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Abstract

We provide novel causal evidence that large-scale irrigation is partially responsible for
explaining why the weather over agricultural areas in some parts of the US has seen less
warming than what is projected by climate models. Relying on a triple-differences setup
linking local temperature trends to changes in irrigation dynamics in neighboring ar-
eas, while differentiating between months during the growing season relative to months
outside the growing season, we find that large-scale irrigation heterogeneously shifts
the entire temperature distribution towards cooler temperatures. Using historic irriga-
tion and weather data around the Ogallala aquifer, we find such cooling-by-irrigation
effect to propagate mainly downwind and to be especially strong in limiting hotter tem-
peratures, which are especially harmful for crops. Counties whose upwind neighbors
intensively increased irrigation experienced a significant decrease in the 99% percentile
of their distribution of summer temperatures, offsetting the projected warming in cli-
mate models to date. From an agricultural perspective, large-scale irrigation therefore
not only directly benefits plant growth by controlling water supply and enhancing heat
tolerance of crops but also indirectly by avoiding harmful degree-days over the grow-
ing season in downwind areas, a positive externality which we quantify in the form
of avoided yield losses due to reduced exposure to extreme heat. While the former
effect is on average larger, there is significant heterogeneity with some counties bene-
fiting as much from the cooling effect of upwind irrigation as from the decrease in heat
sensitivity due to their own irrigation.
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1 Introduction

There is a strong consensus that human activity is causing the climate to change1 and

is imposing a stress on numerous natural systems. There have also been many studies

documenting the reverse effect of climate change and natural resource depletion on human

systems. A select list includes the effect on agriculture (Schlenker and Roberts 2009, Burke

and Emerick 2016), energy demand (Auffhammer and Aroonruengsawat 2011), mortality

(Barreca, Clay, Deschenes, Greenstone and Shapiro 2016), labor supply (Graff Zivin and

Neidell 2014), GDP growth (Burke, Hsiang and Miguel 2015), amenity value of climate

(Albouy, Graf, Kellogg and Wolff 2016) or freshwater supply (World Bank Group 2016).

We provide novel evidence of an overlooked additional channel, namely that adaptive

behavior itself has a measurable effect on climate. In the context of agricultural production,

adaptive behavior to better cope with hotter temperatures under the constraint of limited

water resources is going to induce significant regional changes in future irrigation practices –

both decreases as aquifers run dry and increases via irrigation expansion – which will affect

local warming dynamics. We empirically investigate whether changes in large-scale irrigation

over the Ogallala aquifer in the southern US have historically been responsible for a cooling

externality affecting regional weather patterns by reducing extreme heat.

A common theme that has emerged from recent empirical studies involving temperature

effects is the detrimental impact of the upper tail of the temperature distribution. While

adaptive behavior may counter-balance some of the harmful effects of higher temperatures2,

such strategies come at their own cost (Schlenker, Roberts and Lobell 2013) and, in the case

of irrigation intensification, remain subject to the availability of water suitable for sustainable

irrigation.3 As regional irrigation practices are bound to continue to evolve in the coming

decades due to increasing constraints on freshwater resources or new irrigation technologies,

it is important to understand the extent to which irrigation is causing a cooling externality

on extreme temperatures in order to anticipate the implications of these changes on local

weather patterns besides the primary effect on crops and with numerous indirect effects on

populations, the economy as well as ecosystems.

Using historic weather records and irrigation data from a vast area surrounding the

1The American Association for the Advancement of Science put out a statement on December 9, 2006
that “the scientific evidence is clear: global climate change caused by human activities is occurring now.”

2For instance, alternative crop varieties (Butler and Huybers 2013, Moscona and Sastry 2021) or the
adaptation of irrigation (Haqiqi, Grogan, Hertel and Schlenker 2021) can reduce the sensitivity to extreme
heat.

3While some world regions have been in the position to grow large-scale irrigation in the long run (e.g.,
along the Ganges or the Yangtze), others have dramatically affected freshwater resources with significant
consequences on irrigation practices (e.g., around the Aral Sea).
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Ogallala aquifer (see Figure 1), we empirically investigate the effect of large-scale irrigation

on downwind summertime temperatures. In order to establish causality in this empirical

research setting, we would ideally rely on a counterfactual world in which no irrigation were

taking place in order to compare temperature outcomes. In practice, however, we have

to rely on the best possible proxy for such counterfactual outcome. For this purpose, we

exploit a tripe-differences strategy linking spatio-temporal changes in temperatures to spatio-

temporal changes in irrigation during the growing season relatively to April – assuming that,

at identical levels of irrigation trends, any pair of counties would have followed a parallel

warming (or cooling) trajectory between April and any other chosen month of comparison.

While this approach certainly helps to reduce the risk of omitted variable bias, we further

enhance its performance and reliability by augmenting it in a spatial first differences setting

(Druckenmiller and Hsiang 2018). Indeed, by solely relying on contrasts between adjacent

counties, spatial first differences better exploit the data’s spatial informational content and

improve on the validity of the parallel trends assumption necessary for causal inference in the

present setting, as neighboring counties are arguably the most comparable in both observed

and unobserved features.

Our paper provides novel evidence that there is a substantial but relatively local (at

the county-level scale) cooling effect of irrigation that heterogeneously affects the entire

summertime temperature distribution and induces important spillover effects propagating

mainly downwind. In the region of interest, our difference-in-differences specification in

spatial first differences detects that this cooling-by-irrigation externality is strongest in July

and August and with respect to the highest temperature percentiles. Quantitatively, we

estimate that irrigating all of a county’s surface causes the July temperature distributions in

downwind counties to shift the hottest temperatures by -0.9◦C and the coolest by -0.4◦C in

our preferred specification and even larger in alternate specifications. We find a symmetric

relationship: while areas that expanded irrigation saw a lower increase in temperatures,

areas that decreased the irrigated area saw a higher increase in temperatures, suggesting

that continued irrigation temporarily limits temperature increases, but this cooling effect

ceases as soon as irrigation ends.

By locally decreasing hot summertime temperatures, irrigation helps to safeguard yields

not only in irrigated crops by increasing tolerance to hotter and drier weather, but also in

agricultural-intensive areas located downwind by reducing exposure to harmful degree-days.

We quantify this positive externality in the form of avoided yield losses for corn and find this

indirect (externalized) effect on average to be about one order of magnitude smaller than

the direct (internalized) effect of irrigation. Although it is small on average, it can be locally

important as there is significant heterogeneity. Under certain circumstances, some counties
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can benefit as much from the cooling effect induced by irrigation in upwind neighbors as

from their own irrigation efforts. The effect may protect up to 5% of the corn production

in specific counties and during relatively hot years. Clearly, this cooling externality of large-

scale irrigation on downwind temperatures may also benefit a full range of other crop varieties

besides corn and help to locally dampen the detrimental effects of extreme heat on mortality,

etc.

Our paper makes four major contributions to the literature. First, to the best of our

knowledge, there has been no causal evidence that adaptation to climate-induced constraints

– such as the need for irrigation in the western tail of the Corn Belt or its progressive decline

in northwestern Texas – has itself a measurable effect on the climate. While there have

been farming myths (e.g., “the rain will follow the plow”), we demonstrate that large-scale

irrigation can cause sizable local temperature changes. Such cooling via irrigation manifests

heterogeneously along the entire temperature distribution with largest effects on the hottest

temperatures and subsists besides the reduction in maximal temperatures related to cropland

intensification (Mueller, Butler, McKinnon, Rhines, Tingley, Holbrook and Huybers 2016).

Our paper thus contributes to the understanding of why observed trends in extreme heat

in agricultural areas in the High Plains have been lower than projected by climate models

(Schlenker 2020).

Second, we quantify the positive externality that irrigation indirectly causes on downwind

agricultural areas by reducing crop exposure to extreme heat, and compare it to the primary

on-the-spot effect of irrigation that enhances heat tolerance of irrigated crops. On the ex-

ample of corn, we find that certain counties substantially benefit from irrigation practiced

by their upwind neighbors.

Third, we argue that the positive externality caused by large-scale irrigation has beneficial

spillover effects on other sectors of the economy that also benefit from a decrease in extreme

heat as soon as they are located downwind.

Fourth, building upon a set of falsification checks, we discuss the methodological advan-

tage of combining simple difference-in-differences with spatial first differences in order to

reduce the risk of omitted variable bias. We validate our approach by incorporating irriga-

tion information from neighboring counties and find a cooling effect that propagates mainly

downwind of irrigated areas.

Our paper is organized as follows. Section 2 describes the context of our study and moti-

vates the research question. Section 3 introduces the variables of interest and the underlying

data. Section 4 describes and motivates the empirical strategy relying on spatial first differ-

ences to establish causality. Section 5 presents and discusses the corresponding results while

Section 6 examines the economic implications of the previous findings. Section 7 concludes
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and highlights perspectives for further investigation regarding the cooling-by-irrigation ex-

ternality.

