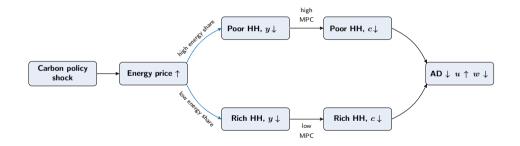
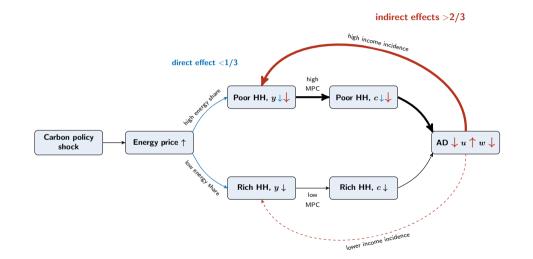
The unequal economic consequences of carbon pricing

Dynamic Equilibrium Models, NBER Summer Institute 2022

Diego R. Känzig Northwestern University July, 2022


Motivation

- Looming climate crisis put climate change at top of the global policy agenda
- Carbon pricing increasingly used as a tool to mitigate climate change but:
- Little known about effects on emissions and the economy in practice
 - Effectiveness?
 - Short-term economic costs?
 - Distributional consequences?


- New evidence from the European Emissions Trading Scheme (ETS), the largest carbon market in the world
- Exploit **institutional features** of the EU ETS and **high-frequency data** to estimate **aggregate** and **distributional** effects of **carbon pricing**
 - Cap-and-trade system: Market price for carbon, liquid futures markets
 - Regulations in the market **changed** considerably over time
 - Isolate exogenous variation by measuring carbon price change in tight window around policy events
 - Use as instrument to estimate dynamic causal effects of a carbon policy shock

- Carbon policy has significant effects on emissions and the economy
- A shock tightening the carbon pricing regime leads to
 - a significant **increase in energy prices**, persistent **fall in emissions** and uptick in green innovation
 - not without cost: economic activity falls, consumer prices increase
 - costs not borne equally across society: poor lower their consumption significantly, rich barely affected

- **Poor** not only more exposed because of **higher energy share**, also face a stronger **fall** in **income**
 - Fall in **incomes** concentrated in **demand-sensitive sectors**; less heterogeneity across sectors' energy intensity
 - Poorer households **predominantly** work in demand-sensitive sectors but are underrepresented in energy-intensive sectors

Main results

- Indirect effects via income and employment are key for the transmission
 - account for over 2/3 of the aggregate effect on consumption
- Climate-economy model with heterogeneity in energy shares, income incidence and MPCs can account for these facts
 - targeted fiscal policy can reduce economic costs of carbon pricing without compromising emission reductions

Related literature

• Effects of carbon pricing on emissions, activity, inequality:

Theory: Nordhaus 2007; Golosov et al. 2014; McKibbin, Morris, and Wilcoxen 2014; Goulder and Hafstead 2018; Goulder et al. 2019; Rausch, Metcalf, and Reilly 2011; among many others

Empirics: Lin and Li 2011; Martin, De Preux, and Wagner 2014; Andersson 2019; Pretis 2019; Metcalf 2019; Bernard, Kichian, and Islam 2018; Metcalf and Stock 2020*a*,*b*; Pizer and Sexton 2019; Ohlendorf et al. 2021

- Macroeconomic effects of tax changes: Blanchard and Perotti 2002; Romer and Romer 2010; Mertens and Ravn 2013; Cloyne 2013
- **High-frequency identification**: Kuttner 2001; Gürkaynak, Sack, and Swanson 2005; Gertler and Karadi 2015; Nakamura and Steinsson 2018; Känzig 2021
- Heterogeneity and macro policy: Johnson, Parker, and Souleles 2006; Kaplan and Violante 2014; Cloyne and Surico 2017; Bilbiie 2008; Auclert 2019; Patterson 2021

Identification

European carbon market

- Established in 2005, covers around 40% of EU GHG emissions
- Cap on total emissions covered by the system, reduced each year
- Emission allowances (EUA) allocated within the cap
 - free allocation
 - auctions
 - international credits
- Companies must surrender sufficient EUAs to cover their yearly emissions
 - enforced with heavy fines
- Allowances are traded on secondary markets (spot and futures markets)

- Establishment of EU ETS followed learning-by-doing process
- Three main phases, rules updated continuously
 - address market issues
 - expand system
 - improve efficiency
- Lots of regulatory events

Carbon price

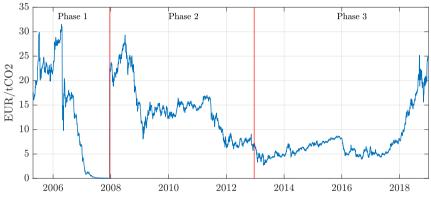


Figure 1: EUA price

- Collected comprehensive list of regulatory update events
 - Decisions of European Commission
 - Votes of European Parliament
 - Judgments of European courts
- Of interest in this paper: regulatory news on the supply of allowances
 - National allocation plans
 - Auctions: timing and quantities
 - Use of international credits
- Identified 113 relevant events from 2005-2018

High-frequency identification

• Idea: Identify carbon policy surprises from changes in EUA futures price in tight window around regulatory event

$$CPSurprise_{t,d} = \ln(F_{t,d}) - \ln(F_{t,d-1}),$$

where $F_{t,d}$ is settlement price of the EUA front contract on event day d in month t

• Aggregate surprises to monthly series

$$CPSurprise_{t} = \begin{cases} CPSurprise_{t,d} & \text{if one event} \\ \sum_{i} CPSurprise_{t,d_{i}} & \text{if multiple events} \\ 0 & \text{if no event} \end{cases}$$

Carbon policy surprises

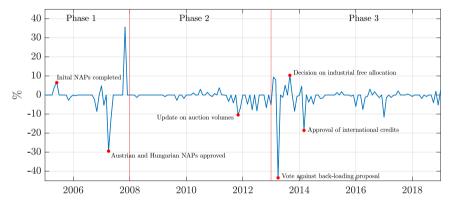


Figure 2: The carbon policy surprise series

► Alternative

• Carbon policy surprise series has good properties but still imperfect measure

 \Rightarrow Use it as an external **instrument** to estimate dynamic causal effects on variables of interest (Stock and Watson, 2012; Mertens and Ravn, 2013) **Details**

- robust to internal instrument approach (Ramey, 2011; Plagborg-Møller and Wolf, 2019)
 Details
- For estimation I rely on VAR techniques given the short sample More

- 8 variable system, euro area data:
 - Carbon block: $HICP^1$ energy, total GHG emissions
 - **Macro block**: headline HICP, industrial production, unemployment rate, policy rate, stock market index, REER
- 6 lags as controls
- Estimation sample: 1999M1-2018M12

▶ Data

¹HICP: Harmonized index of consumer prices

Results

- Weak instrument test by Montiel Olea and Pflueger (2013)
- Heteroskedastcitity-robust F-statistic: 20.95
- Larger than critical value: 15.06 (assuming worst case bias of 20% with 5% size)
- No evidence for weak instrument problems

The aggregate effects of carbon pricing

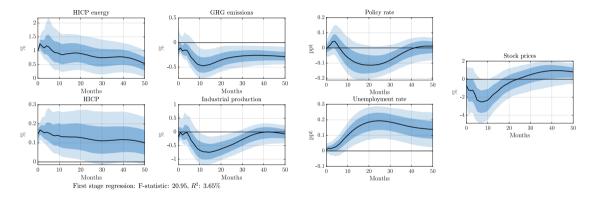


Figure 3: Responses to carbon policy shock, normalized to increase HICP energy by 1%The solid line is the point estimate and the dark and light shaded areas are 68 and 90% confidence bands Restrictive carbon policy shock leads to

