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Abstract

Maritime shipping emits as much fine particulate matter as half of global road traffic. We
are the first to measure the consequences of US maritime emissions standards on air quality,
human health, racial exposure disparities, and behavior. The introduction of US maritime emis-
sions control areas significantly decreased fine particulate matter, low birth weight, and infant
mortality. Yet, only about half of the forecasted fine particulate matter abatement was achieved
by the policy. We show evidence consistent with behavioral responses among ship operators,
other polluters, and individuals that muted the policy’s impact, but were not incorporated in
ex-ante models.
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Roughly 90 percent of global trade is conducted via ship, yet historical international standards

for ship exhaust are strikingly weak in comparison to standards for other forms of transport that

occur close to populated areas. For example, in 2008, the maximum allowable sulfur content of ma-

rine fuel along US coastlines was 3,500 times higher than that allowed in vehicles. Pollution from

ship exhaust is a main component of poor air quality, not only at ports, but also in coastal commu-

nities near ship routes.1 Since half of the US population lives within 200 km of heavy ship traffic

and ship traffic continues to increase, maritime emissions represent a significant threat to human

and ecosystem health (U.S. EPA, 2009b,a, 2016). Yet, we lack a comprehensive understanding of

the exposed population demographics and health effects of maritime emission regulation. Because

ships are mobile and emissions occur off-shore, the health benefits from regulation are likely to be

different than the effects of regulating land-based pollution sources.

Efficient design of maritime emission regulations is difficult for several reasons. First, the ben-

efits to human health are uncertain. The health effects are likely to differ from regulation of other

pollution sources because of the especially high sulfur content of ship fuel, the distinct coastal

population exposed to ship traffic, and the degree to which individuals can avoid ship exhaust

relative to other sources. Second, uniform regulation of maritime emissions along the coast will

have heterogeneous effects due to the non-uniform population distribution and location of ships.

The mobile nature of ship traffic makes it difficult to predict how ship routes and emissions may

respond to regulation. Moreover, efficient regulation of maritime emissions must balance com-

peting environmental objectives. Specifically, requirements to remove the sulfur content in ship

exhaust may exacerbate climate change because the aerosols in traditional ship exhaust provide

radiative cooling that counteracts the consequences of climate change in the short term (Sofiev et

al., 2018; Liu et al., 2016). Without comprehensive evidence accounting for spatial heterogeneity

in the effects of maritime emission regulations on coastal population health, uniform regulation of

maritime fuel risks both abating too little of emissions near coastal populations and too much of

emissions far from coastal populations.

1Roughly 70 percent of maritime emissions occur within 400 km of coasts, and maritime emissions elevate ambient
fine particulate matter as much as 2 micrograms per cubic meter (Corbett et al., 2007). Maritime emissions account
for roughly 38 percent of sulfur dioxide emissions on the US East Coast and 20 percent on the US West Coast (Wang
et al., 2007). In areas adjacent to busy ports, they may equal or exceed those of land-based sources (Capaldo et al.,
1999). Eyring et al. (2005) show maritime emissions are comparable to other transport modes. Smith et al. (2015)
provide an emissions inventory.
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We provide the first evaluation of a major US environmental policy in the maritime shipping

industry. In 2012, the US government, in coordination with the International Maritime Orga-

nization (IMO), introduced its seminal regulation of maritime pollution, called emission control

areas (ECAs) (U.S. EPA, 2010). ECA regulation required all commercial ships to operate with

low-sulfur fuel within 200 nautical miles off the coast or to install abatement equipment, or face

penalties. In 2020, following this initial ECA regulation, the IMO extended similar standards glob-

ally, which were estimated would cost the shipping industry $10 to $60 billion per year (Corbett et

al., 2016). Despite the consequential scale and cost of these regulations, ex-post evidence on the

effectiveness and health benefits of such regulation has not been previously established.

In this paper, we measure the success of US maritime emissions standards and show evidence

consistent with behavioral responses that diminished the policy’s effectiveness relative to ex-ante

predictions. With administrative data on air quality, infant health, and infant mortality, we use

a differences-in-differences design and leverage variation in (i) the timing of the regulation and

(ii) the intensity of the regulation across locations. Intensity of exposure to the policy is based on

predictions from the Community Multiscale Air Quality Modeling System (CMAQ) obtained from

U.S. EPA (2009b). CMAQ both represents policymakers’ expectations of the effectiveness of the

policy and provides a scientific prior of the policy’s intended intensity at each location that accounts

for atmospheric dispersion, disposition, and chemical interactions of pollution once emitted. After

estimating the policy’s ex-post benefits, we then test whether the changes in air quality from the

policy were equal to the predicted improvements from the EPA’s pre-policy analysis. We explain

gaps between the ex-ante and ex-post predictions with behavioral responses on the part of the

industry regulated by the policy, other pollution sources, and individuals, all of which can lessen

the effectiveness of policy.

We find that the introduction of maritime emissions control areas around the US coastline led

to a 4 percent decrease in the population-weighted average fine particulate matter across counties

within 200km of heavy ship traffic.2 We also find less of the disproportionate effects on minorities

that have been documented as a result of land-based emissions, such as emissions from ports.

2Once primary pollutants such as sulfur exhaust are emitted in the atmosphere, they form secondary pollutants,
such as particulate matter, through chemical interaction. Accordingly, the regulation defined fuel content limits for
sulfur exhaust as a means to abate fine particulate matter and protect health from both primary and secondary pollutants
(U.S. EPA, 2008, 2009b,a, 2016).
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Consistent with the air quality improvements, we find that the policy results in a 1.7 percent average

reduction in the incidence of low birth weight. We also find a 3.5 percent decline in infant mortality.

We further show that using an atmospheric aerosol transport model instead of distance as a proxy

for exposure provided a meaningful improvement in estimation. Using distance in lieu of the

CMAQ output would have yielded substantially less precision in the estimated effects of the policy.

These improvements in air quality and health demonstrate a substantial policy achievement.

We estimate the ECA led to 1,536 fewer low birth weight infants and 290 fewer infant deaths per

year. Our back-of-the-envelope calculation finds these improvements led to a savings of about

$2.9 billion per year. These benefits to improved infant health alone equal about 90 percent of

the estimated cost of the policy, $3.2 billion in 2020. In terms of lives saved, the ECA had about

one-fifth of the effect of the initial 1970 CAA NAAQS (Chay and Greenstone, 2003), one-quarter

of the effect of requiring scrubbers at power plants in Germany (Luechinger, 2014), and eight

times the effect of having cheating diesel emissions (Alexander and Schwandt, 2021). Despite

these substantial benefits to human health, the ex-post impact on air quality was still weaker than

the regulator’s ex-ante expectation. Only about 53 percent of the predicted fine particulate matter

abatement was realized under the ECA policy. We reject the hypothesis that the ex-ante and ex-post

estimates are equivalent.

To better understand why policymakers’ expectations were not fully realized, we provide ev-

idence consistent with three types of behavioral responses that altered the policy’s effectiveness

and were not taken into account in ex-ante predictions. First, we provide evidence indicating that

ships altered their routes to avoid using the costly low-sulfur fuel required in the ECA. We find that

air quality improvements were significantly more muted in areas with a narrower ECA boundary.

Second, we provide evidence consistent with “regulatory rebound" in relation to the National Am-

bient Air Quality Standards (NAAQS) of the Clean Air Act. We find that air quality improvements

from the ECA were more muted in counties far from the regulatory threshold for non-compliance

with NAAQS, and thus where the risk of crossing the threshold to face regulatory penalties under

NAAQS was low. This evidence is consistent with the hypothesis that additional on-land emissions

offset some of the decline in emissions from maritime ships. Finally, in addition to disparities in

the realized air quality improvements, we found gaps in the human health benefits. We estimated

that the ECA policy increased time spent outdoors and visits to national park sites, activities which
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increased individuals’ exposure to air pollution. Each of these three types of behavioral responses

affected the realized pollution and health benefits of the policy, yet were not incorporated into

ex-ante models.

This paper makes several important contributions to the literature. First, we estimate the impact

of maritime fuel emissions on air quality and human health. The North American ECA policy was

the first major US environmental regulation of the maritime shipping industry and we are not

aware of prior work that evaluates its success. The existing literature on the impacts of ECAs

and maritime fuel emissions has relied exclusively on ex-ante prediction approaches or has been

conducted in other settings.3 Predictive models do not take into account compliance or the potential

behavioral responses of the regulated industry, other sources, or individuals in response to the

policy. Our ex-post evaluation finds meaningful improvements in air quality from maritime fuel

regulation; yet, the improvements are more muted than the predictions from this existing work. We

provide a significant advance over the prior literature by documenting that adaptation post-policy

critically influences policy effectiveness.

Second, in addition to evaluating the success of the policy, we evaluate the accuracy of the reg-

ulator’s ex-ante policy analysis. Policy evaluations typically estimate net benefits while ignoring

the extent to which those benefits achieved the stated objectives of the policy. Our findings of dis-

crepancies between the policy target and achievement are connected to an existing literature that

documents behaviors that diminish the effectiveness of regulation (Becker and Henderson, 2000;

Auffhammer and Kellogg, 2011; Fowlie et al., 2016; Zou, 2021). Moreover, our results link short-

comings in the regulator’s ex-ante analysis to specific behavioral reactions, including responses

by ship operators, other industry, and individuals, and are useful to the design of future policy.

These features suggest additions to models to better predict policy effects as well as amendments

to policy to improve future regulation of this sector (Duflo, 2017).

Third, this paper contributes to a small but growing literature that incorporates atmospheric

aerosol transport models into economics research. Defining where and to what extent the ECA

policy affected air pollution for the on-land population is a first-order challenge in this setting. A

common approach in economics defines exposure based on distance to the pollution source, but

3See Corbett et al. (2007); Winebrake et al. (2009); U.S. EPA (2009b); Sofiev et al. (2018); Liu et al. (2016); Viana
et al. (2020); Zhu and Wang (2021); Lindgren (2021).

5



the mobile nature of ship pollution makes this approach difficult. Instead of the “distance” method,

we use atmospheric aerosol transport model output as a scientifically grounded prior for pre- and

post-policy exposure to pollution.4 We show that the distance method’s failure to account for the

complexity of atmospheric interactions can meaningfully reduce precision. Further, our use of

transport model output is a new instrument for policy-induced changes in air quality.5

The fourth contribution of this work is measuring the infant health effects of transportation

emissions in a new setting: at-sea maritime emissions. Infant health has been shown to be sensitive

to air pollution and has implications for many later life outcomes, including earnings, cognitive

development, IQ, educational attainment, and welfare take-up (Figlio et al., 2014; Black et al.,

2007; Oreopoulos et al., 2008). Prior studies in economics have established a link between infant

health and air pollution exposure (Currie and Neidell, 2005; Currie et al., 2009; Arceo et al., 2016),

road-vehicle traffic and gasoline content regulations (Currie and Walker, 2011; Knittel et al., 2016;

Marcus, 2017; Alexander and Schwandt, 2021), and alternative sources of transportation pollution,

such as jets (Schlenker and Walker, 2015). Within this literature, no paper examines a link between

maritime fuel content regulation and infant health, even though emissions from shipping fuel have

a high concentration of toxic sulfides and comprise a large portion of coastal air pollution. While

some work has focused on health effects of port emissions (Moretti and Neidell, 2011; Gillingham

and Huang, 2021), we expand our focus to study all at-sea emissions as well, and our results are

not driven exclusively by emissions in the vicinity of ports. Our setting expands beyond ports to

study the impact of ship emissions on the entire continental US coastline, comprising half of the

US population, and focuses on infant health.

Finally, we document how the demographic composition of populations exposed to maritime

emissions is distinct from the exposed population in other pollution contexts. The environmental

justice literature has documented higher exposure to pollution among disadvantaged populations

for many land-based pollution sources.6 Unlike exposure to stationary pollution sources, we show

4Some economic research has used atmospheric transport models in other ways. For example, researchers may take
estimates of facility-level emission changes driven by regulation and use atmospheric dispersal models to determine
impacts of point-source regulation on nearby areas without comparing the model output with in situ observations. For
example, Hernandez-Cortes and Meng (2021) analyze resulting changes from cap-and-trade on nearby “environmental
justice” gaps, and Sanders and Barreca (2021) analyze the effect of the acid rain program on nearby crop yields.

5Since we interpret the transport model output as the policymakers’ planned air quality change, this instrument
mirrors the method in Baum-Snow (2007).

6Some examples are Superfund sites, hazardous waste sites, landfills, and large polluters from the Toxic Release
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the proportion of black individuals is smaller for higher levels of maritime emissions. If there

are heterogeneous effects of pollution exposure, perhaps due to differences in underlying health

conditions, avoidance, or access to care, the realized health effects of maritime emission regulation

may be affected by the underlying demographic characteristics of the exposed population. The

combination of a demographically distinct exposed population and the unique mixture of pollutants

released from ship exhaust makes this an unexamined context in which to explore the impact of

maritime fuel regulation, not only on pollution, but also on health.

1 Policy Background

The ECA regulation requires ships to reduce their emissions of air pollutants, primarily sulfur

oxides. Figure 1 plots a summary of the policies. Prior to July 2009, the only relevant standard

was the IMO global standard, which allowed ships to emit up to 4.5 percent sulfur oxides by mass

(m/m) at any location. This global standard was reduced slightly to 3.5 percent in January 2012.

While the global standard applies to any location, stricter standards can be set near coastlines.

In July 2009, California enacted a state standard that allowed at most 1.0 percent sulfur oxides

by mass (m/m) in ship emissions within 24 nautical miles of the California coastline. Due to

California’s limited jurisdiction, however, many ships responded to this restriction by altering their

routes to travel just outside the California ECA in order to minimize use of the expensive low-sulfur

fuel (Klotz and Berazneva, 2022; Moore et al., 2018).7 Using detailed ship location transponder

data, Klotz and Berazneva (2022) study the impact of California’s ECA on ship traffic patterns.