2 Study Setting and Motivation

Only a few regions benefit from an appropriate geology to sustain large-scale and intensive

irrigation for agriculture. In the US, exceptional irrigation conditions are offered by one of

the vastest aquifer system in the world, namely the High Plains Aquifer (see Figure 1). Also

known as the “Ogallala Aquifer”, this shallow groundwater reservoir covers a total surface

of about 450,000 km2, i.e. about the size of California or 1.8 times the area of the Great

Lakes combined. Located in the Great Plains, it is shared by eight states in the central

southern US. It is formed by three connected networks: the northern system covers most

of Nebraska and only small portions of South Dakota, Wyoming, Colorado and Kansas; the

central system is mostly located in Kansas and the northern tip of Texas but also covers the

Oklahoma panhandle and small sections of Colorado and New Mexico; the southern system is

shared between northwestern Texas and eastern New Mexico. The water is flowing, through

porous soil and between impermeable layers, from the northern to the southern system at

an average speed of only 45m per year under unperturbed conditions.4

Thanks to its unique positioning relative to the Ogallala aquifer in terms of overlapping

area, underlying water volume5 and upstream location on the northern High Plains system,

Nebraska is the most vastly irrigated state in the US to this date, both in absolute irrigated

area (33,600km2 of irrigated land in 2012) and in relative proportion to its surface (17%

in 2012).6 Historically, however, and until the end of the 1950’s, the irrigation hot-spot in

eastern Nebraska was falling far behind several counties in northwestern Texas which had

experienced the fastest growth in irrigation adoption after World War II (see Figure A4). In

fact, large-scale irrigation in both Nebraska and Texas began in the second half of the 1940’s,

when the invention of center pivot irrigation and the widespread adoption of motorized

groundwater pumps made it possible to fully exploit the Ogallala aquifer’s unique irrigation

potential (Hornbeck and Keskin 2014). While more than half of all Nebraskan counties

have been in the position to consistently grow their irrigation capacities over the last 80

years with certain irrigating about 70% of their total land surface in 2012, some counties in

4See http://www.hpwd.org/aquifers/.
5About two thirds of all water in the Ogallala aquifer is physically stored in Nebraska.
6This compares to the 31,800km2 of irrigated land in the Central Valley (8% of total surface in Cali-

fornia) and the 19,400km2 of irrigated land around the Mississippi river in Arkansas (14% of total surface
in Arkansas). In terms of total water use for irrigation, Nebraska ranks only 7th (behind California, Idaho,
Arkansas, Montana, Colorado and Wyoming). In the present paper, we exclusively focus on the measure of
irrigation in terms of irrigated land area.
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northwestern Texas reached even higher proportions already in 1959 but could not expand

any further due to the geological constraints imposed by the limited water recharge upstream.

Over the last 60 years, high-irrigating counties in this region subsequently experienced a

progressive decline in their irrigated land proportion. The opposite irrigation trajectories

followed by, on the one hand, Nebraska (increasing its irrigation coverage) and, on the other

hand, northwestern Texas (decreasing irrigation coverage) – due to their locations at opposite

ends of the Ogallala aquifer – illustrate the critical importance of a sustainable water use

management in agreement with the constraints imposed by hydrology as well as geology, and

also raise questions about the long-run viability of irrigation practices as currently practiced

in the Great Plains in general (Harding and Snyder 2012).

From a climate perspective, Nebraska and South Dakota are of particular interest as

these states belong to the few regions in the US (besides some areas in Iowa) which did

not experience any warming in their summertime temperatures over the last few decades

(Schlenker 2020). In fact, coupled general circulation models typically fail to replicate the so-

called “warming hole” actually observed as of the 1950’s in summertime temperature trends

over the Central US (Kunkel, Liang, Zhu and Lin 2006), allegedly due to the phenomenon’s

relatively fine scale requiring regional circulation-precipitation models (Pan, Arritt, Takle,

Gutowski, Anderson and Segal 2004).7 While Pan et al. (2004) conceive that “[t]he observed

cooling may be partly attributable to irrigation on local scales”, they eventually largely dis-

miss the role of irrigation in explaining the overall warming hole phenomenon despite working

with a regional model. Their main argument is the mismatch in spatial scales between the

relatively small total surface of irrigated land in the Great Plains and the relatively large

extent of the observed warming hole. In fact, climatologists typically relate the warming

hole in the Central US to the interaction of decadal oscillations in sea surface temperature

in the Pacific and Atlantic oceans (Kunkel et al. 2006, Wang, Schubert, Suarez, Chen, Hoer-

ling, Kumar and Pegion 2009, Robinson, Ruedy and Hansen 2002) without considering the

potentially additional local influence of irrigation. Robinson et al. (2002) find that warmer

sea surface temperatures over the tropical Pacific decrease temperatures in the Central US

by impeding insulation through increased cloud cover and precipitation. Weaver (2013) fur-

ther examine the role of the Great Plains low-level jet to induce additional precipitation and

subsequent cooling of surface temperatures in this region specifically in the summer, without

consideration for potential fine-scale impacts via irrigation practices.

Acknowledging the above literature, Mueller et al. (2016) nevertheless envisage that agri-

7Without relying on any irrigation information, simulations by Pan et al. (2004) of maximum summer-
time temperature in the 2040’s predict a cool spot over a region in southeastern Nebraska which roughly
corresponds to the nowadays most densely irrigated area in the US.
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cultural practices during the growing season may actually drive some degree of summertime

cooling, especially with respect to hot temperature extremes in the Midwest.8 While their

preferred explanatory mechanism involves cropland intensification, they also find – specifi-

cally with respect to Nebraska, Arkansas and some parts in the western US – that greater

irrigation trends are statistically significantly associated with some decline in extreme tem-

peratures. In the present paper, which explores a similar question but in a causal framework

and specifically in an irrigation-intensive region around the Ogallala, we detect a significant

cooling-by-irrigation externality on the entire temperature distribution (and not only on the

hot extremes) and mainly for downwind areas (and not only within-county effects). There-

fore, while irrigation is unlikely to predominantly contribute to the long-run and large-scale

cooling dynamics observed over the Central US as of the 1950’s and which scientists attribute

to hemispheric-scale natural forces shaping regional climate, we argue it may nevertheless

leave some idiosyncratic, transient cooling signature in local weather patterns.

In fact, as illustrated in Figure 2, the observed 60-year-old evolution of average tem-

perature changes9 in the 99th, 50th and 5th temperature percentiles in counties around the

Ogallala already suggests the existence of a cooling phenomenon where irrigated land ex-

panded in upwind counties (e.g., upstream of the Ogallala aquifer in eastern Nebraska) and,

conversely, of a warming phenomenon where irrigated land declined in upwind counties (e.g.,

downstream of the Ogallala aquifer in northwestern Texas). Every bubble in Figure 2 corre-

sponds to one of the 393 counties in the region of interest, with the size being proportional to

the average irrigated land proportion as observed in the upwind county and the color10 sep-

arating counties whose upwind neighbors have been intensifying (blue), maintaining (white)

or curbing (red) irrigation.11 Strikingly, counties with upwind irrigation in decline have

been, on average, warming the most in their 99th and 50th temperature percentiles during

summer months, while those with upwind irrigation in increase have seen the highest degree

of cooling. In other words, there is a vertical stratification of the warming/cooling dynamics

according to upwind irrigation practices that can only be seen during summer months, when

8Over their chosen time period, 1910-2014, Mueller et al. (2016) find evidence for some cooling of the
95th percentile in the quantile regression in trends for daily temperature maxima. By contrast, they consider
that “Midwest cooling is less evident” in the 50th percentile and that there is some warming at the 5th

percentile of the quantile regression in trends for daily temperature maxima.
9Average changes in the 99th, 50th and 5st temperature percentiles are calculated as the estimated trend

in monthly county-level observations of the respective temperature percentile over the 1959-2019 period (in
◦C/y) multiplied by the duration of the time window (i.e., 61 years).

10The color code in Figure 2 is a binned version of the one used in Figure 1 with thresholds at -0.1%/y
and +0.1%/y of additional county area being irrigated per year.

11Note that most (upwind) counties in the region of interest hardly irrigate at all, and only see a very
limited change in their irrigated land proportion over time (small bubbles are typically white). Conversely,
(upwind) counties that practice large-scale irrigation have been either on a steadily increasing or decreasing
trend (large bubbles are either blue or red).
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irrigation is actually taking place, but not during the remainder of the year. Such strat-

ification appears to be mostly pronounced with respect to hotter temperature percentiles

and almost absent from the evolution of the 5th temperature percentile. Figure 2 therefore

suggests12 the existence of a fine-scale mechanism – likely involving direct evaporation of

irrigated water as well as stimulated transpiration by plants (Lobell, Bonfils, Kueppers and

Snyder 2008, Mahmood, Foster, Keeling, Hubbard, Carlson and Leeper 2006, Harding and

Snyder 2012), that is not only localized in space (visible at the county-level resolution) but

also in time (as farmers only irrigate cropland during specific months of the year).