- · strong, immediate increase in energy prices
- significant and persistent fall in emissions

This has **consequences** for the **economy**:

- Consumer prices increase
- · Industrial production falls, unemployment rate rises
- \Rightarrow Trade-off between reducing emissions and economic activity

[►] Historical importance

- Energy prices play an important role in the transmission of carbon policy
- Suggests that power sector largely passes through emissions cost to energy prices
 - Model with carbon price implies strong pass-through of carbon to energy prices
 - Event-study evidence shows that returns in utility sector increase in the short run

- Higher energy prices can have significant effects on the economy via direct and indirect channels
- Estimate effects on GDP components using local projections

$$y_{i,t+h} = \beta_{h,0}^{i} + \psi_{h}^{i} CPShock_{t} + \beta_{h,1}^{i} y_{i,t-1} + \ldots + \beta_{h,p}^{i} y_{i,t-p} + \xi_{i,t,h}$$

The transmission to the macroeconomy

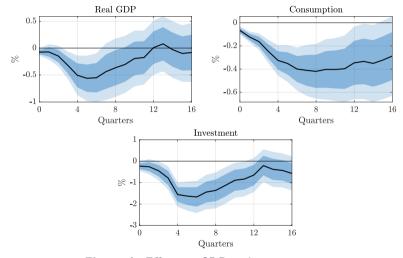
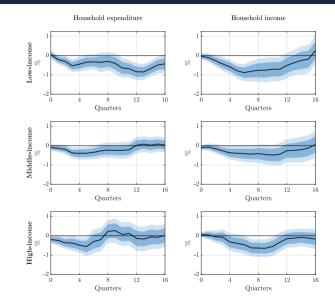


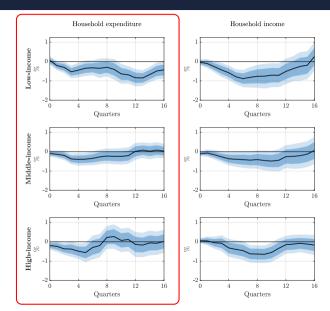
Figure 4: Effect on GDP and components

- Fall in GDP similar to industrial production
- · Looking at components, fall driven by lower consumption and investment
 - magnitudes much larger than can be accounted for by direct effect via energy prices
 - indirect effects via income seem to be important

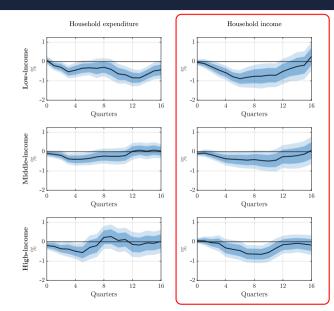

- Big debate on energy poverty amid Commission's 'Fit for 55' proposal
- Crucial to better understand the distributional effects crucial of carbon pricing
- Also helps to sharpen understanding of transmission channels at work

- Study heterogeneous effects of carbon pricing on households
- **Problem**: Household-level micro data not available at the EU level for long enough and regular sample
 - Focus on UK where high-quality micro data on income and expenditure is available
 - · Check external validity using data for Denmark and Spain

Living costs and food survey


- LCFS is the major UK survey on household spending
 - provides detailed information on **expenditure**, **income**, and household **characteristics**
 - fielded every year but interview date allows to construct **quarterly** measures
- I compile a repeated cross-section spanning the period 1999 to 2018
 - each wave contains around 6,000 households, generating over 120,000 observations in total
- To estimate effects, I use a **grouping estimator** using **normal disposable income** as the grouping variable:
 - Low-income: Bottom 25%
 - Middle-income: Middle 50%
 - High-income: Top 25%

Heterogeneity by income group



27

Heterogeneity by income group



Heterogeneity by income group

27

- Low-income households lower their consumption significantly and persistently
- Response of high-income households barely significant
 - Low-income households are more exposed because of higher energy share
 - But also experience stronger fall in their income

Group differences

► More on grouping

Other countries

Direct versus indirect effects

	Overall	By income group			
		Low-income	Middle-income	High-income	
Expenditure					
Energy	21.13	18.68	25.76	14.32	
	[-10.38, 52.64]	[-24.29, 61.66]	[-15.36, 66.89]	[-30.06, 58.71]	
Non-durables	-140.09	-251.41	-117.55	-73.83	
excl. energy	[-238.22, -41.95]	[-360.55, -142.27]	[-221.26, -13.85]	[-311.36, 163.71]	
Durables	-28.64	-27.88	-1.26	-84.16	
	[-81.33, 24.06]	[-56.74, 0.99]	[-66.70, 64.19]	[-227.07, 58.75]	
Income					
	-377.46	-311.96	-336.55	-524.77	
	[-615.14, -139.77]	[-583.56, -40.36]	[-643.87, -29.23]	[-1038.02, -11.52]	

Table 1: Cumulative changes over impulse horizon in pounds

Direct versus indirect effects

	Overall	By income group		
		Low-income	Middle-income	High-income
Expenditure				
Energy	21.13 [-10.38, 52.64]	18.68 [-24.29, 61.66]	25.76 [-15.36, 66.89]	14.32 [-30.06, 58.71]
Non-durables excl. energy	-140.09 [-238.22, -41.95]	-251.41 [-360.55, -142.27]	-117.55 [-221.26, -13.85]	-73.83 [-311.36, 163.71]
Durables	-28.64 [-81.33, 24.06]	-27.88 [-56.74, 0.99]	-1.26 [-66.70, 64.19]	-84.16 [-227.07, 58.75]
Income				
	-377.46	-311.96	-336.55	-524.77
	[-615.14, -139.77]	[-583.56, -40.36]	[-643.87, -29.23]	[-1038.02, -11.52]

Table 1: Cumulative changes over impulse horizon in pounds

	Overall	By income group		
		Low-income	Middle-income	High-income
Expenditure				
Energy	21.13	18.68	25.76	14.32
	[-10.38, 52.64]	[-24.29, 61.66]	[-15.36, 66.89]	[-30.06, 58.71]
Non-durables	-140.09	-251.41	-117.55	-73.83
excl. energy	[-238.22, -41.95]	[-360.55, -142.27]	[-221.26, -13.85]	[-311.36, 163.71]
Durables	-28.64	-27.88	-1.26	-84.16
	[-81.33, 24.06]	[-56.74, 0.99]	[-66.70, 64.19]	[-227.07, 58.75]
Income				
	-377.46	-311.96	-336.55	-524.77
	[-615.14, -139.77]	[-583.56, -40.36]	[-643.87, -29.23]	[-1038.02, -11.52]

	Overall	By income group		
		Low-income	Middle-income	High-income
Expenditure				
Energy	21.13	18.68	25.76	14.32
	[-10.38, 52.64]	[-24.29, 61.66]	[-15.36, 66.89]	[-30.06, 58.71]
Non-durables	-140.09	-251.41	-117.55	-73.83
excl. energy	[-238.22, -41.95]	[-360.55, -142.27]	[-221.26, -13.85]	[-311.36, 163.71]
Durables	-28.64	-27.88	-1.26	-84.16
	[-81.33, 24.06]	[-56.74, 0.99]	[-66.70, 64.19]	[-227.07, 58.75]
Income				
	-377.46	-311.96	-336.55	-524.77
	[-615.14, -139.77]	[-583.56, -40.36]	[-643.87, -29.23]	[-1038.02, -11.52]

