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Abstract

In the past decade, researchers in psychology and neuroscience studying human

decision-making have increasingly adopted a framework that combines two systems,

namely “model-free” and “model-based” learning. We import this framework into a

simple financial setting, study its properties, and link it to a wide range of applications.

We show that it provides a foundation for extrapolative demand and experience effects;

resolves a puzzling disconnect between investor allocations and beliefs in both the

frequency domain and the cross-section; helps explain the dispersion in stock market

allocations across investors as well as the inertia in these allocations over time; and

sheds light on the persistence of household investment mistakes. More broadly, the

framework offers a way of thinking about individual behavior that is grounded in

recent evidence on the computations that the brain undertakes when estimating the

value of a course of action.
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1 Introduction

A fundamental question in both economics and psychology asks: How do people choose what

actions to take in dynamic settings? The traditional answer in economics is to say that people

act “as if” they have solved a dynamic programming problem. Psychologists and neurosci-

entists, by contrast, have increasingly embraced a different framework for thinking about

human decision-making in dynamic settings. This framework combines two algorithms, or

systems: a “model-free” learning system and a “model-based” learning system. In this paper,

we import this framework into a simple economic setting – a portfolio-choice problem where

investors allocate between a risk-free asset and a risky asset – study its properties, and show

that it is helpful for thinking about a range of facts in finance.1

The model-free and model-based learning algorithms operate in the following dynamic

context. At each time, after observing the state of the world, an individual takes an action.

In the next period, as a consequence, he receives a reward and arrives in a possibly new state

of the world. His goal is to choose an action at each time to maximize the long-term sum of

rewards.

The model-free and model-based systems both try to solve this problem by estimating

a quantity denoted by Q(s, a), the value of taking action a in state s. However, they do so

in different ways. The model-free system is especially different from the framework used by

economists in that, as its name indicates, it does not use a model of the world; in other words,

it does not use any information about the probabilities of future states and rewards. Instead,

it learns from experience. After taking the action a in state s and observing the subsequent

reward, it updates its estimate of Q(s, a) by way of two important quantities: a reward

prediction error, which, loosely speaking, is the difference between the reward the individual

received and the reward he expected; and a learning rate, which controls the extent of the

updating. In simple terms, if taking action a in state s leads to a good outcome, the model-

free system raises its estimate of Q(s, a) and is therefore more likely to recommend action

a if state s is encountered again. This model-free framework has been increasingly adopted

by psychologists and neuroscientists because of evidence that it reflects actual computations

performed by the brain: numerous studies have found that neurons in the brain encode the

reward prediction error used by model-free learning.2

1An early paper on this framework is Daw, Niv, and Dayan (2005). Useful reviews include Balleine, Daw,
and O’Doherty (2009) and Daw (2014). We discuss the behavioral and neural evidence for the framework in
more detail in Section 2.

2See, for example, Montague, Dayan, and Sejnowski (1996), Schultz, Dayan, and Montague (1997),
McClure, Berns, and Montague (2003), and O’Doherty et al. (2003).
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The model-based system is more typical of the frameworks used by economists in that,

as in almost all economic models, it makes use of a probability distribution of future rewards

and states conditional on past actions and states. There are a number of possible model-

based approaches; we use one that is often adopted in research in psychology and that,

like the model-free system, has neuroscientific support. In this framework, after taking an

action and observing the subsequent reward and state, the model-based system increases

the probability it assigns to that reward and state while downweighting the probabilities of

other outcomes. To do the updating, it again uses a learning rate and a prediction error,

often called a state prediction error, which measures how surprising the realized state and

reward are. As with the reward prediction error, there is evidence that the brain computes

such state prediction errors (Glascher et al., 2010).

Recent research in psychology argues that, to make decisions, people use these two sys-

tems in combination: they take a weighted average of the Q(s, a) values produced by each

of the model-free and model-based systems and use the resulting “hybrid” Q(s, a) values to

make a choice (Glascher et al., 2010; Daw et al., 2011).

In this paper, we import this framework into a simple economic setting, study its prop-

erties, and use it to account for a range of facts about investor behavior. The setting is a

portfolio-choice problem where an individual allocates money between a risk-free asset and

a risky asset in order to maximize the expected log utility of wealth at some future horizon.

This problem fits the canonical context in which model-free and model-based algorithms are

applied.

Our implementation captures the most fundamental difference between the model-free

and model-based systems, namely that one uses a model of the environment while the other

does not. Another difference between the two systems, also reflected in our framework, is that

the model-free system is likely to operate over a more limited time range: because it learns

from experienced rewards, it is in operation only when the individual is actively interacting

with the environment – for example, only when he is actively experiencing financial markets.

By contrast, the model-based system is building a model of how rewards depend on states

and actions, and it can do so using data from before the individual started experiencing the

environment – for example, from before he started actively investing.

We begin by analyzing the properties of our framework. We focus on the model-free

system – for economists, the more novel part of the framework – and on how its predictions

differ from those of the model-based system. We find that, while the model-free algorithm is

as simple if not simpler than its model-based counterpart, it has rich implications and leads

to new economic intuitions.
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We start by looking at how the stock market allocation proposed by each of the model-free

and model-based systems depends on past stock market returns. The model-based allocation

puts weights on past returns that are positive and that decline for more distant past returns.

For many parameter values, the model-free system also recommends an allocation that puts

positive and declining weights on past returns. However, relative to the model-based system,

it puts substantially more weight on distant past returns. This is because it updates slowly:

at each time, it learns primarily about the value of a single action, namely the individual’s

most recent action. For some parameterizations, it can even put more weight on distant

returns than on recent returns. Moreover, the weight it assigns to recent as opposed to

distant returns is affected by factors that play no role in the model-based allocation – factors

such as the discount rate and the number of allocation choices available to the investor. We

also find that the model-free system generates more inertia in investor allocations over time.

We then use our framework to shed light on a range of facts about investor behavior.

A prominent idea, motivated by empirical evidence, is that investors have “extrapolative”

demand: their demand for a risky asset is a weighted average of the asset’s past returns,

where the weights are positive and larger for more recent returns. Our analysis shows that

model-free and model-based learning can both offer a foundation for extrapolative demand;

the model-free system, in particular, does so in a way that is new to financial economics.

Our framework further posits that this demand has two components operating at different

frequencies – a model-based component which puts high weight on recent returns and a

model-free component which puts substantial weight even on distant past returns.

Our framework also provides a foundation for experience effects – specifically, for the

empirical finding of Malmendier and Nagel (2011) that an individual’s allocation to the

stock market can be explained in part by a weighted average of the market returns he has

personally experienced, with substantial weight on even distant past experienced returns;

returns he has not experienced receive less weight. Our framework captures this by way of

its model-free component. As noted above, the model-free system puts substantial weight

even on distant past experienced returns. However, since it operates only when the individual

is experiencing rewards, it puts no weight on returns he has not directly experienced.

Our framework can also resolve a puzzling disconnect between investors’ stock market

allocations and investors’ beliefs. Greenwood and Shleifer (2014), among others, use survey

data to show that investor beliefs about future stock market returns depend primarily on

recent past market returns. However, Malmendier and Nagel (2011) find that investors’

allocations to the stock market depend significantly even on distant past market returns.

Two aspects of our framework allow us to reconcile these findings: only the model-based
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system has an explicit role for beliefs; and the model-free system proposes allocations that

depend even on distant past returns. As a result, when an individual is surveyed about his

beliefs regarding future returns, he consults the model-based system and gives an answer

that depends primarily on recent past returns. However, when he chooses an allocation, he

uses both the model-based and model-free systems and hence chooses an action that depends

significantly even on distant past returns. Through a similar mechanism, our framework can

also explain the low sensitivity of allocations to beliefs documented by Giglio et al. (2021)

in the cross-section of investors.

We show that the framework can also help to account for other empirical facts, including

the large cross-sectional dispersion in investor allocations to the stock market; the individual-

level inertia in these allocations over time; and the widespread non-participation in the stock

market among U.S. households.

Finally, we show that the framework can help explain persistent investment mistakes –

in other words, not only why households make suboptimal financial choices, but why they

often persist in these choices for many years. In our framework, this behavior stems from

the model-free system, and specifically from the fact that this system learns slowly: again,

at each moment of time, it learns primarily about the value of a single allocation. As such,

it can take a long time to converge to the optimal course of action.

Since the model-free system learns slowly, it is inefficient for an individual to use it to

make investment decisions in real time. Nonetheless, for at least two reasons, it is likely,

as our paper suggests, to influence financial decision-making. First, the model-free system

is a fundamental component of human decision-making. As such, it is likely to play a role

in any decision unless explicitly “switched off” – and because it operates below the level of

conscious awareness, many investors will not recognize its influence and will therefore fail

to turn it off. Second, many people do not have a good “model” of financial markets – for

example, they have a poor sense of the structure of asset returns. As such, the brain is

likely to assign at least some control of financial decision-making to the model-free system –

again, without a person’s conscious awareness – precisely because this system does not need

a model of the environment.

Model-free learning algorithms are of interest not only to psychologists and neuroscien-

tists, but also to computer scientists, albeit for a different purpose. Computer scientists see

these algorithms as a powerful tool for solving difficult dynamic problems (Sutton and Barto,

2019). For example, these algorithms have been embedded in computer programs that have

achieved world-beating performance in complex games such as Backgammon and Go. Psy-

chologists and neuroscientists, by contrast, are interested in these algorithms because they
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see them as good models of how animals and humans actually behave. In this paper, we

take the psychologists’ perspective: we are proposing that these algorithms can shed light

on the behavior of real-world investors.

The full name of model-free learning is model-free reinforcement learning. Reinforcement

learning is a fundamental concept in both psychology and neuroscience – and, as described

above, in some areas of computer science. However, it has a much smaller footprint in

economics and finance, where model-based frameworks dominate instead. A central theme

of this paper is that model-free learning may be more relevant in economic settings than

previously realized. Nonetheless, our approach does have antecedents in economics – most

notably in research in behavioral game theory on how people learn what actions to take

in strategic settings (Camerer, 2003, Ch. 6). One important idea in this line of research,

Camerer and Ho’s (1999) experience-weighted attraction learning, combines reinforcement

and model-based learning in a way that is reminiscent of the hybrid model we consider below.

In Section 2, we formalize the model-free and model-based learning algorithms and show

how they can be applied to a simple portfolio-choice problem. In Section 3, we present

an example to show how the two algorithms work and then analyze the properties of our

framework. In Section 4, we use the framework to account for a range of facts about investor

behavior. Section 5 concludes.

2 Model-free and Model-based Algorithms

Researchers in cognitive psychology and decision neuroscience are increasingly adopting a

framework that combines model-free and model-based learning (Daw, Niv, and Dayan, 2005;

Daw, 2014). In this section, we describe this framework and propose a way of applying it

in an economic setting. We begin by summarizing some of the evidence that motivates the

framework.

2.1 Psychological background

Under the model-free system, an individual is drawn to actions that have been rewarded in

the past. By contrast, under the model-based system, actions are derived from a model of

the environment. Both systems have deep roots in psychology – the model-free system in

Thorndike’s (1933) “law of effect,” and the model-based system in Tolman’s (1948) notion

of a “cognitive map,” an internal representation of the environment. An emerging view in
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psychology is that humans use both of these systems, in combination. This view is based

both on behavioral data – data on how people behave – and on neural data.

To illustrate the two types of evidence, we summarize an experiment conducted by Daw

et al. (2011). In the first stage – see Figure 1 – a participant is given a choice between two

options, A and B. If he chooses A, then, with probability 0.7, he is given a choice between

options C and D, and with probability 0.3, a choice between options E and F. Conversely,

if he chooses B in the first stage, then, with probability 0.7, he is given a choice between E

and F, and with probability 0.3, a choice between C and D. After choosing between C and

D or between E and F, the participant either receives a reward or does not. He repeats this

task multiple times with the goal of maximizing the sum of his rewards.

The model-free and model-based systems make different predictions about behavior in

this setting. Suppose that the individual chooses A in the first stage and is then offered

a choice between E and F; suppose that he chooses E and then receives a reward. Under

the model-free system, he will be inclined to choose A again in the next trial because this

choice was ultimately rewarded. Under the model-based system, however, he will be inclined

to choose B in the next trial: the model-based system makes use of information about the

structure of the task; since B offers a greater likelihood of ending up with the rewarded

option E, he prefers B.

To evaluate the relative influence of model-free and model-based thinking on people’s

choices, Daw et al. (2011) run a regression of whether a participant repeats his previous

first-stage choice on two independent variables: an indicator variable that equals one if this

previous choice resulted in a reward; and this indicator interacted with another indicator

variable that equals one if the individual saw the common rather than the rare second-stage

options: for example, following an initial choice of A, the common second-stage options are C

and D while the rare ones are E and F. If behavior is driven purely by the model-free system,

only the coefficient on the first regressor will be significant. If behavior is driven purely by

the model-based system, only the coefficient on the second regressor will be significant.

The authors find that both coefficients are significant, which means that both systems are

playing a role; an estimation exercise indicates that participants are putting approximately

60% weight on the model-free system and 40% on the model-based system.3

The presence of both model-free and model-based influences on behavior is also supported

by neural data. The model-free and model-based systems update the values they assign

3Charness and Levin (2005) also present an experiment in which model-free and model-based learning –
in their terminology, reinforcement learning and Bayesian learning – make different predictions. They, too,
find that participant behavior is guided to a significant extent by the model-free system.
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to different actions using prediction errors – a reward prediction error in the case of the

model-free system and a state prediction error in the case of the model-based system. In

an experiment similar to that of Daw et al. (2011), Glascher et al. (2010) use magnetic

resonance imaging to show that neural activity in a brain region known as the ventral

striatum correlates with the reward prediction error, while neural activity in an area of the

prefrontal cortex correlates with the state prediction error. Similar neural evidence has been

documented in several other studies.

We now present the formal algorithms that have been developed to capture model-free

and model-based learning. In Section 2.2, we describe the model-free algorithm; in Section

2.4, we lay out a model-based learning algorithm; and in Section 2.5, we show how the

two algorithms are combined. In Section 2.3, we present the portfolio-choice problem that

we apply the algorithms to. For much of the paper, we will explore the properties and

applications of model-free and model-based learning in this financial setting.