3 Data

3.1 Temperature Data

Temperature records are collected from an extended version of the fine-scaled dataset used

by Schlenker and Roberts (2009), which combines PRISM data with information gathered

by a fixed set of weather stations. The raw data correspond to daily minima and maxima in

temperature over a 4km-by-4km grid covering the region of interest from January 1st, 1959

to December 31st, 2019. In the region of interest, the uptake of large-scale irrigation occurred

as of the 1940’s following the invention of center pivots and the introduction of motorized

groundwater pumps. However, the full coverage of the region by meteorological stations is

only complete by the end of the 1950’s (see Figures A3, A2 and A7).13

For each grid cell and for each day within that period, we interpolate a (sinusoidal)

temperature profile following Snyder (1985) to calculate the amount of time spent at each

possible 1◦C-wide temperature interval (e.g., amount of time in a given day and for a given

grid cell for which the temperature falls between 19◦C and 20◦C, between 20◦C and 21◦C,

etc.). These daily counts are then aggregated to a county-by-month resolution to construct

specific distributions in temperature for each of the 393 counties around the Ogallala aquifer

and for each of the 732 months between 1959 and 2019.14 Specifically, the time spent at each

12Since (upwind) counties with the strongest decline/increase in irrigation are mostly in Texas/Nebraska
(see Figure 1) and since Texas is likely to have warmed more than Nebraska irrespective of irrigation practices,
this preliminary observation of a correlation in the raw data is only suggestive of the cooling-by-irrigation
effect and needs to be complemented as explained in Section 4. We also note, however, that virtually none
of the control counties (in white) have been heating/cooling in a similar fashion despite being distributed
under all possible latitudes in the region of study – an important detail which motivates the existence of an
irrigation-specific effect irrespective of the previous reservation.

13On top of this, 1959 is the first census year for which some irrigation information is available in every
county of the region of interest (see below as well as Figures A4 and A5).

14While previous studies average the weather data by the cropland area in each PRISM grid, our main
interest is the effect of irrigation on weather throughout a county and we hence do not weight grids.
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1◦C interval allows us to construct the cumulative density function (cdf) for each month. In

order to detect potentially heterogeneous effects at different temperature levels, we extract

from each of these individual county-month specific temperature distributions (cdfs) a set

of temperature percentiles (namely, from warmest to coolest: the 99th, 95th, 90th, 75th, 50th,

25th, 10th, 5th and 1st temperature percentiles). Eventually, for each county and month of

the year, we estimate the long-run warming or cooling behavior by computing time trends15

in each of our chosen temperature percentiles p over the period of interest. Formally, for any

given county i (e.g., Lincoln) and month m (e.g., April), we estimate the slope coefficients

θ̂pim for each of the i×m independent regressions:

T p
imy = θpimo + θpimy + epimy (1)

where T p
imy is the temperature level at some chosen percentile p, in county i during month

m of year y. θpimo is the county-month-percentile specific intercept, θpim measures the county-

month-percentile specific warming (or cooling) trend and epimy is the county-month-percentile

specific error term. Figure 2 illustrates the distributions of θ̂99·m, θ̂
50
·m and θ̂5·m (up to a factor

2019-1959+1=61) for each month m of the year and Figure A1 shows maps of θ̂99·April, θ̂
99
·July,

θ̂50·April and θ̂50·July.

3.2 Irrigation Data

We extract county-level information about irrigated acres from each of the 19 USDA cen-

suses which occurred between 1900 and 201216, before normalizing by county area. The

widespread adoption of large-scale irrigation has only been possible after World War II and

the introduction of both pivot irrigation and motorized groundwater pumps (Hornbeck and

Keskin 2014) – with only a few documented exceptions in Colorado and in Scotts Bluff

county, Western Nebraska.17 Figures A4 and A5 show, for each of the eight states in the

15Even in the long-run, the pairwise comparison of temperature percentiles for any given month and county
remains highly sensitive to short-run weather shocks in the arbitrarily chosen start- and end-year because, in
practice, the standard deviation of temperature shocks from one year to another remains substantial even in
front of long-run differences. For our purpose, long-run comparisons are thus inappropriate to quantify the
amount of warming or cooling as these may artificially compensate or exacerbate the true long-run evolution.
An alternative to our proposed approach in trends could be the long-run comparison in temperature measures
averaged over a short set of several start- and end-years. However, such approach remains subject to the
choice of the bandwidth of years to average over.

16Agricultural censuses took place in 1900, 1910, 1920, 1930, 1940, 1950, 1954, 1959, 1964, 1969, 1974,
1978, 1982, 1987, 1992, 1997, 2002, 2007 and 2012, years which are marked by vertical lines in Figures A4
and A5

17Early irrigation experiments have been conducted for instance in Scotts Bluff as early as 1890 by using
an atypical network of canals and aeromotor windmills for the irrigation and production of sugar beets. See
https://www.nps.gov/nr/travel/scotts bluff/essay agriculture.html
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region of study, the county-by-county evolution of irrigated land proportion as well as the

number of observed counties for each available census year. 1959 is the first year in the data

for which (at least) some irrigation information is available in every county of the region of

interest.

As the opportunity to irrigate cropland primarily depends on the proximity to a river or

on the availability of water in an underlying aquifer, large-scale irrigation remains spatially

restricted to specific counties, with record levels only found in Nebraska or Texas – although

at different points in time as explained above. In fact, the irrigated land proportion has been

steadily increasing in most of Nebraskan counties since 1959: by 2012, half of all counties in

Nebraska irrigate more than 15% of their land, with some counties in eastern Nebraska reach-

ing US-wide records of approximately 70%. However, such evolution is in stark contrast with

the situation in (northwestern) Texas, where multiple counties achieved their peak irrigation

levels (up to 75%) in 1959 and have observed a steadily declining trajectory since then. Sev-

eral counties in Kansas have been irrigating more and more land since 1959 but in moderate

proportions (in any event below 25%) when compared to Nebraska, and the few counties

in Colorado that were already irrigating in 1959 have been maintaining their moderate ir-

rigation levels throughout the period. Most counties in Colorado, however, never adopted

large-scale irrigation, similarly to counties in New Mexico, South Dakota and Wyoming. In

light of the above, it appears that the evolution of irrigated proportions displays significant

serial as well as spatial correlation.

In line with our earlier approach adopted towards the pre-processing of temperature data,

we estimate long-run time trends in irrigation as the slope coefficients ι̂i for the i independent

regressions:

Iiy = ιio + ιiy + eiy (2)

where Iiy measures the proportion of irrigated area in county i in census year y after 1959.

The quantity ιio is the county-specific intercept, while the coefficient ιi measures the county-

specific trend in irrigation and eiy is the county-specific error term. Figure 1 shows the

resulting map of ι̂· in the region of interest.

3.3 Controls

Several factors may be correlated with local trends in both temperature and irrigation lev-

els. For instance, more precipitation is associated with higher temperature and lower need

for irrigation, elevation is associated with cooler temperatures and more difficult irrigation

conditions, thickness of the sedimentary deposit correlates with groundwater potential and

may influence temperature via the influence of soil moisture. If they are omitted from the
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analysis, such variables could bias the naively estimated effect of irrigation on temperature.

Therefore, all of our specifications control for observed county-level measures of precipita-

tion trends, elevation, soil depth, water capacity, clay content, permeability, soil erodibility,

proportion of high-quality top soil, proportion of cropland area and vegetation index in April.

Precipitation data come from the same source as our temperature variables (see Sec-

tion 3.1). The raw data consist in daily observations of total precipitation levels on a 4km-

by-4km grid over the region of interest, which we adjust to monthly totals at the county

level. Similarly to the pre-processing of temperature and irrigation data, our specifications

rely on long-run changes in precipitation as measured by the slope coefficients ρim in the

i×m independent regressions:

Rimy = ρimo + ρimy + eimy (3)

where Rimy is the total rainfall (precipitation) in county i during month m in year y. The

quantity ρimo measures the county-month specific intercept, while the coefficient ρim is the

county-month specific trend in rainfall and eimy is the county-month specific error term.

Figure A6 illustrates the resulting maps for ρ̂·April and ρ̂·July.

Each of the remaining observed control variables are assumed to be time-invariant spatial

characteristics and do not require any processing beyond adjustment to the county-level spa-

tial resolution. Elevation raster data comes from the USGS18 from which we extract median

elevation levels for each county. Average soil depth measures the thickness of the sedimentary

deposit and originates from a gridded dataset by Pelletier, Broxton, Hazenberg, Zeng, Troch,

Niu, Williams, Brunke and Gochis (2016). As explained in Taylor (2021), regions with deeper

sedimentary deposit demonstrate higher groundwater potential for irrigation. Average wa-

ter capacity, percent clay content, minimum permeability, erodibility factor, proportion of

high-quality top soil correspond to the soil characteristics used in Schlenker, Hanemann and

Fisher (2006). We work with the same cropland area data as in Schlenker and Roberts

(2009). Eventually, Enhanced Vegetation Index (EVI) data for the months of April are

extracted over Nebraska from NASA’s MODIS product MOD13Q1v006 over the 2000-2021

period. We average the 44 bi-monthly measures to obtain county-level mean April EVI in

order to control for county-specific characteristics in vegetation landcover.19 Individual maps

for each of the above proposed time-invariant control variables are provided in Figure A8.

18https://www.usgs.gov/u.s.-board-on-geographic-names/download-gnis-data
19We do not allow the EVI control variable to change by month because, as of May, such time-varying

vegetation index becomes largely collinear with irrigation features and would constitute an inappropriate
(post-treatment) control.
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3.4 Wind data

In order to explore the extent to which irrigation induces (cooling) spillover effects on neigh-

boring counties, we exploit additional information about dominant wind directions. Since

the dependent variable measures drybulb air temperature, any potential cooling effect of

irrigation should only propagate downwind. Verifying the absence of any externality on

counties located crosswind or upwind may thus serve as a falsification check to validate our

specifications.