They find a sharp reduction in distance traveled, speed, and fuel consumption within California’s

ECA, along with an even larger increase in fuel use just outside the ECA due to ships traveling

greater distances, and in some cases higher speeds, to avoid the California ECA. Because ships

continued to use high sulfur fuel just outside the narrow boundary, there was limited scope for

the California ECA to improve air quality. In fact, we fail to find a sustained improvement in air

quality in areas most exposed to ship traffic after this policy.8

Inventory (Currie, 2011; Gamper-Rabindran and Timmins, 2011; Banzhaf et al., 2019). Tessum et al. (2021) provide
an overview.

7California altered its emission control area in December 2011 by extending a portion of the boundary to include
the area around the Channel Islands in an effort to encourage ship traffic to return closer to shore.

8We estimate the effect of California’s ECA using 2007-2011 data from California only. We modify equation 1
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The most significant policy change occurred in August 2012, when the full North American

ECA took effect. Low-sulfur fuel of up to 1.0 percent sulfur oxides was required across the main-

land US and Canada. The North American ECA, depicted in Figure 2, typically applied within

200 nautical miles of the coast, significantly limiting the scope for avoiding the use of low-sulfur

fuel. Yet, the North American ECA boundary is less than 200 nautical miles from the US coast-

line in certain areas. While Canada does participate in the ECA, Mexico does not, with the result

that southern California and southern Texas are closer to the exterior of the ECA boundary. Simi-

larly, the ECA boundary in southern Florida is narrower due to the proximity of the Bahamas and

Cuba. The reduced boundary size in these areas, combined with the high cost of low-sulfur fuel,

may have created incentives for behavioral responses by ship operators, similar to the response

observed when ships avoided California’s narrow ECA. For example, ships approaching ports with

a narrow regulatory boundary could easily substitute to adjacent routes outside of the regulated

area and use high-sulfur fuel. This behavior would mitigate air quality improvements of the ECA

by modestly relocating rather than removing emissions. We explore the extent to which areas with

a narrow ECA boundary had differential improvements in air pollution from the North American

ECA, given the increased incentives for avoidance.

In subsequent years, the fuel content restrictions were further tightened. In January 2014,

California made its state standard more stringent: it allowed up to only 0.1 percent sulfur oxides.

In January 2015, the full North American ECA also reduced the allowance to 0.1 percent sulfur

oxides.9 The tightening of these standards may have led to a growth in the effect of the policy over

time.

In addition to requirements for the use of lower sulfur fuel near coastlines, the ECA regulation

tightened standards for engine emissions of nitrogen oxides. These additional standards applied

to only a small subset of ship traffic: new US-flagged ships delivered after the policy came into

effect. Since this aspect coincides with the sulfur oxide regulation, we cannot separately estimate

such that the post-policy indicator is equal to one after California’s ECA is in place, July 1, 2009. We estimate a small
and positive coefficient (0.22), which is not statistically different from zero. Results are available upon request.

9As with other environmental standards, the pattern of California preceding federal environmental standards with
strict state standards arguably motivated coordinated action from industry groups and the federal government. In a
2012 speech, the chairman of the International Chamber of Shipping stated: “If major trading nations such as the US
adopt rules that are at variance to those agreed by governments at IMO we have chaos; and if individual US states
decide to implement their own rules in conflict with federal requirements, it is even worse, we actually run the risk of
double chaos” (Polemis, 2012).
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its contribution; however, we expect this to have a minuscule additional effect in the years imme-

diately after implementation because only a small percentage of total ships were subject to this

requirement.

The new standards apply to all commercial ships and distributors of marine fuel. To reduce

emissions to the maximum allowed concentration of sulfur oxides, ships could use compliant low-

sulfur fuel or an approved equivalent method, such as a scrubber. Although compliant fuel was

more costly than typical bunker fuel, ships were already equipped with multiple fuel tanks and

could easily switch to a tank with compliant fuel as they approached the regulated area. Scrubber

installation required investment in new equipment and was uncommon except among cruise and

passenger ships (Hellenic Shipping News, 2014). The US Coast Guard (USCG) is responsible

for enforcement and ensures compliance through scheduled and unscheduled examinations and

inspections.10 Vessel operators must provide documentation of fuel purchase and delivery, fuel

samples, written fuel oil changeover procedures, and a fuel oil changeover log book that records

the volume of compliant fuel in each tank as well as the date, time and position of the ship when

any fuel oil changeover operation was completed. Violations are governed by the provisions in

the Act to Prevent Pollution from Ships. Non-compliance is penalized with fees of up to $25,000

for each violation, and each day of continuing violation could constitute a separate offense. In

cases where an incoming ship could establish that compliant fuel was not available, it is granted

an exemption from penalties.

2 Data

Our analysis combines data on EPA air quality predictive models, observed air pollution, infant

health, mortality, weather, county characteristics, and data on outdoor activities. We describe each

of these data sources in detail below.
10The USCG can check for ECA compliance during normally scheduled port state control exams, domestic vessel

inspection, and vessel safety examinations. Vessel operators may be required to demonstrate compliance to USCG
port state control examiners, marine inspectors, and boarding officers who attend vessels for a variety of purposes both
in port and at sea.
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2.1 Variables and Sources

2.1.1 Air Quality Model and Exposure Data

For our measure of intensity of exposure to the policy, we employ the EPA’s Community Multiscale

Air Quality Modeling System (CMAQ). Our main treatment variable is the predicted reduction in

PM2.5 as a result of the ECA regulation. The EPA developed these predictions as a component of

their proposal to justify the ECA policy (U.S. EPA, 2009b). We obtained the output of the CMAQ

ECA analysis in 10km resolution raster grids for (i) 2020 annual mean PM2.5 concentration under

business as usual and (ii) 2020 annual mean PM2.5 concentration under the ECA regulation. Our

independent variable of interest, CMAQ change, is the value at the county population-weighted

centroid of (i) minus the county average of (ii) and is shown in Figure 3, where darker colors

indicate higher predicted CMAQ change. The CMAQ predictions are based on 2002 ship traffic

and fleet characteristics. Traffic is scaled to approximate 2020 ship traffic levels but is not adjusted

for behavioral adaptations in shipping activity as a result of the ECA regulation.

To compare the patterns of exposure and the results we obtain with the CMAQ model with

the exposure and results we would have obtained had we not accounted for the mobile and at-sea

characteristics of maritime shipping pollution, we repeat our analysis with distance to a principal

port as an alternative proxy for treatment under the ECA policy. We obtain the point-locations of

principal ports, as defined by the US Army Corps of Engineers, from the National Oceanic and

Atmospheric Administration. For purposes of comparison, we use the 27 major ports for ocean-

going vessels as defined in Gillingham and Huang (2021).

Using spatial data on 2010 ship traffic, we limit our sample to the counties shown in Figure A1

whose centroids are within 200km of heavy ship traffic. Heavy ship traffic is defined as the top 5th

percentile of raster grid cells. Counties more than 200km from heavy ship traffic are less suitable as

controls, but we show in robustness checks that our results are not sensitive to this sample selection

criterion.

2.1.2 Air Quality Data

Our main air quality outcome is fine particulate matter (PM2.5). Although sulfur dioxide (SO2)

emissions were regulated at sea, sulfur dioxide does not last in the atmosphere for long periods,
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nor does it travel significant distances. We focus on over-land secondary PM2.5. PM2.5 is both a

direct and secondary pollutant of ship exhaust, and over-land secondary PM2.5 was the criterion

pollutant targeted by the ECA fuel content regulation (U.S. EPA, 2009b).11

Our air quality data comes from the United States Environmental Protection Agency Air Qual-

ity System (AQS) database.12 The AQS records provide daily summaries from outdoor air quality

monitors across the United States for a variety of pollutants. We average monitors within-county to

construct county mean air quality. Observations are missing if a monitor is scheduled to be down

for maintenance, if the collection does not meet the data quality standards, or if a new monitor

location is introduced mid-sample. To ensure against bias arising from these events, we only use

monitors that were observed at least once per year from 2008 to 2016. We collapse the data to

county-month means.13 More details are provided in Appendix Section 8.1.

2.1.3 Birth Data

Because the policy was implemented to protect human health from maritime fuel emissions near

the coast, we focus on birth outcomes as a direct measure of health that has been shown to be

sensitive to air pollution and has implications for many later life outcomes, including earnings,

cognitive development, IQ, educational attainment, and welfare take-up (Figlio et al., 2014; Black

et al., 2007; Oreopoulos et al., 2008). Unlike measures of adult health, infant health reflects expo-

sure to air pollution during gestation, rather than the cumulative exposure over an adult’s lifetime.

This is especially useful in detecting the immediate effects of cleaner burning maritime fuel, which

should be reflected in air pollution and infant health immediately following the switch to low-sulfur

fuel.

Infant health data comes from the National Center for Health Statistics Vital Statistics Natal-

ity records from 2005 to 2017. The data includes information reported on US birth certificates,

covering a large set of demographic characteristics of the mother, characteristics of the pregnancy,

11Nitrogen oxide and its derivative, ozone, were separate components of the ECA regulation. We do not include
these pollutants because the regulation targeted them with a slowly phased-in engine requirement, and we do not
expect to capture the effects of this component with our research design.

12AQS data are collected to ensure compliance with state and federal air quality regulations as well as to support
air pollution research. They are the principal source of historical air quality and have been previously employed in
numerous studies (Fann et al., 2016).

13 Figure A1 shows counties with balanced and unbalanced monitors. In Table 5, we show that our results are robust
to relaxing our balanced monitor requirement.
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labor and delivery, and details about the health status of the newborn. Counties with few births

are excluded for anonymity. Further, the sample is restricted to singleton births, hospital births in

the continental US, mothers between ages 18 and 45, and births with non-missing birth date, birth

weight, and gestation.

Birth weight is measured in grams, with newborns under 2,500g classified as low birth weight.

Gestation is measured in weeks; births before 37 weeks are classified as preterm births. Mother-

infant variables included as controls are indicators for mother’s years of education {< 12,=

12, 13−15}, mother’s race {black}, Hispanic, mother’s age {19−24, 25−34, > 35}, two previous

live births, three or more previous live births, and cigarette use during pregnancy. For each control

variable, an indicator is included for missing observations.

We map each birth to month of conception based on the reported gestational age and month

of birth. We collapse birth observations to county-month cells for computational efficiency. Each

county-month of conception observation includes the average birth weight, gestation, incidence of

low birth weight and preterm births per 1,000 births, and the total number of live births conceived,

as well as the average of each control. In the subsequent analysis, county-month observations are

weighted by the number of conceptions unless otherwise noted.

2.1.4 Mortality Data

We supplement the birth outcome data with county-level mortality data from the National Center

for Health Statistics Vital Statistics Mortality records from 2006 to 2016. We calculate the death

rates per 1,000 population using age-specific county population measures from the Surveillance,

Epidemiology, and End Results Program (SEER) data. Because young children are more sensitive

to air pollution, we focus especially on mortality under age one.

2.1.5 Outdoor Activity Data

We use two sources of data to measure outdoor activity in order to observe whether individuals

exhibit behavioral changes in response to changing air quality. First, we make use of recreation data

from Recreation.gov, which maintains data on millions of visitors to federal parks. We use data on

campsite reservations from 2008 to 2016, which include over 24 million individual reservations at
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over 3,400 facilities. We limit the sample to campsites in the continental US.14 We collapse the

visit-level data to the facility-by-month level and focus on number of visits, total people visiting,

and number of days.

We supplement this with data from the American Time Use Survey (ATUS) from 2008 to

2016. Conducted by the US Census Bureau and the Bureau of Labor Statistics, the ATUS asks

respondents to provide a detailed time diary of all activities over a 24-hour period, including the

location of each activity. We use the location information to measure respondents’ time spent

outdoors. Additional information records respondents’ county of residence, gender, race, ethnicity,

education, age, presence of a child in the household, and information on the day of the week and

whether the survey was conducted on a holiday.

2.1.6 Weather and Other Data

In addition to the treatment and outcome variables, we collect data on several key control vari-

ables. We adjust for weather because the influence of at-sea emissions on on-land air quality is

highly dependent on meteorological conditions that transport and disperse air pollution. These

meteorological conditions also directly affect infant health (Barreca and Schaller, 2020). We use

the PRISM Daily Weather Data for the Contiguous United States.15 This data features a balanced

panel of weather station records from 1950-2018 that are combined to daily 2.5 by 2.5 mile grids

of minimum temperature, maximum temperature, and total precipitation. We compute the county-

day means for each weather variable as the average of the grid-cell-day observations within the

county. Our baseline weather controls include cubic functions of county-day minimum tempera-

ture, maximum temperature, and total precipitation, as well as the interactions of precipitation with

minimum temperature and maximum temperature. Last, we average over the county-day observa-

tions to form county-month observations for each weather variable. We also show that our results

are robust to controlling for more flexible weather bins. For each weather variable, we include 7

bins: below 5th percentile, 5 bins for even intervals from the 5th to 95th percentile, and above the

95th percentile.

14About 94 percent of facilities are classified as “sites.” The remaining categories include facilities classified as
entrance, lottery, POS, and tour. We exclude these categories to capture a homogeneous set of campsites where we are
confident that visitors are spending time outdoors, but the results are robust to including the other categories.

15We employ the March 2020 version from http://www.columbia.edu/~ws2162/links.html.
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We adjust for local economic conditions and other air pollution regulation that might affect the

outcomes. We proxy for local economic conditions with controls for county-month unemployment

rate from the Bureau of Labor Statistics Local Area Unemployment Statistics (LAUS).

Last, we use two data sets on counties’ air quality performance relative to the National Ambient

Air Quality Standards (NAAQS). In robustness checks, we control for county attainment status.