2.2 Model-free learning

Model-free and model-based learning algorithms are intended to solve problems of the fol-

lowing form. Time is discrete and indexed by t = 0, 1, 2, 3,. . . At time t, the state of the

world is denoted by st and the individual takes an action at. As a consequence of taking the

action at in state st at time t, the individual receives a reward rt+1 at time t+1 and arrives

in state st+1 at that time. The joint probability of st+1 and rt+1 conditional on st and at

is denoted p(st+1, rt+1|st, at). The environment has a Markov structure: the probability of

(st+1, rt+1) depends only on st and at. In a finite-horizon setting, the individual’s goal is to

maximize the expected sum of rewards:

max
{at}

E0

[
T∑
t=1

rt

]
. (1)

In an infinite-horizon setting, the goal is to maximize the expected sum of discounted rewards:

max
{at}

E0

[ ∞∑
t=1

γt−1rt

]
, (2)

where γ ∈ [0, 1) is a discount factor.

Economists almost always tackle a problem of this type using dynamic programming.

Under this approach, we solve for the value function V (st) – the expected sum of discounted

future rewards, under the optimal policy, conditional on being in state st at time t. To do this,
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we write down the Bellman equation that V (st) satisfies, and with the probability distribution

p(st+1, rt+1|at, st) in hand, we solve the equation, either analytically or numerically. The

solution is sometimes used for “normative” purposes – to tell the individual how he should

act – and sometimes for “positive” purposes, to explain observed behavior.

For “positive” applications, where we are trying to describe how people actually behave,

the dynamic programming approach raises an obvious question. It may be difficult to deter-

mine the probability distribution p(·); and even if we have a good sense of this distribution,

it may be hard, even for professional economists, to then solve the Bellman equation for the

value function. How, then, would an ordinary person be able to do so? Economists have long

suggested that people act “as if” they have solved the Bellman equation – but they have not

explained how this would come about. It seems preferable to try to understand individual

behavior using a framework that is rooted in, and consistent with, the actual computations

the brain performs when making a decision. The framework that we use in this paper has

exactly this feature.

We now describe the model-free learning algorithm. As their name suggests, model-free

algorithms tackle the problems in (1) and (2) without a “model” of the world, in other words,

without using any information about the probability distribution p(·). The model-free algo-

rithms most commonly used by psychologists to understand decision-making in experimental

settings are known as Q-learning and SARSA. In this paper, we use Q-learning. In the Online

Appendix, we also consider SARSA and show that it leads to similar predictions.4

Q-learning works as follows. We focus on the case with the infinite-horizon goal in (2). Let

Q∗(s, a) be the expected sum of discounted rewards – specifically, the value of the expression

Et

⎡⎣ ∞∑
τ=t+1

γτ−(t+1)rτ

⎤⎦ (3)

– if the algorithm takes the action at = a in state st = s at time t and then continues

optimally from time t+1 on; the asterisk indicates that, from t+1 on, the optimal policy is

followed. The goal of the algorithm is to estimate Q∗(s, a) accurately for all possible actions

a and states s so that it can learn a good action to take in any given state.

Suppose that, at time t in state st = s, the algorithm takes an action at = a – we describe

below how this action is chosen – and that this leads to a reward rt+1 and state st+1 at time

t+1. Suppose also that, at time t, the algorithm’s initial estimate of Q∗(s, a) is Qt(s, a). At

4The Q-learning algorithm was developed by Watkins (1989) and Watkins and Dayan (1992). Sutton and
Barto (2019, Ch. 6) offer a useful exposition.
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time t + 1, after observing the reward rt+1, its estimate of Q∗(s, a) is updated as

Qt+1(s, a) = Qt(s, a) + αMF
t [rt+1 + γmax

a′
Qt(st+1, a

′)−Qt(s, a)], (4)

where αMF
t is known as the learning rate – the superscript stands for model-free – and the

term in square brackets is an important quantity known as the reward prediction error (RPE):

the realized value of taking the action a – the immediate reward rt+1 plus a continuation

value – relative to its previously anticipated value, Qt(s, a).

How does the algorithm choose an action at in state st = s at time t? It does not

necessarily choose the action with the highest estimated value of Q∗(s, at), in other words,

with the highest value of Qt(s, at). Rather, it chooses an action probabilistically, where the

probability of choosing a given action is an increasing function of its Q value:

p(at = a|st = s) =
exp[βQt(s, a)]∑
a′ exp[βQt(s, a′)]

. (5)

This probabilistic choice, often known as a “softmax” specification, serves an important

purpose: it encourages the algorithm to “explore,” in other words, to try an action other

than the one that currently has the highest Q value in order to see if this other action has

an even higher Q value. In the limit as β → ∞, the algorithm chooses the action with the

highest Q value; in the limit as β → 0, it chooses an action randomly. The parameter β is

called the “inverse temperature” parameter, but we refer to it more simply as the exploration

parameter. We discuss what exploration means in financial settings in more detail in Section

2.3.

The algorithm is initialized at time 0 by setting Q(s, a) = 0 for all s and a. Consistent

with (5), the time 0 action is chosen randomly from the set of possible actions. The process

then proceeds according to equations (4) and (5). Put simply, if an individual takes the

action a in state s and this is followed by a good outcome, the value of Q(s, a) goes up,

making it more likely that, if the individual encounters state s again, he will again choose

action a.

To see why equation (4) is a sensible updating rule, recall that Q∗(s, a) satisfies the

Bellman equation

Q∗(s, a) = Et[rt+1 + γmax
a′

Q∗(st+1, a
′)|st = s, at = a], (6)

where the expectation is taken over future possible rewards rt+1 and states st+1 by way of
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the probability distribution p(rt+1, st+1|st, at). If we now rewrite (4) as

Qt+1(s, a) = (1− αMF
t )Qt(s, a) + αMF

t [rt+1 + γmax
a′

Qt(st+1, a
′)], (7)

we see that the Q-learning algorithm is taking an estimate of the right-hand side of (6)

and then updating Qt(s, a) in the direction of this estimate to an extent determined by

the learning rate αMF
t . Specifically, it proxies for the expected reward Et(rt+1) in (6) by

the realized reward rt+1 and for Et[maxa′ Q
∗(st+1, a

′)] by maxa′ Qt(st+1, a
′). As such, while

the Q-learning algorithm differs from traditional economic approaches, it traces back to an

object that is very familiar to economists, namely the Bellman equation in (6).

Computer scientists have found Q-learning to be a useful way of solving the problem

in (2); under certain conditions, the Q values generated by the algorithm converge to the

correct Q∗ values (Watkins and Dayan, 1992). However, more important for our purposes,

psychologists and neuroscientists are also interested in model-free algorithms like Q-learning

because of evidence that they correspond to actual computations made by both animal and

human brains; as noted in the previous section, a large number of studies have found that

the brain computes reward prediction errors similar to the one on the right-hand side of

equation (4).5

When psychologists use Q-learning to explain behavior, they often allow for different

learning rates for positive and negative reward prediction errors, so that

Qt+1(s, a) = Qt(s, a) + αMF
t,+ (RPE) for RPE ≥ 0

Qt+1(s, a) = Qt(s, a) + αMF
t,− (RPE) for RPE < 0. (8)

In what follows, we also adopt this modification.

In the basic implementation of model-free learning described above, after taking an action

a in state s, the algorithm updates only the Q value for that particular action-state pair.

It is natural to ask whether the algorithm can “generalize” from its experience of (a, s) to

also update the Q values of other action-state pairs. We return to this below, after first

introducing the financial setting that we apply the algorithm to.

5Montague, Dayan, and Sejnowksi (1996) and Schultz, Dayan, and Montague (1997) made the influential
observation that the activity of dopamine neurons in animal brains, as recorded in famous experiments in
the laboratory of Wolfram Schultz, is well described by the reward prediction error in an important class
of model-free algorithms called temporal-difference algorithms; Q-learning is a type of temporal-difference
algorithm. Subsequent studies that use fMRI to study human decision-making find that neural activity in
the ventral striatum correlates with the reward prediction error from model-free algorithms (McClure, Berns,
and Montague, 2003; O’Doherty et al., 2003; Glascher et al., 2010; Daw et al., 2011).
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2.3 A portfolio-choice setting

In Section 2.4, we lay out a model-based algorithm to complement the model-free algorithm

of Section 2.2. Before we do so, we first describe the task that we will apply both algorithms

to.

We consider a simple portfolio-choice problem, namely allocating between two assets: a

risk-free asset and a risky asset which we think of as the stock market. The risk-free asset

earns a constant gross return Rf in each period. The gross return on the risky asset between

time t− 1 and t, Rm,t, where “m” stands for market, has a lognormal distribution

logRm,t = μ+ σεt

εt ∼ N(0, 1), i.i.d. (9)

At each time t, an investor chooses the fraction of his wealth that he allocates to the

risky asset; this corresponds to the “action” in the framework of Section 2.2, so we use the

notation at for it.
6 The investor’s goal is to maximize the expected log utility of wealth at

some future horizon determined by his liquidity needs. Because the timing of these liquidity

needs is uncertain, he does not know in advance how far away this horizon is. Specifically,

at time 0, the investor enters financial markets. If, coming into time t ≥ 1, he is still present

in financial markets, then, with probability 1− γ, where γ ∈ [0, 1), a liquidity shock arrives

at time t. In that case, he exits financial markets and receives log utility from his wealth at

time t. A simple calculation – see the Appendix – shows that the investor’s implied objective

is to solve

max
{at}

E0

[ ∞∑
t=1

γt−1 logRp,t

]
, (10)

where Rp,t, the gross portfolio return between time t− 1 and t, is given by

Rp,t = (1− at−1)Rf + at−1Rm,t. (11)

Comparing (2) and (10), we see that this portfolio problem maps into the framework of

Section 2.2: the generic reward rt in equation (2) now has a concrete form, namely the log

portfolio return, logRp,t.

Given our assumptions about the returns of the two assets, we can solve the problem in

(10). The solution is that, at each time t, the investor allocates the same constant fraction

6From now on, we use the terms “action” and “allocation” interchangeably.
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a∗ of his wealth to the stock market, where

a∗ = argmax
a

Et log((1− a)Rf + aRm,t+1). (12)

The fact that the problem in (10) has a mathematical solution does not necessarily mean

that real-world investors will be able to find their way to that solution. Many investors may

have a poor sense of the statistical distribution of returns; and even if they have a good sense

of it, they may not be able to compute the optimal policy or to discern it intuitively. Indeed,

for many investors, the solution in (12) will not be intuitive, in that it involves reducing

exposure to the stock market after the market has performed well and increasing exposure

to the stock market after the market has performed poorly – actions that will feel unnatural

to many investors.

If an investor is unable to explicitly compute the solution to the problem in (10), then, as

argued in the Introduction, there is reason to think that a model-free system like Q-learning

will play a role in his decision-making. As a fundamental part of human thinking, the model-

free system is likely to play a role in any decision unless it is explicitly turned off. And for an

investor who is unsure about the structure of asset returns, the brain is all the more likely to

assign some control to the model-free system, precisely because this system does not require

any information about the structure of the task.

How can Q-learning be applied to the above problem? In principle, we could apply equa-

tion (7) directly. However, it is natural to start with a simpler case – the case with no state

dependence, so that Q(s, a) is replaced by Q(a). Even this simple case has rich implica-

tions that shed light on empirical facts, and so it will be our main focus. In psychological

terms, removing the state dependence can be thought of as a simplification on the part of

the investor. Indeed, neuroscience research has argued that, to speed up learning, the brain

does try to simplify the state structure when implementing its learning algorithms (Collins,

2018). While, in the main body of the paper, we put aside state dependence, in the Online

Appendix, we re-introduce it and confirm that the key properties of the framework continue

to hold.7

As in Section 2.2, then, let Q∗(a) be the expected sum of discounted rewards – specifically,

7It is tempting to justify the removal of the state dependence by saying that, since asset returns are i.i.d.,
the allocation problem has the same form at each time t and so there is no state dependence. However, we
cannot use this argument because the model-free system does not know that returns are i.i.d.; by its nature,
it does not have a model of the environment.
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the value of

Et

⎡⎣ ∞∑
τ=t+1

γτ−(t+1) logRp,τ

⎤⎦
– if the investor chooses the allocation a at time t and then continues optimally from the next

period on. Suppose that, at time t, the individual chooses the allocation a and observes the

reward – the log portfolio return, logRp,t+1 – at time t+ 1. He then updates his model-free

estimate of Q∗(a) from QMF
t (a) to QMF

t+1 (a) according to

QMF
t+1 (a) = QMF

t (a) + αMF
t,± [logRp,t+1 + γmax

a′
QMF

t (a′)−QMF
t (a)], (13)

where αMF
t,± equals αMF

t,+ if the reward prediction error is positive and αMF
t,− otherwise. At any

time t, he chooses his allocation at probabilistically, according to

p(at = a) =
exp[βQMF

t (a)]∑
a′ exp[βQ

MF
t (a′)]

. (14)

Put simply, if the investor chooses an allocation a and then experiences a good portfolio

return, this tends to increase the Q value of that allocation and makes it more likely that

he will choose that allocation again in the future.

The exploration embedded in (14) is central to the model-free algorithm and an integral

part of how psychologists think about human behavior. By contrast, the term is rarely used

in economics or finance. Nonetheless, many actions in financial settings can be thought of

as forms of exploration – for example, any time an individual tries a strategy that is new to

him, such as investing in a stock in a different industry or foreign country, or in an entirely

new asset class. In our setting, with one risk-free and one risky asset, exploration can be

thought of as the investor choosing a different allocation to the stock market than before in

order to learn more about the value of doing so.

Given our assumption about the distribution of stock market returns, we can compute

the exact value of Q∗(a) for any allocation a. We record it here because we will use it in the

next section. It is given by

Q∗(a) = E log((1− a)Rf + aRm,t+1) +
γ

1− γ
E log((1− a∗)Rf + a∗Rm,t+1), (15)

where a∗ is defined in (12).

