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1 Introduction

The division of the gains from trade between negotiating parties is of interest in many

settings, such as business-to-consumer negotiations, vertical contracting relationships, the

division of rents among cartel members, or estimation of patent violation damages. The

party taking home a larger share is traditionally referred to as having more bargaining

power. A number of studies over the past decade have demonstrated the importance of

accounting for bargaining power when examining counterfactual policies: ignoring bargain-

ing power—or incorrectly modeling a buyer-seller relationship as though one party has all

of the power—yields misleading welfare implications. In the existing literature, bargaining

power is typically assumed to be an exogenously given weight in a complete-information

Nash bargaining framework.1 The Nash bargaining solution, however, abstracts away from

an important feature of real-world negotiations: private information, in which a negotiating

party does not know the willingness to pay or sell of other parties. Empirical analyses of

bargaining power in private/incomplete-information settings are almost nonexistent.2

In this paper we study bargaining power in the wholesale used-car industry, where parties

in a vertical supply relationship negotiate under incomplete information. In this market,

large fleet-owning institutions (such as banks, rental car companies, or car manufacturers)

sell cars to used-car dealers. Each car trades through a mechanism of a secret reserve

price ascending auction followed by alternating-offer bargaining whenever the reserve prices

exceeds the auction price. The data consists of over 130,000 cars offered for sale through this

mechanism. We observe actions taken by negotiating pairs even for cases where bargaining

ends in disagreement. This feature not only makes the setting ideal for studying bargaining

power in the presence of incomplete information, but, as we discuss below, this feature

is necessary in any setting if a practitioner hopes to distinguish between Nash bargaining

and incomplete-information bargaining. With this data, we address the question of how

1This is the case in many empirical studies of multiple simultaneous bilateral negotiations in a Nash-in-
Nash framework, e.g., Crawford and Yurukoglu (2012) and subsequent studies.

2In the case of patent violation damages, for example, the standard in the courts for many years was to
assume that, in the absence of infringement, parties would have split surplus according to a Nash bargaining
solution (typically with a 50/50 split). In recent years, courts (e.g. VirnetX, Inc. v. Cisco Systems, Inc.,
2014) have criticized the Nash bargaining solution as detached from reality and have demanded better ways
to identify bargaining power (rather than assuming it in an ad hoc fashion), but no standard approach exists.
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bargaining power of buyers compares to that of sellers in the wholesale used-car market, and

how this depends on seller types and competition.

Bargaining power is of particular interest in the supply side of the U.S. car market.

State laws have, for decades, prohibited manufacturers from distributing new cars directly

to consumers, as well as from shutting down existing dealers. The effect of these laws on the

manufacturer-dealer bargaining power has been a subject of debate; the bulk of economic

theory and evidence suggests these restrictions give dealers more bargaining power (see

Lafontaine and Scott Morton 2010 for a review). In this paper we study an aspect of this

vertical relationship that involves these same key players but is not subject to these same

laws: the secondhand car market. Our data and methodology allow us to quantify the

bargaining power of dealers and wholesalers in the supply side of the secondhand market,

taking into account the private information of agents in this bargaining process. Accounting

for incomplete information in this analysis is critical, as inventory is sold car-by-car, and

agents frequently engage in negotiations that later fail.

The term bargaining power has no formal (or informal) definition in incomplete-information

settings. Under Nash bargaining, in contrast, the term ubiquitously refers to an agent’s share

of a commonly known total surplus. To remedy this, we propose a new measure of bargain-

ing power under incomplete-information. Our bargaining power metric is the share of an

agent’s best-case—i.e., take-it-or-leave-it-offer (TIOLIO)—surplus the agent achieves rela-

tive to what the agent would achieve under the opponent’s best-case scenario. This extends

a traditional (complete-information, Nash bargaining) notion of power to the incomplete-

information case.3 We denote a buyer’s bargaining power by αB and seller’s by αS. In

the seller TIOLIO mechanism, αS = 1 and αB = 0, and in the buyer TIOLIO mechanism,

αB = 1 and αS = 0. Any intermediate values are possible, as are negative weights. Unlike

in Nash bargaining, under incomplete information the sum of these weights can be greater

than 1: sellers and buyers can collectively achieve strictly greater expected utility than that

available through any convex combination of TIOLIO mechanisms. The sum of αB and αS

3In Nash bargaining, an agent’s share of the total surplus and share of her TIOLIO payoff are equivalent
notions. Under incomplete information, however, these two notions are distinct. When both parties have
private values on overlapping supports, the surplus available to the pair is unknown to both parties, and
neither is able to extract the full surplus (Myerson and Satterthwaite 1983).
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is informative about the efficiency of trade. These weights are thus a natural generalization

of bargaining power to asymmetric information settings, giving information both about how

the pie is split and also the size of the pie itself. This relationship between bargaining power

and the size of the pie is a key point ignored by Nash bargaining.4

Next, we show how to estimate bargaining power under incomplete information. The

bargaining theory literature shows that incomplete information gives rise to complications,

such as multiple equilibria, delay, and inefficiency. Ausubel et al. (2002) highlight that

different equilibria can have quite different properties and outcomes, and that no complete

characterization of equilibria exists; this statement remains true twenty years later. As such,

there is no off-the-shelf model for empiricists to bring to bargaining data to identify players’

private value distributions, unlike the now well-developed empirical literature on auctions

(e.g. Guerre et al. 2000).5 Our paper offers a first step to addressing bargaining power

empirically under incomplete information, focusing on the supply side of the U.S. used-car

market.

In the wholesale used-car market, the primary challenge to identification is the distribu-

tion of seller values, FS. Every choice of the seller—even the seller’s choice of secret reserve

price in the pre-bargaining stage of the game—depends on the equilibrium of the post-auction

bargaining subgame, and these equilibrium strategies are unknown to the econometrician.

In contrast, the distribution of buyer values, FB, can be identified from buyers’ auction

bids using existing tools from the auction literature. These tools also allow us to handle

game-level observable and unobservable heterogeneity.

We propose to estimate seller values based on an empirical menu approach. We show

that the analyst can think of a seller of value vS as choosing her secret reserve price, r, to

maximize her expected payoff vSPS(r)−TS(r), where PS(r) is the seller’s expected probability

4Loertscher and Marx (2021) state this point as follows: “The complete information approach with
efficient bargaining has the downside that shifts of bargaining power ... only affect the distribution of
surplus and not its size since bargaining is, by assumption, efficient.”

5Unlike auction theory, where clean equilibrium results exist for settings suitable for empirical work, such
as continuous values and incomplete information, bargaining theory is not immediately portable to empirical
analysis. Several previous theoretical bargaining papers analyze an environment close to the environment
we study—with continuous values, two-sided offers, and two-sided incomplete information about players’
values—but the equilibria derived in these studies are not suitable for structural estimation in our setting.
For example, in Perry (1986) the game ends immediately and in Cramton (1992) at most two serious offers
occur in equilibrium; neither of these possibilities can fully explain observations in our data.
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of keeping the car and TS(r) is the expected transfer. Our identification argument is simple: a

seller’s choice of reserve price is a choice from a convex equilibrium menu of possible (PS, TS)

pairs, and the derivative of this menu, evaluated at the seller’s choice, corresponds precisely

to that seller’s value. The data requirements to identify a seller’s value are observations of (i)

the secret reserve price, (ii) the final allocation (i.e. an indicator for whether trade occurs),

and (iii) the final payment. With these variables in hand, the objects PS(·) and TS(·) are

essentially observed in the data, and derivatives of this menu correspond to agents’ values.

We apply these arguments to our data by estimating the trade-transfer menu faced by

sellers in the wholesale used-car market. Our model implies two testable restrictions. First,

the equilibrium menu must be convex. Second, the menu must satisfy individual rationality

constraints for all agent types who participate. We impose both restrictions and find that

they are not overly strong in our setting. With the estimated menu and distribution of

values, we compute bargaining power. We find that car dealers (who are buyers in this

supply-side market) exert a similar level of bargaining power as the large institutional sellers

they purchase from: buyers achieve a level of surplus that is 64% of the way between their

TIOLIO payoff and what they would receive under the seller’s TIOLIO mechanism, whereas

sellers’ surplus is only 62% of the way along their corresponding continuum.

We then decompose our results according to different seller categories, such as manufac-

turers (e.g., Ford, GM, or Chrysler), banks, fleet companies, or rental companies. We find

that manufacturer sellers have substantially more bargaining power than buyers, achieving

an outcome that is over 90% of what they would receive if they were to have all the bar-

gaining power, and buyers at these sales have near-zero bargaining power (only 4% of their

maximal payoff). At least part of this difference is explained by the fact that competition

among dealerships (buyers) is much higher at manufacturer sales.

As highlighted in Loertscher and Marx (2019), how competition and bargaining power

interact in settings with incomplete information is an open question of interest to antitrust

and competition authorities. The empirical literature has studied the relationship of bar-

gaining power to competition under assumptions of Nash bargaining (e.g. Gowrisankaran

et al. 2015), but not under incomplete information. One would expect increased competition

among buyers to increase the seller’s bargaining power, but it is unclear by how much. The
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seminal results of Bulow and Klemperer (1996) suggest that a seller would prefer increased

competition to increased bargaining power, but this interpretation abstracts away from real-

world negotiations, in which buyers may have some power. Our results suggest that, on

average, buyers have a similar level of power to sellers in supply-side negotiations for used

cars, but seller bargaining power increases drastically at high levels of buyer competition.

Our study relates to a growing body of structural work studying bargaining power in

business-to-business settings, such as Crawford and Yurukoglu (2012), Grennan (2013),

Gowrisankaran et al. (2015), and Ho and Lee (2019). We also contribute to the litera-

ture analyzing aspects of the vertical relationship between dealers and wholesalers in the

automotive industry. Lafontaine and Scott Morton (2010) summarize this literature and

point to evidence that the current sea of state laws governing dealer-manufacturer relation-

ships benefits dealers at the expense of manufacturers (and ultimately consumers). The

implications of these laws is a key topic of interest for the Federal Trade Commission in

recent years.6 Murry and Zhou (2020) analyze the effects in this market of manufacturers

terminating dealer locations. Donna et al. (2021) study bargaining in vertical relationships

in a separate industry (outdoor advertising), but discuss how direct-to-consumer sales in the

auto industry, such as Tesla’s, could alter welfare in this market.

In contrast to most previous work on vertical relationships, we study bargaining power

without assuming complete information. We allow for agents to have private information

about their willingness to pay and sell (and hence, incomplete information about their oppo-

nent’s value) and to be strategic in their bargaining behavior.7 A related theoretical study

to ours is Loertscher and Marx (2021). The authors allow for incomplete information and

propose measuring bargaining power as an agent’s weight in a weighted welfare maximization

problem. Our definition instead quantifies an agent’s payoff relative to her TIOLIO payoff.

Two-sided incomplete information is also accounted for in the theoretical model of Keniston

et al. (2021), who demonstrate that, when parties have incomplete information, an equitable

6See https://www.ftc.gov/news-events/blogs/competition-matters/2015/12/

ftc-opens-hood-automobile-distribution.
7It is important to note that our approach is not a strict generalization of many complete-information

(Nash or Nash-in-Nash) bargaining approaches. In particular, we specify agents’ bargaining surplus as
quasilinear in price, whereas some complete-information studies of vertical bargaining allow the downstream
firm to have a willingness to pay that depends on the price negotiated with the upstream firm, for example.
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split of the difference between offers of negotiating parties does not generally correspond to

an equitable split of actual surplus.

Several previous empirical studies of bargaining contain structural models of two-sided

incomplete information. Keniston (2011) studies the question of whether welfare is higher

under bargaining or a posted-price mechanism. Kong et al. (2021) study arbitration in union

wage negotiations. Larsen (2021) analyzes some of the same used-car data we study, but

focuses on the empirical implications of the main theorem of Myerson and Satterthwaite

1983 and how efficient bargaining is relative to the theoretical second-best. Freyberger and

Larsen (2021) study efficiency and impasse in bargaining on eBay.

We see our focus on equity—how the surplus is split—as a natural next question to address

after efficiency. Larsen (2021) and Freyberger and Larsen (2021) derive partial identification

results that yield bounds on surplus or trade probabilities, but do not address the question of

surplus division. Indeed, these bounds, while informative about inefficiency, are too wide to

be informative about surplus division. In contrast, in this paper we obtain point estimates

of this split. In doing so, we borrow some of the straightforward steps of Larsen (2021),

including how we control for game-level heterogeneity and how we estimate the distribution

of buyer values from auction prices, which are both tools from the auction literature. Our

identification argument for seller valuations differs from that of Larsen (2021): we exploit

optimality of the seller’s choice of secret reserve price, yielding point identification of the

seller value CDF, whereas the former study exploits the seller’s choice to accept or reject the

auction price, yielding only partial identification.

Our contribution to the structural methodology literature can be seen as generalizing

the Guerre et al. (2000) first-price-auction method to bargaining games. In a related, con-

temporaneous study complementary to ours, Kline (2017) focuses on identification, but not

estimation, in a class of games that overlaps with the class we study: trading games with

monotone equilibria.8 As we emphasize in Section 4, our identification results largely only

require taking a stance on the structure of agents’ utility functions, not the specific rules

8Related arguments are also used in Perrigne and Vuong (2011) and Luo et al. (2018). Pinkse and
Schurter (2019) introduce efficient estimation procedures for auctions and related games, which, like ours,
exploits convexity restrictions implied by bidders’ incentive compatibility conditions.
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of the game being played, and thus may be particularly valuable for studying bargaining,

where researchers may observe negotiated prices without being able to fully characterize the

equilibrium of the game generating those prices. In this sense, our work is an empirical

analog of the theoretical mechanism design approach to bilateral bargaining (e.g. Myerson

and Satterthwaite 1983; Williams 1987; Loertscher and Marx 2021), which abstracts away

from extensive-form details.