	Overall	By income group		
		Low-income	Middle-income	High-income
Expenditure				
Energy	21.13	18.68	25.76	14.32
	[-10.38, 52.64]	[-24.29, 61.66]	[-15.36, 66.89]	[-30.06, 58.71]
Non-durables	-140.09	-251.41	-117.55	-73.83
excl. energy	[-238.22, -41.95]	[-360.55, -142.27]	[-221.26, -13.85]	[-311.36, 163.71]
Durables	-28.64	-27.88	-1.26	-84.16
	[-81.33, 24.06]	[-56.74, 0.99]	[-66.70, 64.19]	[-227.07, 58.75]
Income				
	-377.46	-311.96	-336.55	-524.77
	[-615.14, -139.77]	[-583.56, -40.36]	[-643.87, -29.23]	[-1038.02, -11.52]

	Overall	By income group		
		Low-income	Middle-income	High-income
Expenditure				
Energy	21.13	18.68	25.76	14.32
	[-10.38, 52.64]	[-24.29, 61.66]	[-15.36, 66.89]	[-30.06, 58.71]
Non-durables	-140.09	-251.41	-117.55	-73.83
excl. energy	[-238.22, -41.95]	[-360.55, -142.27]	[-221.26, -13.85]	[-311.36, 163.71]
Durables	-28.64	-27.88	-1.26	-84.16
	[-81.33, 24.06]	[-56.74, 0.99]	[-66.70, 64.19]	[-227.07, 58.75]
Income	-377.46	-311.96	-336.55	-524.77
	[-615.14, -139.77]	[-583.56, -40.36]	[-643.87, -29.23]	[-1038.02, -11.52]

- Energy bill increases but **cannot** account for fall in expenditure, particularly for **low-income** households
- Fall in expenditure of low-income households **comparable** to fall in income; higher-income households reduce expenditure much less
- Indirect effects via income account for over 2/3 of the aggregate consumption response, direct effects via energy price less than 1/3
- Policy heavily regressive after accounting for indirect effects
 - Low-income households account for $\sim 40\%$ of the aggregate effect on consumption though they account for much smaller consumption share in normal times ($\sim 15\%$)

- Significant heterogeneity in income responses
- Potential explanations:
 - Heterogeneity in labor income because of differences in employment sector More
 - Differences in income composition: labor versus. financial income
 More

- Fiscal policies **targeted** to the **most affected** households can **reduce** the economic **costs** of climate change mitigation policy
- To the extent that energy demand is **inelastic**, this should **not compromise** emission reductions
 - Turns out to be particularly the case for low-income households **PIRES**

- To study role of **redistributing** auction revenues, build a **climate-economy model** to use as a laboratory
- · Climate-economy model with nominal rigidities and household heterogeneity
 - Energy sector producing energy/emissions using labor
 - Non-energy NK sector producing consumption good using energy, labor and capital
 - Two households: hand-to-mouth and savers differing in energy expenditure shares, income incidence and MPCs. Idiosyncratic risk as households switch between types
- · Calibrated to match key micro and macro moments

Model details
 Model evaluation

Redistributing carbon revenues

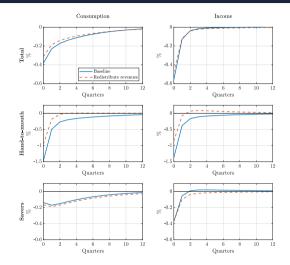


Figure 5: Responses to carbon tax shock, normalized to increase energy price by 1%

- Model can match the estimated (peak) magnitudes in the data
 - Heterogeneity plays a crucial role,
 - In RA model implausibly high energy share needed to match magnitudes
- Redistributing tax revenues to hand-to-mouth can
 - reduce inequality and attenuate aggregate effect on consumption
 - while emissions only change little

▶ More

Policy implications

• Especially relevant given recent surge in European carbon prices

• Distributional effects could threaten **public support** of the policy

Suggestive evidence

- An often used argument for carbon prices is that it fosters **directed technological change**
- Use **patent data** from the EPO to study effect on patenting in climate change mitigation technologies

Effect on innovation

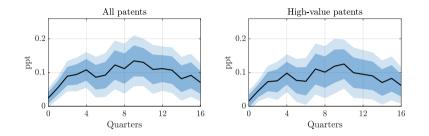


Figure 6: Share of low-carbon patents

- Significant increase in climate change mitigation patenting
- Key for longer-term transition to low-carbon economy

Check robustness with respect to

- Selection of events: robust to just using NAP/auction events, robust to dropping largest events
- **Background noise**: robust to controlling for confounding news using a heteroskedasticity-based approach
- **Sample and specification choices**: robust to estimating on shorter sample, to lag order, and to using a smaller system to estimate effects

▶ Details

Conclusion

- New evidence on the **economic effects** of **carbon pricing** from the European carbon market
- · Policy successful in reducing emissions and fostering green innovation
- But comes at economic cost that is not borne equally across society
 ⇒ policy is quite regressive after accounting for indirect effects
- Targeted fiscal policy can reduce these costs without compromising emission reductions

Thank you!

Table 2: Regulatory update events (extract)

	Date	Event description	Туре
54	30/11/2012	Commission rules on temporary free allowances for power plants in Hungary	Free alloc.
55	25/01/2013	Update on free allocation of allowances in 2013	Free alloc.
56	28/02/2013	Free allocation of 2013 aviation allowances postponed	Free alloc.
57	25/03/2013	Auctions of aviation allowances not to resume before June	Auction
58	16/04/2013	The European Parliament voted against the Commission's back-loading proposal	Auction
59	05/06/2013	Commission submits proposal for international credit entitlements for 2013 to 2020	Intl. credits
60	03/07/2013	The European Parliament voted for the carbon market back-loading proposal	Auction
61	10/07/2013	Member states approve addition of sectors to the carbon leakage list for 2014	Free alloc.
62	30/07/2013	Update on industrial free allocation for phase III	Free alloc.
63	05/09/2013	Commission finalized decision on industrial free allocation for phase three	Free alloc.
64	26/09/2013	Update on number of aviation allowances to be auctioned in 2012	Auction

Table 2: Regulatory update events (extract)

	Date	Event description	Туре
54	30/11/2012	Commission rules on temporary free allowances for power plants in Hungary	Free alloc.
55	25/01/2013	Update on free allocation of allowances in 2013	Free alloc.
56	28/02/2013	Free allocation of 2013 aviation allowances postponed	Free alloc.
57	25/03/2013	Auctions of aviation allowances not to resume before June	Auction
58	16/04/2013	The European Parliament voted against the Commission's back-loading proposal	Auction
59	05/06/2013	Commission submits proposal for international credit entitlements for 2013 to 2020	Intl. credits
60	03/07/2013	The European Parliament voted for the carbon market back-loading proposal	Auction
61	10/07/2013	Member states approve addition of sectors to the carbon leakage list for 2014	Free alloc.
62	30/07/2013	Update on industrial free allocation for phase III	Free alloc.
63	05/09/2013	Commission finalized decision on industrial free allocation for phase three	Free alloc.
64	26/09/2013	Update on number of aviation allowances to be auctioned in 2012	Auction

- Narrative account:
- Autocorrelation:
- Forecastability:
- Orthogonality:
- Background noise:

- Narrative account: \checkmark Accords well with accounts on historical episodes
- Autocorrelation:
- Forecastability:
- Orthogonality:
- Background noise:

- Narrative account: \checkmark Accords well with accounts on historical episodes
- Autocorrelation: \checkmark No evidence for autocorrelation (Ljung-Box p-val: 0.92)
- Forecastability:
- Orthogonality:
- Background noise:

- Narrative account: \checkmark Accords well with accounts on historical episodes
- Autocorrelation: \checkmark No evidence for autocorrelation (Ljung-Box p-val: 0.92)
- Forecastability: \checkmark Not forecastable by macroeconomic or financial variables
- Orthogonality:
- Background noise:

- Narrative account: \checkmark Accords well with accounts on historical episodes
- Autocorrelation: \checkmark No evidence for autocorrelation (Ljung-Box p-val: 0.92)
- Forecastability: \checkmark Not forecastable by macroeconomic or financial variables
- Orthogonality: \checkmark Uncorrelated with measures of other structural shocks $_{\rm (e.g. \ oil,}$

uncertainty, or fiscal shocks)

Background noise:

- Narrative account: \checkmark Accords well with accounts on historical episodes
- Autocorrelation: \checkmark No evidence for autocorrelation (Ljung-Box p-val: 0.92)
- Forecastability: \checkmark Not forecastable by macroeconomic or financial variables
- Orthogonality: ✓ Uncorrelated with measures of other structural shocks (e.g. oil, uncertainty, or fiscal shocks)
- Background noise: \checkmark Variance on event days 6 times larger than on control days

Autocorrelation

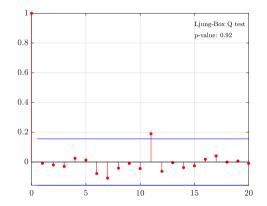
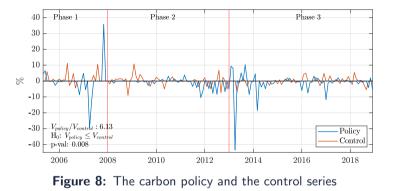


Figure 7: The autocorrelation function of the carbon policy surprise series

Table 3: Granger causality tests


Variable	p-value
Instrument	0.9066
EUA price	0.7575
HICP energy	0.7551
GHG emissions	0.7993
HICP	0.8125
Industrial production	0.7540
Policy rate	0.9414
Unemployment rate	0.9310
Stock prices	0.9718
REER	0.9075
Joint	0.9997

Orthogonality

Shock	Source	ρ	p-value	п	Sample
Monthly measures					
Global oil market					
Oil supply	Kilian (2008) (extended)	-0.05	0.61	104	2005M05-2013M12
	Kilian (2009) (updated)	-0.02	0.76	164	2005M05-2018M12
	Caldara, Cavallo, and Iacoviello (2019)	-0.05	0.57	128	2005M05-2015M12
	Baumeister and Hamilton (2019)	-0.11	0.17	164	2005M05-2018M12
	Känzig (2021) (updated)	0.02	0.83	164	2005M05-2018M12
Global demand	Kilian (2009) (updated)	0.01	0.93	164	2005M05-2018M12
	Baumeister and Hamilton (2019)	-0.03	0.69	164	2005M05-2018M12
Oil-specific demand	Kilian (2009) (updated)	0.05	0.55	164	2005M05-2018M12
Consumption demand	Baumeister and Hamilton (2019)	0.05	0.51	164	2005M05-2018M12
Inventory demand	Baumeister and Hamilton (2019)	-0.03	0.68	164	2005M05-2018M1
Monetary policy					
Monetary policy shock	Jarociński and Karadi (2020)	0.02	0.80	140	2005M05-2016M12
Central bank info	Jarociński and Karadi (2020)	0.03	0.75	140	2005M05-2016M12
Financial & uncertainty					
Financial conditions	BBB spread residual	0.06	0.43	164	2005M05-2018M12
Financial uncertainty	VIX residual (Bloom, 2009)	0.10	0.22	164	2005M05-2018M12
	VSTOXX residual	0.05	0.50	164	2005M05-2018M12
Policy uncertainty	Global EPU (Baker, Bloom, and Davis, 2016)	0.03	0.71	164	2005M05-2018M12
Quarterly measures					
Fiscal policy	Euro area (Alloza, Burriel, and Pérez, 2019)	0.12	0.44	43	2005Q2-2015Q4
	Germany	0.22	0.15	43	2005Q2-2015Q4
	France	-0.06	0.69	43	2005Q2-2015Q4
	Italy	0.28	0.07	43	2005Q2-2015Q4
	Spain	0.10	0.52	43	2005Q2-2015Q4

Notes: The table shows the correlation of the carbon policy surprise series with a wide range of different shock measures from the literature, including global oil market shocks, monetary policy, financial and uncertainty shocks. ρ is the Pearson correlation coefficient, the p-value corresponds to the test whether the correlation is different from zero and n is the sample size.

Background noise

Notes: This figure shows the carbon policy surprise series together with the surprise series constructed on a selection of control days that do not contain a regulatory announcement but are otherwise similar.

Change in carbon price relative to electricity prices

$$CPSurprise_{t,d} = (F_{t,d} - F_{t,d-1})/E_{t,d-1}$$

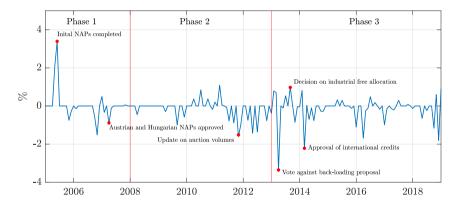
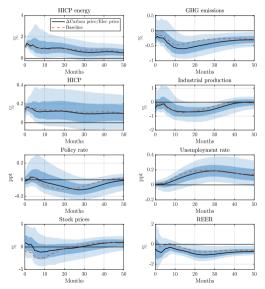



Figure 9: The carbon policy surprise series

Change in carbon price relative to electricity prices

▲ Back

First stage regression: F-statistic: 5.98, R^2 : 2.06%

External instrument approach

• Structural VAR

$$\mathbf{y}_t = \mathbf{b} + \mathbf{B}_1 \mathbf{y}_{t-1} + \cdots + \mathbf{B}_{\rho} \mathbf{y}_{t-\rho} + \mathbf{S} \boldsymbol{\varepsilon}_t, \qquad \boldsymbol{\varepsilon}_t \sim N(0, \Omega)$$

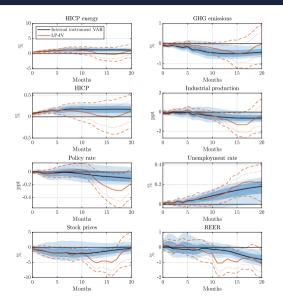
- External instrument: variable *z_t* correlated with the **shock of interest** but *not* with the **other shocks**
- Identifying assumptions:

$$\begin{split} \mathbb{E}[z_t \varepsilon_{1,t}] &= \alpha \neq 0 & (\text{Relevance}) \\ \mathbb{E}[z_t \varepsilon_{2:n,t}] &= 0, & (\text{Exogeneity}) \\ u_t &= \mathsf{S}\varepsilon_t & (\text{Invertibility}) \end{split}$$

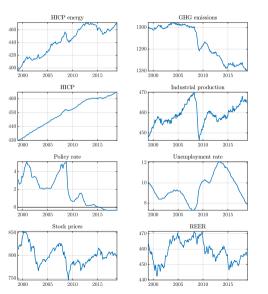
• Use carbon policy surprise series as external instrument for energy price