We obtain attainment status for each pollutant, standard, county, and calendar year from the US

EPA Green Book. We focus explicitly on PM2.5 1997, 2006, and 2012 standards; PM10 1987

standards; sulfur dioxide 1971 and 2010 standards; nitrogen dioxide 1971 standards; ozone 1979,

1997, 2008, and 2015 standards; and carbon monoxide 1971 standards. We include as controls

indicators for whether part or all of the county is in non-attainment of any of the listed standards

for each pollutant. In our analysis of behavioral responses, we classify counties based on their

degree of compliance or non-compliance with the NAAQS PM2.5 standards in 2012. To determine

compliance with the NAAQS, the US EPA requires raw monitoring data to meet stringent quality

standards and follows particular formulas for aggregating. We employ the EPA’s output of these

calculations, called the design values. We obtain the cross-section of the 2012 PM2.5 design

values, based on data from 2010-2012, for each country and standard (24-hour and annual) from

the US EPA.

2.2 Descriptive Statistics

Table 1 provides summary statistics for counties in our sample. Statistics are weighted by the

number of conceptions in the county-month. Column (1) reports means for all counties within

200km of heavy ship traffic, and column (2) restricts the sample of counties to only those with a

balanced sample of air quality monitors. The samples appear very similar across all outcomes and

control variables. For this sample, the average level of fine particulate matter is about 9 µgm−3,

about 6 percent of births are classified as low birth weight, and average birth weight is about 3,300

grams.

Despite existing evidence of disproportionate pollutant exposure for disadvantaged groups

from land-based pollution sources, prior work has not examined the exposure gap for a source that

is mobile and at-sea. We highlight the differences in the demographics of the population exposed
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to maritime fuel emissions versus comparable stationary on-land sources in Figure 4. Figure 4

shows the correlations between race/ethnicity and two measures of exposure to maritime pollu-

tion: distance to ports (stationary on-land) and the overall intensity of ship emissions, as measured

by the CMAQ model (mobile at-sea).16 We report results for non-Hispanic white, non-Hispanic

black, non-Hispanic other race, and Hispanic. We use demographic information from 2010 census

tract data. We restrict our sample for analysis to tracts within 200km of heavy ship traffic. Each of

the 100 circles represents the population-weighted average for equal-sized bins of census tracts.

First, panels (a)-(d) show the relationship between race/ethnicity and distance to ports. We

calculate the distance from the population-weighted centroid of each tract to the nearest large port.

Counties further to the right are closer in distance to a port. Consistent with the environmental

justice literature, the population near ports is less likely to be white (panel (a)), and more likely to

be black, other race, or Hispanic (panels (b)-(d)).

While ports are an important source of air pollution, exposure to maritime pollution from ship-

ping routes is not captured by the distance-to-port measure. To account for the total contribution of

ship emissions to a local area’s pollution levels, panels (e)-(h) show the correlation between race

and intensity of ship emissions, as measured by the predicted change from requiring low-sulfur

maritime fuel, based on the CMAQ model. The x-axis reports the predicted change in fine par-

ticulate matter. Census tracts further to the right are predicted to have larger improvements in air

quality from the maritime fuel regulation. Interestingly, the correlation between the proportion of

non-Hispanic black individuals and maritime emissions intensity shown in panel (f) is negative.

This pattern is in contrast to most other pollution contexts, including distance to ports. All other

race/ethnicity groups show correlations in the same direction as those observed for distance to

ports. However, the slopes of each differ somewhat, especially for Hispanics.

Figure 5 shows an alternative way to visualize these patterns. Here we present the cumulative

distribution function of the proportion of individuals in each race/ethnicity group over distance to

port (panel (a)) and intensity of ship emissions (panel (b)). A few interesting patterns stand out

and are consistent with Figure 4. First, panel (a) shows that non-Hispanic blacks are more likely to

live very near ports. In general, non-white individuals are more likely to live near ports and non-

16Figure A2 shows the distance to ports, and Figure 3 shows the overall intensity of ship emissions based on the
CMAQ model.
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Hispanic whites are least likely to live near ports, consistent with the large environmental justice

literature looking at stationary land-based pollution sources. However, the pattern is different in

panel (b), which shows the cumulative distribution of individuals by intensity of exposure to overall

ship emissions, as measured by CMAQ. Unlike panel (a), black and white individuals have almost

identical distributions, suggesting they experience a much more similar distribution of exposure to

overall ship emissions. Moreover, both groups are less likely to live with high exposure to ship

emissions, relative to Hispanics and non-Hispanic other race groups.

Given that the exposed population is different from most land-based pollution sources, the

health effects of this policy are likely to be different than other reductions in air pollution. This

is likely to be the case if, for example, pollution has a heterogeneous health impact across demo-

graphic groups, perhaps due to differences in underlying health conditions or access to care. In

addition, the dose of exposure to maritime pollution may differ across demographic groups due to

differences in time spent outdoors or differential avoidance behaviors. We compare the magnitude

of our health results to the health effects of pollution found in other contexts to better understand

the extent to which these differences in the demographics of individuals exposed to maritime emis-

sions yield different overall effects on health.

3 Empirical Strategy

To estimate the causal effect of the ECA regulation on air quality and health outcomes, we exploit

variation from the policy timing and intensity across locations. The intuition of our approach is

that we compare changes in outcomes in counties that were highly exposed to pollution from ship

exhaust relative to changes in outcomes in counties that were less exposed to pollution from ship

exhaust, before and after policy adoption.

While distance is commonly used to proxy for intensity of exposure to pollution in other con-

texts, other factors influence exposure. Exposure to emissions from ship exhaust is a combination

of ship traffic, fuel content, distance, atmospheric interactions, and meteorological factors that dis-

perse emissions. Including interactions of ship traffic, distance, and weather to proxy for exposure

presents several concerns for estimation. Instead, we employ the predictions of an atmospheric

aerosol transport model to combine these components into an exposure index. This approach pro-
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vides several advantages.

First, ex-post observations of ship traffic and emissions are likely endogenous to the policy.

Although ex-post observations of ship traffic/emissions can yield quasi-exogenous short-run vari-

ation in air pollution, which can be used to estimate effects of air pollution (as in Knittel et al.

(2016) and Moretti and Neidell (2011)), ex-ante observations are more appropriate for determin-

ing policy effectiveness, for a few reasons. First, it is plausible that ship traffic falls as a result

of the regulation if it is no longer profitable to deliver to US ports or if ships alter routes to avoid

traversing the regulated areas. If the econometrician used ex-post traffic as a metric of exposure to

the policy, they would fail to attribute pollution change from lower traffic to the policy. Second,

ex-post ship traffic reflects economic conditions that influence other sources of air pollution as well

as infant health. The econometrician risks overstating the changes from the policy if the measure

of exposure is correlated with other changes in air pollution.

A second primary concern with using interactions of ship traffic, distance, and weather is bias

from assuming an incorrect functional form of their interaction. For example, assuming a linear

relationship between destination air quality and distance to source overstates the contribution of

the source at distances beyond its average dispersion range. While the econometric methods ex-

ist to fit the data and determine an appropriate model specification, this exercise is cumbersome

because transportation of air pollution and the creation of secondary pollution depends on many

combinations of atmospheric conditions that vary by source location, destination location, and

time, among others. By contrast, output from aerosol transport models incorporates these various

factors a priori.

For these reasons, we employ output from the EPA’s Community Multiscale Air Quality Mod-

eling System (CMAQ) as our measure of intensity of exposure to the policy. The EPA developed

these predictions as a component of their proposal to justify the ECA policy (U.S. EPA, 2009b).

Our main treatment variable is the predicted reduction in PM2.5 as a result of the ECA regulation,

and represents the policymakers’ ex-ante expectations of the policy’s effects on air quality. This

measure is convenient in that we can directly compare the ex-post realized effects of the policy

to ex-ante predictions. We provide additional evidence consistent with endogenous behavioral re-

sponses to the policy by ship operators, other industry, and individuals that can help explain why

ex-ante predictions were not fully realized.
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3.1 Reduced Form

We start by estimating the reduced form effect of exposure to the policy, as measured by the

CMAQ prediction, on each of our outcomes of interest. Denote county i in year-month ym, where

m indicates the calendar month (January-December) and y indicates the year (2008-2016). The

outcomes of interest yiym are the mean air pollution, PM2.5, and health measures. The main health

outcomes are rate of low birth weight and preterm birth for births conceived in county i in year-

month ym along with overall mortality rate and infant mortality rate for county i in year-month

ym. The exposure variable is CMAQi, which is the CMAQ prediction of the reduction in PM2.5

due to the ECA.

We estimate the overall reduced-form effect of the policy in the post-period with the following

difference-in-difference specification:

yimy = βCMAQi × postECAmy + δXimy + τry + αis + εimy (1)

where postECAmy is an indicator equal to one after the ECA policy came into effect in August

2012, τry are region-by-year fixed effects (i.e., Gulf Coast 2008, Gulf Coast 2009, ... Gulf Coast

2016), αis are county-by-season fixed effects (i.e., Marin County Spring, Marin County Summer,

...), and Ximy are additional controls for county-month-year weather and unemployment rate. In

the baseline estimation of (1), county-month-year observations are weighted by the number of

conceptions in county i in year-month ym. For mortality outcomes, we weight observations by

age-specific county population. When estimating (1) with infant health outcomes, mother-child

covariates are included and weather controls are included by trimester. For example,Ximy includes

the max temperature in the first trimester, second trimester, and third trimester for conceptions in

each year, month, and county. Robust standard errors are clustered by county.

We also estimate event-study specifications to test the parallel trends assumption and explore

the effects over time. We expect that counties with higher CMAQ-modeled pollution reductions

from the policy will have greater improvements in air quality and health outcomes in the years

after the regulation came into effect. For the pollution and mortality event-studies, we omit the

year before policy adoption, 2011, and note that 2012 is a partially treated year because the policy

was implemented in August 2012. Births conceived in the latter portion of 2011 were exposed
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to the policy when it came into force in 2012, but no births conceived in 2010 were exposed to

the policy during their nine-month gestation; therefore, 2010 is the reference year for conception.

Births conceived in 2013 were exposed to the policy during their entire gestation.

For our estimates to measure the effect of the policy, we must assume that there are no omit-

ted time-varying, county-specific features correlated with the ECA timing and exposure that also

affect our outcomes of interest. This assumption would be violated if, for example, another envi-

ronmental regulation came into effect at the same time and its intensity was correlated with ship

pollution exposure. These concerns are mitigated by the inclusion of controls for arbitrary region-

year shocks, as well as arbitrary county-season seasonality. In robustness exercises, we show the

results are robust to including state-year fixed effects and also to controlling for county compliance

with environmental regulations. Any violation of the identifying assumption would need to follow

the same timing and county specific-intensity as the ECA regulation for the violation to affect our

outcomes.

The absence of such violations implies that outcomes do not trend differently between counties

with higher and lower anticipated CMAQ pollution reductions in a world without the policy. To

support this assumption, we show that an additional unit of predicted CMAQ pollution reduction

does not affect the trend in air quality in the years before the ECA implementation in our event

study specifications. As additional evidence, we show that maternal demographic characteristics

are not changing systematically with the policy variation.

A distinct advantage of using the CMAQ reductions as the "treatment" variable is the ability

to compare the realized changes in air quality to the intended changes in air quality. Even if the

CMAQ model is imperfect, the CMAQ-predicted reductions represent policymakers’ plans. If

each unit of planned PM2.5 reductions yielded one unit of actual reductions, the measured effect,

β, would equal -1. Consequentially, we interpret estimates for PM2.5 that deviate from -1 as

evidence that the intentions were not fully realized.

3.2 Two-stage Least Squares

In addition to the reduced-form impacts of the policy estimated in equation (1), we also use the

ECA policy variation to instrument for fine particulate matter, in order to estimate the impact
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of reductions in fine particulate matter on health. This provides an estimate that is more easily

comparable to the existing literature. Given the unique composition of pollution and the unique

exposed population in our setting, we might expect the health effects to differ as well.

The first stage specification is provided in equation (1) and the second stage is shown below:

healthimy = γ ̂PM2.5imy + δXimy + τry + αis + εimy (2)

The exclusion restriction requires that the ECA policy implementation affects health only

through its effect on pollution. While we focus on fine particulate matter as our primary pollu-

tant of interest, we note that the policy is likely to impact multiple pollutants simultaneously. To

that extent, our estimates may not solely capture the effect of fine particulate matter. This problem

plagues most estimates of the health impacts of air pollution because air pollutants are inherently

correlated. Nevertheless, this exercise helps put our estimates into context with the existing litera-

ture.

3.3 Behavioral Responses

The anticipated reduction in pollution may not be fully realized if the CMAQ model used by poli-

cymakers was misspecified, if inputs were mismeasured, or if the CMAQ output was mostly right,

but compliance with the policy was imperfect. In addition, the policy may lead to behavioral

changes along multiple dimensions that are not incorporated into the CMAQ model. Behavioral

changes among ship operators or other pollution sources may lead to deviations in realized pol-

lution reductions, while behavioral changes among individuals may lead to deviations in realized

health effects. We explore these behavioral responses to the ECA policy.

3.3.1 Shipping Behavior

We expect that shippers exhibited behavioral responses such as changing ship routes, speed, and

frequency. Due to geography and the fact that Mexico did not participate in the North American

ECA, certain coastal areas in the US were closer than the full 200 nautical miles to the exterior

of the ECA boundary. We expect that ships had greater incentives to avoid fuel restrictions in the

ECA in areas where the distance to exit the ECA — and therefore the cost — was lower. We
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estimate the following equation:

yimy =β1fulli × CMAQi × postECAmy + β2partiali × CMAQi × postECAmy (3)

+ δXimy + τry + αis + εimy

where fulli equals one for counties exposed to the full 200 nautical mile ECA and partiali equals

one for counties located less than 200 nautical miles from the exterior of the ECA. Other variables

are defined analogously to equation (1). Because we are interested in the spatial distribution of

pollution reductions in this part of the analysis, rather than health effects, we do not weight by

population. Standard errors are clustered by county.