2 Background: Supply-Side Bargaining for Used Cars

The wholesale used-car industry—an industry with revenues above $100 billion annually in

the United States—operates through a network of several hundred auction house locations

scattered throughout the country (and operations are similar internationally).9 These auc-

tion houses have been a part of the US used-car market for over seventy years. Over 15

million cars pass through auto auction houses annually. At each auction house, used-car

dealers buy cars from large fleet companies, such as rental companies, banks with repos-

sessed vehicles, or manufacturers with lease-buyback vehicles.10 Sales at a given auction

house typically take place once a week. A seller brings her car to the auction house several

days before the sale and reports a secret reserve price to the auctioneer. On the day of the

sale, buyers (used-car dealers) arrive, with many traveling long distances to attend. Remote

bidders also participate virtually, watching the auction and bidding online. Cars are auc-

tioned in the order they arrive, with multiple auctions running simultaneously in different

lanes that divide the building where sales occur.

The mechanism proceeds as follows: buyers participate in an ascending auction, indi-

cating their willingness to pay the current price, with the bidding controlled by a human

auctioneer who raises the price until only one bidder remains. The auction itself takes about

90 seconds (Lacetera et al. 2016). If the final auction price exceeds the secret reserve price

(observed by the auctioneer but not the buyers), the high bidder takes the car. If not, the

9https://www.naaa.com/pages/Auction_Industry_Survey/2021_Survey_Mtls/NAAA_2020_

Industry_Survey_Slides.pdf.
10Used-car dealers also operate as sellers in this marketplace. The data we use in this study comes only

from sales of large fleet and lease companies. See Appendix B.4, as well as Larsen (2021), for an analysis of
data from used-car dealer sales.
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Table 1: Descriptive Statistics (Sample Size = 131,443)

A. Mean Standard Deviation Seller Category Fraction of Sample

Blue Book ($) 10,951 6,144 Manufacturer 0.1958
Age (years) 3.18 2.55 Bank 0.5423
Mileage 57,481 40,389 Fleet Company 0.0751
Good Condition 0.72 0.45 Lease Company 0.1143
Num. Bidders 25.99 14.71 Rental Company 0.0725

B. Conditional on Sale Cond. on No Sale

Frac. of Frac. Auction Reserve Final Auction Reserve
Sample Agree Price ($) Price ($) Price ($) Price ($) Price ($)

End at Auction 0.34 0.98 11,063 10,246 11,063 5,367 7,622
Period 2 0.56 0.74 9,683 10,586 9,683 9,547 11,002
Period ≥ 3 0.10 0.16 7,416 8,763 7,869 6,352 8,338

Notes: In panel A, “Blue Book” is an estimate of the car’s market value, provided by the auction house. “Good Condition”
indicates average or above average car condition, based on auction house inspection. “Number of bidders” is an upper bound
on the number of bidders, only observable in the bid log subsample (102,186 observations). “Seller Category” refers to type of
company the seller is. Panel B shows statistics separately for games ending at the auction (through the auction price exceeding
the reserve, or the buyer refusing to negotiate), games where the seller accepts or rejects the auction price (indicated by Period
2), or games ending after further bargaining (Period ≥ 3). Panel B shows average auction and reserve price separately for
games ending in agreement/disagreement, and average final price for those ending in agreement.

high bidder and seller enter alternating-offer bargaining, mediated by an auction-house em-

ployee over the phone.11 If she chooses, the high bidder may opt out of bargaining before it

begins.

Our data consists of 131,443 realizations of this mechanism from six auction houses from

2007–2010. For each realization, the primary variables we observe are the secret reserve

price, final transaction price, final allocation (i.e. an indicator for whether the car sold), and

auction price. We also observe a large set of characteristics, including features of the car

and the auction house environment at the sale time.

Table 1 shows descriptive statistics. The average car has a blue book value (an estimate

provided by the auction house) of $10,951, is 3.18 years old (relative to its model-year), and

has 57,481 miles on the odometer. The auction house provides a condition report for most

cars, and 72% of cars are rated at average quality or above, which we indicate in panel A

with “Good Condition.” Manufacturers, such as Ford, GM, and Chrysler, represent 20% of

sellers in our data. Banks, such as Citibank or Bank of America, represent a slight majority,

at 54%. Fleet companies (such as Wheels) represent 7.5%, rental companies (such as Budget

11For an analysis of these mediators, see Larsen et al. (2021).
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Rental Car) represent a similar percentage, and lease companies represent 11%. Our data

also contains detailed records (referred to as bid logs) of the bidding during the auction stage

for most observations (102,186). In this sample, we obtain bounds on the number bidders

(N) in each auction, with an average upper bound of 26; see Section 5.1 and Appendix B.1

for details.

Approximately 30% of attempts to sell cars result in no trade. This large portion is in-

consistent with a standard complete-information framework: under complete information, a

buyer and seller would not engage in a trading game knowing a priori that they will disagree.

Failed negotiations, however, are completely consistent with the presence of incomplete in-

formation (Myerson and Satterthwaite 1983; Perry 1986).

Panel B of Table 1 breaks down outcomes by how the game ends—with a sale (agree-

ment) or no sale (disagreement). We report the primary variables that are required for our

identification and estimation: the seller’s secret reserve price, final transaction price, final

allocation, and auction price. The first row shows outcomes for games that end with no bar-

gaining, which occurs in 34% of cases. In these cases the game either ends with the auction

price exceeding the reserve price or with the buyer opting out of bargaining (which occurs

2% of the time). The second row, indicated by Period 2, refers to cases where the first action

occurs that can be considered bargaining : the auction price falls below the reserve price, and

the seller either accepts (74% of the time) or rejects (26% of the time) the auction price.12

The third row refers to games that end at some later period of the bargaining game, which

occurs in 10% of the sample. When the game ends with a sale at the auction or in period 2,

the final price naturally equals the auction price. When the game ends in a sale at a later

stage of the game, the average auction price is $7,416, the average reserve price is $8,763,

and the average final price is between the two, at $7,869. When trade fails (the final two

columns), the auction price is farther below the reserve price.

These final numbers illustrate an important point: it is a priori unclear how to think

of bargaining power in this context. It may be tempting to interpret the location of the

12In this paper, we do not explicitly address the puzzle that sellers who end up accepting auction prices
below their reserve prices could have potentially achieved that outcome by simply setting a lower reserve
price upfront. Larsen (2021) and Goke (2021) offer some explanations for this puzzle.
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final price relative to the auction and reserve prices as an indication of bargaining power.

But this logic is flawed: a buyer’s true value will be weakly higher than the auction price

and a seller’s weakly lower than the secret reserve price. These bounds say nothing about

how the pie is split or what its size is; they do not rule out the possibility that the buyer’s

value is ∞ and the seller’s is 0, for example, making it impossible to make inferences about

bargaining power from these bounds alone. Our identification argument allows us to infer

the distribution of buyer values from auction prices and seller values from reserve prices.

From these primitives and trade outcomes we then quantify bargaining power.

3 Defining Bargaining Power Under Incomplete Information

Here we introduce our notion of bargaining power. Consider a seller with value vS and buyer

with value vB who bargain over an indivisible good. The game in the wholesale used-car

market is in fact a game between one seller and many buyers, but the mechanism boils down

to bilateral trade between the seller and just the high bidder, as the auction serves to identify

the highest-value buyer. We describe the full auction-plus-bargaining game in more detail

in Section 4.

Equilibria of a bilateral bargaining game under incomplete information can be complex to

characterize theoretically, even for simple extensive forms such as alternating offers. This is

because each offer signals information to the opposing party, who can then update her beliefs

about the opponent’s value. Belief updating following off-equilibrium offers can be used to

sustain a large set of strategies in bargaining (see discussions in Gul and Sonnenschein 1988

and Ausubel et al. 2002).

Rather than attempting to characterize equilibria of a given extensive form, we take a

mechanism design approach. By the revelation principle (Myerson 1979), any equilibrium

of a bilateral bargaining game has a corresponding direct revelation mechanism made up

of an allocation function describing the probability with which types vS and vB trade in

equilibrium and a transfer function describing the expected transfer from the buyer to the

seller. Let M(vS, vB) represent a particular mechanism.

Let UB(M) and US(M) represent the expected surplus of the buyer and seller, respec-
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tively, under bargaining mechanismM, where the expectation is taken over buyer and seller

values; thus, UB(M) and US(M) represent ex-ante surplus, in the terminology of Holm-

ström and Myerson 1983). Williams (1987), building on Myerson and Satterthwaite (1983),

derives the Pareto frontier of bargaining mechanisms: the set of the highest possible com-

binations of buyer and seller surplus achievable by an incentive-compatible, individually

rational, budget-balanced mechanism. This frontier is a convex function maximizing the

weighted sum of welfare, ηUS(M) + (1− η)UB(M) for η ∈ [0, 1]. We illustrate this with the

concave green line in Figure 1. This welfare weight, η, might reasonably be thought of as

one notion of bargaining power among ex-ante efficient mechanisms, but this notion would

not be sufficient for our purposes; we seek a notion of bargaining power that can be applied

to real-world bargaining situations, which will not necessarily correspond to points on the

frontier.

Indeed, the endpoints (η = 1 or η = 0) are the only points on frontier known to be

achievable by practical mechanisms in a general two-sided-uncertainty game. These end-

points consist of a TIOLIO by one party or the other. All other mechanisms along the

frontier are, from a practitioner’s perspective, complicated black boxes, and are not neces-

sarily achieved by any practical bargaining protocol, including the alternating-offer protocol

of used-car markets.

Any real-world bargaining mechanism yields an expected buyer and seller surplus some-

where within this frontier, such as the point labeled “∗” in Figure 1. Our notion of bargaining

power describes how good this outcome is for agents relative to what they would achieve if

they could instead make a TIOLIO to the opposing party. We define the buyer’s bargain-

ing power, αB, in a given mechanism to be the fraction of the buyer’s TIOLIO surplus she

receives relative to what she would receive if the seller were to instead make a TIOLIO. For

the seller, αS is defined similarly.13

To define this more precisely, let Mη for η ∈ [0, 1] be a mechanism along the Pareto

frontier. The mechanism M0 corresponds to the buyer TIOLIO case and M1 to the seller

TIOLIO case. The buyer’s payoff if the buyer makes a TIOLIO is then UB(M0), and the

13For an alternative but related notion of bargaining power under incomplete information, see Loertscher
and Marx (2021).
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Figure 1: Illustration of Bargaining Power Measure

UB

US

αB = 1

αS = 1
0

0

1

1

∗
αB = 0.333

αS = 0.5

Notes: Visualization of bargaining power measures. The x-axis and y-axis are, respectively, the ex-ante expected utility
of sellers and buyers. Our measures of bargaining power, αB and αS , represent points on a coordinate system where
(US(M1), UB(M1)) corresponds to (αS = 1, αB = 0) (the seller’s and buyer’s expected payoff when the seller makes a
TIOLIO), and (US(M0), UB(M0)) corresponds to αS = 0, αB = 1. The point labeled “∗” is an example of an arbitrary
mechanism, mapping to αS = 0.5, αB = 0.333. The green line represents the second-best frontier. The red dashed line traces
out mechanisms that are convex combinations of the seller- or buyer-optimal mechanisms.

buyer’s payoff if instead the seller makes a TIOLIO is UB(M1). We define the buyer’s

bargaining power αB for any arbitrary bilateral trade mechanism M as the weight in the

convex combination UB(M) = αBUB(M0) + (1 − αB)UB(M1). Similarly, αS is the weight

in US(M) = αSUS(M1) + (1− αS)US(M0).

The weights αB and αS are conveniently analogous to standard Nash bargaining weights

applied in an incomplete-information world. Specifically, in Nash bargaining, a player with

bargaining power 1 would receive her payoff from making a TIOLIO, and a player with

bargaining power 0 would receive her payoff from the opponent making the TIOLIO, just

as in our incomplete-information notion of bargaining power. However, unlike a complete-

information setting, under incomplete information, a party’s TIOLIO payoff does not cor-

respond to getting all of the surplus; some information rent is left for the player receiving

the TIOLIO; this is the well-known efficiency/rent-extraction trade-off occurring in settings

with incomplete information.

The set of mechanisms for which αB + αS = 1, illustrated with the red dashed line in

Figure 1, is of particular interest. The surplus divisions implemented by these mechanisms

can be achieved by randomly selecting one party to make a TIOLIO (what may be termed
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a random ultimatum game).14 For example, if αB = 0.6 and αS = 0.4, the utility outcomes

are equal in expectation to what would arise in an ultimatum game that selects the buyer

as the proposer with probability 0.6. The reason this mechanism is of interest is that it is

simple to implement: the market designer simply randomly selects the buyer or seller as a

TIOLIO proposer.

Unlike Nash bargaining, we do not require αB + αS = 1, as incomplete-information

bargaining can yield combinations of buyer and seller surplus above or below the dashed

line. The sum αB + αS, relative to 1, gives us some information about the efficiency of

bargaining. Any mechanism for which αS + αB < 1—those to the southwest of the red

dashed line—are Pareto dominated in expectation by points lying on the αB + αS = 1 line.

Relative to such a mechanism, a simple random ultimatum mechanism would achieve higher

ex-ante expected utility for both players. Any mechanism with αS + αB > 1 is one that

works relatively well compared to this set of simple-to-characterize mechanisms.

Computing αB and αS and making corresponding statements about bargaining power in

a given real-world market requires knowledge of two key objects: the distributions of buyer

values FB and seller values FS. These two primitives are therefore the primary goals of the

identification and estimation results we describe below.