Internal instrument approach

- Augment VAR by external instrument: $\bar{\mathbf{y}}_t = (z_t, \ \mathbf{y}_t')'$

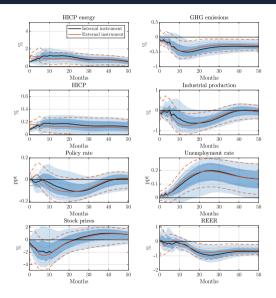

$$ar{\mathsf{y}}_t = \mathsf{b} + \mathsf{B}_1 ar{\mathsf{y}}_{t-1} + \dots + \mathsf{B}_p ar{\mathsf{y}}_{t-p} + \mathsf{S} arepsilon_t, \qquad arepsilon_t \sim \mathcal{N}(0,\Omega)$$

Identifying assumptions:


$$\begin{split} \mathbb{E}[z_t \varepsilon_{1,t}] &= \alpha \neq 0 & (\text{Relevance}) \\ \mathbb{E}[z_t \varepsilon_{2:n,t}] &= 0, & (\text{Contemporaneous exogeneity}) \\ \mathbb{E}[z_t \varepsilon_{t+j}] &= 0, & \text{for } j \neq 0 & (\text{Lead-lag exogeneity}) \end{split}$$

 Robust to non-invertibility but instrument has to be orthogonal to leads and lags of structural shocks

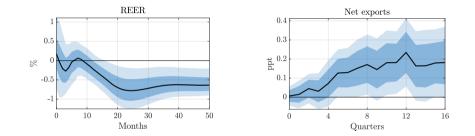
Local projections versus internal instrument approach

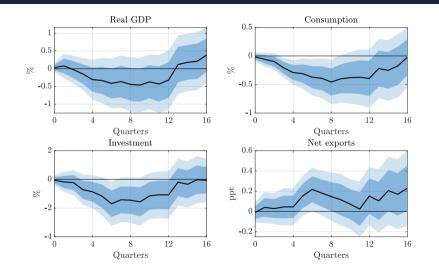


Data

Internal versus external instrument approach

Foreign exchange and trade




Figure 11: Effect on foreign exchange and trade

Responses to oil supply news shock

First stage regression: F-statistic: 5.90, R²: 2.52%

Responses to oil supply news shock

Model with carbon price

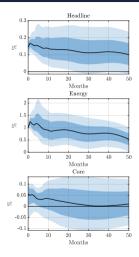


Figure 12: Model including carbon spot price

Historical importance

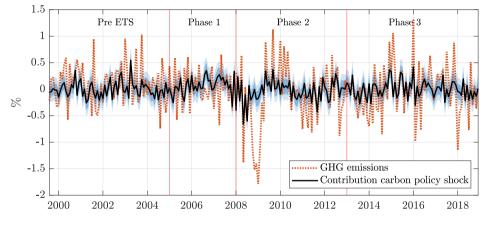
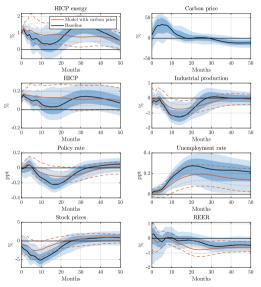


Figure 13: Historical decomposition of emissions growth


- Carbon policy shocks have contributed meaningfully to historical variations in energy prices, emissions and macro variables
- But: Did not account for the fall in emissions following the global financial crisis
 - supports the validity of the identified shock

h	HICP energy	Emissions	HICP	IP	Policy rate	Unemp. rate	Stock prices	REER
Pane	el A: Forecast var	iance decomposi	ition (SVAR-IV)					
6	0.41	0.12	0.49	0.02	0.00	0.07	0.12	0.00
	[0.20, 0.81]	[0.03, 0.41]	[0.27, 0.83]	[0.00, 0.07]	[0.00, 0.01]	[0.01, 0.55]	[0.03, 0.63]	[0.00, 0.01]
12	0.34	0.25	0.34	0.14	0.03	0.23	0.15	0.00
	[0.14, 0.71]	[0.07, 0.69]	[0.15, 0.68]	[0.04, 0.49]	[0.01, 0.19]	[0.06, 0.84]	[0.04, 0.65]	[0.00, 0.01]
24	0.35	0.33	0.25	0.27	0.12	0.37	0.11	0.08
	[0.15, 0.70]	[0.10, 0.73]	[0.08, 0.54]	[0.09, 0.67]	[0.03, 0.54]	[0.12, 0.91]	[0.03, 0.48]	[0.03, 0.26]
48	0.39	0.34	0.19	0.22	0.12	0.39	0.11	0.20
	[0.16, 0.72]	[0.13, 0.68]	[0.05, 0.47]	[0.08, 0.57]	[0.03, 0.46]	[0.13, 0.85]	[0.03, 0.45]	[0.06, 0.48]
Fore	cast variance rati	o (SVMA-IV)						
6	0.04, 0.31	0.02, 0.18	0.07, 0.49	0.02, 0.14	0.00, 0.02	0.05, 0.35	0.00, 0.03	0.00, 0.00
	[0.02, 0.53]	[0.01, 0.40]	[0.04, 0.75]	[0.01, 0.34]	[0.00, 0.06]	[0.03, 0.59]	[0.00, 0.09]	[0.00, 0.02]
12	0.05, 0.33	0.03, 0.18	0.07, 0.50	0.02, 0.16	0.00, 0.02	0.05, 0.36	0.01, 0.04	0.00, 0.01
	[0.03, 0.53]	[0.01, 0.36]	[0.04, 0.73]	[0.01, 0.33]	[0.00, 0.05]	[0.03, 0.60]	[0.00, 0.08]	[0.00, 0.02]
24	0.05, 0.32	0.03, 0.19	0.07, 0.50	0.02, 0.18	0.01, 0.08	0.08, 0.54	0.01, 0.04	0.00, 0.01
	[0.02, 0.51]	[0.01, 0.36]	[0.04, 0.72]	[0.01, 0.35]	[0.01, 0.19]	[0.04, 0.78]	[0.00, 0.09]	[0.00, 0.02
48	0.05, 0.32	0.03, 0.19	0.07, 0.50	0.02, 0.18	0.01, 0.08	0.09, 0.55	0.01, 0.05	0.00, 0.01
	[0.02, 0.51]	[0.01, 0.35]	[0.04, 0.72]	[0.01, 0.34]	[0.01, 0.19]	[0.04, 0.78]	[0.00, 0.09]	[0.00, 0.02

Table 4: Variance decomposition

Model with carbon price

First stage regression: F-statistic: 15.30, R²: 5.48%

To better understand **role** of **power sector** perform event study using daily futures and stock prices

$$q_{i,d+h} - q_{i,d-1} = \beta_{h,0}^i + \psi_h^i CPSurprise_d + \beta_{h,1}^i \Delta q_{i,d-1} + \ldots + \beta_{h,p}^i \Delta q_{i,d-p} + \xi_{i,d,h}$$

- $q_{i,d+h}$: (log) price of asset *i*, *h* days after event *d*
- *CPSurprise_d*: carbon policy surprise on event day
- ψ_h^i : effect on asset price *i* at horizon *h*