For this purpose, we use hourly measures of latitudinal and longitudinal wind speeds

between 1979 and 2019 on a 0.125◦ grid from the North American Land Data Assimilation

System (NLDAS). From the orthogonal wind speed components averaged at county level,

we deduce the hourly dominant direction of wind flow and, for each county in the region

of interest and month of the year, we eventually select among all adjacent counties – even

if located outside the region of interest – those which are most often located up-, cross-

and downwind. Importantly, we do not construct the average wind direction but rather

choose the county that is most frequently upwind as “upwind” county, etc. Wind direction

often reverses between daytime and nighttime, so an average wind direction would be less

meaningful than selecting the county that is most often associated with a chosen direction.

We assume that wind speed observations made between 1979 and 2019 are representative of

overall wind flow conditions for the entire period between 1959 to 2019, an assumption we

can only partially validate by restricting the data to smaller subsets and verifying this does

not materially influence the classification into up-, cross- and downwind counties.20

Figure A9 illustrates the monthly distributions of hourly wind directions aggregated

across all counties in the area of interest and over the entire 1979-2019 period. We note

that wind is mostly blowing from South to North during summer months. This observation,

which holds true at an aggregated level, is also individually valid for most counties in the

region of interest – a feature which facilitates our identification strategy (see Section 4).

4 Empirical Strategy

We estimate the effect of irrigation on local temperature in the region of interest around the

Ogallala by combining a “continuous” difference-in-differences strategy21 with spatial first

differences (Druckenmiller and Hsiang 2018) in the cross-sectional data in trends. While the

20For instance, our classification is hardly affected when considering a much smaller proportion of the
wind dataset (e.g., 2007-2019, representing the most recent third).

21While one of our time dimensions is binary (involving the comparisons between any individual month
and April), the dimension measuring irrigation is continuous.
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stand-alone difference-in-differences approach already allows to control for some unobserv-

able features, we argue it may still suffer from omitted variable bias due to its flexibility in

the comparison of counties irrespective of their relative positioning. In other words, the ap-

plication of a difference-in-differences strategy to assess county-level temperature outcomes

is perfectible because it fails to leverage any information about the spatial disposition of

counties, thereby requiring some rather strong reliance on the parallel trends assumption.

By contrast, the source of identification in spatial first differences exclusively originates from

contrasts between adjacent counties. As a consequence, we should expect spatial first differ-

ences to more finely control for unobservable features which vary relatively smoothly in space

over distances as long as typical county dimensions in the region of interest. Nevertheless, in

order to facilitate the comparison, we also provide results in Appendix for the stand-alone

difference-in-differences strategy and, in Section 5, compare its performance to our preferred

specification augmented in spatial first differences. Moreover, we show in Appendix that,

for our data, the stand-alone difference-in-differences strategy based on cross-sectional data

in trends provides highly similar results to those obtained via a fixed effect triple-difference

model based on panel data in levels where we linearly interpolate the irrigation quantity

between Census years. Since most of the variation is in the trend over time, we prefer the

trend specification.

In a continuous difference-in-differences setting, we compute the effect of irrigation on

temperature for each month of the year by interacting month-level dummies with irrigation

trends observed in current, up-, cross- and downwind counties. We fix April as a reference

month for comparison, since cropland in the region of interest is not yet irrigated during this

early season month. The specification with controls for precipitation and time-invariant soil

characteristics is given by22

θpim = αp +

12∑
n=1
n̸=4

βp
nιin1{n=m} +

12∑
n=1
n̸=4

γpn1{n=m} + δpιim + ζpρim + ηpSi + ϵpim (4)

where θpim represents the yearly trend over 1959-2019 in any chosen temperature percentile

p during month m as observed in county i, the vector ιim = (ιi, ιiup(m), ιicross(m), ιidown(m))
′

measures the yearly trends23 over the same period of time in the proportions of irrigated area

in county i as well as in its (month-specific) up-, cross- and downwind neighbors (iup(m),

22Note that, without the inclusion of controls ρim and Si, the coefficients β̂
p

n can be equivalently estimated

via the fixed effects specification θpim =
∑12

n=1
n ̸=4

βp
nιin1{n=m} + δpιim + λp

m + µp
i + εpim, in which the month

fixed effects λp
m absorb any potential month-specific but spatially invariant confounders and the county fixed

effects µp
i control for any potential county-specific but time-invariant confounders such as any of our soil

characteristics.
23An alternative to the proposed model adapted to the cross-sectional data in trends, would be to interpo-

late irrigation levels between census years and exploit a fixed effect model for the panel data in levels such as
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icross(m) and idown(m) respectively). 1{n=m} is a dummy variable equal to 1 in month m and

zero otherwise, ρim is the yearly trend in precipitation in county i and in month m, Si is a

vector of time-invariant soil characteristics for county i, namely water capacity, percent clay

content, minimum permeability, erodibility factor, proportion of high-quality top soil, mean

soil depth, median elevation above sea level, proportion of cropland surface and average April

EVI level, and ϵpim is the error term.

The coefficients of interest (i.e., individual elements of the row vectors βp
n) measure the

difference, between April and month n, in the differences, between counties differing by a unit

increase in irrigation trends, in some chosen temperature percentile trend while controlling

for precipitation trend and the chosen time-invariant soil characteristics. By construction,

and similarly to a distributed lag model in time series analysis, such difference-in-differences

coefficients are estimated jointly for current, up-, cross- and downwind counties so that

spillover effects in various directions are simultaneously estimated, net from each other and

net from the same-county effect. Given that both temperature percentiles and irrigation are

expressed in yearly trends, we may as well interpret the elements of βp
n as the difference,

between April and month n, in the differences, between non- and fully-irrigated counties, in

temperature percentile p. Importantly, identification originates from the joint comparison

along two orthogonal dimensions in time (across months) and space (across counties with

contrasting trends in irrigation) but without appreciation of geography. Any simple com-

parison of temperature percentiles between April and month n in a given irrigated county

would be inappropriate as observed differences may in fact result from changes unrelated to

irrigation and that occur in all counties within the region of interest. Similarly, any simple

comparison between irrigated and non-irrigated counties in any given month n would fail

to account for the fact that irrigated counties are typically already hotter in the spring and

before irrigation actually takes place. The underlying identification assumption is that, in

the absence of irrigation, an actually fully irrigated county would have experienced a parallel

warming (or cooling) between April and month n when compared to a non-irrigated county

– irrespective of their proximity within the region of interest.

In practice, we are only interested in estimating effects in May, June, July and August, as

intensive irrigation can be reasonably expected to take place only during these few months

of the year. By contrast, estimated coefficients for the remainder of the year, i.e., when

farmers do not irrigate, should ideally be estimated close to zero, or at least be statistically

T p
imy =

∑12
n=1
n̸=4

βp
n Iiny 1{n=m} + πp

im + σp
my + τpiy + εpimy , where Iimy = (Iiy, Iiup(m)y, Iicross(m)y, Iidown(m)y)

′

and πp
im, σp

my and τpiy respectively denote county-month, month-year and county-year fixed effects. As a
matter of fact and for the purpose of modelling our data, this panel model specification in levels yields
highly similar estimations for the coefficients of interest (compare Figures A10 and A11).
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indistinguishable from zero. Similarly, we are only interested in measuring the cooling effect

in some irrigating (current) county as well as the cooling externality coming from its irrigating

neighbor(s) located upwind. In fact, since our dependent variable relates to drybulb air

temperature, we should expect the spillover effects coming from cross- and downwind counties

to be close to zero for each month of the year. This set of intuitive predictions with respect

to winter months and to the expected direction of spillover effects from irrigating neighbors

located cross- and downwind allow to empirically appreciate and assess the performance of

the estimation strategy in continuous difference-in-differences in contrast to our preferred

strategy in spatial first differences.

In order to account for the limitation of continuous difference-in-differences in accounting

for the spatial disposition of counties, we augment the previous specification by exploiting

spatial first differences as introduced by Druckenmiller and Hsiang (2018). In this alternative

setting, identification of the empirical effect of irrigation adoption on long-run trends in

temperature percentiles for each month of the year derives from contrasts between adjacent

counties. As it relies on the confrontation of differenced county-level features between each

possible pair of neighboring counties, spatial first differences allow to control for all – both

observed and unobserved – spatially-invariant features that vary sufficiently smoothly across

adjacent pairs of counties. Theoretically, this should reduce the risk of omitted variable bias

since adjacent counties can be expected to be most similar to one another in terms of both

observed and unobserved characteristics. Formally, let ∆ij denote the spatial first difference

operator between adjacent counties i and j such that, for any observed, spatially-dependent

variable of interest y· ∈ {θp·m, ι·, ρ·m}, ∆ijy measures the difference yj − yi and, for any

observed vector v· ∈ {ι·m,S·}, ∆ijv refers to the vector of element-wise application of the

spatial first differences operator. After application of the spatial first difference operator,

specification (4) translates into:

∆ijθ
p
m =

12∑
n=1
n ̸=4

βp
n∆ijιn1{n=m} + δp∆ijιm + ζp∆ijρm + ηp∆ijS +∆ijϵ

p
m (5)

because ∆ijα
p = 0 and, for any pair of monthsm and n, ∆ij1{n=m} = 0. Following Druck-

enmiller and Hsiang (2018) and Taylor and Schlenker (2021), we fit a more flexible24 model

including an intercept κp
0, on top of which we further include a set of month-level dummies

κp
n to obtain:

∆ijθ
p
m = κp0 +

12∑
n=1
n̸=4

βp
n∆ijιn1{n=m} +

12∑
n=1
n̸=4

κpn1{n=m} + δp∆ijιm + ζp∆ijρm + ηp∆ijS + ϵpm (6)

24In practice, this choice is without consequences as the two models (5) and (6) yield virtually indistin-

guishable coefficients of interest β̂p
n and de minimis values for the auxiliary coefficients κ̂p

n.
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The coefficients of interest (i.e., individual elements of the row vector βp
n) in this alter-

native specification can be directly compared to the coefficients estimated earlier under the

stand-alone difference-in-differences approach, although its source of identification is now

restricted to the pairwise comparisons between adjacent counties. As mentioned above, we

argue that these revised coefficients are less prone to omitted variable bias, a claim which

we motivate – at least for our data – in the following section which describes our results.