4 Identifying Negotiators’ Private Value Distributions

We now offer a general model of the wholesale used-car market game. The game involves 1

seller and N potential buyers, where N is a random variable varying across instances of the

game. For a given realization of N = n, we index the seller and buyers by i ∈ {S,B1, ..., Bn}.

Agents are risk neutral and have values Vi+Y β+W , where W ∼ FW , VS ∼ FS, and Vi ∼ FB

for all i ∈ {B1, ..., Bn}; thus, we impose bidder symmetry. Random variables W and Vi have

bounded support.

The random variables Vi for i ∈ {S,B1, ..., Bn} are players’ private values.15 In our

14This mechanism is also known as final offer arbitration or baseball arbitration, as it is used in salary
negotiations of Major League Baseball contracts. See Kong et al. (2021) for a study of arbitration under
incomplete information.

15In this setting, according to our discussions with market participants, heterogeneity in agents’ private
values arises from differences in location and inventory needs.
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empirical analysis, Y is a vector observable to the econometrician and to players (such as

the make and model of the car), whereas W represents game-level heterogeneity observed

by the agents but not the econometrician, such as a dent or odor in the car. We assume

{Y,W,N, Vi} are mutually independent for all i in a given instance of the game. Thus,

agents’ overall values are correlated through game-level heterogeneity terms Y and W , but,

conditional on the realizations of these terms, values are independent. To simplify exposition,

we now condition on a realization of N = n and return to this in Section 4.2. Likewise, we

condition on a realization of W = w and Y = y, omitting these variables from the discussion

until Section 4.3.

The used-car auction/bargaining game begins with the seller choosing a secret reserve

price, R. The bidders then participate in an ascending (button) auction. If the auction price,

PA, exceeds the reserve price, the high bidder and seller trade at price PA. If PA < R, the

high bidder is given the opportunity to exit the game. If he chooses not to exit, the high

bidder and seller engage in alternating-offer bargaining for up to τ periods, where we assume

τ is finite but may be large. If the game ends with the seller and bidder i trading at some

price P , the buyer receives a payoff of Vi − P and the seller receives a payoff of P , less any

bargaining costs. If the two parties do not come to agreement, the seller receives a payoff of

VS (her value for keeping the car) and the buyer receives a payoff of 0, less any bargaining

costs. We do not model costs explicitly, but assume that (i) they are nonzero, such that no

party would bargain if it were common knowledge that no gains from trade exist, and (ii)

they are small enough to be negligible from an estimation perspective.16

We focus on a restricted class of pure strategy Bayes Nash Equilibria (BNE). Larsen

(2021) demonstrates the existence of such equilibria and proves several properties that we

state here and exploit in identification/estimation:

Proposition 1. Pure strategy BNE exist in which the following two restrictions hold: (i)

the seller’s payoff in the post-auction bargaining subgame is continuous in PA and (ii) each

bidder drops out of the auction only when the auction price equals her value.

In such equilibria, the following properties hold: (iii) secret reserve prices are strictly

16Larsen (2021) estimates bounds on expected bargaining costs in this market and finds that they are
indeed negligible, (less than $34 the buyers and $5 for sellers).
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increasing in sellers’ values; (iv) auction, secret reserve, and final prices are additively sep-

arable in (and the probability of trade is invariant to) game-level heterogeneity; and (v) each

seller type trades with all buyer types above a certain cutoff.

As highlighted in Section 3, the key objects to identify to evaluate bargaining power

are FS and FB. With these objects, we can compute the expected TIOLIO payoff for each

player and determine what fraction of these quantities each player receives in practice. The

novel part of our identification is that of FS. We dedicate Section 4.1 to this endeavor.

Identification of FB and incorporating game-level heterogeneity, on the other hand, rely

largely on Proposition 1 and on prior results from the auction literature. We discuss these

arguments in Sections 4.2–4.3.

4.1 Equilibrium Menus

A pure strategy BNE in this game is a complicated object. To describe it, let ζi to be the

drop-out price of buyer i in the auction. Let DB
t ∈ {A,C,Q} represent the buyer’s decision

to accept, counter, or quit in odd periods t. Let PB
t represent the buyer’s counteroffer (if

the buyer counters) in period t. Let DS
t and P S

t be defined similarly for even periods t. Let

Ht represent the history of publicly observed actions up through period t − 1 of the game.

These actions include the auction price and all previous bargaining offers and period-specific

decisions.

The strategy of a buyer of type vBi
is a history-contingent set of actions σBi (vBi

) =

{ζi, {DB
t |Ht}i, {PB

t |Ht}i}, where the decisions DB
t and offers PB

t included are those for peri-

ods in which it is the buyer’s turn. The strategy of a seller of type vS is a history-contingent

set of actions σS(vS) = {ρ, {DS
t |Ht}, {P S

t |Ht}}, where ρ(vS) = r is the seller’s reserve price

strategy, and where the decisions and offers are those for periods in which it is the seller’s

turn.17 A set of strategies {σB∗(vBi
)}Ni for all buyers and σS∗(s) for the seller is a BNE if,

for each player, her strategy is a best response to opponents’ strategies and players update

their beliefs about opponent values using Bayes rule at each history of the game reached

17Note that, for simplicity, we do not allow for equilibria that explicitly depend on N , W , or the drop-out
prices of other bidders (other than the auction price).
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with positive probability.18 We assume that the econometrician has access to data generated

by a single such BNE.

Rather than working with this full set of strategies, we follow the mechanism design

literature and analyze the game as a direct mechanism. Here we introduce explicit notation

for the allocation function and transfer function, the two components of any mechanismM.

In a direct mechanism, each agent, i ∈ {S,B1, ..., Bn}, reports (or potentially misreports)

her private value to a mechanism designer, who assigns allocations according to a function

xi (vS . . . vBn). This function is equal to 1 for the agent allocated the car and zero for

others. The mechanism designer allocates net payments made by i according to the function

ti (vS . . . vBn).

The expected outcome for a given agent can be described by menus of probability-transfer

pairs. If player i behaves as if she is a type v′i (potentially misreporting her type), she attains

an expected outcome (Pi (v
′
i) , Ti (v

′
i)), defined as

Pi (v
′
i) ≡ E [xi (v

′
i, V−i)] , Ti (v

′
i) ≡ E [ti (v

′
i, V−i)] .

Pi (v
′
i) and Ti (v

′
i) are, respectively, the expectation of i’s allocation xi (v

′
i, V−i) and transfer

ti (v
′
i, V−i), over values V−i of other players −i, which are random variables from i’s perspec-

tive.

The expected utility of i when she has value vi but plays as if it were v′i is

viPi (v
′
i)− Ti (v′i) . (1)

In any incentive compatible (IC) mechanism, vi (i’s true value) maximizes (1):

viPi (vi)− Ti (vi) ≥ viPi (v
′
i)− Ti (v′i)∀v′i. (2)

18We do not impose any refinement, such as Perfect Bayes Equilibrium (PBE). These refinements have
been shown to do little or nothing to restrict the set of equilibria in sequential bargaining games (see Gul
and Sonnenschein 1988 and discussions in Ausubel et al. 2002). This is because, even in a PBE, a large
array of behavior can be sustained by carefully chosen beliefs following off-equilibrium actions. Importantly,
however, all of our identification arguments apply regardless of whether we focus on BNE or a refinement
such as PBE.
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These IC conditions offer immediate bounds on the value of agent i:

Theorem 1. For any agent i, vi must satisfy

vi ≥
Ti (vi)− Ti (v′i)
Pi (vi)− Pi (v′i)

∀v′i : Pi (v
′
i) < Pi (vi)

vi ≤
Ti (v

′
i)− Ti (vi)

Pi (v′i)− Pi (vi)
∀v′i : Pi (v

′
i) > Pi (vi) .

Proof. Follows immediately from (2).

In any BNE in which i’s strategy involves an action that is one-to-one with her value,

vi, Theorem 1 can be restated in terms of that action, rather than in terms of types v′i that

i could mimic. In our game, by Proposition 1.iii, the seller’s secret reserve price is such an

action: in any BNE, r = ρ(vS) (the secret reserve price function) is strictly increasing in

vS. We combine Theorem 1 with this strict monotonicity property to obtain the following

corollary specific to the seller’s value; as such, we state it only for i = S:

Corollary 1. If, in equilibrium, r = ρ(vS) is one-to-one with vS, vS must satisfy

vS ≥
TS (r)− TS (r′)

PS (r)− PS (r′)
∀r′ : PS (r′) < PS (r) (3)

vS ≤
TS (r′)− TS (r)

PS (r′)− PS (r)
∀r′ : PS (r′) > PS (r) . (4)

Note that Corollary 1 adopts a slight modification of notation, which we will maintain

moving forward, in which we write PS and TS as functions of r directly rather than vS. This

is without loss of generality, as r is one-to-one with vS, and is less cumbersome than writing

PS and TS as functions of vS = ρ−1(r). We also write the seller’s allocation and transfer

functions as xS (r, V−S) and tS (r, V−S), respectively.

Figure 2, in the left panel, illustrates a hypothetical equilibrium menu faced by the

seller. We consider a case where the seller’s possible choices of secret reserve prices are

r′ ∈ {r1, ..., r5}. Indifference curves in this figure are straight lines, with the seller’s utility

being higher toward the southeast of the figure. To interpret, consider a seller choosing r3.

Compared to r3, points r4 and r5 have higher probability PS (r) of the seller keeping the
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good and higher transfer TS (r) from the seller to buyer.19 If the seller prefers r3 to r4 or

r5, her value must be lower than the average cost of purchasing this additional probability.

That is, vS ≤
TS(r′)−TS(r3)
PS(r′)−PS(r3)

for items r′ ∈ {r4, r5}.

Similarly, compared to point r3, r1 and r2 have lower transfers and lower probability of

keeping the good. If the seller prefers point r3, her value must be higher than the average

cost of purchasing the additional probability offered by r3. That is, vS ≥
TS(r3)−TS(r′)

PS(r3)−PS(r′)
for

items r′ ∈ {r1, r2}. Thus, the bounds in (3) and (4) imply that the value of any seller type

choosing r3 must lie between the slopes of the blue lines labeled v (r3) and v̄ (r3) in Figure

2.

Alternatively, equilibrium menus faced by the seller can also be thought of in terms of

the probability that the seller sells the car and the expected revenue received by the seller.

The right panel of Figure 2 shows the equilibrium menu in terms of these quantities. Sellers

effectively choose a probability-revenue pair from a concave menu: when sellers set lower

reserve prices, they sell more often and get higher expected revenues, but marginal revenue

from selling with higher probability is lower with lower reserve prices. If we observe a seller

choosing r3, the secant lines on the menu at r3 bound the seller’s value for the car.

This leads to our main (and most powerful) result: for a sufficiently smooth and contin-

uous game, the bounds in Theorem 1 collapse to yield point identification.

Corollary 2. Suppose PS (r) is continuous and strictly monotone with derivative bounded

away from 0; PS (r) , TS (r) are both continuously differentiable; and ρ (vS) is continuous and

strictly monotone in vS. Then vS (r), the inverse of ρ (vS), satisfies vS (r) =
T ′S(r)

P ′S(r)
for all

reserve prices r played by some type vS in equilibrium.

Corollary 2 is essentially the smooth, continuous-action analog of what is illustrated in

Figure 2. In words, the required smoothness conditions are that different types of sellers play

different reserve prices, different reserve prices lead to different probabilities of trade, and

all functions are differentiable. Under these conditions, the upper and lower bound slopes in

19Here we follow the mechanism design literature in modeling the expected transfer an agent makes, rather
than receives. For the seller, this can be counterintuitive: a higher transfer from the seller to the buyer is in
fact a lower payment received by the seller, as all payments flow from buyer to seller in practice. The second
panel of Figure 2 provides an alternative illustration.
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Figure 2 collapse to a line, and the seller’s value is exactly the slope of that line—the tangent

line at the point the seller chooses.20 We maintain these smoothness conditions throughout

the rest of the paper. Note that these are conditions assumed directly on equilibrium objects

(the equilibrium menu and the secret reserve price function) rather than on primitives.

Corollary 2 can be considered a generalization of the seminal first price auction result

of Guerre et al. (2000) (GPV).21 The GPV argument, however, is specific to the first-price

auction game. In contrast, our approach can be applied to any game in which the econo-

metrician observes whether trade was successful, the transfers paid between traders, and

some variable that is one-to-one with agents’ types. This feature of our menu approach may

be advantageous in other bargaining settings as well, where equilibria may be difficult to

characterize, and probability and transfer rules may be different from standard well-studied

auction formats.

The BNE framework also imposes two restrictions on equilibrium menus, which we utilize

in identification and estimation. First, in addition to incentive compatibility, equilibrium

menus must satisfy individual rationality, implying that the seller’s expected payoff under

the optimal choice of r must exceed vS, the seller’s value of keeping the car herself:

max
r′

vSPS (r′)− TS (r′) ≥ vS ∀vS (5)

20Corollary 2 applies only to strictly separating equilibria in the sense that each seller types chooses a
different reserve price and each reserve price leads to a different trade probability. In some bargaining games,
equilibria feature partial-pooling regions where, for example, all sellers with values above some cutoff never
trade. In such settings, values for agents who pool would not be point identified; however, the arguments
in Theorem 1 would still yield a one-sided bound on these agents’ values by considering deviations to the
nearest interior action. We do not need to appeal to these arguments here because our data appear to be
described well by a strictly separating equilibrium: we estimate a strictly increasing PS (r) function, and a
convex menu with no mass points.