In the basic model-free algorithm in (13), after taking action at = a at time t, only the Q

value of action a is updated. It is natural to ask whether the algorithm can generalize from

its experience of taking the action a in order to also update the Q values of other actions.
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A large literature in computer science has studied this kind of model-free generalization

(Sutton and Barto, 2019, Chs. 9-13). As important for our purposes, research in psychology

suggests that the human model-free system also engages in generalization (Shepard, 1987).

We therefore incorporate generalization into our framework.

Given that we are working with the model-free system, it is important that the gen-

eralization we consider does not use any information about the structure of the allocation

problem. We adopt a simple form of generalization based on the notion of similarity: after

choosing an allocation and observing the subsequent portfolio return, the algorithm updates

the Q values of all allocations, but particularly those that are similar to the chosen allocation.

We implement this as follows. After taking action a at time t and observing the outcome at

time t + 1, the algorithm updates the values of all allocations according to

QMF
t+1 (â) = QMF

t (â) + αMF
t,± κ(â)[logRp,t+1 + γmax

a′
QMF

t (a′)−QMF
t (a)], (16)

where

κ(â) = exp(−(â− a)2

2b2
). (17)

In words, after observing the reward prediction error for action a and updating the Q value

of that action, the algorithm uses the same reward prediction error to also update the values

of all other actions. However, for an action â that differs from a, it uses a lower learning rate

αMF
t,± κ(â), one that is all the lower, the more different â is from a, to an extent determined

by the Gaussian function in (17).8

We will consider a range of values of b, but for our baseline analysis, we set b = 0.0577,

which has a simple interpretation: for this b, the Gaussian function in (17), normalized to

form a probability distribution, has the same standard deviation as a uniform distribution

with width 0.2 – for example, the uniform distribution that ranges from a−10% to a+10%.

For this b, then, the model-free algorithm generalizes primarily to nearby allocations, those

within ten percentage points of the chosen allocation. We later examine the sensitivity of

our results to the value of b.9

8Our generalization algorithm is consistent with research in psychology which identifies similarity as
an important driver of generalization (Shepard, 1987). It is also used in computer science, where it is
known as interpolation-based Q-learning (Szepesvari, 2010, Ch. 3.3.2). Computer scientists often use more
sophisticated forms of generalization such as function approximation with polynomial, Fourier, or Gaussian
basis functions (Sutton and Barto, 2019, Ch. 9). We have also implemented this more complex generalization
and obtain similar results.

9One interpretation of our generalization algorithm is that the model-free system uses a small amount
of “model” information, namely that similar allocations lead to similar portfolio returns; as such, after
observing the outcome of a 70% allocation, the system updates the Q value of an 80% allocation more
than that of a 20% allocation. An alternative interpretation – a strictly model-free interpretation that uses
no information about the structure of the task – is that the generalization is based simply on numerical
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We emphasize that the Q-learning algorithm above, with or without generalization, does

not use any information about the distribution of asset returns in (9): by its model-free

nature, it does not have a model of the environment. More broadly, the algorithm has no

idea what a “risk-free asset” or the “stock market” are. It is simply choosing an action

– some combination of these unfamiliar objects – seeing what reward it delivers, and then

updating the values of the chosen action and of actions similar to it.

2.4 Model-based learning

Current research in psychology uses a framework in which decisions are guided by both

model-free and model-based learning. Model-based systems, as their name indicates, try to

build a model of the environment – for example, in our setting, a model of stock market

returns. There are various possible model-based systems. Which one should we choose?

Our goal in this paper is to see if algorithms commonly used by psychologists can explain

behavior in economic settings. We therefore take as our model-based system one that, like

the model-free system of Section 2.2, is based on an algorithm that is used extensively by

psychologists and is supported by neural evidence from decision-making experiments.

In the framework we consider, an investor learns the distribution of stock market returns

over time by observing realized market returns. At each date, he updates the probabilities of

different returns using prediction errors analogous to the reward prediction errors of Section

2.2 that are sometimes referred to as “state prediction errors.” Specifically, suppose that the

investor observes a stock market return Rm,t+1 = R at time t+ 1 and that, at time t, before

observing the return, the prior probability he assigned to it occurring was pt(Rm = R). At

time t + 1, he updates the probability of this return as

pt+1(Rm = R) = pt(Rm = R) + αMB
t [1− pt(Rm = R)], (18)

where αMB
t is the model-based learning rate that applies from time t to time t + 1. The

term 1− pt(Rm = R) can be thought of as a prediction error: the investor’s prior estimate

of the probability of the return equaling R was pt(Rm = R); when the return is realized, the

probability of it equaling R is 1. After this update, the investor scales the probabilities of all

other returns down by the same proportional factor so that the sum of all return probabilities

continues to equal one. Since we are working with a continuous return distribution, we can

assume that each return that is realized is one that has not been realized before. As such,

topology: the number 70 is closer to 80 than to 20.
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pt(Rm = R) = 0, which simplifies (18) to

pt+1(Rm = R) = αMB
t .

To illustrate this process, suppose that the investor observes four stock market returns

in sequence: R1, R2, R3, and R4, at dates 1, 2, 3, and 4, respectively. The four rows below

show the investor’s perceived probability distribution of stock market returns at dates 1, 2,

3, and 4, in the case where the learning rate is constant over time, so that αMB
t = αMB

for all t. In this notation, a comma separates a return from its perceived probability, while

semicolons separate the different returns:

(R1, 1)

(R1, 1− αMB;R2, α
MB)

(R1, (1− αMB)2;R2, α
MB(1− αMB);R3, α

MB)

(R1, (1− αMB)3;R2, α
MB(1− αMB)2;R3, α

MB(1− αMB);R4, α
MB). (19)

The above approach is motivated by research in decision neuroscience that adopts a

similar model-based system (Glascher et al., 2010; Lee, Shimojo, and O’Doherty, 2014;

Dunne et al., 2016). Just as there is evidence that the brain encodes reward prediction

errors, so there is evidence that it encodes state prediction errors analogous to the one in

square brackets in (18) (Glascher et al., 2010).10

We noted in Section 2.2 that, when they implement model-free learning, psychologists

allow for different model-free learning rates, αMF
+ and αMF

− , for positive and negative reward

prediction errors, respectively. We extend the model-based algorithm in a similar way,

allowing for different model-based learning rates, αMB
+ and αMB

− , depending on whether

the latest net stock market return is positive or negative. Specifically, following the return

Rm,t+1 = R,

pt+1(Rm = R) = αMB
t,+ for R ≥ 1, (20)

with the probabilities of all other returns being scaled down by (1− αMB
t,+ ), and

pt+1(Rm = R) = αMB
t,− for R < 1, (21)

10While our model-based algorithm is inspired by research in psychology, it is also very similar to an
existing economic framework, namely adaptive learning (Evans and Honkapohja, 2012). As such, from the
perspective of economics, the novel elements of our framework are the model-free system and its interaction
with its model-based counterpart.
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with the probabilities of all other returns being scaled down by (1− αMB
t,− ).

With this perceived return distribution in hand, how does the investor come up with an

estimate of Q∗(a), the value of choosing an allocation a on some date and then continuing

optimally thereafter? Once again, we follow an approach taken by experimental studies in

decision neuroscience (Glascher at al., 2010). We assume that, for any allocation a, the

individual estimates Q∗(a) at time t by taking equation (15) for the correct value of Q∗(a)

and applying it for his perceived time t return distribution:

QMB
t (a) = Ep

t log((1− a)Rf + aRm,t+1) +
γ

1− γ
Ep

t log((1− a∗)Rf + a∗Rm,t+1), (22)

where

a∗ = argmax
a

Ep
t log((1− a)Rf + aRm,t+1) (23)

and where (22) differs from (15) only in that the expectation E under the correct distribution

has been replaced by the expectation Ep
t under the investor’s perceived distribution at time

t.

The essential difference between a model-free and a model-based system is that the latter

makes use of a probability distribution linking future rewards and states to the current action

and state – or, in the case without state dependence, a probability distribution linking future

rewards to the current action – while the former does not. Our implementation reflects this.

Our model-based system has access to a probability distribution for stock market returns and

it knows expression (11) linking allocations to portfolio returns. As such, it can construct

a distribution of future portfolio returns conditional on some allocation. By contrast, the

model-free system has access neither to a probability distribution of stock market returns

nor to the relationship between allocations and portfolio returns.

The Daw et al. (2011) experiment discussed in Section 2.1 illustrates a tension between

the model-free and model-based systems. If, in that experiment, an individual chooses A

and then E and is rewarded, the model-free system wants to repeat action A, while the

model-based system, recognizing that choosing B would give more exposure to E, wants to

choose B. The same tension is present in our financial market setting. If the investor starts

with a low allocation to the stock market and the market then posts a high return, the

model-free system wants to stick with a low allocation because this action was rewarded

with a positive net portfolio return. By contrast, the model-based system wants to increase

the investor’s allocation to the stock market: it now perceives a more attractive distribution

of market returns and wants more exposure to it. We explore the implications of this tension

in Section 3.
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The model-free and model-based systems are not the only learning algorithms the brain

uses. Another important class of algorithms are “observational learning” algorithms which

learn by observing the actions and outcomes of other people. We focus on the model-free

and model-based algorithms because they have received the most attention from psycholo-

gists, and because they likely “span” other algorithms: these other learning systems tend to

generate predictions that lie somewhere between those of the model-free and model-based

systems.

2.5 A hybrid model

An influential framework in psychology posits that people make decisions using a combination

of model-free and model-based systems (Glascher et al., 2010; Daw et al., 2011). Specifically,

it proposes that, at each time t, and for each possible action a, an individual computes a

“hybrid” value of Q(a) that is a weighted average of the model-free and model-based Q

values:

QHY B
t (a) = (1− w)QMF

t (a) + wQMB
t (a), (24)

where w is the weight on the model-based system. He then chooses an action using the

softmax approach, now applied to the hybrid Q values:

p(at = a) =
exp[βQHY B

t (a)]∑
a′ exp[βQ

HY B
t (a′)]

. (25)

A well-known hypothesis in psychology is that the value of w varies over time: at each

moment, the brain allocates more control to the system that is more certain about the values

of different courses of action (Daw, Niv, and Dayan, 2005). We discuss this idea further in

Section 4.9. For our main analysis, however, we keep w constant because we find that even

this simple case has rich implications.

The model-free and model-based systems differ most fundamentally in how they estimate

the value of an action: one system uses a model of the environment, while the other does not.

However, there is another difference between them: the model-free system learns only from

experienced rewards, while the model-based system can learn from all observed rewards. In

our setting, the investor enters financial markets at time 0. Time 0 is therefore the moment at

which he starts experiencing returns and hence the moment at which the model-free system

begins learning. However, before he makes a decision at time 0, the investor can look at

historical charts and observe earlier stock market returns, which the model-based system

can then learn from. To incorporate this, we extend the timeline of our framework so that
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it starts not at time 0 but L dates earlier, at time t = −L. While the model-free system

starts operating at time 0, the model-based system starts operating at time −L: it observes

the L stock market returns prior to time 0, (R−L+1, . . . , R0); uses these to form a perceived

distribution of market returns as in (20) and (21); and computes QMB values based on that

distribution, as in (22).11

3 Properties and Implications

We begin this section with an example that illustrates the mechanics of the model-free and

model-based systems. We then analyze some key properties of the framework. Our focus

is on how the allocations recommended by the model-free and model-based systems depend

on past stock market returns. We also examine the dispersion and variability in investor

allocations that these systems generate. In Section 4, we build on these properties to account

for several facts about investor behavior.

We use the timeline previewed at the end of the previous section. There are L + T + 1

dates, t = −L,. . . , −1, 0, 1,. . . , T . Investors begin actively participating in financial markets

at time 0. Their model-free systems therefore start operating only at time 0, while their

model-based systems operate over the full time range, starting from t = −L. We think of

each time period as one year and set L = T = 30. Before they start investing at time 0,

then, people have access to 30 years of prior data going back to t = −30. We then track

their allocation decisions over the next 30 years, from t = 0 to t = 30.12,13

The four learning rates – αMF
+ , αMF

− , αMB
+ , and αMB

− – play an important role in our

framework. How should they be set? If we were taking a normative perspective – if we

wanted to use the algorithms of Section 2 to solve the problem in (10) as efficiently as

11Our implementation here is consistent with evidence from decision neuroscience. Dunne et al. (2016)
conduct an experiment in which participants actively experience slot machines that deliver a stochastic
reward, but also passively observe other people playing the slot machines. fMRI measurements show that,
as in many other studies, the model-free reward prediction error for the experienced trials is encoded in the
ventral striatum. However, for the trials that are merely observational, the model-free RPE is not encoded
in the striatum, suggesting that the model-free system is not engaged. As Dunne et al. (2016) write, “It may
be that the lack of experienced reward during observational learning prevents engagement of a model-free
learning mechanism that relies on the receipt of reinforcement.”

12One interpretation of our annual implementation is that, as argued by Benartzi and Thaler (1995),
investors pay particular attention to their portfolios once a year – at tax time, or when they receive their
end-of-year brokerage statements. Another interpretation is that it is an approximation of a higher-frequency
implementation. Later in this section, we explain how our results are affected if we change the model
frequency.

13Since our setting has an infinite horizon, investors continue to participate in financial markets beyond
date T . Date T is simply the date at which we stop tracking their allocation decisions.
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possible – the answer would be to use learning rates that decline over time. Specifically, the

time t model-based learning rates in (20) and (21) would be14

αMB
t,+ = αMB

t,− = 1/(t+ 1), (26)

as these lead investors to equally weight all past returns, consistent with the i.i.d. return

assumption. Similarly, Watkins and Dayan (1992) show that, for Q-learning to converge to

the correct Q∗ values, declining model-free learning rates are needed that, for each action a,

satisfy
∞∑
t=0

αMF
t,± 1{at=a} = ∞

∞∑
t=0

(αMF
t,± )21{at=a} < ∞, (27)

where the indicator function identifies periods where the algorithm is taking action a.