5 Results

For each of the 99th, 95th, 90th, 75th, 50th, 25th, 10th, 5th and 1st temperature percentiles,

our preferred difference-in-differences specification in spatial first differences (6) consistently

suggests the existence – exclusively in the summer (i.e., when farmers actually irrigate)

and with a peak effect centered around July – of some highly statistically significant cool-

ing externality offered by irrigation practiced in upwind neighbors. Results are graphically

summarized for the 99th, 90th, 75th, 50th, 25th and 5th temperature percentiles in Figure 3.

Although it is empirically detected for the different percentiles throughout the temperature

distribution, such cooling externality appears to be most pronounced with respect to warmer

temperatures and to progressively decrease in magnitude with cooler temperatures. Quan-

titatively, the fact to fully irrigate an upwind county is estimated to translate, in July and

relatively to April, into a -0.86◦C drop in the highest temperature percentile and only into a

-.37◦C decrease in the lowest, with intermediate values for the other percentiles (e.g., -.52◦C

for median temperatures). Surprisingly perhaps, same-county irrigation is not detected to

cause any cooling in the upper half of the temperature distribution, but only in the lower

half of it. In fact, as the influence of upwind irrigation decreases with lower temperature

percentiles, the impact of same-county irrigation becomes progressively more sizeable and

more significant. Given that most of the economic implications involving temperature effects

in the summer relate to extreme heat, the significant externality coming from upwind irri-

gation is of greatest interest and will be discussed in more details in section 6 with respect

to the example of corn production.

In order to account for spatial correlation in the data, we compute Conley standard errors

with uniform kernel and 0.5◦ bandwidth for both models. The fact that no statistically

significant effect is detected outside of the irrigation season with respect to irrigation within

the same or upwind county constitutes strong validation of our first falsification test for the

model specification as explained in Section 4. A second falsification check consists in the

absence of statistically significant effects detected during summer months with respect to

irrigation practiced in cross- and downwind counties. This second prediction is also largely
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validated in overall for the model specification (6) in spatial first differences.

Although the continuous difference-in-differences specification (4) (as well as the fixed

effects specification described in footnote 23, for which results are highly similar) also de-

tects a similar relationship with largest cooling effects for upwind irrigation levels on the

higher temperature percentiles (see Figures A10 and A11 respectively), it does not resist to

the proposed falsification checks as satisfactorily as specification (6). For instance, a large

and statistically significant cooling effect is typically detected for October temperatures with

respect to upwind (summer) irrigation status – a characteristic which does not result from

the previous specification in spatial first differences and which does not a priori have any

meaningful interpretation. Worse, specification (4) predicts a statistically significant warm-

ing effect due to same-county irrigation in the highest temperature percentiles as well as

several statistically significant coefficients with respect to cross- and downwind irrigation

levels including during summer months. Eventually, we observe that the estimated cooling

externality via continuous difference-in-differences is much larger than previously estimated

via spatial first differences. In other words, our preferred specification gives conservative

estimates of the cooling effect, which would be even larger under alternative specifications.

However, given that specification (4) does not incorporate information about the counties’

relative positioning, it allows for comparisons between counties that are potentially far apart

from each other and for which the parallel trends assumption is less likely to hold. As

a consequence, this specification runs more risk to suffer from omitted variable bias since

unobserved features may be sub-optimally controlled for under these conditions.

Despite generally validating the falsification tests with respect to cross- and downwind

irrigation levels during summer months, our preferred specification in spatial first differences

seems to spuriously detect some “warming” effect for a few temperature percentiles during

winter months. In fact, these apparent “warming” effects are largely due to the ex ante

choice of April as a reference month. In order to verify this hypothesis, we re-run the same

specification but after binning individual month-dummies into wider seasons, namely (i) a

control season (running from September to April), (ii) an early-irrigation season (May and

June) and (iii) a peak irrigation season (July and August). Numerical results are shown in

Table 1 for each of the 99th, 90th, 75th, 50th, 25th, 10th and 1st temperature percentiles.

Under this alternative approach by season (and no longer by individual months), for

which the control season is more likely to be representative of weather conditions during

the non-irrigation period, we observe that each statistically significant coefficient involving

irrigation reflects a cooling effect as intuitively expected. The previous observations pertain-

ing to same-county and upwind county irrigation effects remain largely valid. In particular,

upwind irrigation is consistently responsible for a significant cooling of summer tempera-
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tures, throughout the temperature distribution, with largest effects in July and August and

especially with respect to hotter temperatures. Same-county irrigation, by contrast, remains

smaller in magnitude – except for cooler temperatures as previously observed. Importantly,

however, the seasonal specification also suggests the existence of a cooling externality orig-

inating from cross- and downwind irrigation, exclusively during the peak irrigation season

and until the 75th temperature percentile. We observe, however, that these coefficients are

much smaller in magnitude and much less precisely estimated than the main effect detected

for upwind irrigation. Also, we argue that these apparent spillover effects propagating or-

thogonally and against the dominant wind flow may reflect the limitation of our classification

into up-, cross- and downwind counties. In fact, such classification is only most frequently

true and does not account for the fact that wind flow may largely diverge from its modal

direction over the duration of a month. For instance, our classification does not capture

bi-modal distributions of wind directions, although 180◦ shifts are quite common in prac-

tice. As such, the cooling externality coming from upwind counties is – for some fraction

of time – erroneously classified as coming from cross- or (especially) downwind, a lack of

precision which manifests itself the most when the main effect is large. In the remainder,

we will therefore make the simplifying assumption that the cooling-by-irrigation externality

is restricted to the upwind direction. Also, we argue that this approach is conservative as

some of the cooling effect is actually lost towards other (misclassified) wind directions.

In light of the above results, it is legitimate to ask how far the cooling externality actually

travels with the wind. In order to explore this question, we augment the previous seasonal

model by adding irrigation information from one further layer upwind. Formally, we re-

place ιim = (ιi, ιiup(m), ιicross(m), ιidown(m))
′ by ι̃im = (ιi, ιiup(m), ιi2×up(m), ιicross(m), ιidown(m))

′ in

specification (6). Numerical results are shown in Table A1 and suggest that the cooling-

by-irrigation externality does not travel beyond the first layer of upwind neighbors. Indeed,

in this revised specification, the cooling externality from upwind irrigation remains signif-

icant and sizeable throughout the temperature distribution, while the effect of the 2-step

upwind irrigation is not typically found to be statistically significant – except on the 99th

temperature percentile for which it is highly significant although much smaller in size. In the

remainder, we will therefore make the simplifying assumption that the cooling-by-irrigation

externality is restricted to the direct upwind neighbor.

In order to further test the robustness of our model findings, we run the previous (sea-

sonal) specification but on separate subsets of the initial data. Indeed, as shown on Figure 1,

the northern and southern halves of the dataset have seen fundamentally different irrigation

dynamics, and we propose to verify whether each of these two observed dynamics yield an

identification of about the same cooling-by-irrigation externality. Results for the northern
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part (including Nebraska, Colorado, Wyoming, South Dakota and Kansas) and the southern

part (including Texas, Oklahoma and New Mexico) are displayed in Tables A2 and A3 re-

spectively and confirm the overall conclusions made previously – in particular with respect

to the cooling-by-irrigation externality originating predominantly in upwind irrigation areas.

Importantly, we note that the magnitudes of the upwind irrigation externality are in rough

agreement between the two segments of the data – despite the fact that the northern part

consists of counties with a strong increase in irrigation, while the southern part consists of

counties with a strong decrease in irrigation. In other words, this confirms the preliminary

observation already made on Figure 2 regarding the fact that counties which historically saw

a decline in irrigation induced some warming in neighboring areas.

6 Discussion

Large-scale irrigation has historically allowed farmers to grow crops in parts of the Great

Plains that would otherwise be locally unsuitable for intensive agriculture. For instance,

corn requires a substantial amount of water for healthy growth and is very vulnerable to

droughts due to its shallow root system. In the US, large-scale corn production is primarily

found in the Corn Belt – where corn is predominantly rainfed with the notable exception

of its western tail located in Nebraska and which is heavily irrigated – as well as in specific

regions with access to abundant water supply for irrigation such as above the Ogallala aquifer

or in the Arkansas delta. In fact, the very disposition of the Ogallala aquifer can be easily

recognized from a map of average corn area grown in the US25.