3.3.2 Other Emissions Behavior

Alongside changes in the location of ship emissions, we hypothesize that other polluters could

also respond to the implementation of the ECA policy. The Clean Air Act requires counties to

maintain ambient fine particulate matter concentrations below the National Ambient Air Quality

Standards (NAAQS). Counties with ambient air pollution in excess of the standards are designated

“non-attainment" and face costly regulation. Counties that experience air quality improvements

due to ECA have less need to engage in costly efforts to reduce pollution from other sources. We

expect the incentives for this “rebound" effect to vary across counties as a function of their risk

of falling into non-attainment status. Thus, we anticipate that counties that were closest to the

threshold of non-attainment had the lowest likelihood of allowing emissions from a non-maritime

source to increase in response to a given decline in pollution from ships. To examine this pattern,

we allow the effect of the ECA to differ along with the distance to the regulatory threshold. We

estimate the following equation:

yimy =
∑
k

βk1[Di ∈ k]× CMAQi × postECAmy + δXimy + τry + αis + εimy (4)

where Di represents county i’s pre-policy distance to the regulatory threshold. We define Di as

the county 2012 PM2.5 maximum design value as a percent of the standard.17 We classify this

17We obtained the EPA records used to determine compliance with the NAAQS. For 2012, the NAAQS required
counties’ PM2.5 to meet two thresholds: (i) annual mean PM2.5 averaged over three years, DV1 year, less than
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distance into seven bins of 2012 PM2.5 as a fraction of the standard: less than 60%, 60-70%, 70-

80%, 80-90%, 90-100%, 100-110%, and over 110%. We expect regulatory “rebound” to be lowest

just below the non-attainment threshold, 90-100%. Other variables are defined as in equation (1).

The estimates are unweighted and standard errors are clustered at the county level.

3.3.3 Individual Behavior

Finally, we explore the role of individual behavioral response. Our outcomes of interest include

the natural log of the number of campsite visits, days, and visitors, as well as the inverse hyper-

bolic sine of minutes spent outdoors.18 We estimate the following reduced form equation for the

campsite reservation data,

ypimy = βCMAQi × postECAmy + δXimy + τry + αis + εpimy (5)

where p indexes a park facility located in county i in year-month ym. We include region-by-

year, τry, and county-by-season, αis fixed effects. The other variables are defined analogously

to equation (1). We also show robustness to including park facility-by-season fixed effects and

year-by-month fixed effects.

For the time use data, we estimate the following reduced form equation,

yjimy = βCMAQi × postECAmy + δXimy + πZijmy + τry + αis + θym + εijmy (6)

where j indexes individuals in county i in year-month ym. The regression includes an additional

set of individual-level controls, Zijmy, which include gender, race, ethnicity, education, age, pres-

ence of children in the household, and indicators for the day of the week of the survey and whether

it was a holiday. The regression includes region-by-year (τry), county-by-season (αis), and year-

by-month (θym) fixed effects. Other variables are defined analogously to equation (1) and the

regression is weighted using survey weights.

12µgm−3 and (ii) 98th percentile of daily mean PM2.5 averaged over three years, DV24 hours, less than 35µgm−3.
We then defined distance to the regulatory threshold, Di = 100 ∗max{DV1 year

12 , DV24 hours

35 }.
18We use the inverse hyperbolic sine transformation rather than log transformation for time spent outdoors due to

the presence of zeros. The inverse hyperbolic sine allows for the same interpretation as taking the natural log, but
preserves zeros (Burbidge et al., 1988).
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4 Results

4.1 Impacts of ECA on Air Pollution and Health

4.1.1 Air Pollution

First, we show the direct effect of maritime fuel regulation on air pollution. Figure 6 plots the event-

study for fine particulate matter. The figure shows that air pollution was not trending differently in

counties with different levels of CMAQ-predicted pollution improvements prior to the regulation.

We fail to reject the null that each of the pre-policy coefficients is statistically different than zero.

In the post-regulation period, there is a decline in PM2.5 among counties with greater exposure to

ship traffic. We reject the null that the post-policy coefficients are jointly equal to zero.

Column 1 in Table 2 reports the difference-in-difference coefficient from estimation of equa-

tion (1). Consistent with Figure 6, there is a significant reduction in fine particulate matter after the

ECA policy was implemented. One additional unit (µgm−3) of predicted reduction in PM2.5 led to

a 0.53 unit (µgm−3) fall in PM2.5 after the policy. Relative to the average level of fine particulate

matter, this represents a 6 percent decline. To measure the overall effect on fine particulate matter,

we scale the county-level CMAQ-predicted improvement by our estimated coefficient (0.53) and

take a population-weighted average across all counties within 200km of heavy ship traffic. Fig-

ure A3 shows the scaled county-level fine particulate matter improvements. We calculate that fine

particulate matter decreased by about 0.4 units on average, or about 4 percent relative to the mean

of 9.21 units.

While this result is statistically significant and economically meaningful, the fine particulate

matter point estimates indicate that air pollution fell by roughly 53 percent of the amount policy-

makers intended when they designed and implemented the policy. The coefficient is statistically

significantly different from one (p < 0.001). Therefore, we can reject the hypothesis that the decline

in fine particulate matter forecasted by the CMAQ model was realized.

4.1.2 Infant Health

Even though the forecasted effect of the ECA on air pollution was not fully realized, the policy

still led to meaningful improvements in health. We start by looking at the reduced-form policy
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impacts on health. Figure 7 shows the event-study figures using the low infant birth weight rate and

preterm birth rate as the outcomes. Here, the omitted period includes conceptions in 2010, because

conceptions in 2011 and 2012 may have been partially exposed to the policy during gestation.

Conceptions in 2013 and after were exposed to the policy for the entire duration of the pregnancy.

The patterns in the infant health measures are consistent with the trends in air pollution in Fig-

ure 6. In support of the parallel trends assumption, we found CMAQ did not predict changes in

infant health relative to the omitted period in the years before the regulation for each of the infant

health outcomes. Panels (a) and (b) indicate that the ECA regulation led to significant improve-

ments in the rates of low birth weight and preterm birth. As expected, the effect is somewhat muted

for conceptions in 2011 and 2012, because these observations were only partially exposed during

gestation to the ECA policy. For fully treated cohorts, 2013 and after, the coefficients indicate a

sizable improvement in low birth weight and preterm birth rates.

Columns (1) and (2) in Panel A of Table 3 show the corresponding overall difference-in-

difference regression results from estimation of the reduced-form equation (1) for each of the

infant health measures. Additional infant health measures are reported in Appendix Table A1.

The effect on all outcomes is statistically significant. For low birth weight, one additional unit of

CMAQ-predicted PM2.5 reduction lowered the rate by 1.3 births per 1,000 after the introduction

of the ECA, a 2 percent improvement relative to a baseline of 61 low weight births per 1,000 births.

Using the mean CMAQ-predicted change, 0.76, this coefficient suggests that the number of low

birth weight infants declined by 1 per 1,000 births, or 1.7 percent relative to the mean. One unit

of CMAQ-predicted change led to 2.1 fewer preterm births per 1,000, or 2 percent. For the mean

CMAQ-predicted change, 0.76, the coefficient suggests preterm births declined by 1.6 per 1,000,

or 1.7 percent.

We explore the distributional effect on birth weight further in the reduced form results in Panel

A of Table A2, which shows the effect of the policy on bins of birth weight. Consistent with

the stronger effects on infant health at the lower end of the distribution, we find large reductions in

births for the four smallest bins in the birth weight distribution and increases in births in the middle

of the distribution. These results suggest that there are important impacts not only for low birth

weight (less than 2,500 g) infants, but also very low birth weight (less than 1,500 g) and extremely

low birth weight (less than 1,000 g) infants. The negative health consequences are especially
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severe for very and extremely low birth weight infants, so improvements in these categories are

quite beneficial.

Next, we instrument for fine particulate matter using our policy variation to estimate the impact

of fine particulate matter on infant health. Panel B in Table 3 first reports the two-stage least squares

results from estimation of equation (2), while Panel C reports the ordinary least squares results.

When we instrument for fine particulate matter with our policy variation, we find that a one-unit

increase in fine particulate matter leads to 2.8 fewer low birth weight infants per 1,000, or a 4.6

percent increase relative to the mean of low birth weights. We compare the magnitude of our

estimates to the literature in Table 4, following Alexander and Schwandt (2021), who consider the

effect of a 10 percent pollution increase. Our results suggest that a 10 percent increase in pollution

would increase low birth weight by 4.2 percent. The magnitude of our estimated impact for low

birth weight is slightly smaller than existing estimates in the literature. This could be due to the

unique bundle of pollutants impacted by the regulation or to the differences in the demographics

of the population most exposed to the regulation.

4.1.3 Mortality

In addition to infant health, we explore the effect of the ECA on mortality rates in columns (3) and

(4) of Table 3. Panel A reports reduced form estimates based on equation (1) and are weighted by

age-specific county population.

Column (3) reports the overall effect on the all-age death rate per 1,000 population. A one-unit

predicted change in fine particulate matter measured by CMAQ leads to a statistically significant

reduction of 0.006, or about 1 percent relative to the mean, after the ECA is adopted. For the

average CMAQ-predicted change, 0.76, this is a change of about 0.7 percent.

Column (4) reports the effect on infant mortality (under age one). In Panel A, a one-unit

predicted change in PM2.5 based on CMAQ leads to a statistically significant 0.024 percentage

point, or 4.7 percent, reduction in the rate of infant mortality (3.5 percent for the mean CMAQ

prediction).19 Event study results confirm these results in Figure 8. For both overall mortality and

19As the elderly also tend to be particularly sensitive to air pollution, we explore the effects on elderly mortality
in the appendix. Table A3 and Figure A4 show that the policy led to statistically significant declines in mortality for
individuals age 75-84 and age 85 and over. A one-unit predicted change in PM2.5 from CMAQ led to declines in
elderly mortality of 0.04 and 0.16 percentage points, or 1.1 and 1.5 percent for ages 75-84 and above 85, respectively.
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infant mortality, there is little evidence of a pre-trend in years prior to policy adoption, but there is

a decline in mortality in areas with heavy ship traffic following adoption of the ECA.

Next, we estimate the impact of fine particulate matter on mortality using two-stage least

squares and OLS in Panels B and C, respectively. Columns (3) and (4) of Panel B show that a

one-unit increase in fine particulate matter leads to a 1.7 percent increase in overall mortality and

an 8.7 percent increase in infant mortality. We compare the estimated effects of pollution on infant

mortality to the existing literature in Table 4. For a 10 percent increase in fine particulate matter,

our results suggest an 8 percent increase in infant mortality. Our estimated effect is in line with the

recent existing literature, especially recent studies focusing on fine particulate matter.

4.1.4 Robustness

A potential concern with our estimation of the ECA’s effects on health at birth is that the introduc-

tion of the ECA could have been correlated with changes in mother characteristics. For example, if

the introduction of the ECA was correlated with an increase in conceptions for mothers with high

proclivity for prenatal care in coastal counties, then our results reflect the change in the composition

of mothers rather than the change from the air quality improvement the policy induced. We show

evidence that maternal characteristics are not changing simultaneously with the policy exposure in

column (2) of Table 2 and Figure 9. The outcome is a measure of the predicted birth weight based

only on observed maternal characteristics, including education, marital status, race, ethnicity, age,

smoking status, and diabetes. There is no observable change in predicted birth weight based on

maternal characteristics after the policy was put in place. Similarly, column (2) of Table 2 shows

there is no evidence of a systematic change in underlying maternal characteristics that corresponds

to the policy variation, which is reassuring.

Moreover, our results are robust to a number of alternative specifications, as shown in Table 5.

The main results for fine particulate matter, low birth weight and infant deaths are shown in row

1 for reference. The main results limit the sample to counties whose centroids are within 200km

of heavy ship traffic, because counties far from the coast are less likely to provide suitable coun-

terfactuals. We show that our results are robust to alternative choices for inclusion in the sample.

Panels (a) and (b) of Figure A4 show little evidence of pre-trends in years prior to the policy for elderly mortality and
a decrease in mortality in areas with heavy ship traffic after the ECA policy.
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Rows 2 and 3 of Table 5 show very similar estimates when we limit the sample to counties within

150km or 300km as well.

While our main specification includes region-by-year fixed effects, we show that the results

are robust to more flexible state-by-year fixed effects in row 4. Row 5 includes more flexible

weather controls. For each weather variable, we include 7 bins: below 5th percentile, 5 bins for

even intervals from the 5th to 95th percentile, and above the 95th percentile. Next, rows 6-7 relax

the balanced panel requirement for air quality monitors. Rather than restricting the sample to

balanced monitors from 2008 to 2016, row 6 only requires balance between 2009 and 2014. This

increases our sample of counties from 232 to 251. Row 7 relaxes the requirement for a sample of

balanced monitors and reports the unbalanced panel results. In row 8, we use an alternate measure

of intensity of treatment that is based on the CMAQ prediction of total emissions from maritime

shipping.

Next, we address concerns that other pollution abatement policies may occur during our sample

period. First, we exclude counties with a port in row 9 to show our results are not driven by any

port-specific policy changes that may have been adopted during our sample period. Our results

are not driven by port counties alone. Second, row 10 shows our results are robust to controlling

for Clean Air Act non-attainment status for each county over time. For each of these robustness

exercises in rows 1 through 10, the estimates remain significant and are similar in magnitude across

each outcome.

Finally, row 11 tests whether the tightening of the fuel content standard in 2015 had any addi-

tional impact on improving air quality. We find no statistically significant impact on air quality or

health outcomes from this tightening. This is not surprising, as the 2015 fuel standard tightening

was a relatively small change and many ships were already using compliant fuel.