21To see this, consider an n-bidder first-price auction in a symmetric independent private values environ-
ment. Let the distribution of bids be written G(·), with density g(·). In a first-price auction, the expected
probability of winning, (Pi), and expected transfer (Ti) for bidder i bidding bid bi are known transformations

of G, given by Pi (bi) = G (bi)
n−1

and Ti (bi) = biG (bi)
n−1

. Applying our menu approach to differentiate Pi

and Ti as in Corollary 2, player i’s value is given by

vBi =

dTi(bi)
dbi

dPi(bi)
dbi

=
bi(n− 1)G(bi)

n−2g(bi) +G(bi)
n−1

(n− 1)G(bi)n−2g(bi)
= bi +

G(bi)

(n− 1)g(bi)
.

This last expression is equivalent to that derived in the identification argument of GPV.
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Figure 2: Hypothetical Equilibrium Menu
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Notes: The left panel shows a hypothetical equilibrium menu. The slopes of the blue lines are upper and lower bounds for the
value of an agent choosing action r3. The right panel shows the menu in terms of the seller’s probability of sale, 1 − PS(r),
and expected revenue, −TS(r). Again, the slopes of the blue lines are upper and lower bounds for the value of a seller choosing
action r3.

Second, equilibrium menus must be convex, which we state as a theorem:

Theorem 2. The graph of {(PS (r) , TS (r))} is convex.

The intuition for Theorem 2 can be seen in the left panel of Figure 2. Every action played

in equilibrium must be optimal for some type, so the upper and lower bounds in Theorem 1

must intersect at some point. Any point interior to the menu’s convex hull is dominated: no

type would find it optimal to play such actions.22 We impose convexity and IR constraints

on our estimated menu. These constraints serve as tests of the model: violations suggest

that BNE behavior does not rationalize the data well.

One key point about this identification argument is that it relies on variation in the

probability that a game ends in agreement; the argument is not useful if the researcher

observes no cases where parties disagree. Indeed, in bilateral bargaining, if the researcher

only observes successful trades, the researcher cannot reject the possibility that complete

information (e.g. Nash bargaining) is actually the correct behavioral model. It is data on

failed attempts to trade that are essential for rejecting a complete-information environment

and for identifying agents’ private values.

22Note that the menu agents are offered does not necessarily correspond to the equilibrium menu observed
by the econometrician, and the offered menu need not be convex. Throughout the paper, we use the term
menu to refer to this equilibrium menu.

20



4.2 Identification of the Distribution of Buyer Values

Identification of FB is relatively standard. For any continuation game after the auction,

dropping out when the auction price reaches the bidder’s value is a weakly dominant strategy

(Proposition 1.ii). Recall that N , the number of bidders, is a random variable varying across

instances of the game. Let Pr(N = n) denote the probability mass function of N . FB is

identified via an order statistics inversion using Pr(N = n) and the distribution of auction

prices FPA(·). In Section 5 we discuss how we estimate Pr(N = n) and FPA(·). For any y,

the following holds:

FPA(y) =
∑
n

Pr(N = n)
[
nFB(y)n−1 − (n− 1)FB(y)n

]
. (6)

The right-hand side of (6) is monotonic in y, and thus FB is identified. The distribution of

the highest-value bidder (the maximum order statistic) is then given by

F
(1)
B (y) =

∑
n

Pr(N = n)FB(y)n (7)

This is the value distribution for the bidder who potentially bargains with the seller.

4.3 Identification Under Game-Level Heterogeneity

We now describe how we incorporate game-level heterogeneity. Recall that game-level het-

erogeneity is captured by W+Y β, where Y is observable to the econometrician and W is not.

By Proposition 1.iv, the game is location invariant : PA, R, and final prices shift additively

with W + Y β, and the trade probability is invariant. For our discussion, we condition on a

realization of Y and focus here on W ; we discuss Y in Section 5.

BNE in this game requires that agents’ strategies constitute a BNE conditional on any

value of w. Define the expected probability and transfer the seller achieves when playing re-

serve price r+w in equilibrium, whenW = w, as Pw
S (r + w) ≡ E [xS (r + w, V−S + w) | W = w]

and TwS (r + w) ≡ E [tS (r + w, V−S + w) | W = w], with expectations taken over other agents’

values (and hence their equilibrium actions). Due to location invariance, equilibrium menus
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are fully characterized by probabilities and transfers conditional on w = 0, P 0
S (r) , T 0

S (r).

These objects are not immediately identified from conditional expectations in the data be-

cause we only observe realizations of noisy reserve prices R̃ ≡ R+W , which are confounded

with unobserved heterogeneity W . Rather, we can identify probabilities and transfers con-

ditional on realizations of R̃ = r̃, which we denote P̃S (r̃) and T̃S (r̃), and then identify P 0
S (·)

and T 0
S (·) from these objects. As an intermediate step, we also identify the densities fW , fR,

and fPA by a standard convolution argument exploited elsewhere in the auction literature.

This requires several technical assumptions on characteristic functions, stated in Appendix

A.3.

Our identification result is the following theorem:

Theorem 3. P 0
S (·) , T 0

S (·) are identified (on the support of realizations of R that occur in

equilibrium for at least some seller type) from P̃S (r̃) , T̃S (r̃), and the joint distribution of

noisy reserve prices and auction prices, R̃ = R +W and P̃A = PA +W .

The proof of Theorem 3 demonstrates that P 0
S (·), the underlying expected allocation

function purged of unobserved heterogeneity, solves

P̃S (r̃) =

∫
P 0
S (r) fR (r) fW (r̃ − r) dr∫
fR (r) fW (r̃ − r) dr

, (8)

and T 0
S (r) solves

T̃S (r̃)− E [W∆PS | r̃] =

∫
T 0
S (r) fR (r) fW (r̃ − r) dr∫
fR (r) fW (r̃ − r) dr

, (9)

where

E [W∆PS | r̃] ≡
∫

(r̃ − r) (P 0
S (r)− 1) fR (r) fW (r̃ − r) dr∫
fR (r) fW (r̃ − r) dr

. (10)

We describe in Section 5 how we exploit (8)–(10) to estimate P 0
S (·) and T 0

S (r).
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5 Estimation of Menus and Private Values

5.1 Estimation Details

Our estimation follows the above identification arguments closely. Let j denote an observa-

tion in the data, consisting of the allocation (who ends up with the car), the transfer (zero

if car the does not sell and the final price if is does), the seller’s secret reserve price, and

the auction price. We observe a large set of other characteristics for each game j, which we

denote yj. We describe each estimation step in turn below.

Observable Heterogeneity. We specify the total game-level heterogeneity for observation

j to be y′jβ+wj, where β is a vector of parameters to be estimated. Let rrawj and pA,rawj be the

reserve and auction prices for observation j before removing any game-level heterogeneity.

We control for observable heterogeneity through a standard homogenization regression (Haile

et al. 2003). We run the following regression:

 rrawj

pA,rawj

 =

 y′jβ

y′jβ

+

 r̃j

p̃Aj

 , (11)

where r̃j ≡ rj + wj, p̃
A
j ≡ pAj + wj. To control for as much variation as possible, yj includes

a rich set of observables: dummies for each make-model-year-trim-age combination (the age

of the vehicle in years), dummies for the interaction of mileage with car-make dummies,

dummies for 32 vehicle damage categories, and more.23

To improve our estimates in these regressions, we use our main sample of 131,443 ob-

servations, which contain both auction and reserve prices, as well as an additional 80,213

observations for which we observe only a reserve or auction price but not both. The R2

from this regression is 0.95, suggesting that most of the variation in these prices arises from

23Other controls are fifth-order polynomials in the auction house’s blue book estimate and the odometer
reading; the number of previous attempts to sell the car; the number of pictures of the car on the auction
house’s website; a dummy for whether the odometer reading is considered accurate, and the interaction of
this dummy with the odometer reading; dummies for condition report grade (ranging from 1–5); dummies
for the year-month combination of the sale date and for auction house location interacted with hour of sale;
dummies for each seller appearing in at least 500 observations; dummies for discrete odometer bins; and
several measures of the thickness of the market during a given sale and of the order the cars were run (see
Larsen 2021 for details on their construction).
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observable differences across cars. For the sake of concreteness, we refer to the predicted

value y′jβ̂ as the market value of the car.

Unobserved Heterogeneity Distribution Estimation. The residuals from the above

regression, ˆ̃rj and ˆ̃pAj , are contaminated with unobserved heterogeneity, W ∼ FW . We

estimate the marginal distributions FW , FR, and FPA and their corresponding densities via

maximum likelihood (MLE). The contribution of observation j to this likelihood is given by

∫
fPA(ˆ̃pAj − w; θPA)fR(ˆ̃rj − w; θR)fW (w; θW )dw (12)

The objects θPA , θR, and θW are parameter vectors to be estimated. We specify the density

of each random variable Z ∈ {PA, R,W} as N(µZ , σZ).24

Estimating Buyer Value Distribution. We estimate FB by solving (6) on a grid of values

for the buyer. This requires an estimate of FPA , which comes from the MLE estimates above,

and an estimate of Pr(N = n), which we obtain from the subsample of the data with detailed

bid logs. This data does not record the actual number of bidders, but an auction-by-auction

upper bound on the number of bidders can be imputed based on the sum of two objects that

are observable: the total number of bids placed by bidders who were physically present for

a given auction and the number of bidders registered to participate online in the bidding of

a given auction house lane.25 After estimating FB, we then construct the value distribution

for the bidder who wins the auction (and potentially enters bargaining), F
(1)
B , using (7).

Local Linear Regressions for P̃S (r̃) and T̃S (r̃). We estimate the noisy expected alloca-

tion function P̃S (r̃) through a local linear regression of the allocation in game j on the noisy

reserve price, i.e. the residual from the homogenization step, ˆ̃rj for game j. We estimate the

noisy expected transfer T̃S (r̃) analogously through a local linear regression of the transfer in

game j on ˆ̃rj. For these regressions, we use a Gaussian kernel and bandwidth of $500. For

comparison, the mean and standard deviation of reserve prices in the data are $10,385 and

$5,805.

24We explored a more flexible approximation for the densities in this step using fifth-degree Hermite
polynomials, as in Gallant and Nychka (1987). We found that a likelihood ratio test failed to reject the more
parsimonious Normal approximation.

25In Appendix B.1, we discuss alternative choices for Pr(N = n).
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Estimating P 0
S (r) via Spline-Fitting. We parameterize the function P 0

S (r) as a quadratic

I-spline (Ramsay 1988) with 5 knots, constrained to be nondecreasing in r.26 Denote this

P 0
S (r; θP ). We estimate the spline coefficients θP as the solution to

min
θP

∫ [(∫
P 0
S (r; θP ) f̂R (r) f̂W (r̃ − r) dr

ĥ(r̃)

)
− ˆ̃PS (r̃)

]2

ĥ(r̃)dr̃ (13)

In words, (13) numerically solves (8) by minimizing the distance between the estimated

function ˆ̃PS (r̃) and the convolution of P 0
S (r; θP ) and f̂R(r)f̂W (r̃−r)dr

ĥ(r̃)
, weighting by ĥ(r̃) ≡∫

f̂R (r) f̂W (r̃ − r) dr, which is the estimated density function of r̃.27 We denote the estimate

P 0
S

(
r; θ̂P

)
by P̂ 0

S (r). The square root of the value of (13) at the optimum constitutes

one measure of fit—a root weighted mean squared error (RMSE). Because we estimate a

probability in this step, the RMSE naturally lies in [0,1]. We estimate a RMSE of 0.012,

suggesting that our probability estimates differ from the local linear regression fit by only

1.2 percentage points on average.

Estimating T 0
S (r) via Spline-Fitting. Using the estimated probability P 0

S

(
r; θ̂P

)
func-

tion, we parameterize the expected transfer function as a convex regression spline (C-spline;

see Meyer 2008) in the probability rather than as a function of r directly. We denote this com-

position by T̆ 0
S

(
P 0
S

(
r; θ̂P

)
; θT

)
.28 This type of spline approximation allows us to directly

constrain the transfer-probability menu to be convex. We estimate the spline coefficients θT

as the solution to

min
θT

∫ [(∫
T̆ 0
S (P 0

S (r; θP ) ; θT ) f̂R (r) f̂W (r̃ − r) dr
ĥ(r̃)

)
−
(
T̃S (r̃)− Ê [W∆PS | r̃]

] ]2

ĥ(r̃)dr̃.

(14)

26We choose these knots to be uniformly spaced between -3000 and 5000. The choice of 5 as the number of
knots (for P 0

S and for T̆ 0
S , described below) was driven by an attempt to remain flexible while avoiding over-

fitting, which required some degree of experimentation. Avoiding over-fitting at this stage of the estimation
is important, as these objects are inputs in the subsequent stage where we differentiate to obtain estimates of
FS . For all integrals against the density of r or r̃, such as (13), we approximate the integral using a uniformly
spaced grid of r̃ values from -5000 to 7000 in intervals of 10. These end points correspond approximately to
the 0.00001 and 0.99999 quantiles of the density of r̃.

27Weighting by ĥ(r̃) does not matter asymptotically. In finite samples it has the effect of down-weighting

estimation where r̃ has low density—where ˆ̃PS (r̃) may be less accurately estimated.
28For the spline approximation of T̆ 0

S we again use 5 knots, placing more knots where more of the mass
lies, with knots at {0, 0.1, 0.25, 0.4, 0.6}.
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subject to the constraint that T̆ 0
S (p) is weakly convex. This exercise also requires an estimate

of E [W∆PS | r̃], which we construct using (10). We denote the value of T̆ 0
S

(
P 0
S

(
r; θ̂P

)
; θ̂T

)
at the estimated parameters, when written as a function of r, by T̂ 0

S (r). The RMSE from

this step represents the amount in dollars by which our fit is off; we find this number to be

quite low ($3) relative to prices in this market, indicating a good fit.