The role of energy prices

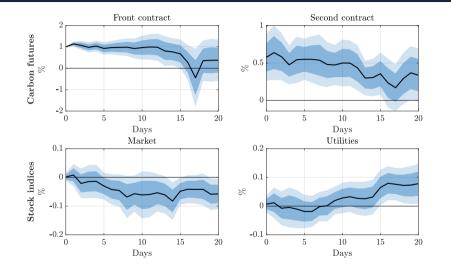


Figure 15: Carbon price and stock market indices

- Carbon futures prices increase significantly after carbon policy surprise
- Stock market does not respond on impact but only falls with a lag
- Utilities sector is the only sector displaying a positive response
 - Supports interpretation that utilities sector **passes through** emissions cost to their customers

Foreign exchange and trade

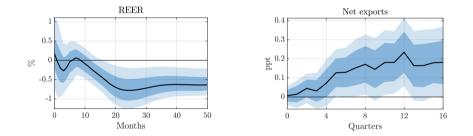
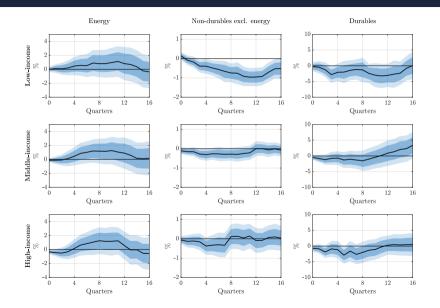
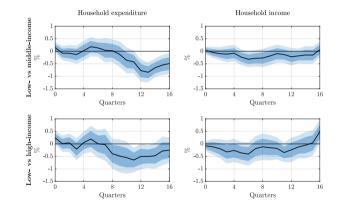


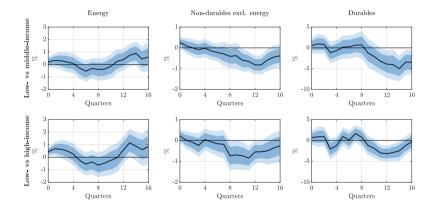
Figure 16: Effect on foreign exchange and trade

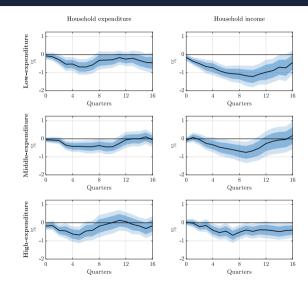

Table 5: Descriptive statistics on households in the LCFS

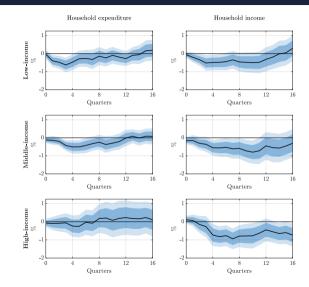
	Overall	By income group		
		Low-income	Middle-income	High-incom
Income and expenditure				
Normal disposable income	6,699	3,711	6,760	10,835
Total expenditure	4,459	3,019	4,444	6,259
Energy share	7.2	9.4	7.1	5.
Non-durables (excl. energy) share	81.5	81.7	81.6	81.
Durables share	11.3	8.9	11.3	13.
Household characteristics				
Age	51	46	54	49
Education (share with post-comp.)	33.5	25.0	29.1	51.0
Housing tenure				
Social renters	20.9	47.1	17.4	3.7
Mortgagors	42.6	25.5	41.6	60.4
Outright owners	36.6	27.4	41.0	36.0

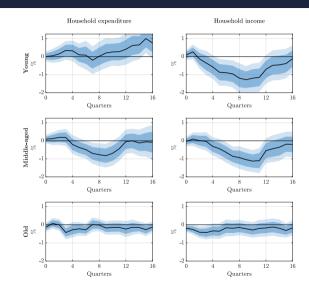

Table 5: Descriptive statistics on households in the LCFS

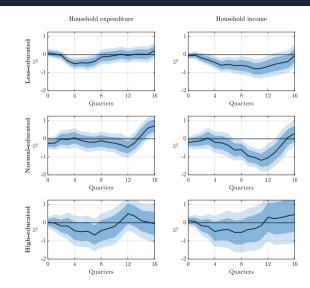
	Overall By		By income group	
		Low-income	Middle-income	High-income
Income and expenditure				
Normal disposable income	6,699	3,711	6,760	10,835
Total expenditure	4,459	3,019	4,444	6,259
Energy share	7.2	9.4	7.1	5.1
Non-durables (excl. energy) share	81.5	81.7	81.6	81.3
Durables share	11.3	8.9	11.3	13.6
Household characteristics				
Age	51	46	54	49
Education (share with post-comp.)	33.5	25.0	29.1	51.0
Housing tenure				
Social renters	20.9	47.1	17.4	3.7
Mortgagors	42.6	25.5	41.6	60.4
Outright owners	36.6	27.4	41.0	36.0

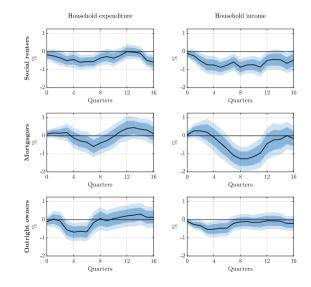

Energy versus non-energy expenditure

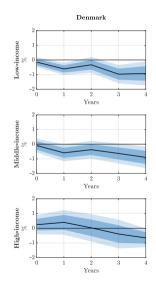

Group differences

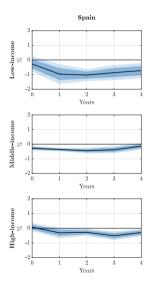

◀ Back


Group by expenditure


Group by permanent income


Group by age


Group by education



Group by housing tenure

External validity

Heterogeneity by sector of employment

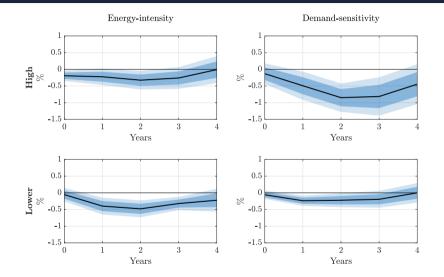


Figure 17: Income response by sector of employment

Heterogeneity by sector of employment

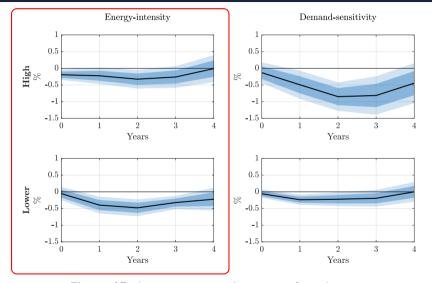


Figure 17: Income response by sector of employment

Heterogeneity by sector of employment

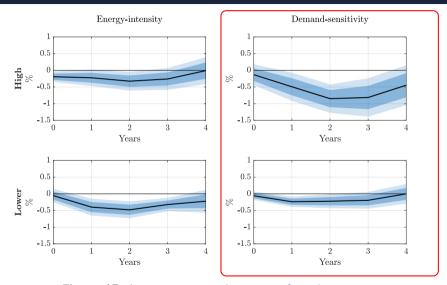


Figure 17: Income response by sector of employment

Sectors	Overall	By income group		
		Low-income	Middle-income	High-income
Energy-intensity				
High	21.8	9.8	25.8	25.9
Lower	78.2	90.2	74.2	74.1
Demand-sensitivity				
High	30.6	49.1	27.3	18.1
Lower	69.4	50.9	72.7	81.9

Table 6: Sectoral distribution of employment

Sectors	Overall	By income group		
		Low-income	Middle-income	High-income
Energy-intensity				
High	21.8	9.8	25.8	25.9
Lower	78.2	90.2	74.2	74.1
Demand-sensitivity				
High	30.6	49.1	27.3	18.1
Lower	69.4	50.9	72.7	81.9

