrangian) under optimal policies:

p(b0) = L =
1− τ∗ − c(τ∗)

rV − g
, (A.6)

where τ∗ is given in (A.5). As the budget constraint (18) binds, we only need to calculate the first term in

(A.1) under the optimal policies.

Using the tax policy given by (A.5), the government optimally adjusts its debt balance Bt in each step

with output Yt so that the debt-GDP ratio is constant at all t ≥ 0: bt = b0. The government in the future

will follow the same strategy chosen by the time-0 government. Therefore, the government’s optimization

problem is time consistent (Lucas and Stokey 1983).

Finally, we discuss the maximally sustainable debt under commitment. Suppose that the maximal tax

burden that the household is willing to tolerate without triggering a revolution, denoted by T ∗t , is the level

at which the household’s value function is zero. Given the stationarity of our perpetual growth model, the

household’s net cash flow payoff in each period is zero:

Yt − T
∗
t − C(T ∗t , Yt) = 0 . (A.7)

Let B
∗

denote the corresponding largest sustainable debt that the government can credibly honor. Then,

B
∗

satisfies the following equation:

B
∗

= E0

∫ ∞
0

Mt

(
T ∗t − Γt

)
dt. (A.8)

The maximally sustainable debt-GDP ratio b
∗

is then given by b
∗

= (τ∗ − γ) / (rV − g) , where τ∗ = T ∗t /Yt
solves the equation: 1− τ − c(τ) = 0.

B Optimal Fiscal Plan for Section V. model

In this appendix, we describe the optimal plan that appeared in Section V. for the primal dynamic debt

management problem defined in Section II..

HJB equation for P (B, Y ). Using Ito’s formula, we obtain the following SDF-adjusted dynamics for the

household’s value function P (Bt, Yt):

d(MtP (Bt, Yt)) = MtdP (Bt, Yt) + P (Bt, Yt)dMt+ < dMt, dP (Bt, Yt) >, (B.9)
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where the SDF {Mt; t ≥ 0} is given in (17) and

dP (Bt, Yt) = PBdBt +
PBB

2
< dBt, dBt > +PY dYt +

PY Y
2

< dYt, dYt > +PBY < dBt, dYt >

=

[
(rB + (Γ− T )−Πmη)PB + gY PY +

σY Y
2PY Y
2

]
dt

+

[(
(Πh)2 + (Πm)2

)
PBB

2
− (Πhψh + Πmψm)Y PBY

]
dt

− PB(ΠhdZht + ΠmdZmt ) + Y PY (ψhdZht + ψmdZmt ) . (B.10)

Note that the process defined by∫ t

0

(
e−ζsMs (Ys − Ts − C(Ts, Ys)) ds

)
+ e−ζsMsdUs + e−ζtMtP (Bt, Yt)

is a martingale under the physical measure P. Therefore, its drift under P is zero:

Et
[
d
(
e−ζtMtP (Bt, Yt)

)]
+ e−ζtMt (Yt − Tt − C(Tt, Yt)) dt = 0. (B.11)

Note that we have used the result that dUt = 0 in the interior region. Simplifying (B.11) gives the HJB

equation (40) for the household’s value function P (Bt, Yt).

We do not repeat the first-order condition (FOC) for the tax rate and other derivations contained in the

main body. Below we provide the details for risk management policies.

Stock market portfolio allocation πm. Let πmt = Πm
t /Yt denote the scaled stock market portfolio allo-

cation. Using the homogeneity property, we show that πmt is a function of bt, which we denote by πm(bt).

Simplifying the FOC given in (42) for Πm, we obtain the following expression for πm(b):

πm(b) = −ψmb . (B.12)

Idiosyncratic hedging demand πh. Let πht = Πh
t /Yt denote the scaled idiosyncratic risk hedging demand.

Similarly, using the homogeneity property, we show that πht is a function of bt, which we denote by πh(bt).

Simplifying the FOC given in (43) for Πh, we obtain the following expression for πht = πh(bt):

πh(b) = −ψhb . (B.13)

Debt-GDP ratio bt dynamics. Applying Ito’s lemma to bt = Bt/Yt, where Bt is given in (39) and Yt is

given in (2), we obtain

dbt = µbt dt+ dut + σb,ht dZht + σb,mt dZmt , (B.14)

where

µbt = (r − g)bt + γ − τt − ηπmt +
(
ψhπ

h
t + ψmπ

m
t + btσ

2
Y

)
(B.15)

σb,ht = −
(
πht + ψhbt

)
(B.16)

σb,mt = − (πmt + ψmbt) . (B.17)
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Substituting hedging policies (B.12) and (B.13) into (B.15), we show that the debt-output ratio, {bt},
evolves deterministically at the rate given by:

ḃt = µbt = µb(bt) = (rV − g)bt + γ − τ(bt) (B.18)

where τ(bt) is given by (56).