In this paper, however, we are taking a “positive” perspective – our goal is to explain

observed behavior. What matters for our purposes is therefore not the learning rates people

should use, but rather the learning rates they actually use. Psychology research does not

offer definitive guidance on people’s learning rates, but most studies of actual decision-

making use learning rates that are constant over time. For this reason, and because this is

the simplest assumption we can make, we focus on constant learning rates. To start, we give

all investors the same constant learning rates. Later, we allow for dispersion in these rates

across investors.

3.1 An example

To show how the model-free and model-based systems work, we start with an example. We

use the same baseline parameter values throughout the paper, in part for consistency and in

part to show that a single set of parameter values can account for a range of observed facts.

We consider an investor who is exposed to a sequence of stock market returns from t = −L

to t = T , where L = T = 30. The returns are simulated from the distribution in (9) with

μ = 0.01 and σ = 0.2; these values provide an approximate fit to historical annual U.S. stock

market data. We set the investor’s learning rates to αMF
± = αMB

± = 0.5, the exploration

parameter β to 30, the discount rate γ to 0.97 – this corresponds to an expected investment

horizon of 33 years – and the degree of generalization b to 0.0577. At each time, we allow

the investor to choose his stock market allocation at from one of 11 possible allocations

{0%, 10%, . . . , 90%, 100%}; we later examine how the coarseness of the action set affects the

results.

14Equation (26) assumes L = 0. For L > 0, the learning rates would be αMB
t,+ = αMB

t,− = 1/(L+ t+ 1).
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As described in Section 2.5, in our framework, decisions are based on hybrid Q values

that combine the influences of the model-free and model-based systems. To clearly illustrate

the mechanics of each system, we start by considering two simpler cases: one where the

investor uses only the model-free system to make decisions, and one where he uses only the

model-based system.

Table 1 shows the model-free Q values, QMF , based on equations (14), (16), and (17)

(upper panel) and the model-based Q values, QMB, based on equation (22) (lower panel)

that the investor assigns to the 11 allocation strategies on his first six dates of participation

in financial markets, namely t = 0, 1, 2, 3, 4, and 5. The rows labeled “net market return”

show the net return of the stock market at each date. In each column, the number in bold

corresponds to the action that was taken in the previous period; for example, the number

−0.065 in bold at date 1 in the upper table indicates that the investor chose an allocation

of 70% at date 0.15

Consider the upper panel of Table 1. The model-free system begins operating at time

0. At that time, then, it assigns a Q value of zero to all the allocations. It then randomly

selects the allocation 70%. The net stock market return at time 1 is negative, which means

that the investor’s net portfolio return and reward prediction error are also negative. The

time-1 Q value for the 70% allocation therefore falls below zero. As per equations (16) and

(17), the algorithm also engages in some generalization: since a 60% allocation and an 80%

allocation are similar to a 70% allocation, their Q values also fall, albeit to a lesser extent.

The Q values of more distant allocations are unaffected, at least to three decimal places.

At time 1, the investor chooses the allocation 30%. The time-2 market return is positive;

the investor therefore earns a positive net portfolio return and the time-2 Q value of the 30%

allocation goes up, as do, to a lesser extent, the Q values of the similar allocations 20% and

40%. At time 2, the investor chooses the allocation 100%. While the market falls slightly at

time 3, the time-3 Q value of the 100% allocation goes up by a small amount because the

reward prediction error is slightly positive. At dates 3 and 4, the investor chooses allocations

of 30% and 40%, respectively, and updates the values of these allocations and their close

neighbors based on the prediction errors they lead to at dates 4 and 5.

15In the case where decisions are determined by the model-based system alone, we assume that the investor
still chooses actions probabilistically, in a manner analogous to that in (14). In our setting, for the model-
based system, this probabilistic choice does not offer the usual exploration benefits: in each period, the
investor learns the same thing about the distribution of stock market returns regardless of which allocation
he chooses. We keep the probabilistic choice to allow for a more direct comparison with the model-free
system. For the same reason, whenever we consider the model-based system in isolation, we allow for
exploration, unless otherwise specified.
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The lower panel shows that the Q values generated by the model-based system are quite

different. By time 0, the model-based system has already been operating for 30 periods and

so already has well-developed Q values for each of the 11 allocation strategies. In the periods

immediately preceding time 0, the simulated stock market returns are somewhat positive;

higher allocations to the stock market therefore have higher Q values at time 0. At time 1,

the stock market return is poor, so all Q values fall, but those of riskier allocations do so

more: the negative stock market return at time 1 makes the investor’s perceived distribution

of stock market returns less appealing; this has a larger impact on portfolio strategies that

allocate more to the stock market. At time 2, the stock market return is positive, so all Q

values go up, but those of the riskier allocations do so more.

Table 1 makes clear a key difference between the model-free and model-based systems:

while, at each time, the model-based system updates the Q values of all the allocations, the

model-free system primarily updates only the Q values of the most recently chosen allocation

and those of its nearest neighbors. The reason is that it is model-free: it knows nothing about

the structure of the problem and therefore cannot make a strong inference, after seeing the

outcome of an 80% allocation, about the value of a 20% allocation.

3.2 Dependence on past returns

We now analyze a basic property of our framework, one that will be central to several of

the applications in Section 4, namely, how the stock market allocations recommended by

the model-free and model-based systems depend on past stock market returns. We find that

the model-free system in particular leads to a rich set of intuitions and implications, some

of which are quite distinct from those associated with the model-based system.

To study this, we take 300, 000 investors and expose each of them to a different sequence

of simulated stock market returns from t = −L to t = T . We then take investors’ final stock

market allocations aT at time T , regress them on the past 30 annual stock market returns

{Rm,T , Rm,T−1,. . . ,Rm,T−29} the investors have been exposed to, and record the coefficients.

We do this for three cases, namely those where investor allocations are determined by the

model-free system alone; by the model-based system alone; and by the hybrid system. For

all investors, as before, we set L = T = 30, αMF
± = αMB

± = 0.5, β = 30, γ = 0.97, μ = 0.01,

and σ = 0.2. For ease of interpretation, we turn off generalization for now, so that b = 0.16

Finally, we set w = 0.5, so that the hybrid system puts equal weight on the model-free and

16We use “b = 0” as shorthand for model-free learning without generalization. When b = 0, we compute
model-free Q values using equation (13) rather than equations (16)-(17), although the latter equations give
the same result as b → 0.
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model-based systems. We will later look at how changing the values of key model parameters

affects the results.17

Figure 2 presents the results. The solid line plots the coefficients on past returns in the

above regression when allocations are determined by the model-based system. As we move

from left to right, the line plots the coefficients on more distant past returns: the point on

the horizontal axis that marks j years in the past corresponds to the coefficient on RM,T+1−j.

The two other lines plot the coefficients for the model-free and hybrid systems.

The figure shows that, for both the model-free and model-based systems, the time T stock

market allocations depend positively on past returns, and more so on recent past returns:

the coefficients on past returns decline, the more distant the past return. Importantly, the

decline is much faster for the model-based system, a property that will play a key role in

some of our later applications. Given that the hybrid system combines the model-free and

model-based systems, it is natural that the line for the hybrid system is, approximately, a

mix of the model-free and model-based lines.

We now discuss these findings. First, we explain why the allocations recommended by

the model-free and model-based systems depend positively on past returns. The answer

is clear for the model-based system. Following a good stock market return, an investor’s

perceived distribution of market returns assigns a higher probability to good returns and a

lower probability to bad returns. This raises the model-based Q values of all stock market

allocations, but particularly those of high allocations, making it more likely that the investor

will choose a high allocation going forward.

The intuition for the model-free system is more subtle, and, to our knowledge, new to

financial economics. If the investor chooses a 20% stock market allocation and the market

posts a high return, this “reinforces” the action of choosing a 20% allocation: it raises the

Q value of this allocation, making it more likely that the investor will choose it again in the

future. Similarly, if he chooses an 80% allocation and the market posts a high return, this

reinforces the 80% allocation. In one case, then, a high market return leads the investor to

choose a low allocation; in the other, it pulls him toward a high allocation. Why then, on

average, does a high return lead to a higher allocation, as in Figure 2? The reason is that

the reinforcement is stronger in the case of the 80% allocation: a high stock market return

leads to a larger reward prediction error when the investor’s prior allocation is 80% than

17The goal function in (10) is motivated in part by the idea that, due to liquidity shocks, some investors
drop out of financial markets over time. In our calculations, we do not explicitly track which investors drop
out. This is because the shocks are random: they do not depend on investors’ prior allocations or past
returns. As such, investor exits do not affect the properties or predictions that we document.
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when it is 20%. Given that this mechanism is less direct than the one for the model-based

system, it is natural that, as shown in Figure 2, the dependence of the allocation on recent

stock market returns is quantitatively smaller for the model-free system.

The weights that the model-based system puts on past returns decline as we go further

into the past. Mathematically, this is because every time the model-based system updates

its perceived return distribution, it scales down the probabilities of past returns by a pro-

portional factor, reducing the importance of these earlier returns. Intuitively, by using a

constant learning rate, the investor is acting as if the environment is non-stationary; as

such, he puts greater weight on recent returns. The top graph in Figure 3 shows how the

allocation recommended by the model-based system depends on past stock market returns

for four different values of the learning rates αMB
+ and αMB

− , namely 0.05, 0.1, 0.2, and 0.5.

The graph shows that, regardless of the learning rate, the allocation puts weights on past

returns that are positive and that decline the further back we go into the past, with the

decline being more pronounced for higher learning rates.

Figure 2 shows that, for the model-free system, the weights on past returns again decline

as we go further into the past, but much more gradually. Why is this? Whenever the model-

free system updates the Q value of an action, this tends to downweight the influence of

past returns on this Q value, relative to the most recent return. However, this effect passes

through to allocation choice in a much more gradual way than for the model-based system

because, at each time, the model-free system primarily updates only one Q value; in short,

it learns slowly. The bottom graph in Figure 3, which plots the relationship between the

model-free allocation and past returns for four different values of the learning rates αMF
+

and αMF
− , shows that regardless of the learning rate, the model-free allocation puts positive

and declining weights on past returns, with the decline being slightly more pronounced for

higher learning rates.

For many parameter values, including those used in Figures 2 and 3, the model-free

allocation puts more weight on recent than distant past returns. However, the model-free

system can exhibit richer behavior than this. For example, it sometimes puts more weight

on distant than on recent past returns. Moreover, for the model-free system, the relationship

between allocations and past returns is affected by factors that play no role for the model-

based system.

To illustrate this, each of the four graphs in Figure 4 varies a key model parameter while

keeping the other parameters at their benchmark levels. The top-left graph in Figure 4 plots

the coefficients in a regression of the model-free allocation on past stock market returns for

four values of the generalization parameter b: 0, 0.0577, 0.115, and 0.23. The first of these
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values corresponds to no generalization; the other three values give the Gaussian function

in (17), normalized as a probability distribution, a standard deviation equal to that of a

uniform distribution with width 0.2, 0.4, and 0.8, respectively.

The figure shows something striking: as we raise the degree of generalization, we begin

to see an increasing relationship between allocations and past returns, so that the model-free

allocation puts more relative weight on distant past returns. To see the intuition, suppose

that, when he first enters financial markets, an investor chooses an allocation of 80% and that

the stock market then performs well. For a high degree of generalization, as with b = 0.23,

this immediately creates a cluster of allocations ranging from, say, 60% to 100%, with high

Q values. This makes it likely that the investor will keep choosing an allocation in this range

for a long time to come, thereby giving the early returns he encountered an outsize influence

on his later allocations.

The top-right graph in Figure 4 plots the relationship between the model-free allocation

and past returns for three different values of β, which controls the degree of exploration,

namely 10, 50, and 500. Recall that, as β rises, the investor explores less: he is more likely

to choose the allocation with the highest estimated Q value. We find that, for a wide range

of values of β – any β below 100 – the model-free allocation puts positive and declining

weights on past returns, as it does for our benchmark case of β = 30. However, when β is

very high – higher than 100 – we begin to see an increasing relationship between allocations

and past returns, at least over some range. To see why, suppose that, soon after the investor

enters financial markets, the stock market posts a high return, raising the Q value of his most

recent allocation. If the value of β is high, the investor is likely to stick with this allocation

for a substantial period of time. As such, the early returns he experiences have a large effect

on his subsequent allocations.

The bottom-left graph plots the relationship between the model-free allocation and past

returns for three different values of the discount rate γ, namely 0.3, 0.9, and 0.99. As we

lower γ, the allocation puts much greater weight on recent past returns. This is a striking

result in that it links an investor’s expected future investment horizon to the relative weight

he puts on recent as opposed to distant past returns when choosing an allocation. For

the model-based system, by contrast, the discount rate does not affect the dependence of

allocations on past returns.

Thus far, we have allowed investors to select from one of 11 possible allocations. The

bottom-right graph in Figure 4 shows how the time T allocation depends on past returns as

we vary the number of allocation options available to investors, ranging from three, namely

{0%, 50%, 100%}, up to 21, namely {0%, 5%, ... , 95%, 100%}. The graph shows that, as we
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lower the number of possible allocations, the relationship between the time T allocation and

past returns, while initially downward-sloping, becomes much flatter, thereby giving distant

past returns a larger relative role. This property of the model-free system again distinguishes

it sharply from the model-based system, where the number of possible allocations has little

impact on the relationship between the time T allocation and past returns.

One way of understanding the bottom-right graph is to note that reducing the number

of allocation options is akin to increasing the degree of generalization: since generalization

leads the investor to treat nearby allocations in a similar way, a large number of allocations

coupled with generalization is like a small number of allocations without generalization. Just

as in the top-left graph we see a flat or increasing relationship between the time T allocation

and returns for high levels of generalization, so in the lower-right graph, we see a flat and,

in places, increasing relationship for a lower number of allocation choices.18

In summary, the model-free system has rich implications for the relationship between

allocations and past returns. While this relationship is typically downward-sloping, it is

sometimes upward-sloping. Moreover, there is structure to this relationship: we know the

conditions under which it is more likely to be downward- rather than upward-sloping. Finally,

the relationship between model-free allocations and past returns is affected by factors that

play little to no role in the model-based system. We return to some of these novel implications

in Section 4.