4.1.5 Comparison with Previous Approaches

Employing the CMAQ output as a measure of intensity of exposure to the ECA policy improves on

approaches that rely on imprecise proxies for source-specific exposure. To illustrate the distinction,

we perform our analysis using distance to a port as the proxy for ship pollution exposure in lieu

of CMAQ output. We define distance to a port as the kilometers from the county population-

weighted centroid to the nearest major US port. We highlight two main concerns with distance
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metrics. First, distance is a poor proxy for exposure to improvements from the policy because

atmospheric interactions play a major role in the dispersion of pollution. This concern would lead

to bias from measurement error. Second, there does not exist an a priori functional form for the

relationship between the distance from a pollution source and pollutant exposure from the source.

This concern would lead to bias from misspecification.

Table 6 reports the results of estimating equation (1) where intensity of exposure to the policy

is measured by either CMAQ or distance. We report the results for infant deaths, low birth weight,

and fine particulate matter in panels A-C, respectively. We standardize the coefficients and standard

errors into units of standard deviations so that the results are comparable across candidate treatment

variables. First, we compare the Bayesian information criteria (BIC), which is a criterion for model

selection based, in part, on the likelihood function. As the model with the lowest BIC is preferred,

we observe that the estimates based on CMAQ consistently yield a lower BIC across all outcomes,

suggesting that CMAQ is preferred. Similarly, we note that, across all outcomes, the CMAQ model

appears to reduce measurement error, as expected. The T-statistic is larger and standard errors

are smaller for CMAQ relative to distance in all panels. In terms of magnitude of the estimated

coefficients, the estimated effect of a one standard deviation increase in distance relative to a one

standard deviation increase in CMAQ exposure led to a slightly larger reduction in infant deaths

and low birth weight, but a slightly smaller reduction in fine particulate matter. However, we

do not emphasize these differences because the confidence intervals of these estimates overlap.

Nevertheless, these models show meaningful improvements in precision when CMAQ is used to

measure exposure to the ECA policy.

4.2 Distributional Effects

As documented in section 2.2, the demographic composition of the population most exposed to

ship traffic, as measured by the CMAQ model, differs from many land-based pollution sources.

Whereas stationary sources, such as Superfund sites, hazardous waste sites, landfills, and even

ports, tend to be closer to disadvantaged populations (Currie, 2011; Gamper-Rabindran and Tim-

mins, 2011; Banzhaf et al., 2019), exposure to ship pollution is negatively correlated with the

percent of the population that is black, for example. The demographic composition of the ex-
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posed population in the context of ship pollution may drive differences in the health effects that we

observe relative to the previous literature.

In this section, we explore the degree to which the ECA has a heterogenous effect on the ex-

posed population. As noted above, improvements in air pollution may differ across demographic

groups due to differences in health status or access to care. In addition, the exposure to mar-

itime pollution may differ across demographic groups due to differences in time spent outdoors or

avoidance behaviors.

We estimate two-stage least squares from equation (2) on subsamples of mothers by demo-

graphic characteristics at the individual level. Table 7 shows the results by race/ethnicity, educa-

tion, age, and marital status. Column (1) reports the baseline estimates for the full sample at the

individual level. The magnitude of the effect is similar to the main results for low birth weight in

Panel B of Table 3, which both show about a 0.2 percentage point, or 4 percent, increase in low

birth weight for a one-unit increase in fine particulate matter. Columns (2) - (5) show results for

non-Hispanic white, non-Hispanic black, non-Hispanic other, and Hispanic mothers. The magni-

tude of the effects are largest for non-Hispanic white mothers and non-Hispanic other race mothers.

The estimated effects show that a one-unit increase in fine particulate matter leads to a 6.6 percent

and 12.6 percent increase in low birth weight for non-Hispanic white and non-Hispanic other race

mothers, respectively. The results for mothers with high education in column (6) are similar in

magnitude to the overall effects, suggesting that heterogeneity is driven less by education level.

Column (7) reports results for married mothers only. The magnitude of the effect is only slightly

smaller for married mothers, still about 4 percent from the mean. Finally, columns (8) to (10)

report results for mothers age 19-24, 25-34, and over 35. The main results appear to be driven by

mothers over 25.

4.3 Behavioral Responses

While the effect of the ECA regulation led to a statistically significant improvement in fine par-

ticulate matter and health, the estimated effect was less than anticipated. If each unit of planned

PM2.5 reductions yielded one unit of actual reductions, our estimation of βk from equation (1)

would equal -1. However, we reject this hypothesis (p < 0.001), which provides evidence that the
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intentions of the policy were not fully realized.

One explanation is that the CMAQ model did not take into account behavioral changes. Requir-

ing more expensive low-sulfur fuel near the coast may have led ships to re-optimize their routes,

speed, and frequency of trips. These behavioral changes may result in unexpected heterogeneity

in realized pollution reductions. Declines in ship pollution may have been accompanied by “reg-

ulatory rebound,” as efforts to control pollution by other industries were relaxed in areas at low

risk of violating the Clean Air Act. Finally, improvements in air quality may have yielded be-

havioral changes among individuals, such as altering recreational activities or the amount of time

spent outdoors. This may lead to deviations in realized health effects of the pollution reduction.

In this section, we explore whether there is evidence of any behavioral change along these three

dimensions in response to the ECA.

4.3.1 Shipping Behavior

We hypothesize that ships most likely exhibited behavioral responses that diminished the effec-

tiveness of the policy in coastal areas where the cost of avoiding the ECA is lowest. As shown in

Figure 2, southern parts of California, Florida, and Texas were less than 200 nautical miles from

the exterior of the ECA. In these areas, it was less costly to travel to exit the ECA and avoid us-

ing costly low-sulfur fuel, and the use of higher-sulfur fuel outside the ECA was nearer to coastal

populations. In addition, Klotz and Berazneva (2022) provide evidence that a narrow 24 nautical

mile boundary led to substantial behavioral response among ships. Therefore, we hypothesize that

areas fully exposed to the ECA, at least 200 nautical miles from the exterior of the ECA boundary,

had larger impacts on air quality than areas with only partial exposure to the ECA.

We estimate an event study specification to test this hypothesis in Figure 11. Neither panel

shows evidence of a pre-trend in fine particulate matter prior to the ECA implementation. In panel

A, for the areas exposed to the full ECA, there is a clear and statistically significant decline in fine

particulate matter after policy adoption. However, in panel B, areas with only partial exposure to

the ECA show a somewhat noisier and more muted effect of the policy, as expected. In terms of

magnitude, the post-policy coefficients in panel A are not statistically distinguishable from -1 in

each year from 2013 to 2016, suggesting that the anticipated declines in fine particulate matter

were realized in areas fully exposed to the 200nm boundary. While the coefficient is smaller than
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-1 in 2012, this is expected, as the policy only came into effect in August 2012. By contrast,

the estimated coefficients in panel B suggest that the ex-post decline in PM2.5 was less than the

anticipated decline in areas only partially exposed to the ECA.

Table 8 summarizes these effects. First, column (1) replicates the effect of the ECA in the full

sample without population weights. The coefficient is very similar to column (1) of Table 3 and

shows the decline in fine particulate matter was about half of the expected decline overall. Column

(2) estimates equation (3) for counties partially and fully exposed to the 200nm boundary. A one-

unit increase in CMAQ is associated with a 0.87 and 0.44 unit (or 10 percent and 5 percent) decline

in fine particulate matter in areas fully and partially exposed to the policy, respectively. The decline

in fine particulate matter in areas partially exposed to the ECA is statistically significantly smaller

than the decline in fine particulate matter among fully exposed areas (p < 0.05). This is consistent

with the hypothesis that behavioral response among ships in areas partially exposed to the ECA,

where avoiding the ECA was easiest, led to a muted effect of the policy on air pollution. However,

in areas fully exposed to the ECA, the CMAQ-predicted reductions in fine particulate matter were

statistically indistinguishable from the realized reductions, suggesting the policy was effective in

these areas.

4.3.2 Other Emissions Behavior

Figure 11 reports the results of estimating equation (4). We found that counties at greatest risk of

violating the Clean Air Act threshold experienced the greatest declines in PM2.5 as a result of the

ECA policy. For these counties, defined as those with air pollution from 90 to 100 percent of the

regulatory standard, a one-unit increase in CMAQ prediction is associated with a 1.9 unit decline

in PM2.5 resulting from the ECA policy. Although this decline appears larger than what the ECA

plausibly delivered, we fail to reject the null that the magnitude is equivalent to -1. By contrast,

in other counties, we found a pattern consistent with our hypothesis that increases in on-land

emissions offset declines from at-sea emissions: as the county’s risk of violating the regulatory

threshold decreased, the impact of the ECA was more muted.

Table 8 column (3) summarizes the differential effects of the ECA for counties further from

the Clean Air Act regulatory threshold relative to counties close the regulatory threshold. It reports

the estimates of a variation of equation (4) where the counties with pre-policy PM2.5 within 90
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to 100 percent of the regulatory threshold are the omitted category. We found that all counties

had significantly smaller declines in PM2.5 resulting from the ECA relative to the group that was

closest to violating the Clean Air Act. The most significant offsetting effects occurred in counties

below and furthest from the threshold. Among counties with pre-policy PM2.5 below 80 percent of

the regulatory threshold, the results indicate that a “rebound" from other emissions entirely offset

the air quality improvements from the ECA.

4.3.3 Individual Behavior

Next, we explore whether policy-induced improvements in air quality had a subsequent impact

on individuals’ behavior. Increased time spent outdoors, for example, could increase individuals’

duration of exposure to the now lower level of air pollution. Because ex-ante models do not take

into account such behavioral changes, realized health benefits may differ from anticipated benefits.

Understanding the impact of air quality improvements on behavior is important in order to predict

the impact of future policy changes on health.

First, we explore the effect of the ECA adoption on campsite reservations using data from

national park sites. Figure 12 shows the event-study style results from estimating equation (5) for

the natural log of the number of visits, people, and days. All outcomes show very similar patterns.

Prior to policy adoption in 2012, there is no evidence of differential pre-trends. After the policy

began in 2012, there is a statistically significant increase in campsite reservations, as measured by

visits, people, or days, and this increase is significant throughout the post-policy period. Table 9

shows the complementary difference-in-difference regression results for each outcome. Columns

(2), (4) and (6) show regression results similar to the main specification, while columns (3), (5),

and (7) include additional controls for facility-by-season and year-by-month fixed effects. A one-

unit increase in CMAQ prediction is associated with a 10-15 percent increase in the number of

visits, people, and days, after the ECA was implemented.

Next, we supplement these findings with data on time spent outdoors from the ATUS. As

described in the data section, this survey records a detailed time diary of activities over a 24-hour

period for each respondent, which includes the location of each activity. Our outcome of interest

is the inverse hyperbolic sine of total minutes spent outdoors.20 Figure 13 shows the event-study

20We use the inverse hyperbolic sine rather than log transformation, because this transformation allows the reported
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style results from estimating equation (6). There is no evidence of differential pre-trends prior to

policy adoption. After the ECA was adopted, there was a gradual increase in time spent outdoors.

Table 9 shows the corresponding regression results. Column (7) suggests that a one-unit increase

in CMAQ prediction leads to an 8 percent increase in minutes spent outdoors. In Table A4, we

provide additional placebo tests on time spent on activities that are unlikely to be impacted by

changes in air quality, such as sleeping, housework, and buying groceries. Reassuringly, we find

no statistically significant impacts on these outcomes.

Across both datasets and a variety of measures, results suggest that policy-induced changes in

air quality led to increased time spent outdoors. These findings are consistent with existing work

showing that elevated ozone levels reduce national park visitation, especially when levels trigger

Air Quality Index (AQI) warnings (Keiser et al., 2018). These behavioral changes can impact

the reduced form effect of the ECA policy on health through decreased exposure to pollution or

increased exercise, for example. Such complex behavioral changes make it especially important to

quantify the health benefits of pollution regulation through ex-post policy evaluation.

5 Discussion & Conclusion

This study examines the effect of maritime emissions regulation on air quality, infant health, and

infant mortality. We combine administrative data sets on air pollution and health with the output

of atmospheric transport model scenarios specific to our research setting. We document greater

improvements in air quality and health for counties that the EPA’s CMAQ model predicted would

improve most from the policy.

Policymakers frequently rely on the predictions of scientific models to anticipate the air qual-

ity improvement from a policy; yet, researchers infrequently test for differences between ex-ante

and ex-post estimates. In this setting, only about half of the intended fine particulate matter im-

provements were realized, and we document evidence consistent with behavioral responses among

shippers, other polluters, and individuals that are likely to contribute to deviations from the pol-

icy’s anticipated impact. Our approach may be replicated in other settings with scientific research

coefficients to be interpreted in the same way as the natural log but does not require us to determine the best way to
handle observations without any reported time spent outdoors (Burbidge et al., 1988).
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employing atmospheric transport model scenarios to improve estimation and policy evaluation.

Our results provide the first ex-post evaluation of US maritime emissions regulation. The US

ECA led to meaningful improvements in fine particulate matter, infant health, and mortality as a

result of maritime emissions controls. Combining CMAQ measurements with our estimated effect

— that one unit of predicted fine particulate matter reduction from the ECA led to a 2 percent

decline in low birth weight infants — and scaling by population, we calculate that the US ECA led

to approximately 1,536 fewer low birth weight infants per year in areas near ship traffic. Similarly,

we calculate that the policy resulted in a reduction of approximately 290 deaths per year under

age one.21 Using the EPA’s value of a statistical life, this translates into $2.76 billion per year.

The total benefits from improved health increase by an additional $139 million per year when

we incorporate the effects of low birth weight on earnings (using estimates from Bharadwaj et al.

