Can White Elephants Kill?

The Unintended Consequences of Infrastructure Development

Antonella Bancalari

St.Andrews and IFS

NBER SI, Urban Economics, 2022

Investing in infrastructure

- Driver of productivity and economic development [Aschauer, 1989; Isham and Kaufmann, 1999].
 - Total spending in infrastructure projects in LMICs \approx **1.2 trillion USD** \rightarrow 5% of the global GDP [Fay et al., 2019].
- Ample evidence on the effectiveness of completed and in-use infrastructure to improve living standards:
 - Sewers, water-pipes, dams, and electricity and transportation networks [e.g. Watson, 2006; Duflo and Pande, 2007; Rud, 2012; Lipscomb et al., 2013; Donaldson, 2018; Alsan and Goldin, 2019; Bhalotra et al., 2021].
- Yet, we know little about the consequences of infrastructure projects that are being **implemented**.

Investing in infrastructure

- Driver of productivity and economic development [Aschauer, 1989; Isham and Kaufmann, 1999].
 - Total spending in infrastructure projects in LMICs \approx **1.2 trillion USD** \rightarrow 5% of the global GDP [Fay et al., 2019].
- Ample evidence on the effectiveness of completed and in-use infrastructure to improve living standards:
 - Sewers, water-pipes, dams, and electricity and transportation networks [e.g. Watson, 2006; Duflo and Pande, 2007; Rud, 2012; Lipscomb et al., 2013; Donaldson, 2018; Alsan and Goldin, 2019; Bhalotra et al., 2021].
- Yet, we know little about the consequences of infrastructure projects that are being **implemented**.

Investing in infrastructure

- Driver of productivity and economic development [Aschauer, 1989; Isham and Kaufmann, 1999].
 - Total spending in infrastructure projects in LMICs \approx **1.2 trillion USD** \rightarrow 5% of the global GDP [Fay et al., 2019].
- Ample evidence on the effectiveness of completed and in-use infrastructure to improve living standards:
 - Sewers, water-pipes, dams, and electricity and transportation networks [e.g. Watson, 2006; Duflo and Pande, 2007; Rud, 2012; Lipscomb et al., 2013; Donaldson, 2018; Alsan and Goldin, 2019; Bhalotra et al., 2021].
- Yet, we know little about the consequences of infrastructure projects that are being **implemented**.

Implementing infrastructure

- Construction works expose the local population to hazards and disruptions.
- Implementation plagued by inefficiencies that increase private and social costs in LMICs and HICs alike.
 - Delays and cost over-runs in up to 45% of OECD projects [Flyvbjerg, Holm, and Buhl, 2004].
 - 1/3 of infrastructure projects are halted and even abandoned mid-construction [Rasul and Rogger, 2018; Williams, 2017].
- Overestimated welfare evaluations because social costs from the implementation phase are ignored.

$$\frac{B^c}{\overset{i}{\cdots} + C_{cc}^i} \tag{1}$$

Implementing infrastructure

- Construction works expose the local population to hazards and disruptions.
- Implementation plagued by inefficiencies that increase private and social costs in LMICs and HICs alike.
 - Delays and cost over-runs in up to 45% of OECD projects [Flyvbjerg, Holm, and Buhl, 2004].
 - 1/3 of infrastructure projects are halted and even abandoned mid-construction [Rasul and Rogger, 2018; Williams, 2017].
- Overestimated welfare evaluations because social costs from the implementation phase are ignored.

$$\frac{B^c}{C_{priv}^i + C_{soc}^i}$$

(1)

Implementing infrastructure

- Construction works expose the local population to hazards and disruptions.
- Implementation plagued by inefficiencies that increase private and social costs in LMICs and HICs alike.
 - Delays and cost over-runs in up to 45% of OECD projects [Flyvbjerg, Holm, and Buhl, 2004].
 - 1/3 of infrastructure projects are halted and even abandoned mid-construction [Rasul and Rogger, 2018; Williams, 2017].
- Overestimated welfare evaluations because social costs from the implementation phase are ignored.

$$\frac{B^c}{C_{\text{priv}}^i + C_{\text{soc}}^i} \tag{1}$$

- New focus: study the social costs imposed by infrastructure projects that are being implemented (i.e., projects started but not yet completed).
- Context: nation-wide implementation of sewerage projects in urban areas of Peru and its effect on early-life mortality.
- Data: novel administrative data matched to spatial data to construct a panel of more than 1,400 districts spanning 2005-2015.
- Strategy: exploiting geographic features and nationwide availability of funds as an instrument.