Equivalent formulation of optimization problem under risk-neutral measure P̃. As is standard in macro

research, we have formulated the government’s optimization problem in Section II. and provided the solution

in Section V. under the physical measure P. We can equivalently formulate the problem and solve it under

the risk-neutral measure P̃. Recall that under the physical measure P, the Brownian motions for idiosyncratic

shock and systemic shock are given by Zht and dZmt , respectively. Because the shock to the market portfolio is

systematic with a constant Sharpe ratio of η, using the standard Black-Merton-Scholes dynamic replication

argument, we can show that the Brownian motion for systemic shock under the risk-neutral measure P̃,

denoted by Z̃mt , is given by

dZ̃mt = dZmt + ηdt . (B.19)

This equation is also the reason why a well-diversified investor who holds a long position in the market

futures contract demands a positive payment at the rate of ηdt to break even. This explains the last term

in the law of motion (39) for Bt. The Brownian motion for the idiosyncratic shock under the risk-neutral

measure P̃ is the same as that under the physical measure P:

dZ̃ht = dZht , (B.20)

as there is no risk premium.

Using (B.19) amd (B.20) under the risk-neutral measure, we may express the output process (2) under

the risk-neutral measure P̃ as follows:

dYt
Yt

= g̃dt+ σY

(√
1− ρ2dZ̃ht + ρdZ̃mt

)
, (B.21)

where g̃ is the average output growth rate under the risk-neutral measure P̃:

g̃ = g − ρσY η . (B.22)

In the interior region where dUt = 0, we may equivalently express the government’s optimization problem

under the risk-neutral measure P̃ as follows:

max
Tt≤τYt,Πht ,Πmt

Ẽ0

[∫ ∞
0

e−(ζ+r)t
(

(Yt − Tt − C(Tt, Yt))1Dt +
(
Ŷt − T̂t − Ĉ(T̂t, Ŷt)

) (
1− 1Dt

))
dt

]
, (B.23)

subject to the government’s tax constraint Tt ≤ τYt and the budget constraint:

Bt = Ẽt

[∫ TD

t

e−r(s−t) (Ts − Γs) ds

]
. (B.24)

Note that the budget constraint (B.24) is under the risk-neutral measure P̃.
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Equation (B.24) implies that e−rtBt+
∫ t

0
e−rs (Ts − Γs) ds is a martingale under the risk-neutral measure

P̃. Using the marginal representation theorem, we can equivalently express debt dynamics under the risk-

neutral measure P̃ as:

dBt = (rBt + (Γt − Tt)) dt−Πh
t σ dZ̃ht −Πm

t σmdZ̃mt . (B.25)

Using (B.23), (B.25), and (B.21) in the interior region, we use the following HJB equation to solve the

household’s value functionP (B, Y ):

(ζ + r)P (B, Y ) = max
T ≤τY,Πh,Πm

Y − T − C(T , Y ) + [rB + Γ− T ]PB(B, Y ) (B.26)

+ (g − ρησY )Y PY (B, Y ) +
(Πh)2 + (Πm)2

2
PBB(B, Y )

+
σ2
Y Y

2

2
PY Y (B, Y )−

(
ψhΠh + ψmΠm

)
Y PBY (B, Y ) .

Existence and uniqueness of equilibrium debt capacity. We show that under the κ > 1 and α ≤ 1

conditions, there exists a unique positive debt capacity b > 0. Furthermore, when the tax constraint (8)

does not bind, there exists a unique b > 0 where p(b) = αp̂. When taxes are more distortionary (κ > 1) under

autarky or when default causes output losses (α ≤ 1), the government is always better off not defaulting and

instead prudently managing risk exposures and debt dynamics to avoid default.

Proposition 5. Under the rV > g condition given in (28), κ > 1, α ≤ 1, and the condition 1 − γ/α −
κc(γ/α) ≥ 0 given in (53), the equilibrium debt capacity b is unique and given by

b = min

{
b∗,

τ − γ
rV − g

}
, (B.27)

where b∗ is the unique positive root of the following equation

1− (rV − g)b− c((rV − g)b+ γ) = α− ακc(γ/α) . (B.28)

Proof.Equations (61) and (58) imply

p(b) =
1− τ(b)− c(τ(b))

ζ + rV − g
, (B.29)

where τ(b) = (rV − g)b+ γ. The debt capacity b solves one of the following two equations

p(b) = αp̂ , when the tax rate constraint (8) does not bind ; (B.30)

τ(b) = τ , when the tax rate constraint (8) binds . (B.31)

If tax constraint (8) binds, the equilibrium debt capacity b is the unique solution of (B.31): b = τ−γ
rV −g .