(2018)) and the census bureau’s work-life earnings. The benefits to improved infant health alone

are almost as large as the estimated cost of the policy, $3.2 billion in 2020. Incorporating additional

health benefits from cleaner air, such as fewer emergency room visits and hospitalizations, would

likely lead to even higher total benefits. Moreover, to the extent that individuals reduced costly

avoidance behavior in response to reduced air pollution from the policy, the health benefits alone

can be considered a lower bound of the total benefits.

These findings are especially important given the IMO’s recent adoption of a new global mar-

itime sulfur emission standard in 2020, reducing sulfur content from 3.5 percent to 0.5 percent

globally. Low-sulfur fuel can cost 30-50 percent more than bunker fuel, and fuel accounts for up

to 75 percent of an ocean carrier’s operation costs. This new regulation was estimated to cost the

shipping industry between $10 to $60 billion per year depending on fuel prices (Corbett et al.,

2016). Yet, our results suggest the potential for large benefits to human health in coastal areas

throughout the world that have not yet adopted an ECA regulation. As of 2020, only the North

American ECA, Baltic Sea ECA, and North Sea ECA were in effect. The health benefits from the

IMO’s new global standard are likely to be quite large given that most countries had not regulated

maritime sulfur emissions near coastal areas as of the time of our study.

21Figures A5 and A6 show the distribution of these health improvements spatially.

34



References
Alexander, Diane and Hannes Schwandt, “The impact of car pollution on infant and child health:

Evidence from emissions cheating,” Review of Economic Studies (forthcoming), 2021.

Arceo, Eva, Rema Hanna, and Paulina Oliva, “Does the Effect of Pollution on Infant Mortal-
ity Differ Between Developing and Developed Countries? Evidence from Mexico City,” The
Economic Journal, 2016, 126 (591), 257–280.

Auffhammer, Maximilian and Ryan Kellogg, “Clearing the air? The effects of gasoline content
regulation on air quality,” American Economic Review, 2011, 101 (6), 2687–2722.

Banzhaf, Spencer, Lala Ma, and Christopher Timmins, “Environmental justice: The economics
of race, place, and pollution,” Journal of Economic Perspectives, 2019, 33 (1), 185–208.

Barreca, Alan and Jessamyn Schaller, “The impact of high ambient temperatures on delivery
timing and gestational lengths,” Nature Climate Change, 2020, 10 (1), 77–82.

Baum-Snow, Nathaniel, “Did Highways Cause Suburbanization?,” The Quarterly Journal of Eco-
nomics, 2007, 122 (2), 775–805.

Becker, Randy and Vernon Henderson, “Effects of Air Quality Regulations on Polluting Indus-
tries,” Journal of Political Economy, 2000, 108 (2), 379–421.

Bharadwaj, Prashant, Petter Lundborg, and Dan-Olof Rooth, “Birth weight in the long run,”
Journal of Human Resources, 2018, 53 (1), 189–231.

Black, Sandra E, Paul J Devereux, and Kjell G Salvanes, “From the cradle to the labor market?
The effect of birth weight on adult outcomes,” The Quarterly Journal of Economics, 2007, 122
(1), 409–439.

Burbidge, John B, Lonnie Magee, and A Leslie Robb, “Alternative transformations to handle
extreme values of the dependent variable,” Journal of the American Statistical Association, 1988,
83 (401), 123–127.

Capaldo, Kevin, James J Corbett, Prasad Kasibhatla, Paul Fischbeck, and Spyros N Pandis,
“Effects of Ship Emissions on Sulphur Cycling and Radiative Climate Forcing Over the Ocean,”
Nature, 1999, 400 (6746), 743–746.

Chay, Kenneth and Michael Greenstone, “Air Quality, Infant Mortality, and the Clean Air Act
of 1970,” NBER Working Paper, 2003, (w10053).

Corbett, James J, James J Winebrake, Edward W Carr, Jukka-Pekka Jalkanen, Lasse Jo-
hansson, Marje Prank, Mikhail Sofiev, SG Winebrake, and A Karppinen, “Health Impacts
Associated with Delay of MARPOL Global Sulphur Standards,” IMO MEPC 70/INF, 2016, 34.

, , Erin H Green, Prasad Kasibhatla, Veronika Eyring, and Axel Lauer, “Mortality from
Ship Emissions: A Global Assessment,” Environmental Science & Technology, 2007, 41 (24),
8512–8518.

35



Currie, Janet, “Inequality at birth: Some causes and consequences,” American Economic Review,
2011, 101 (3), 1–22.

and Matthew Neidell, “Air Pollution and Infant Health: What Can We Learn from California’s
Recent Experience?,” The Quarterly Journal of Economics, 2005, 120 (3), 1003–1030.

and Reed Walker, “Traffic Congestion and Infant Health: Evidence from E-ZPass,” American
Economic Journal: Applied Economics, 2011, 3 (1), 65–90.

, Matthew Neidell, and Johannes F Schmieder, “Air Pollution and Infant Health: Lessons
from New Jersey,” Journal of Health Economics, 2009, 28 (3), 688–703.

Duflo, Esther, “The Economist as Plumber,” American Economic Review, 2017, 107 (5), 1–26.

Eyring, Veronica, HW Köhler, J Van Aardenne, and A Lauer, “Emissions From International
Shipping: 1. The Last 50 Years,” Journal of Geophysical Research: Atmospheres, 2005, 110
(D17).

Fann, Neal, Karen Wesson, and Bryan Hubbell, “Characterizing the Confluence of Air Pollution
Risks in the United States,” Air Quality, Atmosphere & Health, 2016, 9 (3), 293–301.

Figlio, David, Jonathan Guryan, Krzysztof Karbownik, and Jeffrey Roth, “The effects of poor
neonatal health on children’s cognitive development,” American Economic Review, 2014, 104
(12), 3921–55.

Fowlie, Meredith, Mar Reguant, and Stephen P Ryan, “Market-Based Emissions Regulation
and Industry Dynamics,” Journal of Political Economy, 2016, 124 (1), 249–302.

Gamper-Rabindran, Shanti and Christopher Timmins, “Hazardous waste cleanup, neighbor-
hood gentrification, and environmental justice: Evidence from restricted access census block
data,” American Economic Review, 2011, 101 (3), 620–24.

Gillingham, Kenneth and Pei Huang, “Racial Disparities in the Health Effects from Air Pollu-
tion: Evidence from Ports,” NBER Working Paper, 2021, (w29108).

Hellenic Shipping News, 2015 SOx Limits: Is The World Fleet Scrubbing Up? 2014.

Hernandez-Cortes, Danae and Kyle C Meng, “Do Environmental Markets Cause Environmental
Injustice? Evidence from California’s Carbon Market,” 2021.

Keiser, David, Gabriel Lade, and Ivan Rudik, “Air pollution and visitation at US national parks,”
Science advances, 2018, 4 (7), eaat1613.

Klotz, Richard and Julia Berazneva, “Local Standards, Behavioral Adjustments, and Welfare:
Evaluating California’s Ocean-Going Vessel Fuel Rule,” Journal of the Association of Environ-
mental and Resource Economists (forthcoming), 2022.

Knittel, Christopher R, Douglas L Miller, and Nicholas J Sanders, “Caution, Drivers! Children
Present: Traffic, Pollution, and Infant Health,” Review of Economics and Statistics, 2016, 98 (2),
350–366.

36



Lindgren, Samuel, “The coast is clear: Shipping emission standards, air quality and infant health,”
Transportation Research Part D: Transport and Environment, 2021, 100, 103067.

Liu, Huan, Mingliang Fu, Xinxin Jin, Yi Shang, Drew Shindell, Greg Faluvegi, Cary Shindell,
and Kebin He, “Health and Climate Impacts of Ocean-Going Vessels in East Asia,” Nature
Climate Change, 2016.

Luechinger, Simon, “Air Pollution and Infant Mortality: A Natural Experiment from Power Plant
Desulfurization,” Journal of Health Economics, 2014, 37, 219–231.

Marcus, Michelle, “On the Road to Recovery: Gasoline Content Regulations and Child Health,”
Journal of Health Economics, 2017, 54, 98–123.

Moore, Thomas J, Jessica V Redfern, Michael Carver, Sean Hastings, Jeffrey D Adams,
and Gregory K Silber, “Exploring ship traffic variability off California,” Ocean & Coastal
Management, 2018, 163, 515–527.

Moretti, Enrico and Matthew Neidell, “Pollution, Health, and Avoidance Behavior: Evidence
from the Ports of Los Angeles,” Journal of Human Resources, 2011, 46 (1), 154–175.

Oreopoulos, Philip, Mark Stabile, Randy Walld, and Leslie L Roos, “Short-, Medium-, and
Long-Term Consequences of Poor Infant Health: An Analysis Using Siblings and Twins,” Jour-
nal of Human Resources, 2008, 43 (1), 88–138.

Polemis, SM, “Balancing Environmental Aspirations with Economic Realities,” 2012.

Sanders, Nicholas and Alan I Barreca, “Adaptation to Environmental Change: Agriculture and
the Unexpected Incidence of the Acid Rain Program,” NBER Working Paper, 2021, (w28591).

Schlenker, Wolfram and W Reed Walker, “Airports, Air Pollution, and Contemporaneous
Health,” The Review of Economic Studies, 2015, 83 (2), 768–809.

Smith, TWP, JP Jalkanen, BA Anderson, JJ Corbett, J Faber, S Hanayama, E O’Keeffe,
S Parker, L Johansson, L Aldous et al., “Third IMO Greenhouse Gas Study 2014,” 2015.

Sofiev, Mikhail, James J Winebrake, Lasse Johansson, Edward W Carr, Marje Prank, Joana
Soares, Julius Vira, Rostislav Kouznetsov, Jukka-Pekka Jalkanen, and James J Corbett,
“Cleaner Fuels for Ships Provide Public Health Benefits with Climate Tradeoffs,” Nature Com-
munications, 2018, 9 (1), 406.

Tessum, Christopher W, David A Paolella, Sarah E Chambliss, Joshua S Apte, Jason D Hill,
and Julian D Marshall, “PM2.5 Polluters Disproportionately and Systemically Affect People
of Color in the United States,” Science Advances, 2021, 7 (18), eabf4491.

U.S. EPA, “Integrated Science Assessment for Sulfur Oxides: Health Criteria ,” Technical Report,
U.S. Environmental Protection Agency, Office of Research and Development, National Center
for Environmental Assessment 2008.

, “Integrated Science Assessment for Particulate Matter,” US Environmental Protection Agency
Washington, DC, 2009.

37



, “Proposal to Designate an Emission Control Area for Nitrogen Oxides, Sulfur Oxides and
Particulate Matter: Technical Support Document,” Technical Report, Assessment and Standards
Division, Office of Transportation and Air Quality, U.S. Environmental Protection Agency 2009.

, “Regulatory Announcement: Designation of North American Emission Control Area to Reduce
Emissions from Ships,” Technical Report, U.S. Environmental Protection Agency, Office of
Transportation and Air Quality 2010.

, “Integrated Science Assessment for Oxides of Nitrogen - Health Criteria,” US Environmental
Protection Agency Washington, DC, 2016.

Viana, Mar, V Rizza, Aurelio Tobías, E Carr, J Corbett, M Sofiev, A Karanasiou, G Buo-
nanno, and N Fann, “Estimated health impacts from maritime transport in the Mediterranean
region and benefits from the use of cleaner fuels,” Environment International, 2020, 138,
105670.

Wang, Chengfeng, James J Corbett, and Jeremy Firestone, “Modeling Energy Use and Emis-
sions from North American Shipping: Application of the Ship Traffic, Energy, and Environment
Model,” Environmental Science & Technology, 2007, 41 (9), 3226–3232.

Winebrake, James J, JJ Corbett, EH Green, A Lauer, and V Eyring, “Mitigating the Health
Impacts of Pollution from Oceangoing Shipping: An Assessment of Low-Sulfur Fuel Man-
dates,” Environmental Science & Technology, 2009, 43 (13), 4776–4782.

Zhu, Junming and Jiali Wang, “The effects of fuel content regulation at ports on regional pollu-
tion and shipping industry,” Journal of Environmental Economics and Management, 2021, 106,
102424.

Zou, Eric Yongchen, “Unwatched Pollution: The Effect of Intermittent Monitoring on Air Qual-
ity,” American Economic Review, 2021, 111 (7), 2101–26.

38



6 Figures

Figure 1: Summary of Sulfur Allowance Limits Within and Outside ECAs
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Figure 2: North American Emission Control Area Boundary

Note: Figure shows the regulated area for the North American Emission Control Area. Low sulfur fuel was required within the outlined boundary.
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Figure 3: CMAQ Predicted Decline in PM2.5 from ECA
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Note: Figure shows the predicted decline in fine particulate matter from implementation of the North American Emission Control Area based on
the CMAQ model. Counties were assigned the difference between the CMAQ scenarios of ambient PM2.5 in 2020 (i) without the ECA policy and
(ii) with the ECA policy at the population-weighted centroid. Data are from U.S. EPA (2009b).
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Figure 4: Demographics of the Population Exposed to Maritime Pollution
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Figure 5: Disproportionate Exposure Among Populations Exposed to Maritime Pollution
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Note: Demographic information on the proportion of non-Hispanic whites, non-Hispanic blacks, non-Hispanic other race, and Hispanics from
2010 census tract data. We restrict to our analysis sample, which includes tracts within 200km of heavy ship traffic. Figure shows the cumulative
distribution of individuals by race/ethnicity over distance to a port in panel (a) and intensity of ship emissions in panel (b). We calculate distance
in kilometers from the population-weighted centroid of each tract to the nearest major port. The intensity of ship emissions is measured by the
predicted change from requiring low sulfur maritime fuel from the CMAQ model at the centroid of each census tract.
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Figure 6: Effects of ECA on Air Quality

-1
.5

-1
-.5

0
.5

PM
2.