- New focus: study the social costs imposed by infrastructure projects that are being implemented (i.e., projects started but not yet completed).
- Context: nation-wide implementation of sewerage projects in urban areas of Peru and its effect on early-life mortality.
- Data: novel administrative data matched to spatial data to construct a panel of more than 1,400 districts spanning 2005-2015.
- Strategy: exploiting geographic features and nationwide availability of funds as an instrument.

- New focus: study the social costs imposed by infrastructure projects that are being implemented (i.e., projects started but not yet completed).
- Context: nation-wide implementation of sewerage projects in urban areas of Peru and its effect on early-life mortality.
- Data: novel administrative data matched to spatial data to construct a panel of more than 1,400 districts spanning 2005-2015.
- Strategy: exploiting geographic features and nationwide availability of funds as an instrument.

- New focus: study the social costs imposed by infrastructure projects that are being implemented (i.e., projects started but not yet completed).
- Context: nation-wide implementation of sewerage projects in urban areas of Peru and its effect on early-life mortality.
- Data: novel administrative data matched to spatial data to construct a panel of more than 1,400 districts spanning 2005-2015.
- Strategy: exploiting geographic features and nationwide availability of funds as an instrument.

Preview of findings

- Projects increased mortality while being implemented, rather than not starting projects, due to hazards, infections and unsafe behavior.
- Most projects were halted mid-construction, exacerbating the effects.

Source: Defensoria del Pueblo, Peru, 2016

Preview of findings

- Projects increased mortality while being implemented, rather than not starting projects, due to hazards, infections and unsafe behavior.
- Most projects were halted mid-construction, exacerbating the effects.

Source: Defensoria del Pueblo, Peru, 2016

- Budgetary reports for 6,000 projects in 1,400 districts:
 - Years of start and completion
 - Number of implemented projects per district—year
- Vital statistics and population forecasts:
 - Deaths by cause (ICD-10)
 - Infant (IMR) and under-5 mortality rate (U5MR) per 1,000 children per district—year

```
deaths of infants (children)_{dt} \times 1,000 infant (child) population_{dt}
```

- Grid-cell level spatial data: area, elevation, gradient and river density.
- Census, municipal records and sectoral public expenditure.

- Budgetary reports for 6,000 projects in 1,400 districts:
 - Years of start and completion
 - Number of implemented projects per district—year
- Vital statistics and population forecasts:
 - Deaths by cause (ICD-10)
 - Infant (IMR) and under-5 mortality rate (U5MR) per 1,000 children per district-year

```
\frac{\text{deaths of infants (children)}_{dt}}{\text{infant (child) population}_{dt}} \times 1,000
```

- Grid-cell level spatial data: area, elevation, gradient and river density.
- Census, municipal records and sectoral public expenditure.

- Budgetary reports for 6,000 projects in 1,400 districts:
 - Years of start and completion
 - Number of implemented projects per district—year
- Vital statistics and population forecasts:
 - Deaths by cause (ICD-10)
 - Infant (IMR) and under-5 mortality rate (U5MR) per 1,000 children per district-year

```
\frac{\text{deaths of infants (children)}_{dt}}{\text{infant (child) population}_{dt}} \times 1,000
```

- Grid-cell level spatial data: area, elevation, gradient and river density.
- Census, municipal records and sectoral public expenditure.

- Budgetary reports for 6,000 projects in 1,400 districts:
 - Years of start and completion
 - Number of implemented projects per district—year
- Vital statistics and population forecasts:
 - Deaths by cause (ICD-10)
 - Infant (IMR) and under-5 mortality rate (U5MR) per 1,000 children per district-year

```
rac{	ext{deaths of infants (children)}_{dt}}{	ext{infant (child) population}_{dt}} 	imes 1,000
```

- Grid-cell level spatial data: area, elevation, gradient and river density.
- Census, municipal records and sectoral public expenditure.

Specification

$$MR_{dt} = \beta S_{dt} + \gamma_d + \delta_t + \nu_{dt}$$
 (2)

- MR_{dt} = mortality rate in district d and year t
- $S_{dt} =$ number of implemented projects
- γ_d = district fixed effect
- δ_t = year fixed effect
- ullet $u_{dt}=$ error term, standard error clustered at district level
- Sample: district—years before project completion.
- Counterfactual scenario: no project implemented.

Specification

$$MR_{dt} = \beta S_{dt} + \gamma_d + \delta_t + \nu_{dt}$$
 (2)

- MR_{dt} = mortality rate in district d and year t
- S_{dt} = number of implemented projects
- γ_d = district fixed effect
- δ_t = year fixed effect
- $\nu_{dt} = \text{error term}$, standard error clustered at district level
- Sample: district—years before project completion.
- Counterfactual scenario: no project implemented.

