
Imputing Weekly Values of Monthly Economic

Indicators by Dynamic Matrix Completion

Serena Ng, Columbia University and NBER

Susannah Scanlan, Columbia University

July 2022

1



Big Picture

• Goal: simple way to construct historical weekly indicator Iw from

Xm and Xw for use in regressions.

• Large literature constructing monthly indicator Im from X q and Xm.

a. Latent variable approach: takes F̃m
1 as Im, where Xit = Λ′iFt + eit .

• Xm only: (eg.dynamic SW-89, static WEI).

• Xm and X q : state space, stock-flow constraints, (eg ADS, ECI).

b. Interpolation/temporal disaggregation: eg. Chow-Lin, MIDAS.

• This paper: Iw 6= F̃w
1 but is predicted by F̃w

1 , . . . , F̃
w
r and uses Xm.

• Take cfnai as Iwt , impute missing (Iwt , Iwt+1/wt
, Iwt+2/wt

, . . . , Iwt+1).

• Chow-Lin type interpolation, but high frequency bridge equation.

• Complete data estimation, no missing mechanism.

• We first estimate F , then impute. (matrix completion vs. EM)

• PC+ADL. Model dynamics of latent series without Kalman filter.
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Outline:

1. Static TP imputation of the missing Im from (sa) data Xm.

i Efficient estimation of F and Λ.

ii Imputation when eit is serially correlated.

2. Dynamic TP imputation of the missing Iw from (nsa) data Xw .

Summary of Findings:

a. Estimation: improvements over static TP come from controlling for

non-sphericalness of eit , less so from dynamic estimation of F

b. Imputation: lots of information in lags of eit .

c. Possible to work with seasonally unadjusted.

Improving model more important than improving estimator.
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Factor Estimation, X incompletely observed

Xit = Λ′iFt + eit .

• Common assumption: MCAR/MAR, missing mechanism is ignorable

• Classical factor models and covariance structure modeling

• Maximizing correctly assumed Gaussian likelihood gives

asymptotically normal estimates of loadings under MAR.

• For non-normal data, result holds only under MCAR.

• Estimates can be biased if MCAR is assumed, but data are MAR.

• Large factor models: jointly estimate F and missing values.

• Static factors: iterative PC.

• Dynamic factors: parametric state space modeling, QMLE.

• EM+ implicit assumption of MAR.
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Recent Distribution Results for (static) FBI

EM algorithms work well, but theoretical results on imputed values only

recently obtained for static PC estimates.

• Jin-Miao-Su (2021): MAR, re-weigh data

• Xiong-Pelger (2022): general missingness, also re-weigh data.

• Bai-Ng (2021), Cahan-Bai-Ng (2022): reorganize data.

• Missing data assumption can be difficult to verify or justify.

• Complete data estimation, distribution theory worked out.
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Tall-Wide View of X = FΛ′ + e

T

N

bal=tall∩ wide ← wide

To × No To × N

↑ na na na na

tall na na na

T × No na na

miss na

Many use bal estimates as initial values and iterate.

Need F and Λ for imputation. Can get them from tall and wide .

Matrix completion view: systems analysis without joint estimation.
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Algorithm TW

1 Pre-process data: demean, etc.

2 From tall, pc gives (F̃tall, Λ̃tall). Compute H̃tall.

3 From wide, pc gives (F̃wide, Λ̃wide). Compute H̃wide.

C̃tall,it = F̃ ′tall,t Λ̃tall,i = Cit + op(1)

C̃wide,it = F̃ ′wide,t Λ̃wide,i = Cit + op(1).

4 Re-rotate: Get H̃miss = ˜H−1
tallHwide by regressing the Λ̃tall on the

No × r submatrix of Λ̃wide. Show H̃−1′

wideH̃missH̃tall
p−→Ir .