If tax constraint (8) does not bind, we can show that the equilibrium debt capacity, which is the solution of

(B.30), exists and is also unique. First, (B.29) implies that the left side of (B.30) is decreasing b. Second,

the left side of (B.30) when b = 0 equals 1− γ − c(γ), which is strictly larger than the right side of (B.30),

given that the deadweight loss function c( · ) is increasing and convex (in addition to the κ > 1 and α ≤ 1
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conditions). Third, the left side of (B.30) approaches negative infinity as b → ∞. Therefore, there exists a

unique value of b > 0 where (B.30) holds with equality. This unique value of b > 0 solves (B.28). Thus, an

equilibrium debt capacity exists and is uniquely determined by

b = min

{
b∗,

τ − γ
rV − g

}
.

Next, we report closed-form solutions when the loss function is quadratic.

Lemma 6. Under the conditions given in Theorem 2 and when the deadweight loss function is quadratic:

c(τ) = ϕ
2 τ

2 as given in (92), the debt capacity b is

b = min


(√

1 + 2ϕ (1− α+ γ + ϕκγ2/α/2)− 1
)
/ϕ− γ

rV − g
,
τ − γ
rV − g

 . (B.32)

When tax constraint (8) does not bind, the debt capacity b equals the first term in (B.32). Additionally,

the debt capacity b increases with the expected growth rate g, default cost κ, and output loss α; and

decreases with government spending γ, tax distortion costs ϕ, the expected risky asset return rV , the

risk free rate r, and the risk premium ξ.

Extension: finite autarky duration. Our baseline model assumes that the government stays in autarky

forever after reneging on its liability. As typical in the sovereign-debt literature, we generalize our baseline

model by allowing the government to regain access to international capital markets with probability χ per

unit of time. Let T ε denote the government’s stochastic exogenous exit time from autarky. Upon exiting

from autarky at T ε and returning to the normal regime, the household’s value function is P (0, YT ε), where

output is continuous at T ε, which means YT ε = ŶT ε . The household’s value function under autarky P̂ (Ŷ )

therefore satisfies

(ζ + r + χ)P̂ (Ŷ ) = Ŷ − Γ− Ĉ(Γ, Ŷ ) + (g − ρησY )Ŷ P̂ ′(Ŷ ) +
σ2
Y Ŷ

2

2
P̂ ′′(Ŷ ) + χP (0, Ŷ ) . (B.33)

The scaled value in the default regime, p̂, is then given by

p̂ =
1− γ/α− κc(γ/α) + χp(0)

ζ + (rV − g) + χ
. (B.34)

C Dual Problem

In this appendix, we derive the solution summarized in Section VI. for the dual planner’s problem and

then verify duality between the primal debt management problem and the dual planner’s problem.
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C.1 Planner’s Problem from Section VI.

HJB equation for the planner’s value function F (W,Y ). Using Ito’s formula, we obtain the following

SDF-adjusted dynamics for the planner’s value function F (Wt, Yt):

d(MtF (Wt, Yt)) = MtdF (Wt, Yt) + F (Wt, Yt)dMt+ < dMt, dF (Wt, Yt) >, (C.35)

where the SDF Mt is given in (17) and

dF (Wt, Yt) = FW dWt +
FWW

2
< dWt, dWt > +FY dYt +

FY Y
2

< dYt, dYt > +FWY < dWt, dYt >

=

[
(ζWt − (Yt − T − Ct)− Φmη)FW + gY FY +

σY Y
2FY Y
2

]
dt

+

[(
(Φh)2 + (Φm)2

)
FWW

2
− (Φhψh + Φmψm)Y FWY

]
dt

− FW (ΦhdZht + ΦmdZmt ) + Y FY (ψhdZht + ψmdZmt ) . (C.36)

Note that the process defined by∫ t

0

Ms (Ts − Γt) ds+ MsdJs + MtF (Wt, Yt)

is a martingale under the physical measure P. Therefore, its drift under P is zero:

Et [d (MtF (Wt, Yt))] + Mt (Tt − Γt) = 0. (C.37)

Note that we have used the result that dJt = 0 in the interior region. Simplifying (C.37) gives the HJB

equation (74) for the household’s value function F (Wt, Yt).

We do not repeat FOC for the tax rate and other derivations contained in the main body. Below we

provide the details for risk management policies.