Imposing convexity and individual rationality. As discussed in Section 4.1, the BNE

model imposes two key restrictions on equilibrium menus: menus must be convex, and

all menu points must satisfy individual rationality (IR), shown in (5). We impose both

constraints on the menu during estimation. We impose convexity on the menu through the

constraints of the C-spline approximation T̆ 0
S (p). The convexity constraint is binding only

on a set of measure 0: we find that one C-spline coefficient is equal to 0, implying that the

second derivative of the menu is equal to 0 for exactly one value of P . To impose IR, for

any agents choosing reserve prices r such that (5) does not hold, we hold P̂ 0
S(r) fixed, and

set T̂ 0
S(r) to the value that makes (5) hold with equality. This treats these agents as trading

with probability P̂ 0
S(r) but having zero expected surplus, making them exactly indifferent

between participating or not. We find that, even without enforcing them, IR constraints are

satisfied for an overwhelming majority of sellers (90.4%). For the remaining 9.6%, the IR

constraint binds. These facts—convexity of the estimated menu and IR constraints being

non-binding for most of the estimated menu—offer some evidence of good model fit.

Estimating the Seller Value CDF and Reserve Price Function. From the final

estimated menu, we then construct, for a grid of values for r, an estimate of the corresponding

type vS that would choose each r. From Corollary 2, the value of a seller choosing reserve

price r must be v = T ′(r)
P ′(r)

. Under our spline parametrization of the menu, the value of a

seller choosing r is thus equal to
dT̆ 0

S

dp
, the derivative of the outer spline function T̆ 0

S (p; θT )

with respect to p, evaluated at the point P̂ 0
S (r). This derivative has a closed form given

our parametrization of T̆ 0
S (p; θT ). Thus, we estimate the value vS(r) of sellers picking each

reserve price r simply by differentiating the estimated spline function T̆ 0
S (p; θT ) at P̂ 0

S (r).

This approach also immediately yields an estimate of the inverse mapping from sellers’ values

to reserve prices, ρ̂(vS). An estimate of the distribution of seller values FS is then given by

F̂S(vS) = F̂R(ρ̂(vS)) for any vS. Note that this exploits the estimate of F̂R from the MLE
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Figure 3: Estimated Menu
(A) Estimated Menu (B) Sales/Revenue Menu

Notes: Panel A displays the final estimated menu, (P̂ 0
S , T̂

0
S). Dashed lines show pointwise 95% confidence bands from boot-

strapping with 200 replications. Units on the vertical axis are $1,000 relative to the market value estimate. The points marked
A–D are discussed in the body of the paper. Right panel shows sale probabilities, 1− P 0

S(r), and expected revenues, adjusted
upward by $10,000, approximately the mean estimated market value.

unobserved heterogeneity step. In what follows, we sometimes exploit the seller’s expected

allocation and transfer as a function of her value rather than her reserve price. Estimates of

these objects are given by P̂ 0
S (ρ̂(vS)) and T̂ 0

S (ρ̂(vS)).

5.2 The Estimated Menu and Value Distributions

We now display, in Figure 3.A, the estimated menu, with the estimate of P 0
S (r) on the

horizontal axis and T 0
S (r) on the vertical axis.29 Each point on the menu corresponds to

the expected payoff for the seller from choosing a given secret reserve price. We note here

that our formulation for payoffs described in (1) in Section 4, vSP
0
S(r)− T 0

S(r), means P 0
S(r)

represents the probability of the seller keeping the good (so 1−P 0
S(r) is the probability that a

sale occurs) and T 0
S (r) is the expected transfer paid by the seller (so −T 0

S(r) is the expected

payment received by the seller). The units for the vertical axis are $1,000, and these numbers

can be negative in panel A because they are the result of subtracting off the market value

estimate y′jβ̂; these numbers thus indicate where a monetary amount lies relative to the car’s

market value.

With this interpretation in mind, we compare several points along the menu, rA, ..., rD,

where rA < rB < rC < rD, in Figure 3.A. Points A and B lie along the downward-sloping

29Appendix B.1 provides estimates of the initial estimation steps described in Section 5.1.
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portion of the menu. Choice rA yields a lower probability of keeping the good and a lower

expected transfer (i.e. a less negative T 0
S) than would choice rB. Therefore, a seller who

chooses rA wants to get rid of the car more than a seller who chooses rB, implying that the

former seller has a lower value (lower vs) than the latter. This is precisely what Figure 3.A

shows: the derivative of the menu at rA is more negative than at rB, and these derivatives

(by Corollary 2) reveal sellers’ values, so a seller choosing rA must therefore have a value that

is farther below the market value of the car than does a seller choosing rB. Points C and

D lie along the upward-sloping portion of the menu. Choice rC yields a lower probability

of keeping the good but a higher expected transfer to the seller (i.e. a more negative T 0
S).

Therefore, a seller choosing rD wants to keep the good more (i.e. have a higher vS) than a

seller choosing rC , manifest by a derivative that is more positive at D than at C.

In Figure 3.B, we offer an alternative version of this menu in terms of expected revenues

and sale probabilities, analogous to the right panel of Figure 2. To improve readability,

we adjust expected revenues by adding $10,000, which is approximately the average market

value (y′jβ̂) for cars in our data.30 The plot displays several possible reserve price choices (in

units of $1,000). As in Figure 2, by choosing lower reserve prices, the seller sells with higher

probability and attains higher expected revenue, but the marginal sale revenue decreases as

r decreases.

Taking the menu’s derivatives at each point r yields the mapping between the reserve

price and the inferred value vS. We display this mapping with a solid blue line in Figure 4.A,

with reserve prices on the horizontal axis and values on the vertical axis. The units for each

axis are $1,000. The dashed lines indicate a pointwise bootstrapped 95% confidence band.

The yellow line shows the 45 degree line (the reserve price itself). To interpret, consider a

particular point on this mapping at about r =-$300 (-0.3 on the horizontal axis). We see

that the corresponding inferred value for such a seller is about vS =-$2,000 (a value of -2

on the vertical axis). Therefore, a seller who chooses a reserve price that is $300 below the

market value is actually willing to let the car go for up to $2,000 below the market value.

The estimated reserve-value mapping, combined with the distribution F̂R, gives us an

30This adjustment does not merely shift the menu in Figure 3.B upward but also rotates it. The explanation
of the rotation introduced by shifts in game-level heterogeneity is found in the proof of Theorem 3.
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Figure 4: Value Mapping and Value CDFs

(A) Mapping from Reserve to Value (B) Value CDF

Notes: Left panel shows the estimated mapping from reserve prices to values (blue line) and the reserve price (yellow line,
y = x). Right panel displays estimated CDF of seller values, FS (blue line), and estimated CDF of maximum order statistic of
buyer values, FB(1) (green line). Dashed lines show 95% confidence bands from bootstrapping with 200 replications. Units on
horizontal axes (and on vertical axis of panel A) are $1,000 relative to market value estimate.

estimated distribution F̂S of sellers’ values, and we plot this in Figure 4.B. We also plot

the estimated distribution of the highest-value buyer—the buyer who potentially ends up in

bargaining. The distributions indicate that 75% of sellers have values less than the market

value, while 75% of buyers have values above this amount. This suggests that there are

typically gains from trade in this market, which is to be expected given that auction houses

have been functioning well as market makers in this industry for three quarters of a century.

However, panel B also shows overlap between seller and buyer distributions, which, by the

Myerson and Satterthwaite (1983) Theorem, can lead to inefficiency, with some trades failing

to occur even when the highest-value buyer values the car more than the seller.

6 Quantifying Bargaining Power

In this section, we use the estimated menu and value distributions to compute bargaining

power weights (αS and αB). This requires estimating buyer and seller surplus in the real-

world mechanism, as well as surplus under the buyer-optimal and seller-optimal mechanisms.

We estimate bargaining power using our full sample and show how it differs between buyers

and sellers. We then perform estimation on several subsamples of interest, allowing for the

possibility that the primitives of the game or its equilibrium — and hence, the implied bar-

29



gaining power — may differ with game-level characteristics, rather than assuming primitives

are independent of these characteristics. In particular, we show how bargaining weights dif-

fer for cases in which the seller is a manufacturer or not and how competition among buyers

affects bargaining power. We also examine how bargaining power relates to the size of the

pie.

6.1 Computing Surplus and Bargaining Power Weights

We first discuss how we calculate the ex-ante trade surplus, or gains from trade, for the

real-world mechanism (the bargaining observed in the data). To calculate total surplus, we

exploit the property that a seller of type vS trades with all buyer types above a certain

cutoff (Proposition 1.v).31 Here we invoke the additional simplifying assumption that these

cutoffs do not vary with the auction price, pA.32 Consequently, the P 0
S (ρ(vS)) function and

the value distribution for the highest-value bidder, FB(1) (·), together imply cutoffs c̃ (vS) ={
vB : 1− F (1)

B (vB) = P 0
S (ρ(vS))

}
. This allows us to calculate the total surplus from the

actual mechanism as

∫ ∫
(vB − vS) 1{vB ≥ ˆ̃c (vS)}dF̂B(1) (vB) dF̂S (vS) . (15)

We can also calculate the ex-ante surplus for the seller, which is the expected payment to the

seller minus the expected value of the seller conditional on trading. Because our estimation

procedure produces estimates of the probabilities P 0
S (ρ(vS)) and transfer T 0

S (ρ(vS)) for all

seller values, we can calculate the surplus achieved by any seller type as vSP̂
0
S

(
ρ̂(vS); θ̂P

)
−

T̂ 0
S (ρ̂(vS)). The ex-ante surplus for the seller is then given by integrating this quantity over

vS. Buyer gains from trade are obtained by subtracting the seller surplus from the total

surplus.

We then compute the buyer-optimal mechanism, which is a TIOLIO price p∗ (vB) maxi-

31This property is also satisfied in many other bilateral trade settings, and is referred to by Ausubel and
Deneckere (1993) as the “Northwestern Criterion.”

32We have performed estimation allowing cutoffs to vary with pA and obtained results that are similar
qualitatively and quantitatively. We adopt this simplification to reduce the computational burden.
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mizing (vB − p) F̂S (p). Total surplus is given by

∫ [
vBF̂S (p̂∗ (vB)) +

∫
vS1{vS ≥ p̂∗ (vB)}dF̂S (vS)

]
dF̂B(1)(vB) (16)

Expected seller surplus is then total surplus minus buyer surplus.

To calculate the seller-optimal mechanism, we use the well-known result from auction

theory that, when buyers’ values are symmetric, seller revenue is maximized by a second-

price auction with a public reserve price. As shown in Aradillas-López et al. (2013), for a

seller with value vS, the seller’s maximized surplus can be written

max
p

∫
max{p, v}dFPA (v)− vS − FB(1) (p) (p− vS) (17)

We plug in our estimated distributions and solve (17) for each seller type to find optimal

public reserve prices p∗ (vS) and seller surplus in the seller-optimal mechanism. Analogous

to (16), total surplus is

∫ [
vSF̂B(1) (p̂∗ (vS)) +

∫
vB1{vB ≥ p̂∗ (vS)}dF̂B(1) (vB)

]
dF̂S (vS) ,

and expected buyer surplus is calculated as total surplus minus seller surplus.

With estimates of surplus for the buyer and seller under each of these mechanisms,

we compute bargaining power weights. In the notation of Section 3, the seller-optimal

mechanism is M1 and the buyer-optimal mechanism is M0. Let the real-world mechanism

be denoted MRW . Bargaining power is then given by

α̂B =
ÛB(MRW )− ÛB(M1)

ÛB(M0)− ÛB(M1)
(18)

α̂S =
ÛS(MRW )− ÛS(M0)

ÛS(M1)− ÛS(M0)
(19)

where ÛB(M) is the estimate of the ex-ante expected surplus of the buyer under mechanism

M, as in Section 3, and similarly for ÛS(M).
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Table 2: Components for Measuring Bargaining Power

(1) (2) (3) (4) (5) (6)
Trade Total Seller Seller Buyer Buyer
Prob. Surplus ($) Surplus ($) Margin ($) Surplus ($) Margin ($)

Real-world 0.763 2,208 1,251 1,640 957 1,254
(0.001) (143) (136) (176) (15) (19)

Buyer-optimal 0.549 1,933 799 1,455 1,135 2,067
(.028) (141) (119) (224) (94) (141)

Seller-optimal 0.712 2,178 1,531 2,150 647 908
(.011) (156) (145) (192) (22) (18)

Notes: Sale probability, total surplus, seller surplus (and margin), and buyer surplus (and margin) in the buyer-optimal, seller-
optimal, and real-world mechanisms. Seller and buyer margins are calculated by dividing seller and buyer surplus, respectively,
by trade probability. Standard errors from 200 bootstrap samples are in parentheses

6.2 Overall Estimates of Bargaining Power Between Buyers and Sellers

In this subsection, we focus on our estimates of bargaining power for our full sample. We dis-

cuss various subsamples in the subsections that follow. Table 2 shows our estimates of trade

probabilities and surplus in the real-world, seller-optimal, and buyer-optimal mechanisms. In

levels, we find that sellers achieve $1,251 of surplus in the real-world mechanism, compared to

$1,531 in the seller-optimal mechanism, and $799 in the buyer-optimal mechanism. We also

calculate average margins for sellers by dividing seller utility by the trade probability; this is

the average markup (in dollars) of the sale price over the seller’s private value for successful

trades. The average margin is $1,640 in the real-world mechanism, compared to $1,455 in the

buyer-optimal mechanism and $2,150 in the seller-optimal mechanism. Given that average

car prices are approximately $10,000, this implies that sellers’ expected markups over their

values VS, in percentage terms, are approximately 16.4% of the price of a car, compared to

14.6% and 21.5% at the buyer- and seller-optimal mechanisms, respectively.

Buyer surplus, in levels, is $957 in the real-world mechanism, compared to $647 and

$1,135 in the seller-optimal and buyer-optimal mechanisms, respectively. Buyers’ margins

are $1,254 in the real-world mechanism (roughly 12.5% of the price of a car), compared to

$2,067 and $908 in the buyer- and seller-optimal mechanisms.