Empirical strategy

- Instrumental variable to deal with endogenous placement and timing of project implementation.
- Counterfactual implementation of projects, commonly used in the infrastructure literature [Duflo and Pande, 2007; Lipscomb et al., 2013; Burgess et al., 2015] based on:
 - District-level geographical suitability to develop low-cost sewerage projects.
 - 2 Over time changes in national funds for sewerage projects.

Empirical strategy

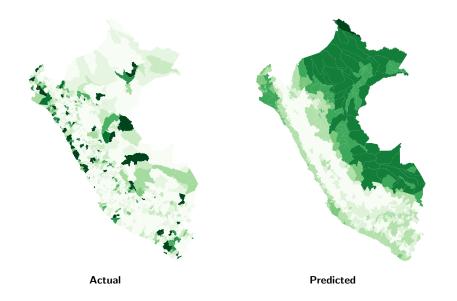
- Instrumental variable to deal with endogenous placement and timing of project implementation.
- Counterfactual implementation of projects, commonly used in the infrastructure literature [Duflo and Pande, 2007; Lipscomb et al., 2013; Burgess et al., 2015] based on:
 - District-level geographical suitability to develop low-cost sewerage projects.
 - 2 Over time changes in **national funds** for sewerage projects.

Instrumental variable

Time-varying predicted projects:

$$P_{dt} = min(M, P_{dt-1} + I(fundrank_d \le maxfund_t))$$
 (3)

- $fundrank_d o funding rank of district d$ based on its geographic suitability
- $maxfund_t o maximum$ fundable projects given the nationwide budget in year t Budget
- $M \rightarrow$ maximum prediction per district d (based on median)
- Identification assumption: no other demand-side factors, policies or infrastructure evolved over time following same spatial lines.

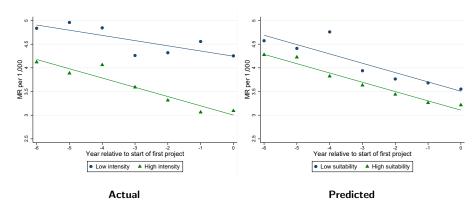

Instrumental variable

• Time-varying predicted projects:

$$P_{dt} = min(M, P_{dt-1} + I(fundrank_d \le maxfund_t))$$
 (3)

- $fundrank_d \rightarrow$ funding rank of district d based on its geographic suitability
- $maxfund_t o maximum$ fundable projects given the nationwide budget in year t Budget
- $M \rightarrow$ maximum prediction per district d (based on median)
- Identification assumption: no other demand-side factors, policies or infrastructure evolved over time following same spatial lines.

Sewerage implementation in Peru, snapshot of 2010

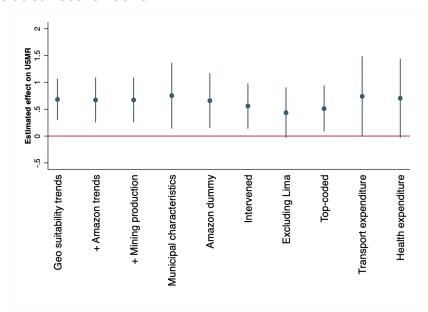

Validity of the exclusion restriction

- Lagged development indicators have no effect on the number of predicted projects.
- While sewerage-intense districts experienced steeper mortality trends, low- and high-geographically suitable districts exhibit parallel trends

Dependent variable:	Instrument for implemented sewerage projects				
Unit:	Projects				
	(1)	(2)	(3)	(4)	
Population density $(t-5)$	0.000				
	(0.000)				
	[0.937]				
Revenues $(t-5)$		0.029			
		(0.037)			
		[0.434]			
${\rm Human\ resources\ } (t-5)$			-0.000		
			(0.000)		
			[0.245]		
Internet access $(t-5)$				0.038	
				(0.030)	
				[0.210]	
				[]	
District-year	8,448	6,889	8,345	8,414	
Districts	1,408	1,408	1,408	1,408	

Validity of the exclusion restriction

- Lagged development indicators have no effect on the number of predicted projects.
- 2 While sewerage-intense districts experienced steeper mortality trends, low- and high-geographically suitable districts exhibit **parallel trends**.