5 Output X̃it =

{
Xit (i , t) observed

C̃it = F̃tallH̃missΛ̃
′
wide (i , t) missing

Note: Steps 2 and 3 are based on complete data. Bai-Ng (2021, JASA)
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Algorithm TP

T

N

y y y y

y y y y

bal y y y y

To × No y y y y

y na y y

y y y y

na na na na

na y na na

T − To × No y y na na

y y y na

↑ tall ↑ incomplete

i. Estimate F from tall.

ii. For each i , regress the Toi × 1 observed values of Xi on the

corresponding submatrix of F̃ to obtain Λ̃i . Cahan-Bai-Ng (JOE)
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Assumptions

A: Moment conditions.

B: N,T ,No ,To large,
√
N

min{No ,To} → 0,
√
T

min{No ,To} → 0.

C: strong factors in the sub-blocks.

D: blocks have same moments (block stationarity).

Under A-D: C̃it − C 0
it = uit + vit + rit .

• uit/vit are errors from estimating F and Λi .

• rit = Op(min(Toi ,No)) uniformly in i and t (higher order est. errors)

• Impute (when eit is uncorrelated)

X̃it =

{
Xit if Xit observed

C̃+
it if Xit missing.
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Asymptotic results

• Proposition 1: min(
√
No ,

√
Toi )

(
C̃it−C 0

it√
Ṽit(No ,Toi

)

)
d−→N(0, 1).

Assumptions on factor model, not missing data mechanism

Consistent and asymptotically normal estimates, no need to iterate.

• Proposition 2: Let C̃+
it = Λ̃+′

i F̃+
t be obtained by applying PC to X̃ .

min(
√
Not ,

√
Toi )

(
C̃+
it − C 0

it√
Ṽ+

it (Not ,Toi )

)
d−→N(0, 1).

Re-estimation improves rate since Not > mins Nos = No .
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Example: balanced panel of FRED-MD + CS

CS series reported quarterly before 1978

date x1 x2 x3 x4 CS

1960-01 0.319 0.463 2.660 2.410 na

1960-02 0.114 0.091 0.369 -0.569 100.0

1960-03 0.190 0.091 -0.110 -0.342 na

1960-04 0.341 0.361 2.590 0.228 na

1960-05 0.240 0.244 -1.504 0.569 93.3

1960-06 0.078 -0.024 -0.136 -1.141 na

1960-07 0.182 0.190 -1.009 -0.576 na

1960-08 -0.162 -0.256 0.341 -0.231 97.2
...

...
...

1977-10 0.861 1.135 1.969 -0.065 na

1977-11 0.784 0.623 0.789 0.146 84.4

1977-12 0.443 0.535 0.457 1.004 na

1978-01 -0.354 -0.383 -1.994 -1.887 83.7

1978-02 0.448 0.526 2.334 1.208 84.3

1978-03 0.566 0.620 2.436 2.352 78.8
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Hypothetical exercise: CS available quarterly even after 1978

Problem: (mean,σ): TP(-.0042,0.742), SW=(-0.0013, 0.7513). 12



Limitations of TP

TP does not use dynamic information in estimation or prediction.

• Estimation:

i F̃ based on cross-section information only.

ii Λ̃ inefficient if eit is serially correlated and/or heteroskedastic.

• Imputation:

• Ĩms = Λ̃′Nm+1F̃s as if eit was unpredictable.

• Chow-Lin/MIDAS: Ĩms = B̂m
1 (L1/m; γ̂)′Zm

s (distributed lag)

i Monthly data: Ims = Bm
1 (L1/m; γ)′Zm

s + ems , e
m
s correlated.

ii GLS estimation of bridge equation Iqt = βq
1 (L)′zqt + eqt .

Efficient estimation but not prediction.
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Model: Xit = Λ′iFt + eit

Estimator goal dynamics Σe

pc-ols (F ,Λ) - unrestricted

pc-gls (Breitung) (F ,Λ) e Φ = diag(Σe).

pc-ks (Doz et al) (F ,Λ) F Φ

mle-gls (Bai-Li) (F ,Φ) e Φ

All estimators give
√
N consistent estimates of F if

√
N/T → 0.