Optimal hedging policies. The optimal idiosyncratic and systematic risk hedging demand functions,

φh(wt) = Φht /Yt and φm(wt) = Φmt /Yt, are respectively given by

φh(w) =
ψhY FWY (W,Y )

FWW (W,Y )
= −ψhw and (C.38)

φm(w) =
ψmY FWY (W,Y )

FWW (W,Y )
= −ψmw . (C.39)

Household promised value wt dynamics. Applying Ito’s lemma to wt = Wt/Yt, where Wt is given in (69)

and Yt is given in (2), we obtain:

dwt = [(ζ + r + ρησY − g)wt − (1− θt − c(θt))]dt+ djt

+
[
σ2
Y wtdt+

(√
1− ρ2σY φ

h(wt) + ρσY φ
m(wt)

)
dt
]

−(φh(wt) +
√

1− ρ2σY wt)dZht − (φm(wt) + ρσY wt)dZmt , (C.40)

= µw(wt)dt+ djt + σw,h(wt)dZht + σw,m(wt)dZmt , (C.41)

61



where djt = 0 in the interior region and

µw(wt) = (ζ + rV − g)wt − (1− θt − c(θt)) , (C.42)

σw,h(w) = (φh + ψhw) = 0 , (C.43)

σw,m(w) = (φm + ψmw) = 0. (C.44)

Therefore, the wt process evolves deterministically as:

ẇt = (ζ + rV − g)wt − (1− θ(bt)− c(θ(bt))) . (C.45)

Household promised value in default regime: ŵ. In the default regime, the scaled promised value ŵ

satisfies the following equation:

(ζ + r)ŵ = 1− γ/α− κc(γ/α) + (g − ρησY )ŵ , (C.46)

which yields

ŵ =
1− γ/α− κc(γ/α)

ζ + rV − g
. (C.47)

C.2 Equivalence of Primal and Dual Problems

The government’s debt management problem (19) is equivalent to the planner’s value-maximizing prob-

lem (67). The key implications are: 1.) the credible debt capacity, B(Y ), in the primal problem equals

the planner’s value when the limited-commitment constraint binds, F (W,Y ) in the dual problem: B(Y ) =

F (W,Y ) ; 2.) the lumpy debt-issuance boundary, B(Y ), equals the planner’s value when the planner makes

a lumpy payouts, F (W,Y ) in the dual problem: B(Y ) = F (W,Y ); 3.) the value function P (B, Y ) in

the primal problem characterized by the HJB equation (40) and associated FOCs maps to the value func-

tion F (W,Y ) in the dual problem characterized by the HJB equation (74) and associated FOCs as follows:

P (Bt, Yt) = Wt and Bt = F (Wt, Yt).

Using the homogeneity property, we obtain the following mapping for scaled variables and value functions:

b = f(w) and w = p(b). (C.48)

Additionally, we have the following results at the boundaries:

b = f(w) , (C.49)

and

b = f(w) . (C.50)

Next, we demonstrate the equivalence between the two problems by showing that by substituting b =

f(w) into the ODE for p(b), we obtain the ODE for f(w), and vice versa. Substituting (C.48) and (C.49)

into ODE (61) for f(b), we obtain the ODE (79) for p(w). Substituting (C.48) and (C.49) into the constraint

(58) for b and ODE (64) for the default value f̂ , we obtain the constraint (86) for w, and ODE (C.46) for

the default value w. Substituting (C.48) and (C.50) into the constraint (59) for b, we obtain constraint (80)
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for w. Substituting (C.48) into the optimal tax policy (56) in the government debt problem, we obtain the

optimal tax policy (77) in the dual planner’s problem.

D Calibration

We use the US annual debt-output ratio from 2000 to 2020 to estimate our model. US debt and GDP

data are from FRED provided by St. Louis fed: https://fred.stlouisfed.org.

Let Ξ = {ϕ, ζ, κ} . Our model asserts that the government debt-GDP ratio bt grows deterministically

at rate ḃt ≡ µb(bt) given in (57). To account for measurement errors, we introduce a noise term into law of

motion (57) for bt and discretize the bt process as follows:

bti+1
= bti + µb(bti ; Ξ)(ti+1 − ti) + εi+1 , i = 1, 2, · · · , (D.51)

where µb(bti ; Ξ) makes explicit the dependence of the drift of b on Ξ and εi+1 is a random variable that

captures the effect of measurement errors. Let h(εi+1) denote the density function of εi+1:

h
(
bti+1

− bti + µb(bti ; Ξ)(ti+1 − ti)
)
. (D.52)

Let {b̂ti , i = 1, · · · , 21}, where ti = 1999 + i, denote the annual US debt-to-GDP ratio from 2000 to 2020.

Our estimate of Ξ is

Ξ̂ = arg max
Ξ

20∑
i=1

lnh
(
b̂ti+1 − b̂ti + µb(̂bti ; Ξ)

)
. (D.53)
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