Main result: implementing infrastructure kills

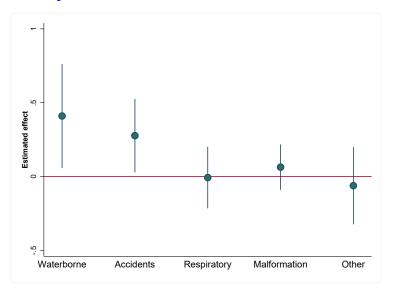
Dependent variable: Unit:	IMR	U5MR Deaths per 1 000	IMR infants or children	U5MR
	(1)	(2)	(3)	(4)
	0	OLS 2SI		LS
Implemented projects	0.000 (0.000) [0.000]	0.057 (0.016) [0.000]	0.003 (0.001) [0.058]	0.660 (0.312) [0.034]
Anderson–Rubin p-value	[0.000]	[0.000]	0.034	0.014
Mean (initial) F-stat (SW)	0.018	4.818	0.018 14.716	4.818 14.716
District-year	8,555	8,555	8,555	8,555
Districts	1,379	1,379	1,379	1,379

Notes. Clustered standard errors at the district level in parenthesis and p-values in brackets. District and year fixed effects included.

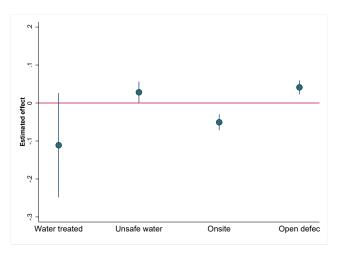
Robustness checks

Mechanisms

- Increase in mortality caused by waterborne diseases and accidents. IMR U5MR
- Increase in use of unsafe water for drinking purposes and sanitation
- Alternative channels: no changes in fertility, migration and selective

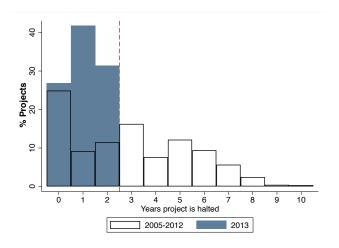

Mechanisms

- Increase in mortality caused by waterborne diseases and accidents.
- Increase in use of unsafe water for drinking purposes and sanitation practices.
- Alternative channels: no changes in fertility, migration and selective migration.


Mechanisms

- Increase in mortality caused by waterborne diseases and accidents. U5MR
- Increase in use of unsafe water for drinking purposes and sanitation practices. WASH
- Alternative channels: no changes in fertility, migration and selective migration. Demography

↑ U5MR by waterborne diseases and accidents



↑ unsafe water and sanitation behaviour

Back

Many halted projects and for long

More than 70% of projects were halted, increasing average duration 3 to 5y

Heterogenous effects by halting status

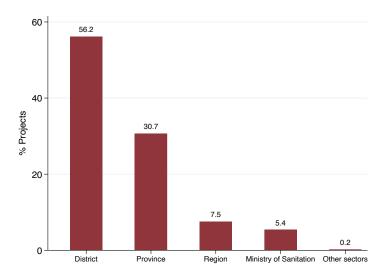
Dependent variable:	IMR	U5MR	IMR	U5MR
Unit:	Deaths per 1,000 infants or children			
	(1)	(2)	(3)	(4)

	2SLS No halting in district		2SLS All halted in district	
Implemented projects	0.003	0.633	0.006	1.707
	(0.002)	(0.455)	(0.004)	(0.930)
	[0.107]	[0.165]	[0.138]	[0.066]
Anderson-Rubin p-value	0.083	0.140	0.119	0.044
Mean (initial)	0.018	4.818	0.018	4.818
F-stat (SW)	16.070	16.070	16.504	16.504
District-year	5,236	5,236	4,346	4,346
Districts	1,009	1,009	968	968

Conclusions

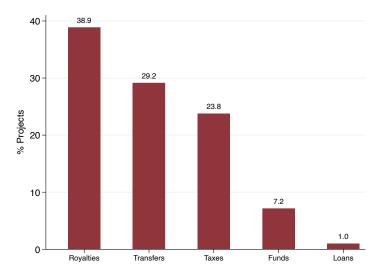
- An additional implemented project
 † early-life mortality, with respect to not starting projects
 - † IMR by 0.003 deaths (17%)
 - ↑ U5MR by 0.66 deaths (14%)
- Effect on mortality of an additional halted project is 3x as large as the effect of an additional project that is just underway.
- Ignoring social costs during project implementation overestimates welfare calculations.

- - † IMR by 0.003 deaths (17%)
 - ↑ U5MR by 0.66 deaths (14%)
- Effect on mortality of an additional halted project is 3x as large as the effect of an additional project that is just underway.
- Ignoring social costs during project implementation overestimates welfare calculations.