• pc-ols is inefficient if e is heteroskedastic/serially correlated.

• pc-gls assumes ρi (L)eit = εit , and efficiently estimates Λi from:

[ρ̂i (L)Xit ] = [ρ̂i (L)F̃
′

t ]Λi + error

But ρ irrelevant for estimating Ft (Breitung-Tenhoven 2011) :

F̃ gls
t = (Λ̃′Φ̂−1Λ̃)−1Λ̃′Φ̂−1Xt .
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GLS vs PC-KS

• Projections estimator: F p
t =

G︷ ︸︸ ︷
(Σ−1

F + Λ′Φ−1Λ)−1 Λ′Φ−1Xt .

• By Woodbury inversion in Doz et al (2011): Details

F p
t = (Λ′Φ−1Λ)−1Λ′Φ−1Xt︸ ︷︷ ︸

F gls
t

−GΣ−1
F (Λ′Φ−1Λ)−1Φ−1Xt︸ ︷︷ ︸

Op(N−1/2)

.

F p
t is shrinkage estimator. But with strong factors, Λ′ΦΛ dominates.

F gls
t and F p

t are asymptotically equivalent. Differ when N is small.

• If F is VAR(p): F ks
t = F p

t . If T/N3 → 0,
√
N(F̃ ks

t − F̃ gls
t ) = op(1),

Bai and Li (2016):
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Results from Calibrated monte-carlo

• From 2021:12 vintage of FRED-MD, get F̃ , Λ̃ by PCA.

• calibration: VAR(2) for F̃ , and AR(1) for ẽit
• Set Λ to Λ̃, randomly generate F ∗, e∗ in each iteration.

trace(F∗
′
F̂ (F̂ ′F̂ )−1F̂ ′F∗)

trace(F∗′F∗)

N

Nsim 10 20 30 40 50 75 122

pc 0.669 0.703 0.868 0.901 0.875 0.923 0.957

mle-h 0.736 0.755 0.890 0.920 0.900 0.935 0.964

pc-ks 0.759 0.789 0.895 0.922 0.909 0.936 0.964

pcgls-h 0.774 0.785 0.890 0.921 0.901 0.935 0.964

pcgls-har 0.761 0.773 0.883 0.919 0.897 0.934 0.964

pc-ks: Barrigozi-Luciani (2019)

mle-h: Bai-Li (2016)

pcgls: Breitung-Tenhofen (2011)
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Regression: F ∗j = a + b1F̃1 + b2F̃2 + b3F̃3+ error

Nsim 10 20 30 40 50 75 122

R2: j = 1

pc 0.736 0.841 0.897 0.936 0.922 0.956 0.971

mle-h 0.793 0.872 0.919 0.947 0.935 0.962 0.976

pc-ks 0.774 0.877 0.926 0.949 0.941 0.962 0.976

pcgls-h 0.817 0.874 0.920 0.947 0.935 0.962 0.976

pcgls-har 0.790 0.856 0.916 0.946 0.933 0.961 0.976

R2: j = 2

pc 0.628 0.614 0.868 0.877 0.861 0.907 0.954

mle-h 0.713 0.686 0.886 0.903 0.896 0.924 0.962

pc-ks 0.770 0.743 0.888 0.905 0.902 0.924 0.962

pcgls-h 0.769 0.741 0.885 0.905 0.897 0.924 0.962

pcgls-har 0.769 0.740 0.879 0.901 0.893 0.923 0.962

R2: j = 3

pc 0.642 0.655 0.837 0.891 0.842 0.905 0.946

mle-h 0.700 0.706 0.864 0.910 0.870 0.920 0.954

pc-ks 0.729 0.745 0.871 0.912 0.883 0.921 0.954

pcgls-h 0.736 0.738 0.864 0.911 0.870 0.920 0.954

pcgls-har 0.722 0.722 0.853 0.909 0.864 0.919 0.954

Result 1. Estimator of F matters when N is very small
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(1− ρIL)eI,t = εI,t and Prediction

• eIt serially correlated implies Is = Λ′IFs + ρI(Is−1 − Λ′IFs−1)︸ ︷︷ ︸
ρIeIs|s−1

+εIs .