While the model-free algorithm is simple to state – it is summarized in equation (16) – it is

difficult to derive analytical results about its predictions, for example, about the dependence

of model-free allocations on past returns. Nonetheless, for certain special cases, we are able

to derive such results. We present these results and their proofs in Online Appendix A. This

analysis confirms a fundamental property we have emphasized in this section, namely that,

relative to the model-based system, the model-free system tends to put significantly more

weight on distant past returns.

3.3 Dispersion and variability in allocations

We now consider some other properties of the model-free and model-based systems – prop-

erties related to the dispersion and variability in investor allocations. By “dispersion,” we

18The results in Figures 2 to 4 are for an annual-frequency implementation of our framework. We have
studied the effect of changing the model frequency. If we fix the learning rates αMB and αMF but switch to a
semi-annual, quarterly, or monthly implementation, this has a significant effect on the model-based allocation
– it depends all the more on recent returns – but a much smaller impact on the model-free allocation. As
such, implementing the framework at a higher frequency creates a larger wedge between the two systems.
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mean the standard deviation, across investors, of their date T allocations. By “variability,”

we mean the standard deviation of investors’ allocations over time: for each investor in turn,

we compute the standard deviation of his allocations over time – the standard deviation of

{aT−j}30j=1 for this investor – and then average these standard deviations across investors.

We obtain two results. First, the variability in investor allocations is typically lower under

the model-free system: under this system, there is more “inertia” in an investor’s allocations

from period to period. Second, under the model-free system, there is more dispersion in

investors’ final allocations.

To demonstrate these results, we now allow for dispersion in learning rates across in-

vestors.19 Specifically, for each investor, we draw each of their learning rates – each of αMF
+ ,

αMF
− , αMB

+ , and αMB
− – from a uniform distribution centered at ᾱ and with width Δ. As

before, the parameter values are L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, μ = 0.01, and

σ = 0.2. As in Section 3.1, we have b = 0.0577, so that there is some generalization, and

we set the new parameter Δ to 0.5. We take 1,000 investors, expose all of them to the

same sequence of stock market returns from t = −L to t = T, and compute the resulting

dispersion and variability. We repeat this exercise 300 times for different return sequences

and average the resulting set of dispersion and variability estimates.

The solid and dashed lines in the top three graphs in Figure 5 plot the variability of

investor allocations under the model-based and model-free systems, respectively, as we vary

three model parameters – the exploration parameter β, the mean learning rate ᾱ, and the

dispersion Δ of learning rates – while keeping the other parameter values fixed at their

benchmark levels. The main finding is that the dashed lines are substantially below the

solid lines: the model-free system leads to lower variability than the model-based system.

To understand this, note that, under the model-based system, investors tend to increase

their allocation following a good return and lower their allocation following a poor return; as

a consequence, there is substantial variability. By contrast, under the model-free system, an

investor can become “stuck” at a particular allocation: if, early on, the investor chooses some

allocation to the stock market and the market then performs well, the Q value of the chosen

allocation will be pushed up, raising the chance that the investor will keep choosing this

allocation in subsequent years. The three upper graphs show that the difference in variability

levels between the two systems is increasing in the mean learning rate and decreasing in the

19Data on investor beliefs about future stock market returns suggest that there is substantial dispersion in
learning rates across investors. Giglio et al. (2021) analyze such data and find that an individual fixed effect
explains more of the variation in beliefs than a time fixed effect: some investors are persistently optimistic
while others are persistently pessimistic. Capturing this in our framework requires substantial dispersion in
learning rates across investors, a claim we have confirmed in simulated data: as we increase this dispersion,
individual fixed effects explain more of the variation in beliefs. Intuitively, investors with high αMB

+ and low
αMB− are persistently optimistic, while those with low αMB

+ and high αMB− are persistently pessimistic.
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amount of exploration and the dispersion in learning rates.

The solid and dashed lines in the three lower graphs in Figure 5 plot the dispersion in

final allocations across investors for the model-based and model-free systems, respectively,

as we vary β, ᾱ, and Δ, while keeping the other parameter values at their benchmark levels.

While the difference between the two systems is not as stark as in the case of variability,

the graphs show that dispersion in allocations is typically higher for the model-free system.

To understand this, note that, under the model-based system, following a high stock market

return, all investors perceive an improvement in the distribution of stock market returns and

hence tend to raise their allocation to the stock market; this, in turn, keeps the dispersion

in allocations across investors at a relatively low level. The model-free system, by contrast,

generates higher dispersion. This stems from the interaction of the probabilistic action choice

and the reinforcement inherent in this system. At time 0, the probabilistic action choice in

(14) leads to dispersed allocations across investors. If the stock market then performs well,

this reinforces each investor’s initial allocation, leading each investor to persist with his initial

allocation and preserving the dispersion in allocations across investors.

4 Applications

We now build on the analysis of Section 3 to show that our framework can shed light on

a range of facts in finance. This is striking, for two reasons. First, in prior research, this

framework has been used primarily to explain behavior in simple experimental settings; it

is notable, then, that it can also shed light on real-world financial behavior. Second, one

component of the framework is, by definition, “model-free”: it uses very little information

about the nature of the task. It is striking that a framework that “knows” so little about

financial markets can nonetheless help explain investor behavior in these markets.

We start by showing that a simple parameterization of the framework can qualitatively,

and even quantitatively, address a range of facts about investor behavior. By “simple,” we

mean that, in this parameterization, each investor’s learning rates αMF
+ , αMF

− , αMB
+ , and

αMB
− are constant over time; and, for all investors, the values of these learning rates are

drawn from the same distribution. Our initial goal is not to provide a close quantitative fit

to observed facts; it is to show that a simple parameterization can provide a qualitative, and

approximate quantitative, fit to the data. Toward the end of this section, we estimate the

model parameter values that provide a closer quantitative match to the data.

To study the various applications, we start with the setup of Section 3. There are again
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L+T +1 dates, t = −L,. . . ,−1, 0, 1,. . . , T . Relative to Section 3, we make one modification

to make the framework more realistic: we allow for different cohorts of investors who enter

financial markets at different times. Specifically, we take L = T = 30 and consider six

cohorts, each of which contains 50, 000 investors, making for a total of 300, 000 investors.

The first cohort begins participating in financial markets at time t = 0; we track their

allocation decisions until time t = T . For these investors, their model-based systems operate

over the full timeline starting at time t = −L, but their model-free systems operate only

from time t = 0 on. The second cohort enters at time t = 5; we track them until time t = T .

For this cohort, the model-based system again operates over the full timeline starting at

t = −L, but the model-free system operates only from time t = 5 on. The four remaining

cohorts enter at dates t = 10, 15, 20, and 25.

Given the above structure, at time T , the cross-section of investors resembles the one we

see in reality, namely one where investors differ in their number of years of participation in

financial markets. As such, most of our analyses will focus on investor allocations at time

T and on how these relate to other variables, such as investor beliefs at that time or the

past stock market returns investors have been exposed to. For most of the applications, we

conduct simulations in which each investor interacts with a different return sequence from

time t = −L to time t = T .

Each investor in the economy is trying to solve the problem in (10) and chooses allocations

from the set {0%, 10%,. . . , 90%, 100%} according to the hybrid system in (24)-(25). For each

investor, we draw the values of the learning rates αMF
+ , αMF

− , αMB
+ , and αMB

− independently

from a uniform distribution with mean ᾱ and width Δ. We use the same parameter values

throughout much of this section in order to show that a single parameterization is consistent

with a range of empirical facts. As in Section 3, we set ᾱ = 0.5, β = 30, γ = 0.97, Δ = 0.5,

μ = 0.01, σ = 0.2, b = 0.0577, and w = 0.5, so that investors put equal weight on the

model-free and model-based systems. Later, we will formally estimate the value of w that

best fits the data.

We now use our framework to address a range of applications.

4.1 Extrapolative demand

The first application follows directly from the analysis of Section 3.2, but it is an important

one that merits further discussion. A common assumption in psychology-based models of

asset prices and investor behavior is that people have extrapolative demand: their demand
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for a financial asset depends positively on the asset’s past returns, and especially on its

recent past returns.20

The framework of Section 2 provides a new foundation for such extrapolative demand. As

shown in Section 3.2, for a wide range of parameter values, the model-free and model-based

systems both generate an allocation that depends positively on past returns and more so on

recent past returns. To be clear, the mechanism in the case of the model-based system is not

particularly novel; however, for the model-free system, the mechanism is new to the finance

literature. We explained it in full in Section 3.2. In brief: following a good stock market

return, the reward prediction error is larger if the investor previously had a high allocation

to the stock market than if he had a low allocation; he is therefore more likely to choose a

high allocation going forward.

To confirm that the framework of Section 2 generates extrapolative demand, we run a

regression of investors’ allocations aT at time T , as determined by the hybrid system, on

the past stock market returns each of them has observed. The relationship between the

allocation and past returns is plotted as the solid line in Figure 6. The graph confirms that

an investor’s allocation to the stock market is a positive function of its past returns, with

weights on past returns that decline the further back we go into the past.

The solid line in Figure 6 is similar to the line marked “Hybrid” in Figure 2 in that both

lines correspond to decisions made under the hybrid system. However, the two lines differ

in that, relative to the analysis of Section 3.2, we are now allowing for dispersion across

investors in their learning rates and for multiple cohorts. The multiple cohorts in particular

make the solid line in Figure 6 decline more quickly than the “Hybrid” line in Figure 2: some

of the investors present in the market at time T = 30 entered only at time 25; as such, their

model-free system puts no weight on returns before time 25.

The framework of Section 2 offers another insight relative to the existing finance litera-

ture on extrapolative demand, namely that this demand has two sources which operate on

different time scales: a model-based source that puts heavy weight on recent returns, and a

model-free source that puts substantial weight even on distant past returns; indeed, we saw

in Section 3.2 that, in some cases, the model-free system puts more weight on distant than

on recent returns. As such, while empirical analyses suggest that the allocations of real-

world investors put more weight on recent returns, this may mask a model-free component

that puts more weight on distant returns but is outweighed by a model-based component

20A partial list of papers that study extrapolative demand, either theoretically or empirically, is Cutler,
Poterba, and Summers (1990), De Long et al. (1990), Barberis et al. (2015, 2018), Cassella and Gulen
(2018), Jin and Sui (2021), Liao, Peng, and Zhu (2021), and Pan, Su, and Yu (2021).
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that puts heavy weight on recent returns. We make use of this two-component structure of

extrapolative demand in subsequent applications.

4.2 Experience effects

Malmendier and Nagel (2011) show that investors’ decisions are affected by their experience:

whether an investor participates in the stock market, and how much he allocates to the stock

market if he does participate, can be explained in part by the stock market returns he has

personally experienced – in particular, by a weighted average of the returns he has personally

lived through, with more weight on more recent returns.

The framework of Section 2 offers a foundation for such experience effects. Since the

model-free system engages only when an investor is actively experiencing financial markets,

the framework predicts that investors who enter financial markets at different times, and

who therefore experience different returns, will choose different allocations.

There are two key features of experience effects that we hope to replicate. The more

important one is that, if an investor begins participating in financial markets at time t,

his allocation to the stock market should depend substantially more on the stock market

return at time t+ 1, Rm,t+1 – a return he experienced – than on the stock market return at

time t, Rm,t, a return he did not experience. Put differently, if we plot the coefficients in a

regression of investor allocations on past returns, we should see a “kink” in the coefficients at

the moment the investor enters financial markets. The second feature of experience effects is

that the coefficients in a regression of investor allocations on past experienced stock market

returns should decline for more distant past returns. As a way of capturing both features,

Malmendier and Nagel (2011) propose that investors’ decisions are based on a weighted

average of past returns in which, for an investor with n years of experience, the weight on

the return k years ago is

(n− k)λ/A, (28)

where λ is estimated to be approximately 1.5 and A is a normalization factor, and where

the weight on returns the investor did not experience is zero.

To see whether our framework can generate these two features of experience effects, we

proceed as follows. For each of the six cohorts, we take the 50, 000 investors in the cohort

and regress their time T allocations aT on the past 30 years of stock market returns. Figure

7 presents the results. The six graphs correspond to the six cohorts. In each graph, the

solid line plots the coefficients in the above regression, normalized to sum to one so that
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we can compare them to the Malmendier and Nagel (2011) coefficients in (28). The dashed

line plots the functional form in (28) for the cohort in question, and the vertical dotted line

marks the point at which the cohort enters financial markets.

By comparing, within each graph, the solid and dashed lines, we see that our framework

can capture both aspects of experience effects. Consider the bottom-left graph for cohort 4

which enters at date 15. The solid line shows that our framework generates a kink in the

dependence of allocation on past returns as we move from a return these investors experienced

– the return 15 years in the past – to one they did not experience, the return 16 years in the

past. The kink is driven by investors’ model-free system, which puts substantial weight even

on an experienced return that is 15 years in the past, but no weight at all on returns before

that. The graph also shows that, within the subset of returns that these investors experience,

their allocation puts greater weight on more recent past returns. Both the model-free and

model-based systems contribute to this pattern, although the model-based system does so

to a greater extent.

Similar patterns can be seen in the other five graphs. In each case, the solid line exhibits a

kink at the moment that the investors in that cohort begin experiencing returns; and within

the subset of returns that the investors in that cohort experience, there is more weight on

more recent returns.

Using an analogous approach to that described above, our framework can also capture

several other types of experience effects in financial markets – for example, that after experi-

encing good returns on their investments in a particular industry, IPO stock, or lottery-type

stock, people are more likely to purchase another stock in that industry, another IPO stock,

or another lottery-type stock, respectively (Kaustia and Knupfer, 2008; Huang, 2019; Hui et

al., 2021).