The six numbers in columns 3 and 5 of Table 2 are the building blocks to plug into

(18) and (19) to construct estimates of bargaining power, αB and αS. The yellow and blue
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objects in the first column of Figure 5 (“Full Sample”) display these estimates, surrounded

by 95% confidence intervals. Our point estimates are α̂S = 0.618 and α̂B = 0.636. In words,

the seller, on average, achieves an outcome that is 61.8% of the way between her maximal

payoff—her payoff from making a TIOLIO—and the payoff she would receive if instead the

buyer were to make a TIOLIO. The buyer, on average, achieves an outcome that is 63.6% of

the way between his maximal payoff and what he would receive if the seller were to make a

TIOLIO. We do not find evidence in the full sample of one side of the market having more

bargaining power than another: the confidence intervals of buyer and seller bargaining power

overlap.

The sum of α̂S and α̂B offers two measures of efficiency. First, we can compare this sum

to 1 to evaluate how well the real-world bargaining performs relative to a simple random

combination of the buyer- and seller-optimal mechanisms. For our full sample, we find that

this sum is significantly greater than 1 (shown in green in the first column of Figure 5). This

suggests that the real world achieves higher surplus than could be achieved by giving either

party all of the bargaining power.

Second, we can compare α̂B + α̂S in the real-world mechanism to what it would be in the

counterfactual first-best (ex-post) efficient outcome, which consists of the buyer and seller

trading whenever the buyer’s value exceeds the seller’s. We show this estimate in purple

in the first column of Figure 5.33 This first-best mechanism can also be thought of as the

outcome that would occur under vertical integration between the upstream supplier (the

company selling the car) and the downstream buyer (the dealership), assuming there are no

remaining bargaining frictions within such an integrated firm. Without vertical integration,

the first-best efficient surplus is generally unattainable in bilateral bargaining (Myerson and

Satterthwaite 1983). In our full sample, however, we find that the real-world mechanism lies

close to the vertically integrated outcome, suggesting that efficiency losses due to incomplete-

information are not large in the full sample.34

33Note that the division of surplus is not unique within the first-best mechanism, so the first-best sum of
αS and αB is not uniquely pinned down. For plotting the first-best in Figures 5, 6, and A.5, we calculate the
sum αB + αS corresponding to the same ratio of bargaining power αB/αS as in the real-world mechanism.
Graphically, this is equivalent to the division of surplus in the first-best that lies on a ray connecting the
point αB = 0, αS = 0 to the real-world αB , αS in Figure 1.

34This result contrasts with that of Larsen (2021), who documented some inefficiency in bargaining in
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6.3 Manufacturer vs. Non-manufacturer Sellers

We next analyze whether bargaining power differs between sellers who are car manufacturers

and those who are not, and whether these manufacturer sellers have more bargaining power

than the dealers with whom they negotiate. Manufacturers, such as Ford, General Motors,

and Daimler Chrysler (the three largest U.S. companies), are often major clients of used-car

auctions, typically selling cars that have been leased for a period and then re-purchased by

the manufacturer, at which point the manufacturer takes care of vehicle resale. As described

in Section 2, other major sellers in the secondhand wholesale market include fleet companies

(such as Wheels or Orix), banks (such as Bank of America or Wells Fargo), or rental com-

panies (such as Budget or Enterprise). Manufacturers have a more complicated relationship

with franchised car dealers (who can be buyers at auctions) than do non-manufacturers, with

many state-specific laws governing relationships.

In the second and third columns of Figure 5, we repeat our analysis of α̂S and α̂B

separately for observations where the seller is a manufacturer vs. not. We find that, in

contrast to our full-sample results, in manufacturer sales sellers have much more bargaining

power than buyers: α̂S is 0.91 and α̂B is 0.045. Indeed, manufacturers’ achieve a surplus

that is very close to what they would receive if they had all of the bargaining power. Given

that the outcome is so close to the seller-optimal mechanism, the real-world bargaining in

this sample performs close to what could be a achieved by a random ultimatum game (the

95% confidence interval includes 1), and thus is relatively efficient from this perspective.

We can also measure efficiency relative to the first-best, vertically integrated counterfactual.

Note that the vertical integration between dealers and manufacturer sellers also captures a

notion of direct-to-consumer sales for used-car markets, as it removes the wholesale-market

negotiation. Relative to this benchmark, manufacturer sales also do well, with the 95%

wholesale used-car markets. The difference is driven by several factors. First, we analyze the full real-world
mechanism (the auction plus bargaining), whereas the former only studies the post-auction bargaining. Sec-
ond, we study only fleet/lease sales, and the bounds on efficiency loss in Larsen’s earlier work are indeed
closer to zero for such sales. Third, our point estimates of F̂S lie close to—but slightly outside of (stochas-
tically dominating)—the Larsen’s bounds, which can happen because the two approaches rely on different
assumptions. Our approach exploits optimality of reserve prices, whereas the former exploits optimality of
the seller’s choice to accept or reject the auction price. A stochastically higher seller value CDF corresponds
to a smaller gap between the real-world mechanism and the first-best (see Proposition 6 of Larsen 2021).
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Figure 5: Bargaining Power Estimates

Notes: Estimates of α̂B (yellow), α̂S (blue), the sum α̂B+α̂S (green), and the sum α̂B+α̂S in the first-best mechanism (purple),
for the full sample (leftmost), manufacturer and non-manufacturer sales, and two comparison samples: non-manufacturer sales
with similar average mileage and average age to manufacturer sales, and non-manufacturer sales with a similar number of
bidders as the manufacturer sample. To construct the first-best sum αB + αS , within each subsample, we take first-best total
surplus, and divide it between buyers and sellers such that the ratio αS/αB is the same as in the real-world mechanism. Points
represent estimates in the baseline sample, and confidence bars represent 95% confidence intervals from 200 nonparametric
bootstrap replications.

confidence interval for the first best sum of bargaining power weights overlapping that of the

real-world.

In the non-manufacturer sample we find starkly contrasting results: α̂S is 0.44 and α̂B

is 0.81. Thus, buyers have much more bargaining power when facing non-manufacturer

sellers. In this sample, we can reject the possibility that a random-proposer game would

perform better—the sum of the αs is 1.25—but we also find evidence that the bargaining in

this sample falls short of the first-best outcome, where αB + αS is 1.38 (and the confidence

intervals between the real-world and first-best sum do not overlap).

These differences in bargaining power between manufacturer and non-manufacturer sales

may by driven by differences in the composition of the two samples. To investigate this pos-

sibility, we create a sample of non-manufacturer sales which are of similar age and mileage

to manufacturer cars by limiting the sample of non-manufacturer sales to those with age and

mileage values below particular cutoffs such that this sample has similar average character-

istics to those of manufacturer cars. We refer to this as our comparison sample. We show

the results using this characteristics-comparison sample in the fourth column of Figure 5.35

35Note that, by construction, the comparison samples have no overlap with the manufacturer sample,
because the comparison sample consists entirely of non-manufacturer sales.
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In the comparison sample, α̂S is approximately 0.30 and α̂B is approximately 0.68. These

are quite different—and oppositely ranked—from the estimates of the manufacturer sample,

suggesting that these characteristics do not explain the difference between manufacturer and

non-manufacturer sales.36

Manufacturer sales also tend to have more bidders than non-manufacturer sales.37 We

construct a comparison sample sample based on the number of bidders in the auction, con-

structed using a cutoff such that the average number of bidders is the same in the manufac-

turer and comparison non-manufacturer samples. The results using this bidders-comparison

sample are shown in the fifth column of Figure 5. Here we find that α̂S is much higher, ap-

proximately 0.83, and α̂B is approximately 0.31. Thus, in this bidders-comparison sample,

sellers have slightly lower bargaining power than in the manufacturer sample, and buyers

have much higher bargaining power. Hence, increased competition appears to partially ex-

plain sellers’ high bargaining power in manufacturer sales, but does not fully explain why

buyers’ surplus is so low in the manufacturer sample.

Our finding that, on average, dealers have higher bargaining power than wholesalers in the

secondhand market, and that the opposite is true among manufacturer sales, lends credence

to previous claims that state laws governing the dealer-manufacturer relationship generally

favor dealers (Lafontaine and Scott Morton 2010). Specifically, these laws govern the rela-

tionship on the supply side for new car transactions. For used cars, where manufacturers are

not subject to these laws, we find that they hold the lion’s share of bargaining power. La-

fontaine and Scott Morton (2010) also argue that dealer-manufacturer relationships in new

markets are inefficient, with these state laws being the driver of the inefficiency and with

consumers being the primary losers. Consistent with their arguments, our results suggest

that manufacturer sales for used cars, where these laws do not apply, are not inefficient.

36In Appendix B.3, we explore other sample splits, showing how bargaining power varies with character-
istics such as car age, condition, and mileage, as well as seller experience.

37The number of bidders in manufacturer sales tends to be high even though these sales typically have a
restriction in place that only franchised dealers are allowed to attend and bid at the sale. The large number
of bidders suggests that these dealers compete heavily for the chance to have late-model, used inventory of
a given make.
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Figure 6: Bargaining Power Estimates, Splitting by Number of Bidders

Notes: Estimates of α̂B (yellow), α̂S (blue), the sum α̂B + α̂S (green), and the sum αB + αS in the first-best mechanism
(purple), for the main dataset (leftmost), and three tercile samples of the data, based on the number of bidders in the auction.
To construct the first-best sum αB + αS , within each subsample, we take first-best total surplus, and divide it between buyers
and sellers such that the ratio αS/αB is the same as in the real-world mechanism. Points represent estimates in the baseline
sample, and the confidence bars represent 95% confidence intervals from 200 nonparametric bootstrap replications.

6.4 How Does Competition Affect Bargaining Power and Efficiency?

We now explore in more detail the effects of competition on bargaining power. To do so,

we divide the full sample into thirds based on the upper bound on the number of bidders

in the auction from the bid log data described in Section 5. We estimate bargaining power

separately in each of these three subsamples. The results are shown in Figure 6. We find

a clear monotonic relationship between the number of bidders and bargaining power: α̂S is

higher and α̂B lower when there are more bidders.

Moreover, when the number of bidders is low, bargaining is very inefficient: the sum

α̂S+α̂B is far below 1, and particularly far below the vertically integrated, first-best outcome.

Seller bargaining power α̂S is statistically indistinguishable from 0, so sellers achieve surplus

similar to what they would in the buyer-offer mechanism, but α̂B is around 0.71, meaning

that buyers are getting less surplus than they would in the buyer-offer mechanism. In the

medium- and high-bidder samples sellers do better and buyers do somewhat worse, but the

sum α̂S + α̂B is significantly greater than 1 and its confidence interval overlaps with the

vertically integrated outcome in both cases.

Our finding in the low-N case is worth discussion. Recall from Section 3 that any

outcome with αS + αB = 1 can be implemented by a random ultimatum game in which,
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with probability αS, the seller gets to make a TIOLIO, and with probability αB = 1 − αS
the buyer gets to make a TIOLIO. This mechanism is a useful benchmark in that it is simple

to implement from a practical perspective. In the full sample, as well as in the subsamples

with medium and high numbers of bidders, we find α̂S + α̂B to be significantly greater

than 1, suggesting that the real-world bargaining does significantly better than this random

ultimatum benchmark. However, when competition is low (the second column of Figure 6),

α̂S + α̂B is approximately 0.74, so surplus would be higher if the mechanism designer were

to implement this randomized take-it-or-leave-it mechanism instead of the mechanism in the

data. Vertical integration would also significantly improve efficiency in this case where there

is low competition on the buyers’ side of the market.

7 Conclusion

This study provides an empirical analysis of bargaining power under asymmetric information.

We focus on negotiations between buyers (car dealers) and sellers (large institutions, such

as manufactures or fleet-owning companies) in the supply side of the U.S. used-car market.

These negotiations are facilitated by wholesale used-car auction platforms, who first run

an ascending auction, and then facilitate bargaining between the seller and highest bidder

whenever the auction price falls below the seller’s secret reserve price.

The private value distribution of the buyer can be easily estimated from data on auc-

tion prices. The private value distribution of the seller is much more complex to identify

and estimate, but we show how this can be achieved by applying a revelation-principle-like

argument, interpreting the seller’s choice of secret reserve price as a choice from a menu of

expected probabilities of keeping the car and expected transfers—a menu that constitutes

the marginal direct mechanism the seller faces. The derivative of this menu evaluated at the

point chosen by the seller corresponds to the seller’s privately known value. These two key

objects—the value distribution of the seller and buyer—can then be used to evaluate the

seller’s and buyer’s bargaining power.

As bargaining power is not a well-studied concept in incomplete-information bargaining,

we propose a new definition: an agent’s bargaining power is the share of the agent’s best-case
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(i.e. TIOLIO) surplus the agent achieves, relative to what the agent would achieve under

the opponent’s best-case scenario. This extends a traditional (complete-information, Nash

bargaining) notion of bargaining power to the incomplete-information setting.

We estimate the buyer and seller value distributions and their corresponding bargaining

power in this market. We find that, overall, car dealers (buyers) have a similar degree of

bargaining power to sellers (large companies). However, focusing on sales by manufacturers

vs. non-manufacturers, we find that manufacturers have substantially more bargaining power

than other sellers, and substantially more power than the dealers with whom they negotiate.