• Static tp imputation is biased because of omitted lags.

• Chow-Lin use lags of F but not lags of I as covariates.

• Ideal regression is infeasible because Is has missing values.

• We replace Is−1 by I(k)
s−1 and iteratively estimate Durbin equation:

I(k)
s = Λ′I F̃s + ρI(k)

s−1 + γ′I F̃s−1 + εIs .

using static Ĩs as initial values and update I(k+1)
s by the fit.

• ADL bridge regression in high frequency data. Sargan-Drettakis (74).

• Estimate dynamic model with missing values without Kalman filter.

• Can be used with any estimator of F .

• Precise estimates of (ΛI , ρI , γI). Works!
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KSM: Kalman Smoothing with Missing Values

X+
t = Λ+′Ft + e+

t , X+
t =

(
Xw ′

t Iwt
)′
,

eit = ρieit−1 + εit εit ∼ N(0, σε,i ), i = 1, . . . ,Nw

eI,t = ρeII, t − 1 + εI,t

Ft = AFt−1 + ut ηt ∼ N(0,Σu).

• Jungbacker et al (2011): rewrite state space model to selectively

include et in state vector. We define X+
t = Zαt + ct , ct = ρ+X+

t−1,

Z =
(

Λ+ −ρ+Λ+
)

, αt = (F ′t eI,t)
′, ρ+ = diag(ρ1, . . . , ρNw , 0).

• Missing values omitted from estimation as in Banbura-Modugno.

Note: results not very robust.
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Results from a hypothetical exercise

• CS hypothetically released quarterly even after 1978.

• T = 504,N = 127. Use realized values as true values in evaluation.

‖Îm − Im‖F

static dynamic

start end tp sw mle-h tp* mle* pc-ks* pc-gls* ksm

Jan-78 Dec-19 15.62 15.62 15.18 6.771 7.062 7.053 7.109 8.078

Jan-78 Dec-83 10.31 10.44 10.14 2.766 3.003 2.988 2.939 3.868

Jan-84 Jun-94 4.483 4.431 4.267 3.111 3.209 3.137 3.204 3.655

Jul-94 Dec-00 7.174 7.083 6.990 1.841 1.906 1.949 1.987 2.728

Jan-01 Dec-06 3.849 3.858 3.630 3.215 3.439 3.296 3.342 3.463

Jan-07 Dec-10 3.433 3.424 3.290 2.300 2.482 2.572 2.586 2.667

Jan-11 Dec-19 6.279 6.231 6.056 3.081 2.990 3.114 3.134 3.223
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Result 2. serial correlation in eit matters!
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Outline:

1. TP estimation of F and Λ from incomplete data.

2. Static TP imputation of regularly spaced data.

i Dynamic imputation and modeling eit .

ii Imputing weekly cfnai.

3. Weekly Data: 1990-2019 Tw = 1566. Nw = 20 (or 80).

Monthly data Weekly data

regularly spaced irregularly spaced

seasonally adjusted seasonally unadjusted

N > 100 much smaller N
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Weekly Panel

date wiy wim eleout uiinit wtioil cfnai

1990-12-24 52 4 134 454 27.60 na

1990-12-31 53 5 139 415 24.90 -0.92

1991-01-07 1 1 122 437 27.30 na
...

...
...

...

2020-02-24 8 4 178 217 44.83 0.08

2020-03-02 9 1 172 211 41.14 na

2020-03-30 13 5 164 6615 28.36 -4.26

2020-04-20 16 3 170 3867 15.99 na

2020-04-27 17 4 167 3176 19.72 -17.89
...