Besides allowing farmers to adjust water supply to precipitation conditions, irrigation

serves as an adaptation strategy against heat (Taylor 2021) as it increases the vegetation’s

tolerance to high temperatures. While crop yields only marginally benefit from moderate

degree-days over the growing season, they severely suffer from particularly hot degree-days

(Schlenker and Roberts 2009). A primary consequence of irrigation is the alteration of this

non-linear response function linking crop yields to heat exposure so that plants become more

resilient to extreme temperatures (the “Direct Effect”).26 On top of this beneficial effect

which occurs on the spot, we have shown above that irrigation is also causally responsible

for cooling downwind temperatures. This secondary and unintended effect on temperature

patterns in turn indirectly benefits plant growth in counties located downwind by cooling

25See, for instance, Map 1 in Schlenker (2020)
26For instance, when fitting the piecewise linear specification proposed by Schlenker and Roberts (2009)

on historic log yields for corn between 1940 and 2019 in the region of interest, we find (i) a steeper slope
coefficient for the detrimental effect of heat and (ii) an earlier threshold for such effects to manifest in
non-irrigating counties when compared to irrigating counties.
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the entire temperature distribution and thereby protecting crops from extreme heat exposure

(the “Indirect Effect”). In other words, farmers who practice large-scale irrigation do not

only benefit from such investment in the form of higher yields in their own fields but also

favor production levels in neighboring fields located downwind. In the remainder, we quantify

this positive externality at the county level in the form of avoided corn production losses

and compare the magnitudes of the Direct and the Indirect Effects in the region of interest.

In order to appreciate each of these effects in isolation, we simulate counterfactual corn

production outcomes respectively (i) under actual heat exposure but for alternative response

functions to heat (i.e., with and without the Direct Effect of irrigation) and (ii) for actual

response functions to heat but under alternative heat exposure (i.e., with and without the

Indirect Effect of irrigation).

In order to quantify the Direct Effect of irrigation on corn production, we compute the

individual heat exposure of every county in the region of interest, over the entire growing

season for corn (i.e., from March to August) and for each year between 1940 and 2019.

Then, we confront these distributions to an empirically determined irrigation-dependent heat

response function under actual irrigation levels as well as under a counterfactual scenario

without irrigation.27 In order to model the sensitivity of the heat response function to

irrigation, we adapt the piece-wise linear specification in (log) yield proposed by Schlenker

and Roberts (2009) by allowing the effect of harmful degree days to vary linearly in a county’s

irrigation level. Using the same methodology as in Schlenker and Roberts (2009) and the

same break-point temperature separating beneficial from harmful degree-days (i.e., 29◦C for

corn), we find a positive slope of 0.00012 (p-value below 1%) for degree-days below 29◦C

and a linearly-varying slope of −0.00452 + 0.00852 × Iiy (with respective p-values below

1%) for harmful degree-days. The latter slope suggests that the substitution of a full day

at 33°C with a full day at 34°C during the growing season is associated, on average, with

an approximate decline of 0.45% in yields for non-irrigated counties, but a decline of only

0.28% for counties irrigated at 20% of their surface. Left panels in Figure 4 illustrate the

spatial distribution of avoided corn production losses in absolute levels as well as relatively to

total corn production. On aggregate and according to the proposed methodology, the Direct

Effect is responsible for the production of 6.3 billion bushels of corn, representing about 7%

of total corn production over the 1959-2019 period. Virtually all of these avoided production

losses occur within the boundary of the Ogallala aquifer, in agreement with areas where

large-scale irrigation is possible. 65% of the total corn production in the region of interest

comes from Nebraska, and a similar proportion (67%) of the beneficial effect of irrigation on

27In order to simulate counterfactual heat response functions for each year since 1940, we linearly inter-
polate county-level irrigation information between consecutive census years.
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crop yields is also found in this state. Nevertheless, the Direct Effect also achieves sizeable

proportions (up to 25%) of corn production in counties located in northwestern Texas and

western Kansas, where temperatures are higher and total corn production is more limited

on average than in eastern Nebraska.

In order to estimate avoided production losses due to the Indirect Effect, we empirically

determine the heat response function of corn using the piece-wise linear specification in (log)

yield proposed by Schlenker and Roberts (2009), i.e., without consideration for irrigation

information: the effect of beneficial degree-days becomes 0.00016 (p-value below 1%) and

the effect of harmful degree-days is fixed at -0.00443 (p-value below 1%). The latter value

suggests that the substitution of a full day at 33°C with a full day at 34°C is associated,

on average, with an approximate decline of 0.44% in yields – which is consistent with the

previous model under no-irrigation conditions. This (unique) response function is then sepa-

rately applied to the actual heat distribution and to a simulated counterfactual scenario from

which the cooling-by-irrigation effect from upwind irrigation has been subtracted.28 More

precisely, month-specific counterfactual temperature percentiles are predicted based on the

effects obtained from the difference-in-differences specification in spatial first differences (6)

and using county-level irrigation levels.29 A cumulative distribution function of heat expo-

sure is linearly interpolated between the 0.001st, 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th,

99th and 99.999th temperature percentiles for each individual month of the growing season

in order to construct the cumulative distribution function of heat exposure over the entire

growing season. Since irrigation is responsible for some cooling, the counterfactual distribu-

tions (without irrigation) display a slightly heavier exposure to warmer temperatures, and

especially so with respect to the warmest temperature percentiles.

Right panels in Figure 4 illustrate the spatial distribution of avoided corn production

losses due to the Indirect Effect in absolute levels as well as relatively to total corn production.

On aggregate and according to the proposed methodology, the Indirect Effect is responsible

for 440 million bushels of corn, representing about 0.5% of total corn production over the

1959-2019 period. Again, the majority of avoided losses due to the Indirect Effect can

be allocated to Nebraska (74%) and almost all of these avoided production losses occur

28For simplicity and in order to produce conservative order of magnitude estimates, we neglect to take
into account the cooling effect detected for irrigation in current, cross- and downwind counties (see Table 1).
First, the cooling effect originating from same-county irrigation is only statistically significant with respect
to cooler temperatures, for which there is only de minimis impact on corn yields. Second, the cooling effect
measured with respect to cross- and downwind irrigation levels is only statistically significant in the July-
August time bracket (and not in May-June) and with much smaller coefficients (in absolute value) than for
upwind irrigation levels.

29In order to simulate counterfactual temperature percentiles for each year since 1940, we linearly inter-
polate county-level irrigation information between consecutive census years.
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within the boundary of the Ogallala, with large year-to-year and county-level variability

depending on extreme weather conditions. For instance, during extreme heat episodes,

avoided losses may constitute up to 5% of total corn production in some selected counties.

Figures A12 and A13 show the yearly evolution of avoided production losses in absolute terms

and in proportions to total production for the overall region of interest and for Nebraska

in particular. Avoided losses have been rising until the 1970s before stabilizing at around

.9% on average. While this long-run evolution of avoided losses roughly follows the overall

trend in total production, short-run shocks (e.g., during the heat wave of 2012) evolve in

opposite directions. Indeed, particularly hot years are associated both with a marked decline

in total production and a surge in the amount of avoided crop losses due to the strong non-

linearity in the yield response to extreme temperatures. By contrast, years deprived from

extreme heat episodes (e.g., in years following the eruption of Mount Pinatubo in 1991)

see relatively high yields irrespective of the cooling-by-irrigation effect. Importantly, most

of the avoided production losses occur in more recent decades: over the second half of

the observation window, avoided losses due to the cooling-by-irrigation effect amount to 10

million bushels per year on average against only 1 million bushels per year for the first half.

In 2012, avoided losses culminated at 15 million bushels, a record level due to an extreme

heat episode. Although exceptional in the historic data, such situations may in fact become

more an more frequent in the context of an overall warming climate.

In light of the above, the Indirect Effect appears to be, on average, one order of magnitude

smaller than the Direct Effect. However, in contrast to the location of the Direct Effect, the

Indirect Effect consists in an externality and is typically shifted by one county northwards

– in agreement with the fact that wind predominantly blows from South to North in the

region of interest during the growing season (see Figure A9). This raises the question as to

whether the Indirect Effect occasionally benefits individual counties more than the Direct

Effect. Figure 5 answers this point by illustrating the ratio of the Indirect Effect to the Direct

Effect for Nebraskan counties, which concentrate the bulk of the corn production in the region

of interest.30 In several counties, the externality caused by irrigation in upwind neighbors

and measured in the form of avoided corn production losses is as important as (or even more

important than) the direct effect of same-county irrigation. Such situations are typically

observed in counties located immediately downwind from significant irrigation zones (for

instance, north of the Platte River) and that do not significantly irrigate themselves. While

these areas do not encompass major corn-producing counties in Nebraska, it is important

to stress that the cooling-by-irrigation effect is further responsible for additional positive

externalities on the economy via the spillover it generates on local weather (for instance

30The similar map but for the entire region of interest is provided in Figure A14.

21



with respect to the production of other crops, the reduction in energy demand, the protection

of populations and/or ecosystems during heat waves, the preservation of labor productivity,

etc.), an effect which is not quantified in the previous (conservative) estimation of the positive

cooling-by-irrigation externality and which is restricted to corn yields.