5 
(μ

gm
-3
)

2008 2009 2010 2011 2012 2013 2014 2015 2016

(a) PM2.5

Note: The unit of observation is a county-year-month. The observations are weighted by the number of births conceived in county i in year-month
ym. The sample includes counties with population-weighted centroids within 200km of heavy ship traffic and with a PM2.5 monitor. The depicted
coefficients are the estimated effect of a one-unit increase in a county’s CMAQ predicted reduction from the ECA in each year relative to the year
before the ECA came into effect. Robust standard errors are clustered at the county level. The confidence intervals are ± 1.96 standard errors.

44



Figure 7: Effects of ECA on Infant Health
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Note: The unit of observation is a county-year-month. The observations are weighted by the number of births conceived in county i in year-month
ym. The sample includes counties with population-weighted centroids within 200km of heavy ship traffic and with a PM2.5 monitor. The depicted
coefficients are the estimated effect of a one-unit increase in a county’s CMAQ predicted reduction from the ECA in each conception year relative
to 2010. Conceptions in 2011 and 2012 may be partially treated, while conceptions in 2013 and after are fully treated during gestation. Robust
standard errors are clustered at the county level. The confidence intervals are ± 1.96 standard errors.
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Figure 8: Effects of ECA on Mortality
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Note: The unit of observation is a county-year-month. The observations are weighted by the total population in panel a and the population under
age 1 in panel b. The sample includes counties with population-weighted centroids within 200km of heavy ship traffic and with a PM2.5 monitor.
The depicted coefficients are the estimated effect of a one-unit increase in a county’s CMAQ predicted reduction from the ECA in each year relative
to 2011. Robust standard errors are clustered at the county level. The confidence intervals are ± 1.96 standard errors.
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Figure 9: Maternal Demographics and CMAQ Exposure
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Note: The unit of observation is a county-year-month. The observations are weighted by the number of births conceived in county i in year-month
ym. The sample includes counties with population-weighted centroids within 200km of heavy ship traffic and with a PM2.5 monitor. The outcome
is predicted birth weight based on observed characteristics and coefficients obtained from regressing birth weight on maternal characteristics,
including education, marital status, race, ethnicity, age, smoking status, and diabetes. The depicted coefficients are the estimated effect of a one-unit
increase in a county’s CMAQ predicted reduction from the ECA in each year relative to the year before the ECA came into effect. Robust standard
errors are clustered at the county level. The confidence intervals are ± 1.96 standard errors.
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Figure 10: Ship Behavioral Response: Full vs. Partial ECA
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Note: The unit of observation is a county-year-month. The observations are unweighted. The sample includes counties with population-weighted
centroids within 200km of heavy ship traffic and with a PM2.5 monitor. The depicted coefficients are the estimated effect of a one-unit increase in
a county’s CMAQ predicted reduction from the ECA in each year relative to the year before the ECA came into effect. Robust standard errors are
clustered at the county level. The confidence intervals are ± 1.96 standard errors.
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Figure 11: Emissions Behavioral Response: Clean Air Act Regulatory Rebound
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Note: The unit of observation is a county-year-month. The observations are unweighted. The sample includes counties with population-weighted
centroids within 200km of heavy ship traffic and with a PM2.5 monitor. The depicted coefficients are the estimated effect of a one-unit increase in a
county’s CMAQ predicted reduction from the ECA in post-ECA (July 2012) time periods relative to pre-ECA time periods. Robust standard errors
are clustered at the county level. The confidence intervals are ± 1.96 standard errors.
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Figure 12: Individual Behavioral Response: Campsite Reservations

(a) Log Visits (b) Log Days

Note: The unit of observation is the facility-year-month. The observations are unweighted. The sample includes all facilities in the continental US.
The depicted coefficients are the estimated effect of a one-unit increase in a county’s CMAQ predicted reduction from the ECA in each year relative
to 2011, the year prior to policy adoption. Panels a and b show the estimates for outcomes variables (a) natural log of total visits and (b) natural log
of total days each month, respectively. Robust standard errors are clustered at the county level. The confidence intervals are ± 1.96 standard errors.

Figure 13: Individual Behavioral Response: Time Spent Outdoors

Note: The unit of observation is the individual-county-year-month. The observations are weighted by sample weights. The sample includes
individuals in counties with population-weighted centroids within 200km of heavy ship traffic and with a PM2.5 monitor. The depicted coefficients
are the estimated effect of a one-unit increase in a county’s CMAQ predicted reduction from the ECA in each year relative to 2011, the year prior
to policy adoption. The outcome is the inverse hyperbolic size transformation of minutes spent outdoors. Robust standard errors are clustered at the
county level. The confidence intervals are ± 1.96 standard errors.
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7 Tables

Table 1: Summary Statistics 2008-2016

All in In 200k and
200k PM2.5 monitor

Outcomes
PM2.5 9.21 9.21
Low birth weight (per 1,000) 61.61 60.53
Birth weight (g) 3,304.18 3,305.18
Pre-term (per 1,000) 95.55 93.82
Gestation(weeks) 38.77 38.78
Deaths (per 1,000) - Under 1 0.48 0.52
Deaths (per 1,000) - All 0.63 0.63
Mother characteristics
Married 0.59 0.58
> HS Education 0.51 0.52
White 0.72 0.72
Hispanic 0.30 0.34
Over 35 0.18 0.19
Other controls
Min temperature 9.87 9.88
Max temperature 21.41 21.40
Precipitation 2.80 2.64
Unemployment rate 7.72 7.85
Observations
N conceptions/month 201.54 496.89
N counties 740.00 232.00

Note: The unit of observation is the county-year-month. The observations are weighted by the number of births conceived in county i in year-month
ym. The sample in column 1 includes all counties with population-weighted centroids within 200km of heavy ship traffic. Column 2 drops counties
without a PM2.5 monitor with at least one observation per year from 2008-2016. Means are reported for the main outcomes, demographic variables,
and key control variables.
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Table 2: Effects of ECA on Air Quality and Demographic Characteristics

(1) (2) (3)
PM2.5 Maternal Index N conceptions

Post-ECA*CMAQ -0.532 0.879 -54.121
(0.096)*** (0.676) (35.861)

R2 0.59 0.95 1.00
N 24,901 25,052 25,052
N-counties 232 232 232
Mean 9.21 3305.18 497.12
%Change -5.78 0.03 -10.89

Note: The unit of observation is the county-year-month. The sample includes counties with population-weighted centroids within 200km of heavy
ship traffic and with a PM2.5 monitor from 2008-2016. The observations are weighted by the number of births conceived in county i in year-month
ym in Columns 1-2 and unweighted in Column 3. Reduced-form estimates are obtained from equation 1. The first-stage impact on PM2.5 is
reported in column 1. Column 2 reports the effect on a measure of predicted birth weight based only on observed maternal characteristics, including
education, marital status, race, ethnicity, age, smoking status, and diabetes. Column 3 repeats column 2 with the number of conceptions as the
outcome variable. The insignificant coefficients in Columns 2-3 indicate there is no evidence of changes in underlying maternal characteristics or
demographics that are correlated with the CMAQ policy variation. Robust standard errors clustered at the county level are reported in parentheses:
: * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 3: Effects of ECA and Air Quality on Health

(1) (2) (3) (4)
Low birth Preterm All Under 1

weight Deaths Deaths
Panel A. Reduced Form

Post-ECA*CMAQ -1.326 -2.082 -0.006 -0.024
(0.348)*** (0.782)*** (0.003)** (0.007)***

R2 0.57 0.63 0.92 0.64
N 25,052 25,052 25,056 24,840
N-counties 232 232 232 230
Mean 60.53 93.82 0.64 0.52
% Change -2.19 -2.22 -0.92 -4.66
Panel B. 2SLS

PM2.5 2.780 4.305 0.011 0.045
(1.062)*** (2.165)** (0.006)* (0.017)***

R2 0.45 0.52 0.91 0.60
N 24,901 24,901 24,905 24,689
F 19.91 19.91 33.48 32.90
N-counties 232 232 232 230
Mean 60.54 93.82 0.64 0.52
% Change 4.59 4.59 1.72 8.73
Panel C. OLS

PM2.5 -0.005 0.016 0.002 0.001
(0.036) (0.056) (0.000)*** (0.001)

R2 0.57 0.64 0.92 0.64
N 24,901 24,901 24,905 24,689
N-counties 232 232 232 230
Mean 60.54 93.82 0.64 0.52
% Change Post-ECA -0.01 0.02 0.29 0.17

Note: The unit of observation is the county-year-month. The sample includes counties with population-weighted centroids within 200km of heavy
ship traffic and with a PM2.5 monitor from 2008-2016. The observations are weighted by the number of conceptions (columns 1-2), population
(column 3), and population under age 1 (column 4). In Panel A, reduced-form estimates are obtained from equation 1. Panel B reports two-stage
least squares estimates based on equation 2. Panel C reports the naive OLS estimates of pollution on health. The effects are reported for outcomes:
low birth weight (<2,500g) per 1,000 (column 1), pre-term birth (<37 weeks) per 1,000 (column 2), deaths per 1,000 (column 3), and infant deaths
per 1,000 (column 4). Robust standard errors clustered at the county level are reported in parentheses: * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 4: Comparison of Magnitude to the Literature

Study Outcome Pollutant %∆ from 10% pollutant increase
Currie and Walker 2011 Low birth weight NO2, SO2 17.65
Alexander and Schwandt 2020 Low birth weight PM2.5, PM10, O3 10.3
H-L and Marcus Low birth weight PM2.5 4.2
Chay and Greenstone 2003 A Infant mortality TSP 5
Chay and Greenstone 2003 B Infant mortality TSP 3.5
Currie and Neidell 2005 Infant mortality CO 1.01
Luechinger 2014 Infant mortality SO2 0.89
Gutierrez 2015 Infant mortality PM2.5, PM10 7.1
Knittel, Miller, Sanders 2016 Infant mortality PM10 10.3
Alexander and Schwandt 2020 Infant mortality PM2.5, PM10, O3 9.5
H-L and Marcus Infant mortality PM2.5 8.0

Note: Source of calculations from Alexander and Schwandt (2021).
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Table 5: Robustness of Main Results

PM2.5 Low BW Death <1
(1) (2) (3) (4) (5) (6) (7)
β p-value β p-value β p-value N counties

(1) Baseline -0.53 0.00 -1.33 0.00 -0.02 0.00 232.0
(0.10) (0.35) (0.01)

(2) 150 km -0.54 0.00 -1.32 0.00 -0.02 0.00 202.0
(0.10) (0.38) (0.01)

(3) 300 km -0.54 0.00 -1.28 0.00 -0.02 0.00 280.0
(0.09) (0.32) (0.01)

(4) State-year FE -0.44 0.00 -1.05 0.00 -0.02 0.03 202.0
(0.12) (0.35) (0.01)

(5) Bins of weather -0.53 0.00 -1.37 0.00 -0.02 0.00 232.0
(0.09) (0.32) (0.01)

(6) 2009-2014 balance -0.60 0.00 -1.38 0.00 -0.02 0.00 251.0
(0.11) (0.43) (0.01)

(7) Unbalanced panel -0.49 0.00 -1.25 0.00 -0.02 0.00 286.0
(0.10) (0.31) (0.01)

(8) Ships’ contribution -0.36 0.00 -1.10 0.00 -0.02 0.00 232.0
(0.10) (0.28) (0.01)

(9) No ports -0.62 0.00 -1.39 0.06 -0.04 0.01 192.0
(0.18) (0.74) (0.01)

(10) CAA controls -0.41 0.00 -1.27 0.00 -0.02 0.00 232.0
(0.11) (0.34) (0.01)

(11) 2015 0.1ppm -0.01 0.90 0.21 0.64 -0.01 0.48 232.0
(0.10) (0.45) (0.01)

Note: Row 1 replicates the baseline results for PM2.5, low birth weight, and infant deaths from Panel A of Table 3. Columns 1, 3, and 5
report coefficients from estimating equation 1. Columns 2, 4, and 6 report p-values. Column 7 reports total number of counties included in each
specification. Robust standard errors clustered at the county level are reported in parentheses. Rows 2-11 present robustness checks. Rows 2 and
3 limit the sample of counties to those with population-weighted centroids within 150km and 300km of heavy ship traffic, respectively. Row 4
replaces region-by-year fixed effects with state-by-year fixed effects. Row 5 includes more flexible binned weather controls. Rows 6-7 relax the
balanced panel requirement for air quality monitors by restricting to a sample of balanced monitors from 2009 to 2014 (row 6) and to a sample of
all counties that ever have PM2.5 data during the period of study (row 7). Row 8 examines the robustness of the treatment definition by employing
the CMAQ prediction of total emissions from maritime shipping. Row 9 excludes counties with a port. Row 10 includes controls for Clean Air Act
attainment status. Row 11 examines the effect of tightening the fuel content standard nationally in 2015.
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Table 6: Comparison of Treatment Variables on Main Outcomes

BIC T-stat Coefficient Std error
Panel A: PM2.5 (µgm−3)
CMAQ 107,175.227 -5.575 -0.056 0.010
-Distance port 107,300.016 -1.686 -0.044 0.026
Panel B: Low birth weight
CMAQ 190,136.703 -3.806 -0.015 0.004
-Distance port 190,155.156 -2.177 -0.019 0.009
Panel C: Deaths <1
CMAQ 8,306.867 -3.418 -0.012 0.004
-Distance port 8,307.829 -2.354 -0.026 0.011

Note: Table reports results of estimating equation 1 where the intensity of exposure to the policy is measured by either the CMAQ prediction or
distance to the nearest major port. County-year-months are weighted by the number of conceptions. We report the results for fine particulate matter,
low birth weight, and infant deaths in panels A-C, respectively. Coefficients and standard errors are standardized into units of standard deviations
so that the results are comparable across candidate treatment variables. Column 1 reports the Bayesian information criteria (BIC), where the lowest
BIC is preferred. Columns 2-4 report the T-statistic, coefficient, and standard error, respectively.
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Table 7: Heterogeneity of Effects of ECA on Low Birth Weight