2020-05-18 20 3 166 2123 33.49 na

2020-05-25 21 4 169 1897 35.57 4.64
...

...

2020-12-21 51 3 177 790 48.18 na

2020-12-28 52 4 160 787 48.35 0.36

• weekly Iw matches Im the last week of every month.
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Strong but not strictly periodic seasonal variations

• Traditional seasonal filters are for monthly/quarterly data.

• 52-week differencing creates spikes.
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Imperfect or No Adjustment?

Factor representation of raw data:

Xw
i,t+j/wt

= Λw ′
i Fw

t+j/wt
+ ewi,t+j/wt

+ Sw
i,t+j/wt

Seasonal adjustment: Xw
i,t+j/wt

− Sw
i,t+j/wt

.

• Estimate F from Xw since Sw (idio.) not needed for imputation.

• pc-gls and ksm: possible Haywood problem.

• expand data matrix to include three lags of Xw (hence Nw = 80).
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Data= Xw ,Xw
−1,X

w
−2,X

w
−3

Let principle components do the smoothing.

F̃1, 0.35 F̃2, 0.15 F̃3, 0.12

uicont 0.885 ccinrv 0.461 wtioil 0.431

uicont 0.885 ccinrv 0.460 wtioil 0.431

uicont 0.885 ccinrv 0.459 wtioil 0.430

uicont 0.884 ccinrv 0.456 wtioil 0.427

uiinit 0.819 crbcom 0.351 altot1 0.394

uiinit 0.816 crbcom 0.348 altot1 0.393

uiinit 0.810 crbcom 0.344 altot1 0.392

uiinit 0.803 crbcom 0.338 altot1 0.388

fspcom 0.776 altot1 0.259 rigcou 0.321

fspcom 0.776 altot1 0.257 rigcou 0.314

crbcom=commodity price altot1= avg. total mortgage loan

rigcou=rotary rig count ccinrv=consumer credit.
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Pre-covid
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TP Estimation of Iw given Im

1. Let Xw be T × Nw panel data with missing values. Standardize.

2. Estimate Fw and Λw by tp. Impute Ĩw ,(0)
k,t/wt

= λ̃w ′k F̃w
t/wt

if missing.

3. Until convergence, let Ĩw ,(k+1)
s be the fit of

Iw ,(k)
s = Λ′i F̃

w
s + β′i F̃

w ,(k)
s−1 + ρwIw ,(k)

s−1 + εws

Dynamic bridge regression in high frequency data.

28



29



std(Iw )(pF , pe)

(0,0): 0.582 (1,0): 0.639 (0,1): 0.814 (1,1): 0.845
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Comparison with WEI
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COVID headaches

From Ng (2021)

• For factor estimation, an identification problem

• pre-covid: Xit − µi = Λ′iFt + eXit
• post-covid: Xit − µi = Λ′iFt + ΓiVt + eXit

PCA of economic variables no longer estimate economic factors

• For forecasting and estimation: omitted variables problem:

• For VAR: n variables, now n + 1 shocks. Identification problem.

• De-covid Regressions: : CFNAIt =a + b(L) COVIDt + error

• Regressors: change in positivity rate, hospitalization, deaths.

• Pt ,Pt−1,Pt−2,Ht−1,Ht−2,Dt−1,Dt−2 has R2 = 0.8

• (mean,var): precovid= (-0.076, 0.493). after: (-0.009, 0.438).

• Only need to adjust cfnai and weekly data.
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COVID

Systematic outlier adjustment: F̂1 is still 13σ in 2020:03.
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Post-covid
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Summary

• A weekly indicator pegged to a monthly diffusion index.

• Matrix completion view:

• system analysis without joint modeling

• separates estimation of F from imputation.

• imputes missing values in time series without Kalman filter.

• An ADL high frequency bridge equation that uses latent lagged

dependent variable in prediction.

• Model specification more important than choice of estimator for F .
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