Table 6: Sectoral distribution of employment

Table 7: Sectors by energy intensity and demand sensitivity

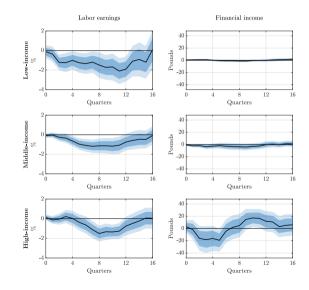

Group	Sectors	SIC sections
High energy intensity	Agriculture, forestry, and fishing; mining and quarrying; manufacturing; electricity, gas and water supply (utilities); transport, storage and com- munications	A-E, I
Lower energy intensity	Construction; Wholesale and retail trade; Hotels and restaurants; Financial intermediation; Real estate, renting and business; Public administration and defense; Education; Health and social work; Other community, social and personal services	F-H, J-Q
High demand sensitivity	Construction; Wholesale and retail trade; Hotels and restaurants; Other community, social and personal services	F-H, O-Q
Lower demand sensitivity	Agriculture, forestry, and fishing; mining and quarrying; manufacturing; electricity, gas and water supply (utilities); transport, storage and com- munications; Financial intermediation; Real estate, renting and business; Public administration and defense; Education; Health and social work	A-E, J-N

Table 8: Sector classification

Sectors	Energy intensity (TJ/\poundsm)	Demand sensitivity $(\varepsilon_u y_i)$
A-B: Agriculture, forestry and fishing	11.5	-0.79
C,E: Mining and quarrying; energy, gas and water	12.9	-0.10
D: Manufacturing	11.8	-0.60
F: Construction	2.6	-0.81
G-H: Wholesale and retail trade; hotels and restaurants	3.0	-1.05
I: Transport, storage and communication	9.5	-0.44
J-K: Banking, finance and insurance	0.7	-0.71
L-N: Public admin, education and health	1.3	-0.62
O-Q: Other services	3.5	-1.09

Earnings and financial income

Energy expenditure

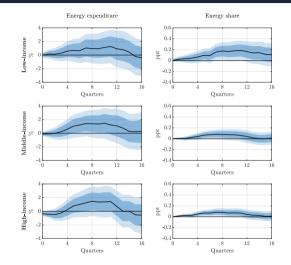


Figure 18: Energy expenditure and energy share by income group

Model evaluation

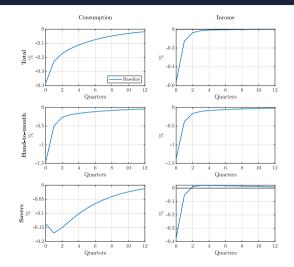


Figure 19: Responses to carbon tax shock, normalized to increase energy price by 1%

Model evaluation

Table 9: Direct versus indirect effects in model and data

	Overall	By household group		
		Low-income/ Hand-to-mouth	Higher-income/ Savers	
Data				
Direct	15.2	7.2	20.3	
	[4.6, 34.4]	[1.1, 16.6]	[4.6, 63.2]	
Indirect	84.8	92.8	79.7	
	[65.6, 95.4]	[83.4,98.9]	[36.8, 95.4]	
Model				
Direct	19.5	9.1	26.0	
Indirect	80.5	90.9	74.0	

Redistributing carbon revenues

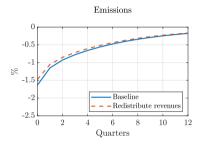


Figure 20: Responses to carbon tax shock, normalized to increase energy price by 1%

Back

Households

- Two types of households: λ hand-to-mouth H and $1-\lambda$ savers S
- · Hand-to-mouth live paycheck to paycheck, consume all their income
- · Savers choose consumption intertemporally, save/invest in capital and bonds
- · Households subject to idiosyncratic risk: switch between types
 - probability to stay saver s, probability to stay hand-to-mouth h
- · Only risk-free bonds are liquid and can be used to self-insure
- · Centralized labor market structure: union sets wages

$$w_t = \varphi h_t^{\theta} \left(\lambda \frac{1}{p_{H,t}} U_x(x_{H,t}, h_t) + (1-\lambda) \frac{1}{p_{S,t}} U_x(x_{S,t}, h_t) \right)^{-1}$$

Model details

- Savers maximize lifetime utility $\mathbb{E}_0\left[\sum_{t=0}^{\infty}\beta^t U(x_{S,t}, h_t)\right]$ subject to budget constraint and capital accumulation
- Consumption good is composite of energy and non-energy good $\frac{e_{x}}{e_{x}}$

$$x_{S,t} = \left(a_{S,c}^{\frac{1}{\epsilon_{X}}}c_{S,t}^{\frac{\epsilon_{X}-1}{\epsilon_{X}}} + a_{S,e}^{\frac{1}{\epsilon_{X}}}e_{S,t}^{\frac{\epsilon_{X}-1}{\epsilon_{X}}}\right)^{\frac{\epsilon_{X}}{\epsilon_{X}}}$$

• Optimizing behavior

$$c_{S,t} = a_{S,c} \left(\frac{1}{\rho_{S,t}}\right)^{-\epsilon_x} x_{S,t}$$

$$e_{S,t} = a_{S,e} \left(\frac{\rho_{e,t}}{\rho_{S,t}}\right)^{-\epsilon_x} x_{S,t}$$

$$\lambda_{S,t} = \beta \mathbb{E}_t \left[(1 + (1 - \tau^k)r_{t+1} - \delta)\lambda_{S,t+1} \right]$$

$$\lambda_{S,t} = \beta \mathbb{E}_t \left[\frac{R_t^b}{\Pi_{t+1}} (s\lambda_{S,t+1} + (1 - s)\lambda_{H,t+1}) \right]$$

• Hand-to-mouth are constrained, just exhaust their budget in every period

$$c_{H,t} = a_{H,c} \left(\frac{1}{p_{s,t}}\right)^{-\epsilon_{x}} x_{H,t}$$
$$e_{H,t} = a_{H,e} \left(\frac{p_{e,t}}{p_{s,t}}\right)^{-\epsilon_{x}} x_{H,t}$$

 $p_{H,t}x_{H,t} = y_{H,t}$

Model details

Firms

• Energy producers, subject to carbon tax τ_t

$$e_t = a_{e,t}h_{e,t}$$

 $w_t = (1 - \tau_t)p_{e,t}rac{e_t}{h_{e,t}}$

• Consumption good producers

$$y_{t} = e^{-\gamma s_{t}} a_{t} k_{t}^{\alpha} e_{y,t}^{\nu} h_{y,t}^{1-\alpha-\nu}$$

$$r_{t} = \alpha m c_{t} \frac{y_{t}}{k_{t}}$$

$$p_{e,t} = \nu m c_{t} \frac{y_{t}}{e_{y,t}}$$

$$w_{t} = (1 - \alpha - \nu) m c_{t} \frac{y_{t}}{h_{y,t}}$$

$$\hat{\pi}_{t} = \kappa \hat{m} c_{t} + \beta E_{t} \hat{\pi}_{t+1}$$

Climate block

$$s_t = (1 - \varphi)s_{t-1} + \varphi_0 e_t$$

Fiscal and monetary policy

$$\lambda \omega_{H,t} = \tau^d d_t + \tau^k r_t^K k_t + \mu \tau_t p_{e,t} e_t$$