7 Conclusions

By exploiting county-level data in temperature and irrigation trends over the last 60 years

in a vast region around the Ogallala aquifer, we empirically demonstrate that large-scale

irrigation is responsible – mainly downwind – for a significant cooling externality which

affects the entire distribution of summer temperatures and is most effective at cooling the

higher end of the temperature distribution. Using a continuous difference-in-differences

strategy augmented in spatial first differences, we argue that such effect is causal in nature

and may participate in explaining the larger-scale warming hole observed in the Central US

as of the 1950’s. Conceptually, the unintended feedback mechanism which we identify with

respect to large-scale irrigation is remarkable because it suggests that adaptive behavior

to regional climate (and by extension also to climate change or rising constraints in water

availability) can have measurable and sizeable effects on the climate – a channel which, to our

knowledge, has not yet been considered in the adaptation literature but certainly deserves

more attention.

Pragmatically, from an agricultural perspective, we show that large-scale irrigation does

not only benefit plant growth directly by controlling water supply and enhancing heat tol-

erance of crops but also indirectly by avoiding harmful degree-days in downwind areas.

Although being comparatively small on average, this positive externality appears to be oc-

casionally as important as the direct effect of irrigation on corn production with respect to

its adaptation to heat. Moreover, since extreme heat is also detrimental to other spheres of

the economy besides agriculture, such as labor productivity or local population and ecosys-

tem health in general, we argue that the benefits of the cooling-by-irrigation externality may

in fact be much vaster than expected from a purely agricultural perspective, a perspective

which opens new areas of research with respect to areas where populations live relatively

close to irrigated land.

Despite having improved crop yields in the Great Plains over the last 60 years, large-scale

irrigation as historically allowed by the Ogallala aquifer is unlikely to be replicable in other

agricultural settings within the US given fundamental geological constraints in freshwater

availability. On the contrary, the progressive depletion of the Ogallala aquifer may result

not only in profound changes in local agricultural production and productivity, but also in
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a localized warming of summertime temperatures, a situation which is already empirically

observed downstream of the Ogallala aquifer.
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Tables

Table 1: Estimated effect of irrigation on temperature percentiles (β̂p
n) in early (May-June)

and peak (July-August) irrigation seasons

p n
Irrigation information from

R2 N
current upwind crosswind downwind

99th May-June 0.15 -0.35** -0.12 -0.02
(0.12) (0.15) (0.11) (0.10)

July-August 0.02 -0.63*** -0.31** -0.26**
(0.17) (0.16) (0.12) (0.13) 8% 13500

90th May-June 0.06 -0.33*** -0.11 0.02
(0.09) (0.08) (0.07) (0.07)

July-August -0.06 -0.48*** -0.17** -0.22**
(0.13) (0.12) (0.07) (0.09) 8% 13500

75th May-June 0.01 -0.22*** -0.05 0.06
(0.07) (0.07) (0.06) (0.07)

July-August -0.14 -0.47*** -0.15** -0.20**
(0.10) (0.10) (0.06) (0.09) 7% 13500

50th May-June -0.10* -0.25*** -0.04 0.03
(0.06) (0.06) (0.05) (0.07)

July-August -0.21** -0.41*** -0.08 -0.17*
(0.09) (0.09) (0.05) (0.09) 6% 13500

25th May-June -0.12* -0.25*** -0.02 -0.01
(0.07) (0.06) (0.05) (0.08)

July-August -0.30*** -0.35*** -0.04 -0.10
(0.11) (0.08) (0.06) (0.11) 5% 13500

10th May-June -0.13** -0.20*** -0.04 -0.07
(0.06) (0.07) (0.06) (0.09)

July-August -0.28*** -0.27*** -0.01 -0.04
(0.10) (0.09) (0.07) (0.11) 4% 13500

1st May-June -0.11 -0.09 0.06 0.01
(0.09) (0.11) (0.09) (0.12)

July-August -0.30*** -0.24** -0.06 -0.16
(0.11) (0.12) (0.11) (0.14) 3% 13500

Notes: coefficients are estimated separately for each of the 99th, 90th, 75th, 50th, 25th, 10th and 1st tempera-
ture percentiles by continuous difference-in-differences in spatial first differences with irrigation information
from current, upwind, crosswind and downwind counties. Reference season runs from September to April.
All specifications include an intercept, a linear term in irrigation trend and controls for precipitation trends
and soil characteristics. Units are in ◦C/(% of irrigated county area). Conley standard errors (given in
parentheses) are computed using a uniform kernel and a bandwidth of .5 degrees. ***, ** and * denote
statistical significance respectively at the 1%, 5% and 10% levels.
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Figures

Figure 1: Extent of the High Plains (“Ogallala”) aquifer (blue contour line) covering parts of
South Dakota, Wyoming, Nebraska, Colorado, Kansas, Oklahoma, New Mexico and Texas.

Notes: The 393 counties (i) with centroid coordinates falling between the minimum/maximum latitude and
longitude of the Ogallala (or crossing its boundary) constitute the spatial area of interest and are colored
according to the irrigation trend (ι̂i) as observed over the 1959-2019 period: counties which saw an
increase/decrease in irrigation are in blue/red respectively.
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Figure 2: Average change in the 99th (top), 50th (middle) and 5th (bottom) temperature
percentiles over the 1959-2019 period as a function of the month (horizontally jittered) for
each of the 393 counties in the region of interest.

Notes: Each county is represented by a bubble, the size and color of which respectively indicate the average
proportion of irrigated land and the irrigation trend observed in the county’s upwind neighbor.
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Figure 3: Effects of irrigation from current (black), upwind (green), crosswind (blue) and
downwind (red) counties on the 99th, 90th, 75th, 50th, 25th and 5th temperature percentiles
estimated jointly via spatial first differences for each month of the year and with 95% confi-
dence intervals.

Notes: See specification (6). Units are in ◦C/(% of irrigated county area). Compare with Figure A10
(different scale).
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Figure 4: Avoided corn production losses via the primary effect of within-county irrigation
(“direct effect”, left column) and via the cooling-by-irrigation effect induced by irrigation in
upwind counties “indirect effect”, right column), estimated in million bushels (top row)
and in proportion to total corn production (bottom row) over the 1959-2019 period.
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Figure 5: Ratio of avoided corn production losses due to unintended cooling induced by
irrigation in upwind neighbors to avoided corn production losses due to the primary effect of
within-county irrigation in Nebraska.

Notes: Size of blue bubbles is proportional to average irrigation intensity over the 1959-2019 period.
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A Appendix

Table A1: Estimated effect of irrigation on temperature percentiles (β̂p
n) in early (May-June)

and peak (July-August) irrigation seasons

p n
Irrigation information from

R2 N
current upwind upwind (2×) crosswind downwind

99th May-June 0.15 -0.33** -0.06 -0.12 -0.03
(0.12) (0.15) (0.14) (0.11) (0.11)

July-August 0.01 -0.53*** -0.29*** -0.31** -0.27**
(0.17) (0.16) (0.10) (0.12) (0.12) 8% 13500

90th May-June 0.06 -0.35*** 0.09 -0.11 0.02
(0.09) (0.09) (0.10) (0.07) (0.08)

July-August -0.06 -0.44*** -0.13 -0.17*** -0.22**
(0.13) (0.12) (0.10) (0.07) (0.09) 8% 13500

75th May-June 0.01 -0.24*** 0.07 -0.05 0.06
(0.07) (0.07) (0.10) (0.06) (0.07)

July-August -0.15 -0.44*** -0.12 -0.15** -0.20**
(0.10) (0.10) (0.10) (0.06) (0.09) 7% 13500

50th May-June -0.10* -0.25*** 0.02 -0.04 0.03
(0.06) (0.07) (0.08) (0.05) (0.07)

July-August -0.21** -0.37*** -0.11 -0.09* -0.17*
(0.09) (0.09) (0.08) (0.05) (0.09) 6% 13500

25th May-June -0.11 -0.25*** 0.01 -0.02 -0.01
(0.06) (0.07) (0.07) (0.05) (0.08)

July-August -0.29*** -0.33*** -0.05 -0.04 -0.10
(0.11) (0.09) (0.07) (0.06) (0.11) 5% 13500

10th May-June -0.12* -0.19** -0.02 -0.04 -0.06
(0.06) (0.08) (0.08) (0.06) (0.10)

July-August -0.26** -0.27*** -0.01 -0.02 -0.04
(0.10) (0.10) (0.08) (0.07) (0.11) 4% 13500

1st May-June -0.08 -0.06 -0.06 0.04 0.02
(0.09) (0.12) (0.13) (0.09) (0.12)

July-August -0.26** -0.27** 0.06 -0.07 -0.15
(0.11) (0.13) (0.12) (0.11) (0.14) 3% 13500

Notes: coefficients are estimated separately for each of the 99th, 90th, 75th, 50th, 25th, 10th and 1st temper-
ature percentiles by continuous difference-in-differences in spatial first differences with irrigation informa-
tion from current, upwind, 2-step upwind, crosswind and downwind counties. Reference season runs from
September to April. All specifications include an intercept, a linear term in irrigation trend and controls for
precipitation trends and soil characteristics. Units are in ◦C/(% of irrigated county area). Conley standard
errors (given in parentheses) are computed using a uniform kernel and a bandwidth of .5 degrees. ***, **
and * denote statistical significance respectively at the 1%, 5% and 10% levels.
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Table A2: Estimated effect of irrigation on temperature percentiles (β̂p
n) in early (May-June)

and peak (July-August) irrigation seasons for counties inNebraska, Colorado, Wyoming,
South Dakota and Kansas

p n
Irrigation information from

R2 N
current upwind crosswind downwind

99th May-June 0.09 -0.35* -0.16 0.03
(0.15) (0.19) (0.15) (0.15)