4.3 Investor beliefs and the frequency disconnect

Several studies have found that investor beliefs about future stock market returns are a

positive function of recent past stock market returns. Our framework can capture this; but

more strikingly, it can also help explain two puzzling disconnects between investor beliefs

and investor actions – one in the frequency domain, which we discuss in this section, and

one in the cross-section of investors, which we discuss in the next section.

The disconnect in the frequency domain is simple to state. While studies of investor

expectations about future returns find that these expectations depend heavily on recent past
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returns, investor stock market allocations depend to a substantial extent even on distant past

returns (Malmendier and Nagel, 2011).21

Two features of our framework allow it to explain this disconnect. First, while each

investor’s allocation is based on both the model-free and model-based systems, only one of

these – the model-based system – has an explicit role for beliefs. Second, relative to the

model-based system, the model-free system recommends allocations that put substantially

more weight on distant past returns. Taken together, these features mean that an investor’s

beliefs, which are generated by the model-based system, will put heavy weight on recent

returns, while his allocations, which are based on both systems, will put a greater relative

weight on distant past returns. As such, the framework drives a wedge between actions and

beliefs.

Figure 6 illustrates these points. As discussed in Section 4.1, the solid line shows how

allocations depend on past returns: it plots the coefficients in a regression of investors’

allocations to the stock market at time T on the past 30 years of stock market returns they

have been exposed to. The dashed line shows how beliefs depend on past returns: it plots

the coefficients in a regression of investors’ expectations at time T about the future one-year

stock market return on the past 30 years of stock market returns they have been exposed

to. Comparing the two lines, we see that, while beliefs depend primarily on recent returns,

allocations depend significantly even on distant past returns.

A number of studies find a positive time-series correlation between investor beliefs and

allocations. For example, Greenwood and Shleifer (2014) find that the average investor

expectation of future stock market returns is correlated with flows into equity market mutual

funds. We stress that our framework is consistent with such findings: in our simulated data,

there is a strong time-series correlation between investor allocations and beliefs, both at

the individual and aggregate levels. However, underlying the positive correlation in actual

data is a frequency disconnect, with beliefs putting more weight on recent returns than do

allocations; it is this puzzling disconnect that our framework can shed light on.

21We can formalize this in the following way. When Malmendier and Nagel (2011) use the weights in (28)
to characterize the relationship between an investor’s allocation and the past returns he has experienced,
they obtain an estimate of λ ≈ 1.5. Suppose that we now take the functional form in (28) and use it,
with n = 30, to characterize the relationship between investor beliefs and the past 30 years of stock market
returns. Using Gallup data on stock market expectations from October 1996 to November 2011, we find
that the best fit is for λ ≈ 50, which puts much greater weight on recent returns.
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4.4 Investor beliefs and the cross-sectional disconnect

Using survey responses from Vanguard investors, as well as data on these investors’ stock

market allocations, Giglio et al. (2021) document another disconnect between investor be-

liefs and actions. Regressing investors’ allocations to the stock market on their expected

one-year stock market returns, they obtain a coefficient approximately equal to one. How-

ever, according to a traditional Merton model of portfolio choice, the coefficient should be

substantially higher.

Our framework can help capture this disconnect. The mechanism is similar to that for

the frequency disconnect and relies on the fact that, while an investor’s allocation is based on

both the model-free and model-based systems, only the model-based system has an explicit

role for beliefs. To see the implications of this, suppose that the stock market posts a high

return. The investor’s expectation about the future stock market return will then go up

significantly: the model-based system, which determines beliefs, puts substantial weight on

recent returns. However, the investor’s allocation will be less sensitive to the recent return:

it is determined in part by the model-free system, which, relative to the model-based system,

puts less weight on recent returns.

We now examine this quantitatively. Table 2 reports, for three different values of the

weight w on the model-based system, the coefficient in a regression of investors’ stock market

allocations at time T on their expected returns on the stock market over the next year. The

table shows that our framework can help explain the cross-sectional disconnect described

above: for our benchmark value of w = 0.5, the regression coefficient in our simulated data,

1.25, is similar to that obtained by Giglio et al. (2021) in actual data. Moreover, the table

shows that the model-free system plays an important role in this result: as we increase the

weight on the model-free system, the sensitivity of allocations to beliefs falls.

4.5 Dispersion and inertia in household allocations

Households differ in their asset allocations: some participate in the stock market, while

others do not; and among households that participate, the fraction of wealth they invest in

the stock market varies substantially. It is not easy to explain these differing allocations:

regressions of allocations on explanatory variables have a low R-squared.

The framework of this paper offers two ways of thinking about this dispersion in holdings.

First, it says that these differences are due in part to differences in investor learning rates. In
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our simulated data, investors with higher values of αMF
+ −αMF

− and αMB
+ −αMB

− have higher

stock market allocations, on average: these investors update more in response to positive

returns or reward prediction errors, which, in turn, tends to raise the Q values of higher

stock market allocations.

A second, more novel, possibility is one discussed earlier in connection with Figure 5.

The lower-right panel in that figure shows that the model-free system generates substantial

dispersion in investor allocations at time T even when all investors have the same learning

rates. The dispersion here is driven by the interaction of the probabilistic action choice and

model-free reinforcement. If, as a result of the probabilistic choice, investor A chooses a low

allocation to the stock market early on while investor B chooses a high allocation, and the

stock market then posts a high return, choosing a low (high) allocation will be reinforced

for investor A (B), leading to persistent differences in these investors’ allocations.

While there is substantial cross-sectional dispersion in households’ allocations to the stock

market, there is also individual-level inertia in these allocations over time. This inertia is

often attributed to transaction costs, procrastination, or inattention.

The framework in this paper offers a new way of thinking about inertia in investor

holdings: it says that the inertia arises endogenously from the model-free system. The upper

panel of Figure 5 shows that, relative to the model-based system, the model-free system

generates lower variability, or equivalently, higher inertia. If, after an investor chooses some

allocation to the stock market, the market posts a good return, the Q value of that allocation

goes up substantially, which makes it more likely that the investor will keep choosing that

allocation in the future.

4.6 Non-participation

For the final two applications – non-participation and persistent investment mistakes – we

use modified versions of our framework that better fit the context at hand.

A long-standing question asks why many U.S. households do not participate in the stock

market; the traditional Expected Utility model, by contrast, predicts that all investors will

allocate at least some fraction of their wealth to the stock market. Our framework can shed

light on this. In particular, the model-free system tilts investors toward not participating.

To see why, consider an investor who makes decisions according to the model-free system. If

he allocates some money to the stock market but then experiences a poor market return, this

raises the probability that, in a subsequent period, he will switch to a 0% allocation to the
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market. Importantly, once he does so, the model-free system will update only the Q value of

the 0% allocation: since, generalization aside, it learns only about the action taken, it stops

learning about the stock market, and, in particular, fails to learn that the stock market has

better properties than indicated by the poor return the investor experienced. This will tend

to keep the investor at a 0% allocation for an extended period of time.

We illustrate this in a modified version of our framework that better suits this particular

application. In this version, there are just two allocations: 0% and 100%. It is natural to

use a two-allocation framework for this application because the participation decision has

a binary flavor: Should I participate or not? It is not important that the stock market

allocation is a 100% allocation; we obtain similar results if the two allocations are 0% and

50%, say.22 In addition, because the multi-cohort structure we used earlier does not play an

interesting role in this application, we consider a single cohort of investors who enter at time

0.

We take 300, 000 investors and expose each of them to a different sequence of stock market

returns. For each investor, we compute the fraction of time between dates 0 and T that he

chooses a 0% allocation. In addition, for each investor, we identify the episodes where he

allocates 0% to the stock market for multiple consecutive years and record the duration of

the longest such episode. We do this exercise twice: first for the case where decisions are

made by the model-free system and then for the case where they are made by the model-

based system. The parameter values are the same as before, namely L = T = 30, ᾱ = 0.5,

β = 30, γ = 0.97, Δ = 0.5, μ = 0.01, σ = 0.2, and b = 0.0577.

The results confirm that the model-free system tilts investors toward non-participation.

Under the model-free system, 43% of investors spend at least 80% of the 30 years not

participating in the stock market, in other words, at a 0% allocation. By contrast, under

the model-based system, fewer than 1% of investors spend more than 80% of the 30 years

not participating. In a similar vein, under the model-free system, 59% of investors have a

non-participation streak that is at least 10 years long; under the model-based system, only

17% of investors have a streak of this length.

More interestingly, the simulated data support the mechanism for non-participation we

laid out above. We find that, under the model-free system, long streaks of non-participation

are typically preceded by a poor experienced stock market return. The longer the non-

participation streak, the more negative the prior experienced return, on average.

22One possibility is that the investor uses a separate model-free / model-based framework for each of two
decisions: a two-allocation framework for the participation decision, and a framework with more possible
allocations to decide on his allocation conditional on participation.
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4.7 Persistent investment mistakes

Many households make suboptimal financial choices; moreover, they often persist in these

choices for long periods of time. The framework of this paper can help explain this. The

idea is simple. The model-free system learns slowly: at each date, it learns primarily about

the value of the action the person is currently taking. As a result, it can take a long time to

learn the optimal course of action.

To demonstrate this quantitatively, it is natural to consider a slightly different setting

from the one we have used so far. In this new setting, there are ten risky assets. The gross

return on asset i, Ri, is distributed as

logRi ∼ N(μi, σ
2
i ), i.i.d. over time,

and the returns on the ten assets are uncorrelated with each other. For all ten assets, σi = 0.2,

but while assets 1 through 9 have the same low μi = 0.01, asset 10 has a substantially higher

μ10 = 0.06. Analogous to the goal function in (10), each investor’s objective is to maximize

the expected sum of discounted log portfolio returns where, at each time, he can invest his

wealth in just one of the ten risky assets. The question is: At time T = 30, what fraction of

investors are allocating their wealth to the best option, asset 10?

We answer this question separately for a rational, model-based benchmark and for a

model-free system. In the case of the model-based benchmark, all investors use declining

learning rates analogous to those in (26); for these learning rates, consistent with the i.i.d.

assumption, investors are equally weighting the past returns on each asset. We also set

β = ∞, so that there is no exploration; exploration adds no value when the model-based

system operates in isolation. In the case of the model-free system, all investors use constant

learning rates: for each investor, his learning rates are drawn from a uniform distribution with

mean ᾱ = 0.5 and width Δ = 0.5. The exploration parameter is β = 30. The remaining

parameters are the same for both systems: there are 300, 000 investors in each case, and

L = 0, T = 30, γ = 0.97, and b = 0, so that there is no generalization. Setting L = 0 means

that there is no data prior to time 0 that the model-based system can learn from; this puts

the two systems on more equal footing. In Online Appendix B, we present the full updating

equations for the two systems.

We find that, in the case of the model-based system, at time T = 30, 47% of investors

are allocating to the best option, asset 10. By contrast, for the model-free system, at time

T = 30, just 21% of investors are allocating to asset 10. Consistent with our claim above,

then, the model-free system learns slowly: it takes longer to figure out the sensible course
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of action. This result does not hinge on the constant learning rate. If investors instead use

the model-free system in conjunction with a declining learning rate – one that satisfies the

conditions for long-run convergence of Q values in (27) – then, at time T = 30, just 19% of

investors are allocating to asset 10.23

While our analysis is based on a setting with ten risky assets, we expect the findings

of this section to apply more generally to any situation where an investor faces a number

of possible courses of action and has to figure out which one is best. Since the model-free

system learns slowly, it takes the investor a long time to discover the best option; even after

many years, he may still be investing suboptimally.

4.8 Parameter estimation

Throughout this section, we have taken a simple parameterization of our framework and

shown that it can provide a qualitative and approximate quantitative match to a number

of facts about investor behavior. We now do an estimation exercise to see which parameter

values best match the data. Our empirical targets are two concrete and central facts from

earlier in this section, namely the experience effects of Malmendier and Nagel (2011) and the

sensitivity of allocations to beliefs from Giglio et al. (2021). The parameters we estimate are

the mean model-based learning rate across investors ᾱMB; the mean model-free learning rate

ᾱMF ; the exploration parameter β; and most important, the weight w on the model-based

system. We do the estimation in two steps. First, we use data on investor beliefs to estimate

ᾱMB. With this in hand, we then estimate ᾱMF , β, and w by targeting the empirical facts

on experience effects and the allocation-belief sensitivity. We keep the remaining parameters

at their benchmark values from before, namely L = T = 30, γ = 0.97, Δ = 0.5, μ = 0.01,

σ = 0.2, and b = 0.0577.

We estimate the mean model-based learning rate ᾱMB by searching for the value of this

parameter that best fits the empirical relationship between investor beliefs and past returns.

We take Gallup data from October 1996 to November 2011 on average beliefs about future

stock market returns and regress these beliefs on past annual stock market returns. The

coefficient on the past year’s return is 0.127, and the coefficient on the return two years in

the past is 0.037; the ratio of the second coefficient to the first is 0.29. We search for a

value of ᾱMB that, in simulated data, best matches the first coefficient, 0.127, and the rate

of decline in the coefficients, 0.29; intuitively, we are trying to match the level and slope

of the relationship between beliefs and returns. To do this, we take 30, 000 investors in six

23Specifically, we use the learning rate 1/(1 + t0.6), which satisfies the conditions in (27).
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cohorts of 5, 000 each; each investor sees a different sequence of stock market returns from

time t = −L to time t = T . For a given value of ᾱMB, we draw each investor’s model-based

learning rates from a uniform distribution centered at ᾱMB and with width Δ = 0.5. We

then compute investors’ beliefs at each time, as determined by the model-based system and

by equations (20) and (21) in particular. Finally, we regress investors’ beliefs at time T

on the past 30 years of stock market returns they have been exposed to, and record the

coefficient c1 on the most recent annual return and the coefficient c2 on the second most

recent annual return. We repeat this exercise for many different values of ᾱMB and select

the value of ᾱMB that minimizes

(c1 − 0.127)2 + (
c2
c1

− 0.29)2. (29)

We find this to be ᾱMB = 0.38.

With this value of ᾱMB in hand, we search for values of ᾱMF , β, and w that best match

two empirical targets. The first is the coefficient in a regression of investor allocations on

investor beliefs, which Giglio et al. (2021) find to be approximately 1 in the data. For given

values of ᾱMF , β, and w, we can compute this coefficient, d, in our simulated data.