(1 - λ) $\omega_{S,t} = (1 - \mu) \tau_t p_{e,t} e_t$
 $\tau_t = (1 - \rho_\tau) \tau + \rho_\tau \tau_{t-1} + \epsilon_{\tau,t}$
 $\hat{r}_t^b = \rho_r \hat{r}_{t-1}^b + (1 - \rho_r) (\phi_\pi \hat{\pi}_{\tau,t} + \phi_y \hat{y}_t) + \epsilon_{mp,t}$

◀ Back

Calibration

Parameter	Description	Value	Target/Source
β	Discount factor	0.99	Smets and Wouters (2003)
$1/\sigma$	Intertemporal elasticity of substitution	2	Relatively high elasticity for S
$1/\theta$	Labor supply elasticity	2	Standard macro value
φ	Labor utility weight	0.783	Steady-state hours normalized to 1
λ	Share of hand-to-mouth	0.25	Share of low-income households, LCFS
1-s	Probability of becoming H	0.04	Bilbiie (2020)
a _{H,e}	Distribution parameter H	0.099	Energy share of 9.5%, LCFS
as,e	Distribution parameter S	0.068	Energy share of 6.5%, LCFS
$\epsilon_{H,x}$	Elasticity of substitution energy/non-energy H	0.35	Relatively low demand elasticity
ϵ_{x}	Elasticity of substitution energy/non-energy S	0.7	Relatively higher demand elasticity
δ	Depreciation rate	0.025	Smets and Wouters (2003)
α	Capital returns-to-scale	0.275	Steady-state capital share of 30%; Smets and Wouters (2003)
ν	Energy returns-to-scale	0.085	Steady-state energy share of 7%; Eurostat
ϵ_p	Price elasticity	6	Steady-state markup of 20%; Christopoulou and Vermeulen (2012)
θ_{P}	Calvo parameter	0.825	Average price duration of 5-6 quarters; Alvarez et al. (2006)
γ	Climate damage parameter	$5.3 * 10^{-5}$	Golosov et al. (2014)
φ_0	Emissions staying in atmosphere	0.5359	Golosov et al. (2014)
1-arphi	Emissions decay parameter	0.9994	Golosov et al. (2014)
ϕ_{π}	Taylor rule coefficient inflation	2	Smets and Wouters (2003)
ϕ_y	Taylor rule coefficient output	0.2	Smets and Wouters (2003)
ρr	Interest smoothing	0.6	Smets and Wouters (2003)
au	Steady-state carbon tax	0.039	Implied tax rate from average EUA price
ρ_{τ}	Persistence carbon tax shock	0.85	Mean-reversion of approx. 20 quarters

Role of heterogeneity

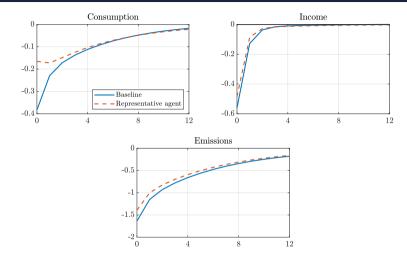


Figure 21: Responses to carbon tax shock, normalized to increase energy price by 1%

Direct versus indirect channels

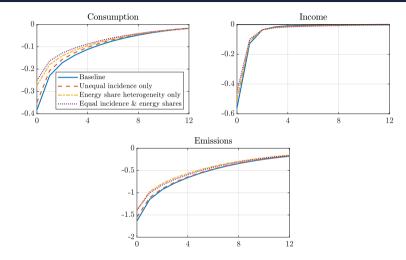


Figure 22: Responses to carbon tax shock, normalized to increase energy price by 1%

Attitudes towards climate policy

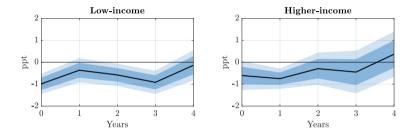


Figure 23: Effect on attitude towards climate policy by income group

▲ Back

No effect on innovation for oil shocks

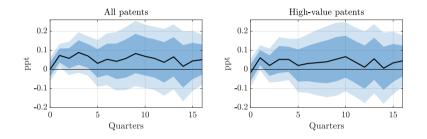
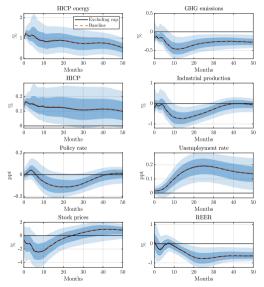
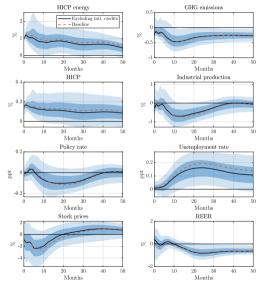
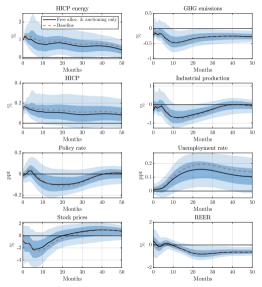



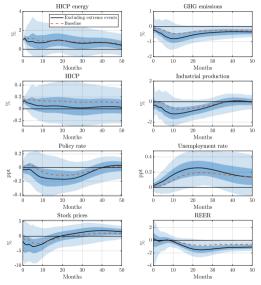
Figure 24: Share of low-carbon patents



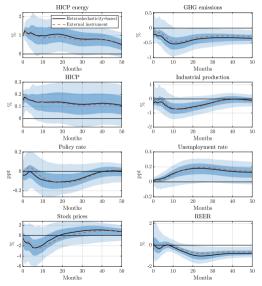
Excluding events regarding cap


First stage regression: F-statistic: 20.29, R^2 : 3.58%

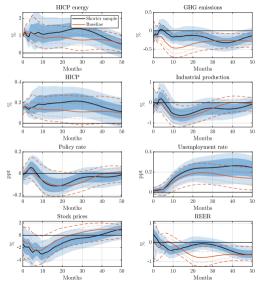
Excluding events regarding international credits


First stage regression: F-statistic: 15.00, R^2 : 2.90%

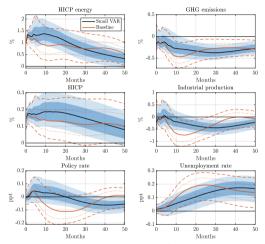
Only using events regarding NAPs


First stage regression: F-statistic: 14.42, R^2 : 2.83%

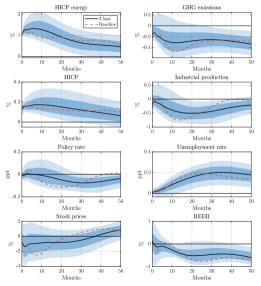
Excluding extreme events


First stage regression: F-statistic: 5.77, R²: 1.06%

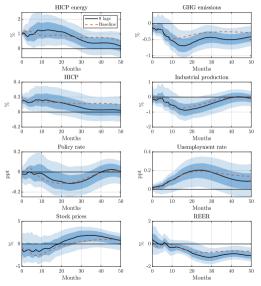
Heteroskedasticity-based identification


First stage regression: F-statistic: 37.55, R²: 51.68%

2005-2018 sample


First stage regression: F-statistic: 14.11, R²: 4.49%

Responses from smaller VAR


First stage regression: F-statistic: 13.58, R^2 : 3.32%

VAR with 3 lags

First stage regression: F-statistic: 9.73, R^2 : 2.86%

VAR with 9 lags

First stage regression: F-statistic: 14.89, R^2 : 2.79%