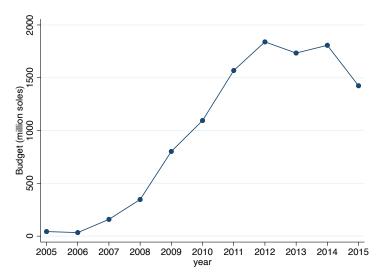

- An additional implemented project ↑ early-life mortality, with respect to not starting projects
 - † IMR by 0.003 deaths (17%)
 - † U5MR by 0.66 deaths (14%)
- Effect on mortality of an additional halted project is 3x as large as the effect of an additional project that is just underway.
- Ignoring social costs during project implementation overestimates welfare calculations.

- Benefit-cost ratio using estimated effects of completed projects [Alsan and Goldin, 2019; Galiani et al., 2005]
 - Social benefits of completed projects are 7x the estimated social cost of projects implemented without problems.
 - Social benefits just 7/10 of the social costs associated with delayed and halted projects.
 - No social benefits if projects are abandoned.
- Abandoning projects: also wasteful use of public resources
 - By 2015, halted and unfinished projects had 40% of contractual sum disbursed.
 - Total waste $\approx 1/3$ of public expenditure on tertiary education in 2015 in Peru [World Bank, 2020].

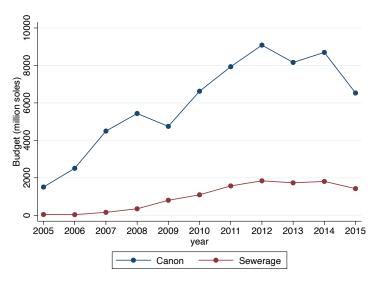
- Benefit-cost ratio using estimated effects of completed projects [Alsan and Goldin, 2019; Galiani et al., 2005]
 - Social benefits of completed projects are 7x the estimated social cost of projects implemented without problems.
 - Social benefits just 7/10 of the social costs associated with delayed and halted projects.
 - No social benefits if projects are abandoned.
- Abandoning projects: also wasteful use of public resources
 - By 2015, halted and unfinished projects had 40% of contractual sum disbursed.
 - Total waste $\approx 1/3$ of public expenditure on tertiary education in 2015 in Peru [World Bank, 2020].


Thank you!

Implementing agent



Funding source



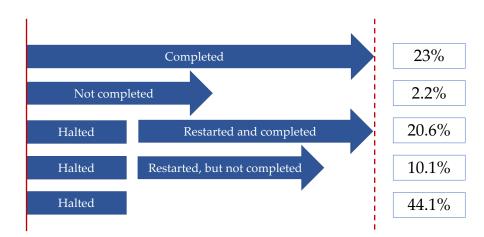
Nationwide funds for sewerage varies over time

Driven by exogenous shock to royalties

Placebo test, reduced form and first stage

	Placebo test		Reduced-form		1st stage		
Dependent variable:	IMR	U5MR	IMR	U5MR	Implemented		
Unit:	Deaths per 1,000 infants or children Projects						
	(1)	(2)	(3)	(4)	(5)		
Predicted projects	0.000	0.071	0.000	0.100	0.151		
	(0.000)	(0.064)	(0.000)	(0.041)	(0.039)		
	[0.156]	[0.266]	[0.034]	[0.014]	[0.000]		
Mean (initial)	0.018	4.818	0.018	4.818	0.086		
District-year	5,630	5,630	8,555	8,555	8,555		
Districts	1,283	1,283	1,379	1,379	1,379		

Notes. Clustered standard errors at the district level in parenthesis and p-values in brackets. District and year fixed effects included.



Alternative mechanism: demographic changes

Dependent variable	Fertility		Migration		Selective	
	Infants	Under-5	Population	Density	Education	Electricity
	Population in age sub-group		Total population	Population per km ²	Share of households	
	(1)	(2)	(3)	(4)	(5)	(6)
Implemented projects	0.173	0.864	3513.991	12.323	0.004	-0.003
	(12.510)	(62.551)	(1210.377)	(29.233)	(0.002)	(0.004)
	[0.989]	[0.989]	[0.004]	[0.673]	[0.091]	[0.386]
Anderson-Rubin p-value	0.989	0.989	0.000	0.674	0.063	0.380
Mean (initial)	495.913	2479.565	23472.257	645.086	0.219	0.557
F-stat(SW)	15.861	15.861	15.861	15.861	15.812	15.635
District-year	8555	8555	8555	8555	8551	8528
Districts	1379	1379	1379	1379	1379	1376

Back

Project pathway