Our second target is the functional form in (28), with λ = 1.5, which Malmendier and

Nagel (2011) use to capture empirical experience effects. Intuitively, we are looking for

parameter values that minimize the distance between the red and blue lines in the six graphs

in Figure 7. Specifically, for given values of ᾱMF , β, and w, and for cohort 1, we run a

regression in our simulated data of the time T allocations on the past 30 years of returns; we

then compute the L2 norm of the difference between the vector of the 30 coefficients (these

correspond to the blue line in the top-left graph in Figure 7) and the vector of 30 values

implied by (28) (the red line in the graph). We call this MSE1, the mean-squared error for

cohort 1. In a similar way, we compute MSEi for i = 2 to 6, which correspond to cohorts 2

through 6.

We repeat the above exercise for many different values of {ᾱMF , β, w}. In other words,

for many values of {ᾱMF , β, w}, we compute the quantity

6∑
i=1

MSEi + (d− 1)2 (30)

and identify the parameter values that minimize this quantity. The first term in (30) tar-

gets the empirical data on experience effects, while the second term targets the empirical

sensitivity of allocations to beliefs.
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We find that the parameter values that minimize (30) are ᾱMF = 0.66, β = 20, and

w = 0.46. The value of w is particularly well identified. The reason is the following. In

the first term in (30), we are trying to match the empirical pattern of experience effects.

As shown by the red lines in Figure 7, this involves both an initial sharp decline in the

coefficients on past returns, but also a significant dependence on distant past experienced

returns. The upper panel of Figure 3 shows that the model-based system can capture the

initial sharp decline in coefficients, but, when calibrated to do so, it cannot capture the

dependence on distant past returns. By contrast, the lower panel of Figure 3 shows that

the model-free system can capture a high dependence on distant past returns but not the

initial sharp decline. As such, to match both features of the data, we need to put substantial

weight on both systems – as it turns out, a roughly equal weight on the two systems.

4.9 Extensions

We now discuss some possible extensions of our framework.

Time-varying learning rates. We have taken each investor’s learning rates to be con-

stant over time and have shown that even this simple case has many applications. Nonethe-

less, learning rates may vary over time. For example, there is evidence that they go up at

times of greater volatility or dramatic news. Such an assumption can be incorporated into

our framework and may lead to useful new predictions.

Time-varying weights on the two systems. We have taken w, the weight on the

model-based system, to be constant over time. A well-known hypothesis in psychology is

that w varies over time: the brain assigns more control to the system that is currently more

certain about the values of different courses of action (Daw, Niv, and Dayan, 2005). For

example, when a person first interacts with a new environment, w may take a high value: the

model-based system learns quickly and is therefore more useful. Over time, as the model-free

system accumulates more experience, the brain may assign it more control, lowering w. In

our framework, this would predict that the stock market allocations of older people will react

less to recent returns and will exhibit more inertia over time.

Other model-based frameworks. When we specify the model-free system in Section 2,

we do not have much flexibility: all model-free systems are similar at their core; the individual

takes an action, and based on the outcome, he updates the value of the action. Indeed, in

Online Appendix C, we replace with Q-learning with SARSA, an alternative model-free

framework, and show that it leads to similar predictions. By contrast, when specifying the
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model-based part of our framework, we have a wider range of choices. In Section 2, we

adopted a model-based system inspired by those used in psychology, but others are possible.

For example, some investors may use a model-based system with a more contrarian flavor –

one that, following a good stock market return, recommends a lower allocation to the stock

market on the grounds that it may now be overvalued. Such a model-based system would

create a new tension with the model-free system: after a good stock market return, the

model-free system will want to increase exposure to the stock market while the model-based

system will want to reduce it.

State dependence. Thus far, we have not allowed for state dependence: we consider

action values Q(a) rather than state-action values Q(s, a) and show that even this simple case

has many applications. In Online Appendix D, we examine the predictions of our framework

when we allow for state dependence – in particular, when there are two observable states and

the mean stock market return differs across them. We find that the framework continues to

exhibit the property that underlies a number of the applications in Section 4, namely that,

relative to the model-based system, the model-free system puts significantly more weight on

distant past returns. We leave richer analyses of state dependence to future work.

Inferring beliefs from the model-free system. Until now, we have associated beliefs

only with the model-based system. However, it is possible that investors also use the model-

free system to make inferences about beliefs. When an investor is asked for his beliefs about

the stock market’s future return or risk, it is natural that he will first consult the model-based

system, which will give him a direct measure of beliefs. However, he may also be influenced

by the model-free system, and if QMF (a = 1) > QMF (a = 0), so that his model-free system

assigns the stock market a higher Q value than the risk-free asset, he may take this as a

sign that the stock market has better properties, on several dimensions – for example, both

a higher expected return and lower risk. This can help explain Giglio et al.’s (2021) finding

that, when investors expect high returns in the stock market, they simultaneously expect

the market to have lower risk, contrary to the prediction of traditional frameworks where

return and risk are positively related.

5 Conclusion

When economists try to explain behavior in dynamic settings, they usually assume that

people act “as if” they have solved a dynamic programming problem. By contrast, psy-

chologists and neuroscientists are increasingly embracing a different framework, one based

on model-free and model-based learning. In this paper, we import this framework into a
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simple financial setting, study its properties, and link it to a range of applications. We show

that it provides a foundation for extrapolative demand and experience effects; resolves a

puzzling disconnect between investor allocations and beliefs in both the frequency domain

and the cross-section; can help explain the dispersion across investors in their stock market

allocations as well as the inertia in these allocations over time; and can shed light on why

many households make persistent investment mistakes. Overall, our results suggest that

model-free reinforcement learning, which has had only a small footprint in economics until

now, may be more useful to economists than previously thought.

There are two broad directions for future research. We can apply the framework proposed

here to other economic domains – for example, to think about consumption choice. We can

also incorporate richer psychological assumptions – for example, about time-varying learning

rates or weights on the model-free system, or about state dependence. We expect that both

of these broad directions will be fruitful in shedding light on economic data.

6 Appendix

A portfolio-choice problem that fits the model-free / model-based learning frame-

work (Section 2.3)

The investor’s objective is to maximize

(1− γ)E(logW1) + γ(1− γ)E(logW2) + γ2(1− γ)E(logW3) + . . . (31)

where

Wt = W0Π
t
τ=1Rp,τ (32)

is his wealth at time t. Substituting (32) into (31) and rearranging, the objective function

becomes

logW0 + E
∞∑
t=1

γt−1 logRp,t,

as in (10).
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Table 1. Model-free and model-based Q values. The upper panel reports model-free
Q values for 11 stock market allocations from t = 0 to t = 5. The lower panel reports
model-based Q values for the 11 allocations for the same six dates. The rows labeled “net
market return” report the net stock market return at each date. Boldface type indicates
the allocation that was taken in the previous period. We set αMF

± = αMB
± = 0.5, β = 30,

γ = 0.97, b = 0.0577, μ = 0.01, and σ = 0.2.

MODEL-FREE
date 0 1 2 3 4 5

net market return -17.4% 18.3% -1.3% 12.8% -16.6%
0% 0 0 0 0 0 0
10% 0 0 0 0 0 0
20% 0 0 0.006 0.006 0.01 0.01
30% 0 0 0.027 0.027 0.045 0.041
40% 0 0 0.006 0.006 0.01 -0.007
50% 0 0 0 0 0 -0.004
60% 0 -0.015 -0.015 -0.015 -0.015 -0.015
70% 0 -0.065 -0.065 -0.065 -0.065 -0.065
80% 0 -0.015 -0.015 -0.014 -0.014 -0.014
90% 0 0 0 0.001 0.001 0.001
100% 0 0 0 0.006 0.006 0.006

MODEL-BASED
date 0 1 2 3 4 5

net market return -17.4% 18.3% -1.3% 12.8% -16.6%
0% 0.72 0 1.352 0.464 2.179 0
10% 0.723 -0.007 1.357 0.466 2.187 -0.005
20% 0.726 -0.015 1.362 0.468 2.194 -0.01
30% 0.729 -0.022 1.367 0.47 2.201 -0.015
40% 0.731 -0.03 1.372 0.472 2.208 -0.02
50% 0.733 -0.039 1.376 0.473 2.215 -0.026
60% 0.736 -0.047 1.38 0.475 2.222 -0.031
70% 0.737 -0.056 1.384 0.476 2.228 -0.037
80% 0.739 -0.065 1.387 0.477 2.234 -0.044
90% 0.741 -0.075 1.39 0.478 2.241 -0.05
100% 0.742 -0.085 1.393 0.479 2.247 -0.057
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Table 2. Sensitivity of investor allocations to investor beliefs. The table reports the
sensitivity of investors’ stock market allocations aT at time T to their time T expectations
of the future one-year stock market return for various values of the weight w on the model-
based system. There are 300,000 investors: six cohorts of 50,000 investors each which enter
financial markets at different dates. We set L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, Δ = 0.5,
μ = 0.01, σ = 0.2, and b = 0.0577.

w Sensitivity

0.2 0.7
0.5 1.25
1 1.91
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Figure 1. The diagram shows the structure of an experiment in Daw et al. (2011).
In the first stage, the participant has a choice between two options, A and B; in
the second stage, he chooses either between options C and D or between options E
and F. The arrows indicate the transition probabilities from the first to the second
stage. After making a choice at the second stage, the participant either receives a
reward or does not.
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Figure 2. We run a regression of investors’ allocations to the stock market aT at
time T on the past 30 years of stock market returns {Rm,T−j}j=29

j=0 investors were
exposed to and plot the coefficients for three cases: a model-free system, a model-
based system, and a hybrid system. The point on the horizontal axis that marks
j years in the past corresponds to the coefficient on RM,T+1−j . There are 300,000
investors. We set L = T = 30, αMF

± = αMB
± = 0.5, β = 30, γ = 0.97, μ = 0.01,

σ = 0.2, w = 0.5, and b = 0, so that there is no generalization.
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Figure 3. We run a regression of investors’ allocations to the stock market aT at
time T on the past 30 years of stock market returns {Rm,T−j}j=29

j=0 investors were
exposed to. The top graph plots the coefficients for the model-based system for
four values of the learning rates αMB

+ and αMB
− , namely 0.05 (blue), 0.1 (red), 0.2

(yellow), and 0.5 (magenta). The point on the horizontal axis that marks j years
in the past corresponds to the coefficient on RM,T+1−j . The bottom graph plots the
coefficients for the model-free system for four values of the learning rates αMF

+ and
αMF
− , namely 0.05 (blue), 0.1 (red), 0.2 (yellow), and 0.5 (magenta). There are

300,000 investors. We set L = T = 30, β = 30, γ = 0.97, μ = 0.01, σ = 0.2, and
b = 0, so that there is no generalization.
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Figure 4. For different sets of parameter values, we run a regression of investors’
allocations to the stock market aT at time T under the model-free system on the
past 30 years of stock market returns {Rm,T−j}j=29

j=0 investors were exposed to and
plot the coefficients. The lines in the top-left, top-right, bottom-left, and bottom-
right graphs correspond, respectively, to four values of the generalization parameter
b, namely 0 (blue), 0.0577 (red), 0.115 (yellow), and 0.23 (magenta); to three values
of the exploration parameter β, namely 10 (blue), 50 (red), and 500 (yellow); to
three values of the discount rate γ, namely 0.3 (blue), 0.9 (red), and 0.99 (yellow);
and to different numbers of allocation choices, namely 3 (blue), 6 (red), 11 (yellow),
and 21 (magenta). There are 300,000 investors. For the remaining parameters, we
set L = T = 30, αMF

± = 0.5, β = 30, γ = 0.97, μ = 0.01, σ = 0.2, and b = 0, so that
there is no generalization.
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Figure 5. The upper graphs plot the variability of stock market allocations –
the standard deviation of allocations between time 0 and time T, computed for each
investor in turn and averaged across investors. The lower graphs plot the dispersion,
across investors, of their stock market allocations at time T. The solid and dashed
lines correspond to the model-based and model-free systems, respectively. For each
system, the graphs vary the exploration parameter β, the mean learning rate ᾱ, or
the dispersion in learning rates Δ, while keeping the other parameter values fixed at
benchmark levels. The results are averaged across 300 simulations; each simulation
features 1,000 investors, all of whom see the same return sequence. The benchmark
parameter values are L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, Δ = 0.5, μ = 0.01,
σ = 0.2, and b = 0.0577.
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Figure 6. The solid line plots the coefficients in a regression of the stock market
allocation aT at date T chosen by investors who use a hybrid system to make de-
cisions on the past 30 years of stock market returns the investors were exposed to.
The dashed line plots the coefficients in a regression of investors’ expectations at
time T about the future one-year stock market return on the past 30 years of stock
market returns. There are 300,000 investors: six cohorts of 50,000 investors each
who enter financial markets at different times. For each investor, each of αMF

+ , αMF
− ,

αMB
+ , and αMB

− is drawn independently from a uniform distribution with mean ᾱ
and width Δ. We set L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, Δ = 0.5, μ = 0.01,
σ = 0.2, b = 0.0577, and w = 0.5.
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Figure 7. The six graphs correspond to six cohorts of investors. In each graph, the
solid line plots the coefficients, normalized to sum to one, in a regression of the time
T stock market allocations aT of the investors in that cohort on the past 30 years of
stock market returns they were exposed to. The six cohorts have different numbers
of years of experience, namely n = 5, 10, 15, 20, 25, and 30; the vertical dotted
line in each graph marks the time at which the cohort enters financial markets.
There are 300,000 investors, with 50,000 in each cohort. For each investor, each of
αMF
+ , αMF

− , αMB
+ , and αMB

− is drawn independently from a uniform distribution with
mean ᾱ and width Δ. We set L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, Δ = 0.5,
μ = 0.01, σ = 0.2, b = 0.0577, and w = 0.5. In each graph, the dashed line plots a
functional form for experience effects calibrated to data by Malmendier and Nagel
(2011), namely (n−k)λ/A, where k is the number of years in the past, λ = 1.5, and
A is a normalizing constant.
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ONLINE APPENDIX

A. Analytical Results

While the Q-learning algorithm is simple to state, it is difficult to derive analytical
results about its predictions. Nonetheless, in some cases, we are able to derive such results
– specifically about how the stock market allocation it recommends depends on past market
returns. In this section, we present these results and their proofs.