This strong bargaining position is driven in part by a high level of competition among

buyers for manufacturer sales. In settings with fewer buyers competing in the auction,

buyers’ bargaining power is substantially higher than sellers and the bargaining is quite

inefficient, both relative to a simple-to-implement random-proposer alternative and relative

to a benchmark of vertical integration (the first-best outcome). We see these results as a first

step toward understanding bargaining power in the supply side of used-car markets, and,

more broadly, in quantifying bargaining power in industries where asymmetric information

plays a role.
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Appendix for Online Publication

A Proofs

A.1 Proof of Corollary 2

Proof. We have assumed that ρ (vS) is strictly increasing—different types of sellers play

different reserve prices—and that PS (r) is strictly monotone, meaning that different reserve

prices lead to different probabilities of trade. Without loss of generality, suppose PS (r) is

strictly increasing; the argument when PS (r) is decreasing is analogous.

Note that the support of R can be treated as bounded given that the support of VB is

assumed to be bounded. To see this, let
[
M,M

]
denote the support of VB. Choosing any

secret reserve price r below M is a dominated action for the seller given that every buyer

has a value of at least M . Moreover, the seller is indifferent between a secret reserve price of

M and any secret reserve price higher than this because no buyer would ever be willing to

pay more than M . Thus, the support of R can be treated as being bounded within
[
M,M

]
.

Consider some value vS strictly in the interior of the interval
[
M,M

]
. First, we apply

the bounds in (4), comparing ρ (vS), the reserve price chosen by vS, to ρ (vS + δ), the reserve

price chosen by type vS + δ. We have, for any δ,

vS ≤
TS (ρ (vS + δ))− TS (ρ (vS))

PS (ρ (vS + δ))− PS (ρ (vS))
(20)

where the right-hand side of (20) always exists, because by assumption both ρ (·) and PS (·)

are strictly monotone. Now, let δ → 0. Because ρ is strictly monotone and TS (·) and PS (·)

are differentiable, we have

lim
δ→0

TS (ρ (vS + δ))− TS (ρ (vS))

PS (ρ (vS + δ))− PS (ρ (vS))
=
T ′S (ρ (vS))

P ′S (ρ (vS))
(21)

The ratio of derivatives on the right-hand side of (21) always exists, because by assumption

TS (·) is differentiable, and PS (·) is strictly monotone and differentiable, so P ′S (ρ (vS)) 6= 0
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for all vS. Thus, the bound in (20) becomes:

vS ≤
T ′S (ρ (vS))

P ′S (ρ (vS))
(22)

Next, applying the bound in (3), we also have, for any δ,

vS ≥
TS (ρ (vS))− TS (ρ (vS − δ))
PS (ρ (vS))− PS (ρ (vS − δ))

(23)

Analogously, taking the limit as δ → 0, we have:

vS ≥
T ′S (ρ (vS))

P ′S (ρ (vS))
(24)

Combining (22) and (24), along with the fact that vS (r) is the inverse of ρ (vS), yields the

desired result for any vS in the interior of
[
M, M̄

]
.

Now, for v = M̄ , recall that we have assumed ρ (vS) is continuous, and thus

ρ
(
M̄
)

= lim
ε→0

ρ
(
M̄ − ε

)
= lim

ε→0

T ′S
(
M̄ − ε

)
P ′S
(
M̄ − ε

)
We have assumed TS and PS are continuously differentiable, hence,

lim
ε→0

T ′S
(
M̄ − ε

)
P ′S
(
M̄ − ε

) =
T ′S
(
M̄
)

P ′S
(
M̄
)

We have thus shown that ρ
(
M̄
)

=
T ′S(M̄)
P ′S(M̄)

. The proof that ρ (M) =
T ′S(M)

P ′S(M)
is analogous. This

completes the proof of Corollary 2.

A.2 Proof of Theorem 2

Proof. We prove this result by contradiction. Suppose that the graph of {(PS (r) , TS (r))} is

not convex. Then there exists a triple r, r′, r′′, all of which are played with positive probability

in equilibrium, such that

γPS (r′) + (1− γ)PS (r′′) = PS (r) (25)
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for 0 ≤ γ ≤ 1, and

TS (r) > γTS (r′) + (1− γ)TS (r′′) (26)

Consider the type vS whose optimal action is r. By playing r, her expected utility is

vSPS (r)− TS (r) (27)

If she were to instead play r′ with probability γ and r′′ with probability (1− γ), her expected

utility would be

vS [γPS (r′) + (1− γ)PS (r′′)]− [γTS (r′) + (1− γ)TS (r′′)] (28)

Plugging (25) into (28) yields vSPS (r)−[γTS (r′) + (1− γ)TS (r′′)], which, by (26), is strictly

greater than (27). Because r is optimal for type vS, this yields a contradiction, and thus the

graph of {(PS (r) , TS (r))} is convex.

A.3 Proof of Theorem 3

Before proving this result, we first state the technical conditions required for the convolution

argument. These are that (i) the characteristic functions of fR and fW have only isolated

real zeros and (ii) the real zeros of the characteristic function of fPA and the real zeros of its

derivative are disjoint. These are weak conditions derived in Evdokimov and White (2012)—

weaker than those of Li and Vuong (1998) or Krasnokutskaya (2011) while still yielding the

same identification result.

We also introduce one piece of notation: Let ρw (vS) represent the secret reserve price

chosen by a seller of type vS in a game where the realization of W = w.

Proof. By Proposition 1.iv, we have that the seller’s secret reserve price increases additively

with unobserved heterogeneity; that is,

r̃ = ρw (vS) = ρ0 (vS) + w

Because the seller’s value VS is independent of buyers’ bids conditional on W , ρ0 (VS) is also
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independent of auction prices PA conditional on W . Thus, by Evdokimov and White (2012),

FW , FR, and FPA are identified from the joint distribution of R̃ = R+W and P̃A = PA+W .

Next, we show that P 0
S (r) and T 0

S (r) are identified from P̃S (r̃), T̃S (r̃), FW , and FR. We

describe the identification steps separately for probabilities and transfers.

Probabilities. The probability of trade contaminated with W , P̃S (r̃), can be written as:

P̃S (r̃) = ER,V−S ,W [xS (R +W,V−S +W ) | R +W = r̃] (29)

= ER,V−S ,W

[
EV−S

[xS (R +W,V−S +W ) | W,R +W = r̃] | R +W = r̃
]

(30)

= ER,W
[
PW
S (R +W ) | R +W = r̃

]
(31)

= ER,W
[
P 0
S(R) | R = r̃ −W

]
(32)

Expression (30) follows from applying the law of iterated expectations to (29). (31) follows

from taking the expectation over V−S, and using the definition of Pw
S (·) in Section 4.3, and

using that R and W are constant after conditioning on W and R + W = r̃. The equality

between (31) and (32) follows because of location invariance in Proposition 1.iv, which implies

that

Pw
S (r + w) = P 0

S(r) ∀w, r;

that is, the probability of trade attained by setting reserve price r + w when unobserved

heterogeneity is W = w, is the same as the probability attained by setting reserve price r

when unobserved heterogeneity is W = 0. This allows us to replace PW
S (R + W ) in (31)

with P 0
S(R) in (32).

In integral form, expression (32) is:

P̃S (r̃) =

∫
P 0
S (r) fR (r) fW (r̃ − r) dr∫
fR (r) fW (r̃ − r) dr

(33)

which is just (8) in the main text. In words, (33) shows that P̃S (r̃) is essentially a noisier

version of P 0
S (r): it is a combination of values of P 0

S (r), for r̃ close to r. To show that P 0
S (r)
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is identified, note that we can write (33) as:

P̃S (r̃)

∫
fR (r) fW (r̃ − r) dr =

∫
P 0
S (r) fR (r) fW (r̃ − r) dr (34)

The left-hand side of (34) involves P̃S (r̃), fR (·), and fW (·), all of which are identified.

The right-hand side is the convolution of P 0
S (r) fR (r) against fW (r). fR (·) and fW (·) are

known. Note that the distribution of W has bounded support and, as shown in the proof

of Corollary 2, R will as well. Therefore, P 0
S (r) fR (r) is 0 for all r outside the support of

R. Thus, both P 0
S (r) fR (r) and fW (r) are in L1, hence the convolution theorem applies,

meaning that the convolution of P 0
S (r) fR (r) and fW (r) is invertible. Thus, P 0

S (r) fR (r) is

identified. Therefore, at any realization of R that occurs in equilibrium for some seller type

(and hence, where fR(r) is positive), P 0
S (r) is identified.

Transfers. Let pricew (r) represent the average trade price (conditional on trade) when

W = w and R = r. From Proposition 1.iv, the game is location-invariant; thus, average

prices increase one-for-one with changes in w; that is,

pricew (r + w) = price0 (r) + w ∀w, r (35)

The seller is paid pricew (r + w) with probability 1− Pw
S (r + w), i.e., one minus the proba-

bility Pw
S (r + w) that the seller keeps the car. Thus, the expected transfer the seller “pays”,

TwS (r + w), can be written in terms of the average trade price and the probability that the

seller keeps the good as TwS (r + w) = pricew (r) (Pw
S (r + w)− 1). From (35), and from

P 0(r) = Pw(r + w)∀w, r, we have

TwS (r + w) =
(
price0 (r) + w

) (
P 0
S (r)− 1

)
= T 0

S (r) + w
(
P 0
S (r)− 1

)
∀w, r (36)

The transfer function contaminated with W , T̃S (r̃), can then be written as

T̃S (r̃) = ER,V−S ,W [tS (R +W,V−S +W ) | R +W = r̃] (37)

= ER,V−S ,W

[
EV−S

[tS (R +W,V−S +W ) | W,R +W = r̃] | R +W = r̃
]

(38)
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= ER,W
[
TWS (R +W ) | R +W = r̃

]
(39)

= ER,W
[
T 0
S (R) + (r̃ −R)

(
P 0
S (R)− 1

)
| W = r̃ −R

]
(40)

These equations are similar to expressions (29) to (32) above. (38) follows from applying

the law of iterated expectations to (37). (39) then follows from the definitions of TwS (·) and

Pw
S (·), noting again that R and W are constant after conditioning on W and R + W = r̃.

Finally, (40) follows from applying (36) to (39).

In integral form, (40) is:

T̃S (r̃)− E [W∆PS | r̃] =

∫
T 0
S (r) fR (r) fW (r̃ − r) dr∫
fR (r) fW (r̃ − r) dr

, (41)

E [W∆PS | r̃] ≡
∫

(r̃ − r) (P 0
S (r)− 1) fR (r) fW (r̃ − r) dr∫
fR (r) fW (r̃ − r) dr

. (42)

Which is exactly (9) and (10) from the main text. We can then write:

(
T̃S (r̃)− E [W∆PS | r̃]

)(∫
fR (r) fW (r̃ − r) dr

)
=

∫
T 0
S (r) fR (r) fW (r̃ − r) dr, (43)

In the left-hand side of (43), the term T̃S (r̃) is identified in the data and the termE [W∆PS | r̃]

can be calculated for any r̃ using (10) because P 0
S (r) is identified. Also, fR (·) and rW (·) are

identified. Thus, the left-hand side of (43) is identified. The right-hand side of (43) is the

convolution of T 0
S (r) fR (r) against fW (r). By the convolution theorem, this convolution is

invertible, and thus T 0
S (r) fR (r) is identified, hence T 0

S (r) is identified at any realization of

R that occurs in equilibrium for some seller type.

B Additional Estimation Results and Discussion

B.1 Additional Details from Main Estimation Steps

This section provides additional details from our main estimation steps. We begin by exam-

ining the residuals from the first-step regression in more detail. In the left panel of Figure

A.1 we show the probability of sale as a function of sellers’ residualized reserve prices, R̃,
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Figure A.1: Sale Probability, Auction Price, and Final Price by Reserve Price

(A) Average Sale Probability (B) Expected Final and Auction Prices

Notes: Panel A displays local linear regression estimates of an indicator for whether the car sold regressed on the secret reserve
price residual. Panel B contains similar local linear regression estimates for the auction price (the high bid from the auction) in
yellow and the final price (conditional on a sale occurring) in black. Units are in terms of $1,000, relative to the market value
estimate. Uses main sample used in the body of the paper.

estimated via a local linear regression. This probability corresponds to 1− P̃S (r̃), as P̃S (r̃)

is the probability of the seller keeping the good. The units for the horizontal axis are $1,000,

and these numbers can be negative because they are the result of subtracting off the market

value estimate y′jβ̂; these numbers can thus be thought of indicating where the reserve price

lies relative to the market value estimate of the car. The right panel of Figure A.1 displays,

on the vertical axis, the auction price and the final negotiated price, again from a local linear

regression against reserve prices.38 Here we observe that higher reserve prices are associated

with expected final prices that represent a higher markup over the auction price.

Figure A.1.B demonstrates that, after accounting for observable heterogeneity, auction

prices remain correlated with reserve prices, suggesting that it is important to account for

unobserved heterogeneity in our setting. We also see in panel A that sellers who post higher

reserve prices sell with lower probabilities, but are able to attain higher prices conditional on

sale. In particular, the difference between the average final price conditional on sale and the

average auction price is increasing in the reserve price. The average auction price roughly

38Recall that auction prices and final prices will not necessarily coincide with one another because of the
bargaining component of the mechanism. Also, the final price exists only for observations of the game that
end in trade, whereas the auction price always exists. The regressions in each panel use observations with
reserve prices lying between the 0.01 and 0.99 quantiles of empirical reserve prices.
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measures the value of unobserved car-level heterogeneity conditional on the reserve price.39

The fact that the difference between the final price and the auction price is increasing in the

reserve price suggests that sellers who post high reserve prices are forgoing some probability

of selling the good in order to obtain a higher sale price, as the menu approach requires.

We contrast these results to those using observations in which the seller is a car dealership

(which we do not use in our main sample) in Appendix B.4.

In estimating the buyer value distribution, we use an auction-by-auction upper bound

on the number of bidders from our bid log sample to construct an estimate of Pr(N = n).