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
All NH White NH Black NH Other Hispanic High Educ Married Age 19-24 Age 25-34 Age 35

PM2.5 0.00277 0.00307 0.00223 0.00792 0.00113 0.00233 0.00186 0.00111 0.00277 0.00437
(0.00093)*** (0.00151)** (0.00267) (0.00211)*** (0.00063)* (0.00107)** (0.00059)*** (0.00089) (0.00106)*** (0.00121)***

R2 0.01 0.01 0.01 -0.00 0.00 0.01 0.01 0.01 0.01 0.01
N 12,426,807 5,062,128 1,860,002 1,337,613 4,167,051 6,436,488 7,238,190 2,911,813 6,967,317 2,317,026
F 23.56 12.48 11.76 28.83 26.18 21.10 21.46 21.16 21.97 29.73
N-counties 232 232 232 231 232 232 232 232 232 232
Mean 0.06 0.05 0.11 0.06 0.06 0.05 0.05 0.07 0.06 0.07
%Change 4.57 6.56 2.09 12.59 2.02 4.33 3.72 1.64 5.00 6.71

Note: The unit of observation is the individual-year-month. The sample includes individuals in counties with population-weighted centroids within 200km of heavy ship traffic and with a PM2.5 monitor
from 2008-2016. Observations are unweighted. Results show two-stage least squares estimates based on equation 2. Column 1 includes the entire sample and reports results analogous to Table 3 panel B,
column 2, but at the individual level. Columns 2-10 restrict the sample to individuals of different demographic groups, including non-Hispanic white, non-Hispanic black, non-Hispanic other, Hispanic,
highly educated, married, age 19-24, age 25-34, and age 35+. Within county-season R2 is reported. Robust standard errors clustered at the county level are reported in parentheses: * p < 0.1; ** p < 0.05;
*** p < 0.01.
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Table 8: Effect of ECA on Ship and Other Emissions Behavior

(1) (2) (3)
PM2.5 PM2.5 PM2.5

Post*CMAQ -0.577 -0.865 -1.935
(0.125)*** (0.186)*** (0.599)***

Post*CMAQ*1(ECA<200nm) 0.426
(0.172)**

Post*CMAQ*1(0.8<DV) 1.895
(0.555)***

Post*CMAQ*1(0.8 ≤ DV < 0.9) 1.043
(0.588)*

Post*CMAQ*1(DV ≥ 1.0) 1.361
(0.575)**

R2 0.59 0.59 0.55
N 24,905 24,905 19,992
N-counties 232 232 186
Mean 8.30 8.30 8.72
% Change:
All -6.96
ECA=200nm -10.47
ECA<200nm -5.14
DV < 0.8 -0.53
0.8 ≤ DV < 0.9 -10.62
0.9 ≤ DV < 1.0 -19.20
DV ≥ 1.0 -6.04

Note: The unit of observation is the county-year-month. The sample includes counties with population-weighted centroids within 200km of heavy
ship traffic and with a PM2.5 monitor from 2008-2016. County-year-months are not weighted. Column 1 shows the results of estimating equation 1.
Column 1 repeats the estimate of Table 2 column 1 with unweighted data. Column 2 repeats column 1 with an additional interaction for whether the
ECA boundary is less than the full 200 nm from the county population-weighted centroid, 1(ECA<200 nm), as per equation 3. Column 3 repeats
column 1 with additional interactions for counties’ pre-policy distance to the regulatory threshold, DV, defined as the county 2012 PM2.5 maximum
design value as a percent of the standard, as per equation 4. Robust standard errors clustered at the county level are reported in parentheses: *
p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 9: Effect of ECA on Individual Behavior

Campsite Reservations (Log) Time Outdoors
Visits Visits People People Days Days (IHS)

(1) (2) (3) (4) (5) (6) (7)

post-ECA × CMAQ 0.114*** 0.146*** 0.104** 0.144*** 0.111** 0.150*** 0.0797*
(0.0429) (0.0335) (0.0456) (0.0362) (0.0471) (0.0310) (0.0473)

Region-year FE X X X X X X X
County-season FE X X X X
Facility-month FE X X X
Year-month FE X X X X
R-squared 0.357 0.934 0.420 0.899 0.399 0.933 0.064
Observations 37,765 37,374 37,764 37,373 36,212 35,811 29,516
N-counties 149 143 149 143 141 135 183

Note: For columns 1-6, the unit of observation is the facility-year-month, observations are unweighted, and the sample is campsites in the continental US from 2008-2016. In columns 1-6, we estimate
equation 5 where the outcomes are the natural log of the number of visits (columns 1-2), the number of people (columns 3-4), and the number of days for the facility-year-month (columns 5-6). In column
7, the unit of observation is the individual-year-month, observations are weighted with survey weights, and the sample includes observations in counties with population-weighted centroids within 200km
of heavy ship traffic and with a PM2.5 monitor from 2008-2016. In column 7, we estimate equation 6 where the outcome is the inverse hyperbolic sine of the number of minutes the respondent reported
spending outdoors for the previous day. All regressions include region-by-year fixed effects; columns 1, 3, 5, and 7 include county-by-season fixed effects; columns 2, 4, and 6 include facility-by-month
fixed effects; and columns 2, 4, 6, and 7 include year-by-month fixed effects. Column 7 also controls for gender, race, ethnicity, education, age, presence of children in the household, and indicators for the
day of the week of the survey and whether it was a holiday. Robust standard errors clustered at the county level are reported in parentheses: * p < 0.1; ** p < 0.05; *** p < 0.01.
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8 Appendix

8.1 Air Pollution Data
The source is the US EPA Air Quality System (AQS). Raw observations are at the level of the
pollutant-monitor-day. We construct PM2.5-monitor-day observations from 3 PM2.5 from pollu-
tant codes. Our primary source is PM2.5 coded as pollutant 88101. For monitor-days where 88101
data are missing we substitute with PM2.5 coded as pollutant 88502. When both 88101 and 88502
are missing, we substitute with 88501. Thus, we obtain PM2.5-monitor-day observations.

Monitor-day observations are collapsed to monitor-week averages. The monitors are matched
to the county in which the monitor is located. To construct a balanced panel of monitors, monitors
that are not observed for at least one week each year from 2008-2016 are dropped. We then
average the remaining monitor-weeks within each county to construct county-week observations of
mean PM2.5. Last, we collapse county-week observations to county-month averages. Throughout,
averages exclude missing observations.
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8.2 Tables & Figures

Figure A1: Analysis Sample

PM2.5 Monitor Type
(2008-2016)
Balanced
Unbalanced
None
> 200 km

Note: Figure shows non-grey counties with population-weighted centroids within 200km of heavy ship traffic, as defined by the top 5th percentile
of 2011 vessel density raster grid cells. Counties with population-weighted centroids further than 200km are shaded in grey. Blue counties are those
with a balanced PM2.5 monitor. They have at least one PM2.5 monitor with at least one observation per year from 2008 to 2016. Green counties
are those with only unbalanced PM2.5 monitors. They have PM2.5 monitor(s) but no single monitor with at least one observation per year from
2008 to 2016. Yellow counties have no PM2.5 monitors.
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Figure A2: Distance to Ports

Distance to
top port (km)
500 - 2000
300 - 500
200 - 300
150 - 200
100 - 150
75 - 100
50 - 75
25 - 50
15 - 25
10 - 15
5 - 10
0 - 5

Note: Figure shows the distance from the population-weighted centroid of each county to the nearest principal port.
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Figure A3: Scaled Reduction in PM2.5

PM2.5 (µgm-3)
0.80 - 1.35
0.45 - 0.80
0.30 - 0.45
0.20 - 0.30
0.10 - 0.20
0.00 - 0.10
> 200 km

Note: Figure shows the estimated reduction in ambient PM2.5 from the ECA at the county level. The estimated reductions are the county level
CMAQ predictions depicted in Figure 3 scaled by the estimated ECA effect coefficient in Table 2 column 1.
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Table A1: Effects of ECA on Additional Health Outcomes

(1) (2)
Birth weight Gestation

Panel A. Reduced Form

Post-ECA*CMAQ 1.622 0.012
(0.874)* (0.006)**

R2 0.82 0.71
N 25,052 25,052
N-counties 232 232
Mean 3305.18 38.78
%Change 0.05 0.03
Panel B. 2SLS

PM2.5 -3.445 -0.025
(1.887)* (0.011)**

R2 0.80 0.66
N 24,901 24,901
F 19.91 19.91
N-counties 232 232
Mean 3305.10 38.78
%Change -0.10 -0.06
Panel C. OLS

PM2.5 0.088 -0.000
(0.080) (0.000)

R2 0.82 0.71
N 24,901 24,901
N-counties 232 232
Mean 3305.10 38.78
%Change Post-ECA 0.00 -0.00

Note: Repeats the analysis of Table 3 column 1 with outcomes birth weight in grams (column 1) and gestation in weeks (column 2).

64



Table A2: Effects of ECA on Birth Weight Distribution

(1) (2) (3) (4) (5) (6) (7) (8) (9)
<1,000 g 1,000-1,500 g 1,500-2,000 g 2,000-2,500 g 2,500-3,000 g 3,000-3,500 g 3,500-4,000 g 4,000-4,500 g >4,500 g

Panel A. Reduced Form

Post-ECA*CMAQ -0.173 -0.111 -0.266 -0.777 -0.349 1.806 0.458 -0.465 -0.124
(0.075)** (0.073) (0.115)** (0.201)*** (0.593) (0.483)*** (0.472) (0.292) (0.141)

R2 0.26 0.16 0.20 0.42 0.61 0.34 0.60 0.58 0.28
N 25,052 25,052 25,052 25,052 25,052 25,052 25,052 25,052 25,052
N-counties 232 232 232 232 232 232 232 232 232
Mean 5.28 5.29 10.62 39.34 178.41 403.91 276.41 69.85 10.89
%Change -3.27 -2.09 -2.50 -1.97 -0.20 0.45 0.17 -0.67 -1.14
Panel B. 2SLS

PM2.5 0.364 0.233 0.555 1.629 0.780 -3.790 -0.972 0.943 0.258
(0.171)** (0.174) (0.274)** (0.624)*** (1.165) (1.231)*** (0.997) (0.656) (0.314)

R2 0.22 0.14 0.15 0.33 0.61 0.26 0.60 0.57 0.27
N 24,901 24,901 24,901 24,901 24,901 24,901 24,901 24,901 24,901
F 19.91 19.91 19.91 19.91 19.91 19.91 19.91 19.91 19.91
N-counties 232 232 232 232 232 232 232 232 232
Mean 5.28 5.29 10.62 39.35 178.44 403.94 276.38 69.82 10.89
%Change 6.89 4.41 5.22 4.14 0.44 -0.94 -0.35 1.35 2.37
Panel C. OLS

PM2.5 -0.006 -0.003 -0.007 0.011 -0.029 -0.075 0.130 -0.029 0.007
(0.010) (0.010) (0.015) (0.027) (0.057) (0.057) (0.059)** (0.034) (0.016)

R2 0.26 0.16 0.20 0.42 0.61 0.34 0.60 0.58 0.28
N 24,901 24,901 24,901 24,901 24,901 24,901 24,901 24,901 24,901
N-counties 232 232 232 232 232 232 232 232 232
Mean 5.28 5.29 10.62 39.35 178.44 403.94 276.38 69.82 10.89
%Change Post-ECA -0.11 -0.06 -0.06 0.03 -0.02 -0.02 0.05 -0.04 0.07

Note: Repeats the analysis of Table 3 column 1 with outcomes of births per 1,000 in 500 gram intervals of the domain of birth weight.
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Figure A4: Effects of ECA on Elderly Mortality
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Note: Repeats the analysis of Figure 8. In column 1, the outcome is deaths per 1,000 among individuals aged 75 to 84 and the observations are
weighted by the population aged 75 to 84. In column 2, the outcome is deaths per 1,000 among individuals aged 85 and older and the observations
are weighted by the population aged 85 and older.
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Table A3: Effects of ECA on Elderly Mortality

(1) (2)
75-84 >85

Post-ECA*CMAQ -0.041 -0.161
(0.012)*** (0.049)***

R2 0.77 0.64
N 30,600 30,600
N-counties 232 232
Mean 3.78 10.99
%Change Post-ECA -1.07 -1.47

Note: Repeats the analysis of Table 3 Panel A column 4. In column 1, the outcome is deaths per 1,000 among individuals aged 75 to 84 and the
observations are weighted by the population aged 75 to 84. In column 2, the outcome is deaths per 1,000 among individuals aged 85 and older and
the observations are weighted by the population aged 85 and older.
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Table A4: Time Outdoors: Placebo Tests

(1) (2) (3)
Sleep Housework Groceries

post-ECA × CMAQ 0.00112 0.0486 -0.0235
(0.00669) (0.0691) (0.0301)

Region-year FE X X X
County-season FE X X X
Year-month FE X X X
R-squared 0.083 0.153 0.063
Observations 29,516 29,516 29,516
N-counties 183 183 183

Note: The regression specifications are identical to those in Table 9, but for the following outcomes: time spent sleeping (activity code 010101),
time spent doing housework (activity codes 020101-020199), and time grocery shopping (activity code 070101).
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Figure A5: Reductions in Low Birth Weight Infants

Low Weight
Births 2016 (#)
30.0 - 375.0
5.0 - 30.0
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> 200 km

Note: Figure shows the estimated reduction in low birth weight (<2,500 g) infants at the county-level from the ECA policy in 2016. See text for
details.
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Figure A6: Reductions in Infant Deaths

Infant
Deaths 2016 (#)
5.00 - 68.00
1.20 - 5.00
0.60 - 1.20
0.10 - 0.60
0.05 - 0.10
0.00 - 0.05
> 200 km

Note: Figure shows the estimated reduction in infant deaths at the county-level from the ECA policy in 2016. See text for details.
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