July-August -0.10 -0.70*** -0.31* -0.44***
(0.20) (0.22) (0.17) (0.17) 13% 7344

90th May-June -0.04 -0.38*** -0.20** 0.03
(0.09) (0.11) (0.09) (0.11)

July-August -0.23* -0.51*** -0.15* -0.42***
(0.14) (0.16) (0.09) (0.11) 10% 7344

75th May-June -0.08 -0.28*** -0.11 0.09
(0.07) (0.09) (0.08) (0.09)

July-August -0.30*** -0.45*** -0.09 -0.35***
(0.10) (0.14) (0.08) (0.10) 8% 7344

50th May-June -0.15** -0.30*** -0.09 0.06
(0.07) (0.09) (0.06) (0.09)

July-August -0.33*** -0.36*** -0.03 -0.24**
(0.10) (0.12) (0.06) (0.10) 7% 7344

25th May-June -0.16** -0.31*** -0.03 0.03
(0.08) (0.08) (0.06) (0.09)

July-August -0.40*** -0.32*** 0.03 -0.08
(0.13) (0.10) (0.07) (0.12) 6% 7344

10th May-June -0.20*** -0.25*** -0.00 -0.03
(0.07) (0.10) (0.07) (0.11)

July-August -0.39*** -0.22*** 0.08 -0.01
(0.12) (0.11) (0.08) (0.13) 5% 7344

1st May-June -0.09 -0.01 0.15 0.03
(0.11) (0.13) (0.10) (0.14)

July-August -0.38*** -0.14 0.05 -0.24
(0.13) (0.15) (0.10) (0.17) 5% 7344

Notes: coefficients are estimated separately for each of the 99th, 90th, 75th, 50th, 25th, 10th and 1st tempera-
ture percentiles by continuous difference-in-differences in spatial first differences with irrigation information
from current, upwind, crosswind and downwind counties. Reference season runs from September to April.
All specifications include an intercept, a linear term in irrigation trend, dummies for the May-June and
July-August periods and controls for precipitation trends and soil characteristics. Units are in ◦C/(% of
irrigated county area). Conley standard errors (given in parentheses) are computed using a uniform kernel
and a bandwidth of .5 degrees. ***, ** and * denote statistical significance respectively at the 1%, 5% and
10% levels.

ii



Table A3: Estimated effect of irrigation on temperature percentiles (β̂p
n) in early (May-June)

and peak (July-August) irrigation seasons for counties in Texas, Oklahoma and New
Mexico

p n
Irrigation information from

R2 N
current upwind crosswind downwind

99th May-June 0.44*** -0.45** -0.06 -0.04
(0.16) (0.19) (0.10) (0.13)

July-August 0.25 -0.52*** -0.09 0.16
(0.21) (0.19) (0.18) (0.12) 8% 5868

90th May-June 0.43*** -0.25* 0.06 0.05
(0.10) (0.15) (0.07) (0.10)

July-August 0.27* -0.43*** -0.07 0.26***
(0.16) (0.14) (0.13) (0.10) 14% 5868

75th May-June 0.32*** -0.13 0.05 0.08
(0.06) (0.12) (0.06) (0.12)

July-August 0.14 -0.53*** -0.21* 0.19
(0.17) (0.14) (0.12) (0.15) 16% 5868

50th May-June 0.10 -0.15 0.04 0.04
(0.07) (0.11) (0.07) (0.13)

July-August -0.01 -0.50*** -0.18 0.05
(0.14) (0.15) (0.11) (0.16) 14% 5868

25th May-June -0.11 -0.16 -0.01 -0.07
(0.10) (0.12) (0.08) (0.15)

July-August -0.02 -0.44*** -0.15 -0.10
(0.14) (0.15) (0.13) (0.17) 11% 5868

10th May-June 0.15 -0.17 -0.15 -0.17
(0.14) (0.11) (0.10) (0.17)

July-August 0.00 -0.44*** -0.23 -0.10
(0.16) (0.16) (0.15) (0.16) 9% 5868

1st May-June -0.10 -0.30* -0.18 -0.02
(0.20) (0.16) (0.19) (0.21)

July-August -0.14 -0.53*** -0.34 0.04
(0.21) (0.15) (0.26) (0.20) 7% 5868

Notes: coefficients are estimated separately for each of the 99th, 90th, 75th, 50th, 25th, 10th and 1st tempera-
ture percentiles by continuous difference-in-differences in spatial first differences with irrigation information
from current, upwind, crosswind and downwind counties. Reference season runs from September to April.
All specifications include an intercept, a linear term in irrigation trend, dummies for the May-June and
July-August periods and controls for precipitation trends and soil characteristics. Units are in ◦C/(% of
irrigated county area). Conley standard errors (given in parentheses) are computed using a uniform kernel
and a bandwidth of .5 degrees. ***, ** and * denote statistical significance respectively at the 1%, 5% and
10% levels.
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Figure A1: Observed trends (θ̂pim) in the 99th (top row) and 50th (bottom row) temperature
percentiles (p) in the 393 counties (i) of the area of interest for months (m) of April (left
column) and July (right column).

Notes: Counties having experienced an average cooling or warming over the 1959-2019 period are colored
in blue or red respectively. The color bar is on a common scale and given in units of ◦C/y.
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Figure A2: Location of station and first year station reported data for maximum temperature

Notes: Figure displays the location of the weather stations used in the interpolation as circle, which are
colored by the first year the station reported data (see right legend). Outlines of the 48 states in the
contiguous US are added in black. Some stations are located in Canada or Mexico.

Figure A3: Location of station and first year station reported data for minimum temperature

Notes: Figure displays the location of the weather stations used in the interpolation as circle, which are
colored by the first year the station reported data (see right legend). Outlines of the 48 states in the
contiguous US are added in black. Some stations are located in Canada or Mexico.

v



Figure A4: Evolution over 1900-2012 of the proportion of irrigated area for each county in
Nebraksa (top) and Texas (bottom) that falls within the area of interest (continuous black
lines, primary axis) and total number of counties with available information about irrigated
acres (dashed blue line, secondary axis).

Notes: The median proportion of irrigated county area is indicated by the dashed red line. Vertical lines
represent years with agricultural census, among which the year 1959 (in green) marks the start of the
period of interest.
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Figure A5: Evolution over 1900-2012 of the proportion of irrigated area for each county in
Kansas, Oklahoma, Colorado, South Dakota, New Mexico and Wyoming that falls within the
area of interest (continuous black lines, primary axis) and total number of counties with
available information about irrigated acres (dashed blue line, secondary axis).

Notes: The median proportion of irrigated county area is indicated by the dashed red line. Vertical lines
represent years with agricultural census, among which the year 1959 (in green) marks the start of the
period of interest.
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Figure A6: Observed trends in total rainfall (ρ̂im) in the 393 counties (i) of the area of
interest for months (m) of April (left) and July (right).

Notes: Counties having experienced an average increase/decrease in rainfall over the 1959-2019 period are
colored in blue/red respectively. The color bar is on a common scale and given in units of mm/y.

Figure A7: Location of station and first year station reported data for precipitation

Notes: Figure displays the location of the weather stations used in the interpolation as circle, which are
colored by the first year the station reported data (see right legend). Outlines of the 48 states in the
contiguous US are added in black. Some stations are located in Canada or Mexico.
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Figure A8: Map of soil controls, namely soil thickness, elevation, permeability, water capac-
ity, clay content, erodibility, top-soil quality, cropland area, EVI for the 393 counties in the
area of interest.
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Figure A9: Polar distribution of hourly wind directions for counties in the area of interest
for each month of the year over the 1979-2019 period.

Notes: Contrary to the usual convention for wind roses, we orient directions in agreement with (not
against) the wind flow.
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Figure A10: Effects of irrigation from current (black), upwind (green), crosswind (blue) and
downwind (red) counties on the 99th, 90th, 75th, 50th, 25th and 5th temperature percentiles
estimated jointly via stand-alone continuous difference-in-differences for each month of the
year and with 95% confidence intervals.

Notes: See specification (4). Units are in ◦C/(% of irrigated county area). Compare with Figures 3
(different scale) and A11.
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Figure A11: Effects of irrigation from current (black), upwind (green), crosswind (blue) and
downwind (red) counties on the 99th, 90th, 75th, 50th, 25th and 5th temperature percentiles
estimated jointly via fixed effects model for the panel data in levels for each month of the
year and with 95% confidence intervals.

Notes: See specification described in footnote 23. Units are in ◦C/(% of irrigated county area). Compare
with Figures 3 and A10.
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Figure A12: Total corn production (in billion bushels, black) and avoided corn production
losses via the cooling-by-irrigation effect induced by irrigation in upwind counties (in million
bushels, green) since 1940, for the region of interest (continuous lines) and in Nebraska alone
(dashed lines).

Figure A13: Proportion of avoided losses in the total corn production via the cooling-by-
irrigation effect induced by irrigation in upwind counties for the region of interest (continuous
line) and Nebraska alone (dashed line).
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Figure A14: Ratio of avoided corn production losses due to unintended cooling induced by
irrigation in upwind neighbors to avoided corn production losses due to the primary effect of
within-county irrigation.

Notes: Size of blue bubbles is proportional to average irrigation intensity over the 1959-2019 period.
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