Here we differ from Larsen (2021), who uses instead an auction-by-auction lower bound

on N .40 Our choice is motivated by our goal to explore how bargaining power varies with

the degree of bidder competition, and the lower bound on N offers far less variance in this

dimension than the upper bound—it nearly always equals 2 or 3. However, Larsen (2021)

offers empirical evidence that, while the underlying estimate of FB is naturally sensitive to

the choice of Pr(N = n), the estimated maximum order statistic distribution F̂
(1)
B (y) (which

is what use in constructing bargaining power estimates) implied by the estimated F̂B and

by P̂r(N = n) is relatively insensitive to this choice.41

To see whether this choice for Pr(N = n) drives our results, we estimated our model using

instead the lower bound on the number of bidders. The results are shown in Figure A.2,

analogous to those in Figure 5 in the body of the paper. We do not show results in which we

39To see this, note that (i) P̃A = PA + W ; (ii) R̃ = R + W ; and (iii) PA, R,W mutually independent
together imply that:

E
[
P̃A | R̃

]
= E

[
PA +W | R+W

]
= E

[
PA | R+W

]
+ E [W | R+W ] = E

[
PA
]

+ E
[
W | R̃

]
That is, E

[
P̃A | R̃

]
is equal to E

[
W | R̃

]
, the conditional expectation of unobserved heterogeneity W given

R̃, plus the constant E
[
PA
]
.

40As described in Larsen’s work, this lower bound, in a given auction, is the sum of the number of unique
bidders who bid online (bidder identities are observed for online bidders) plus 1 if the the bid log records any
physically present bidders (bidder identities are not recorded for these bidders)or plus 2 if the log records
two consecutive physical bids. This lower bound treats all physically present bids as having come from a
single bidder unless there are two such bids in a row, motivated by the intuition that no bidder should bid
against herself and so two consecutive physical bids must correspond to an auction with at least two bidders
physically present.

41Larsen (2021) shows that this insensitivity is not just an empirical artifact: for some choices of Pr(N = n)

(Poisson), the inferred F
(1)
B has a derivative with respect to changes in Pr(N = n) that is identically zero,

meaning that counterfactual exercises that rely on the maximum order statistic distribution rather than on
FB can be insensitive to how Pr(N = n) is specified.
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Figure A.2: Bargaining Power Estimates, Adopting Number of Bidders Lower Bound

Notes: Estimates as in Figure 5 but using lower bound on N instead of upper bound. Figure shows estimates of α̂B (yellow),
α̂S (blue), the sum α̂B + α̂S (green), and the sum αB +αS in the first-best mechanism (purple), for the main dataset (leftmost),
manufacturer and non-manufacturer sales, and a comparison sample: non-manufacturer sales with similar average mileage and
average age to manufacturer sales. To construct the first-best sum αB + αS , within each subsample, we take first-best total
surplus, and divide it between buyers and sellers such that the ratio αS/αB is the same as in the real-world mechanism. Points
represent estimates in the baseline sample, and the confidence bars represent 95% confidence intervals from 200 nonparametric
bootstrap replications.

split by the number of bidders because of the lack of variance in the N lower bound. These

results differ slightly from those in the body of the paper in that here we observe a slightly

lower αS and slightly higher αB, and the confidence intervals surrounding the two bargaining

power estimates are disjoint, unlike those in the body of the paper. In both Figures A.2 and

5, the bargaining is more efficient than a random ultimatum game. The implications from

the comparison of manufacturers to non-manufacturers are the same in Figures A.2 and 5:

manufacturer sellers have more bargaining power than the buyers they negotiate with, and

more bargaining power than non-manufacturer sellers.

We next examine the local linear regression and spline estimation steps. In Figure A.3, we

show the local linear estimates of P̃S (r̃) and T̃S (r̃), as well as the heterogeneity-corrected

estimates P̂ 0
S (r) and T̂ 0

S (r). We also display intermediate steps in this unobserved het-

erogeneity correction to illustrate the procedure. For probabilities, the P̃S (r̃) function is

essentially a noisy version of the P 0
S (r) function; thus, correcting for unobserved heterogene-

ity will yield an estimate of P 0
S (r) that is steeper than P̃S (r̃). This can be seen in panel

A by comparing the P 0
S (r) line to the P̃S (r̃) line. For transfers, unobserved heterogeneity

necessitates two corrections to the T̃S (r̃) function. First, we subtract from ˆ̃TS (r̃) the term

Ê [W∆PS | r̃], which represents the expected value of the unobserved heterogeneity condi-
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Figure A.3: Removing Unobserved Heterogeneity from Allocation/Transfer Functions

(A) Allocation function (B) Transfer function

Notes: Figure displays heterogeneity correction for allocation function (Panel A) and transfer function (Panel B). Yellow
lines display the original uncorrected estimates of P̃S(r̃) and T̃S(r̃) from local linear regressions, and green lines display final,

corrected estimates, P̂ 0
S(r) and T̂ 0

S (r). In panel B, the black line (which is very close to the blue line) displays estimates from

intermediate step subtracting off mean of unobserved heterogeneity, ˆ̃TS(r̃)−Ê
(
W∆P 0

S | r̃
)
. In each panel, the blue line displays

the fitted value for comparison. Units on the horizontal axis (and vertical axis of panel B) are $1,000, relative to the market
value estimate.

tional on r̃. Intuitively, for higher values of r̃, we will observe that trades tend to happen at

higher prices, but much of this is due to the unobserved heterogeneity term W being higher

on average rather than the transfer T 0
S (r) being higher. In panel B, comparing the T̃S (r̃) line

to the T̃S (r̃)−E [W∆PS | r̃] line shows that this correction makes the slope of the expected

transfer function significantly less negative. Secondly, T̂ 0
S (r) is essentially a noise-corrected

version of ˆ̃TS (r̃)− Ê [W∆PS | r̃], and thus the slope and concavity of T̂ 0
S (r) are both larger

in absolute value than the noisy version. The net effect is that T̂ 0
S (r) is much less negatively

sloped—and somewhat more concave—than the original nonparametric estimate ˆ̃TS (r̃). In

each panel, the blue line displays the fitted estimates, constructed by the convolution of the

estimated allocation or transfer function against F̂W ; in each case, the estimate aligns closely

with the local linear estimates. Quantitatively, the RMSE of the fitted ˆ̃PS (r̃) function is

0.012, and the RMSE of the ˆ̃TS(r̃)− Ê [W∆PS | r̃] function is $3.

51



B.2 Evaluating the Impact of the Unobserved Heterogeneity Correction

In this section we evaluate the importance of the unobserved heterogeneity correction for our

analysis. First, recall that Figure A.1.B in Appendix B.1 demonstrates that, after accounting

for observable heterogeneity, auction prices are still highly correlated with reserve prices,

suggesting that it is important to account for unobserved heterogeneity in our setting. To

analyze this in more depth, we repeat our full analysis but ignoring unobserved heterogeneity,

treating the estimated expected allocation and transfer functions, ˆ̃PS (r̃) , ˆ̃TS (r̃), as if they

constitute the true menu. We then proceed as in the main estimation steps, numerically

differentiating this menu to estimate the distribution of seller values. Figure A.4 shows

results analogous to those from Figures 3.A, 4.A, and 4.B, comparing estimates accounting

for and ignoring unobserved heterogeneity.

Figure A.4.A shows how the unobserved heterogeneity correction affects the seller menu.

The menu is much steeper without the unobserved heterogeneity correction. This is because

when we observe in the data that a seller sets a higher reserve price (and thus achieves a

lower probability of sale), the average sale price is higher for two reasons. First, the seller is

higher up on the menu (P 0
S , T

0
S), attaining higher prices in exchange for lower probabilities

of sale. Second, the conditional expectation of the unobserved heterogeneity component W

is larger, and hence buyers’ bids are also higher in dollar terms because such cars are better

in a way which is observed by sellers and buyers, but not by the econometrician. Recall that

the difference between the slopes of the yellow and black lines in Figure A.1.B (in Appendix

B.1) measures the size of this second force.

Panel B of Figure A.4 shows the implied mappings from reserve prices to sellers’ values,

and panel C shows the implied distributions of seller values. Because sellers’ values are simply

derivatives of the seller menu, without the unobserved heterogeneity correction, we infer that

sellers’ values are much lower: almost all sellers’ values are negative, implying that they value

the car less than the predicted market value of the car. Without the unobserved heterogeneity

correction, we estimate that sellers’ average values are -$4,307, with a nontrivial fraction of

sellers having values from -$30,000 to -$10,000, which appear to be unrealistically far below

the market value of the car. Thus, the unobserved heterogeneity correction appears to be
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Figure A.4: Estimation With and Without Unobserved Heterogeneity Correction

(A) Estimated Menu (B) Reserve-Value Relationship

(C) Seller Value CDF

Notes: Estimates of the seller menu and seller value distributions, with and without the unobserved heterogeneity correction.
Panel A shows the baseline menu estimate (blue) and the menu estimate using the local polynomial estimates of allocation and

transfer functions, ˆ̃PS (r̃) , ˆ̃TS (r̃), without the unobserved heterogeneity correction (green). Panel B shows the mapping from
reserve prices to seller values from the two menus, and panel C shows the CDFs of seller values.
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Figure A.5: Bargaining power estimates, split samples

Notes: Estimates of α̂B (yellow), α̂S (blue), the sum α̂B + α̂S (green), and the sum αB + αS in the first-best mechanism
(purple), for different data subsamples. The x-axis shows different sample splits. The leftmost set of bars shows the full sample,
and the other bars show results for different sample splits, by the car’s condition, mileage, or age, and buy the seller’s experience.
To construct the first-best sum αB + αS , within each subsample, we take first-best total surplus, and divide it between buyers
and sellers such that the ratio αS/αB is the same as in the real-world mechanism. Points represent estimates in the baseline
sample, and the confidence bars represent 95% confidence intervals from 200 nonparametric bootstrap replications.

important to account for in order to obtain reasonable estimates of sellers’ reservation values.

B.3 Other sample splits

We now explore how agents’ bargaining power varies with characteristics of the game or

players, including the car’s age, mileage, and condition, and the seller’s experience. Car age

is measured as the difference between the year the car is offered for sale by the auction house

and the model-year of the car. Condition is based on an inspection performed by the auction

house prior to the auction. We measure a seller’s experience as the cumulative number of

times to date (at the time the seller offers a given car for sale) that the seller has participated

in the mechanism.

Separately for each of these characteristics, we split the data into terciles based on the

values of the characteristic (except condition, where we split into high and low) and then run

our estimation routine within a given subsample to obtain estimates of bargaining power.

The results are shown in Figure A.5. We find that, relative to the full sample estimates,

sellers have less bargaining power than buyers in cases where the car is in poor condition.
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Buyer bargaining power has a non-monotonic relationship with age and mileage of cars,

whereas seller bargaining power tends to increase with age and mileage. Transactions of the

oldest cars exhibit high seller bargaining power and low buyer bargaining power. Figure A.5

demonstrates that sales with more experienced sellers do not exhibit more seller bargaining

power, but instead buyers in these transactions have more bargaining power.

In most subsamples of the data, we find that α̂S + α̂B > 1, suggesting that the efficiency

of the auction-plus-bargaining mechanism relative to the random-proposer game is quite

robust. The one exception is low-age (new) cars, where the 95% confidence interval for this

sum lies below 1. The confidence interval surrounding the first-best, vertically integrated

outcome overlaps that of the real-world bargaining in most subsamples, but not for poor-

condition cars, low- or medium-age cars, or transactions with experienced sellers, where the

estimates suggest some efficiency loss relative to the fully efficient outcome.

B.4 Dealers vs. Fleet/Lease Sellers

Our study focuses on cars sold by fleet/lease sellers because we are particularly interested

in bargaining power between dealers and manufacturers or other large institutional sellers.

In Figure A.1 we provided some descriptive evidence that the menu approach is indeed

appropriate in this setting, i.e., different secret reserve prices yield different payoffs for sellers,

and hence can serve to help separate seller types as our method requires. In Figure A.6, we

show these same descriptive results using instead the sample of cars sold by dealers, which we

do not use anywhere in the body of the paper. Here we observe a relatively flat probability

of trade and an expected final price that represents a relatively constant markup over the

auction price, regardless of which reserve price the seller chooses. These results suggest that

it would be challenging to use our menu approach to identify seller values in this sample, as

this approach exploits a tradeoff sellers face between probability of trade and transfers at

different reserve prices—a tradeoff that does not jump out from Figure A.6, unlike Figure

A.1.

Consistent with this evidence, when we estimate our model on the dealers sample, we

find that menu convexity binds and that, prior to enforcing the IR constraint, the constraint
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Figure A.6: Dealer Sellers: Sale Prob., Auction Price, and Final Price by Reserve Price

(A) Average Sale Probability (B) Expected Final and Auction Prices

Notes: Panel A displays local linear regression estimates of an indicator for whether the car sold regressed on the secret reserve
price. Panel B contains similar local linear regression estimates for the auction price (the high bid from the auction) in yellow
and the final price (conditional on a sale occurring) in black. Units are in terms of $1,000, relative to the market value estimate.
Uses dealers sample.

is violated for 44% of sellers, unlike in the fleet/lease sample, where menu convexity does

not bind except at a single point and only a small fraction of sellers (9.6%) require the

IR-enforcement step of our estimation. This suggests that it would be unwise to attempt to

infer seller values based on an assumption of optimally chosen secret reserve prices in the

dealers sample. Larsen (2021) takes a different approach, only partially identifying seller

values by imposing a weak rationality assumption on the seller’s choice to accept or reject

the auction price in the first stage of the bargaining game. The assumptions in Larsen (2021)

yield bounds on the distribution of seller valuations that are, unfortunately, too wide to be

informative about bargaining power. As highlighted above, we focus only on the fleet/lease

sample in this paper.
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