We start with the case in which the learning rates α = 1, the discount rate γ = 0, and
there are just two possible allocations, namely a = 0 and a = 1. For model-free and model-
based learning, respectively, Theorems 1 and 2 below present analytical results on how the
allocation recommended by each system depends on past returns. By comparing equations
(1) and (10), we confirm that the model-free system puts substantially greater weight on
distant past returns.

We then turn to a less restrictive case where the learning rates α can take any value
between 0 and 1; once again, γ = 0 and there are two possible allocations. For the model-
free and model-based algorithms, respectively, Theorems 3 and 4 below present analytical
results about the dependence of the recommended allocation on past returns. Comparing
equations (13) and (26)-(27), we again see that the model-free algorithm puts substantially
greater weight on distant past returns.

We have also been able to prove analytical results in the case where the discount rate γ is
greater than zero. However, the resulting expressions are much messier and do not provide
much additional intuition.

Theorem 1 (Model-free learning): Assume that α = 1, β > 0, γ = 0, Rf = 1, and
that there are two possible allocations {0, 1}. Set Q0(0) = Q0(1) = 0. Further assume that
Rm,t ≡ R for all periods t ≥ 1.

Given these assumptions, the following result is true:

lim
t→∞

∂E[at]

∂Rm,t−k
=

βR2β−1

(Rβ + 1)k+3
(1)

for k ≥ 0.
Proof: At any time t > 0,

Qt(0) = log(Rf ) = 1,

Qt(1) = log(Rm,t′), (2)

where t′ is the most recent time such that at′−1 = 1 and Rm,t′ is the market return from time
t′ − 1 to time t′.
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Equation (2) allows us to express the expected allocation E[at] as

E[at] = P(at = 1)

=
t−1∑
i=0

P(at = 1|i is the largest index s.t. ai = 1)× P(ai = 1)

+P(at = 1|a0 = . . . = at−1 = 0)× P(a0 = . . . = at−1 = 0)

=

⎛⎝ t−1∑
i=0

Rβ
m,i+1

Rβ
m,i+1 + 1

(
1

Rβ
m,i+1 + 1

)t−i−1

× P(ai = 1)

⎞⎠+
1

2t+1
. (3)

Given the assumption that Rm,t ≡ R for all periods t ≥ 1, we conjecture and then verify
the following result:

P(at = 1) =
(2t+1 − 1)Rβ + 1

2t+1(Rβ + 1)
, ∀t ≥ 0. (4)

The verification of (4) is as follows. When t = 0, equation (4) implies that P(a0 = 1) = 1
2
,

which is clearly true. For t = j ≥ 1, suppose (4) is true for 0 ≤ i ≤ j − 1. Then, we have,
from equation (3),

P(aj = 1) =

(
j−1∑
i=0

Rβ

(Rβ + 1)j−i
× P(ai = 1)

)
+

1

2j+1

=

(
j−1∑
i=0

Rβ

(Rβ + 1)j−i
× (2i+1 − 1)Rβ + 1

2i+1(Rβ + 1)

)
+

1

2j+1

=
Rβ(1− 2−j)

Rβ + 1
+

1

2j+1
=

(2j+1 − 1)Rβ + 1

2j+1(Rβ + 1)
. (5)

That is, (4) is also true for t = j.

Equation (4) allows us to derive ∂E[at]
∂Rm,t−k

, the sensitivity of the expected allocation to past

returns. We first consider the case with k = 0. In this case,

∂E[at]

∂Rm,t

=
∂P(at = 1)

∂Rm,t

=

∂

[
Rβ

m,t

Rβ
m,t+1

P(at−1 = 1)

]
∂Rm,t

=
βRβ−1

m,t

(Rβ
m,t + 1)2

P(at−1 = 1) =
βRβ−1

(Rβ + 1)2
(2t − 1)Rβ + 1

2t(Rβ + 1)
. (6)

As t goes to infinity, we obtain

lim
t→∞

∂E[at]

∂Rm,t

=
βR2β−1

(Rβ + 1)3
, (7)

which is the same as (1) when k = 0.
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Next, we consider the case with k > 0. In this case,

∂P(at = 1)

∂Rm,t−k
=

(
t−1∑

i=t−k

Rβ
m,i+1

(Rβ
m,i+1 + 1)t−i

· ∂P(ai = 1)

∂Rm,t−k

)
+

∂

[
Rβ

m,t−k

(Rβ
m,t−k+1)k+1

P(at−k−1 = 1)

]
∂Rm,t−k

=

(
t−1∑

i=t−k

Rβ

(Rβ + 1)t−i
· ∂P(ai = 1)

∂Rm,t−k

)
+

βRβ−1 − kβR2β−1

(Rβ + 1)k+2
· P(at−k−1 = 1)

=

k−1∑
i=0

Rβ

(Rβ + 1)i+1
· ∂P(at−i−1 = 1)

∂Rm,t−k

+
βRβ−1 − kβR2β−1

(Rβ + 1)k+2
· (2

t−k − 1)Rβ + 1

2t−k(Rβ + 1)
. (8)

Suppose (1) is true for 0 ≤ k ≤ j − 1, then

lim
t→∞

∂P(at = 1)

∂Rm,t−j

=

j−1∑
i=0

Rβ

(Rβ + 1)i+1
· lim
t→∞

∂P(at−i−1 = 1)

∂Rm,t−j

+
βRβ−1 − jβR2β−1

(Rβ + 1)j+2
· Rβ

Rβ + 1

=

(
j−1∑
i=0

Rβ

(Rβ + 1)i+1
· βR2β−1

(Rβ + 1)j−i+2

)
+

βRβ−1 − jβR2β−1

(Rβ + 1)j+2
· Rβ

Rβ + 1

=
jβR3β−1

(Rβ + 1)j+3
+

βR2β−1 − jβR3β−1

(Rβ + 1)j+3
=

βR2β−1

(Rβ + 1)j+3
. (9)

That is, (1) holds for k = j. Equation (9) completes an inductive proof of (1). �

Theorem 2 (Model-based learning): Assume that α = 1, β > 0, γ = 0, Rf = 1, and
that there are two possible allocations {0, 1}. Set Q0(0) = Q0(1) = 0.

Given these assumptions, the following result is true:

∂E[at]

∂Rm,t
=

βRβ−1
m,t

(Rβ
m,t + 1)2

,

∂E[at]

∂Rm,t−k
= 0, k > 0. (10)

Proof: At any time t > 0,

Qt(0) = 0,

Qt(1) = log(Rm,t). (11)
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The softmax rule implies

E[at] = P(at = 1) =
Rβ

m,t

Rβ
m,t + 1

. (12)

Taking the derivative of (12) with respect to Rm,t−k leads to (10). �

Theorem 3 (Model-free learning): Assume that α ∈ (0, 1], γ = 0, β > 0, Rf = 1, and
that there are two possible allocations {0, 1}. Set Q0(0) = Q0(1) = 0. Assume that Rm,i ≡ R
for all periods i ≥ 1. Further assume that, when investors invest in the stock market for
the first time, the learning rate in the Q-learning algorithm is 1; all the subsequent learning
rates are set to α.

Given these assumptions, the following result is true:

lim
t→∞

∂E[at]

∂Rm,t−k
=

αβR2β−1

(Rβ + 1)3

(
Rβ + 1− αRβ

Rβ + 1

)k

. (13)

Proof: Let [t] denote {0, 1, . . . , t} and [j, t] denote {j, j + 1, . . . , t}. Then, by definition,

∂E[at]

∂Rm,t−k
=

∑
(b0,...,bt−1)∈{0,1}t

∂ [P(at = 1|ai = bi, ∀i ∈ [t− 1])P(ai = bi, ∀i ∈ [t− 1])]

∂Rt−k
(14)

=
∑

(b0,...,bt−1)∈{0,1}t

∂P(at = 1|ai = bi, ∀i ∈ [t− 1])

∂Rt−k
P(ai = bi, ∀i ∈ [t− 1]) (15)

+
∑

(b0,...,bt−1)∈{0,1}t

∂P(ai = bi, ∀i ∈ [t− 1])

∂Rt−k
P(at = 1|ai = bi, ∀i ∈ [t− 1]).(16)

We analyze the expressions in (15) and (16) separately. First, we derive limt→∞ (15), the
limit of the expression in (15) as t goes to infinity. We have

∂P(at = 1|ai = bi, ∀i ∈ [t− 1])

∂Rt−k
=

∂
(

eβQt(1)

eβQt(1)+1

)
∂Rt−k

=
1

(eβQt(1) + 1)2
∂eβQt(1)

∂Rt−k
. (17)

If bt−k−1 = 0, then Rt−k is never used to update theQ values; as such, ∂P(at=1|ai=bi,∀i∈[t−1])
∂Rt−k

= 0.

If, on the other hand, bt−k−1 = 1, then we note 1
(eβQt(1)+1)2

= 1
(Rβ+1)2

, because the Q value

for a 100% allocation to the stock market gets updated to log(R) when investors invest in
the stock market for the first time and then stays at log(R) afterwards.

To further derive ∂eβQt(1)

∂Rt−k
in (17), we let n denote the number of indices i, with i ∈

{t − k, . . . , t − 1} and bi = 1. We then proceed by considering two cases. The first case
is when b0 = b1 = . . . = bt−k−2 = 0. In this case, Qt(1) can be written as the sum of
(1− α)n log(Rt−k) and a term unrelated to Rt−k. As such,

∂eβQt(1)

∂Rt−k
=

(1− α)nβeβQt(1)

R
= (1− α)nβRβ−1 (18)
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and (17) can be simplified as

∂P(at = 1|ai = bi, ∀i ∈ [t− 1])

∂Rt−k
=

(1− α)nβRβ−1

(Rβ + 1)2
. (19)

The second case is when b0, . . . , bt−k−2 are not all equal to zero. In this case, Qt(1) can
be written as the sum of α(1 − α)n log(Rt−k) and a term unrelated to Rt−k. As such, (17)
can be simplified as

∂P(at = 1|ai = bi, ∀i ∈ [t− 1])

∂Rt−k
=

α(1− α)nβRβ−1

(Rβ + 1)2
. (20)

Substituting (19) and (20) back into (15), we obtain

(15) =
k∑

n=0

∑
(bt−k ,...,bt−1)∈(0,1)k

∑j=t−1
j=t−k bj=n, bt−k−1=1

(1− α)nβRβ−1

(Rβ + 1)2
P(ai=bi,∀i∈[t−k−1,t−1],

(a0,...,at−k−2)=(0,...,0))

+

k∑
n=0

∑
(bt−k,...,bt−1)∈(0,1)k

∑j=t−1
j=t−k bj=n, bt−k−1=1

α(1− α)nβRβ−1

(Rβ + 1)2
P(ai=bi,∀i∈[t−k−1,t−1],

(a0,...,at−k−2)�=(0,...,0)). (21)

Note that

0 ≤ P(ai=bi,∀i∈[t−k−1,t−1],
(a0,...,at−k−2)=(0,...,0)) ≤ P((a0, . . . , at−k−2) = (0, . . . , 0)) =

1

2t−k−1
. (22)

Therefore limt→∞ P(ai=bi,∀i∈[t−k−1,t−1],
(a0,...,at−k−2)=(0,...,0)) = 0 and limt→∞ P(ai=bi,∀i∈[t−k−1,t−1],

(a0,...,at−k−2)�=(0,...,0)) = limt→∞ P(ai =

bi, ∀i ∈ [t− k − 1, t− 1]). Also note that

P(at = 1) = P(at = 1|(a0, . . . , at−1) = (0, . . . , 0)) · P((a0, . . . , at−1) = (0, . . . , 0))

+P(at = 1|(a0, . . . , at−1) �= (0, . . . , 0)) · P((a0, . . . , at−1) �= (0, . . . , 0))

=
1

2

(
1

2

)t

+
Rβ

Rβ + 1

(
1−

(
1

2

)t
)
, (23)
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which means limt→∞ P(at = 1) = Rβ

Rβ+1
. These limiting results further imply

lim
t→∞

(15)

=
k∑

n=0

α(1− α)nβRβ−1

(Rβ + 1)2
lim
t→∞

∑
(bt−k,...,bt−1)∈(0,1)k

∑j=t−1
j=t−k bj=n, bt−k−1=1

P(ai=bi,∀i∈[t−k−1,t−1],
(a0,...,at−k−2)�=(0,...,0))

=

k∑
n=0

α(1− α)nβRβ−1

(Rβ + 1)2

(
lim
t→∞

P(at−k−1 = 1)
)
lim
t→∞

∑
(bt−k,...,bt−1)∈(0,1)k

∑j=t−1
j=t−k bj=n

P(ai=bi,∀i∈[t−k,t−1]|at−k−1=1)

=

k∑
n=0

α(1− α)nβRβ−1

(Rβ + 1)2
Rβ

Rβ + 1

(
k

n

)(
Rβ

Rβ + 1

)n(
1

Rβ + 1

)k−n

=
αβR2β−1

(Rβ + 1)3+k

k∑
n=0

(
k

n

)
(1− α)nRnβ

=
αβR2β−1

(Rβ + 1)3+k
(1 + (1− α)Rβ)k =

αβR2β−1

(Rβ + 1)3

(
Rβ + 1− αRβ

Rβ + 1

)k

. (24)

We now turn to (16). We have

(16) =
∑

(b0,...,bt−1)∈{0,1}t
(b0,...,bt−1)�=(0,...,0)

∂P(ai = bi, ∀i ∈ [t− 1])

∂Rt−k

Rβ

Rβ + 1

+
P((a0, . . . , at−1) = (0, . . . , 0))

∂Rt−k
· 1
2

=
∑

(b0,...,bt−1)∈{0,1}t

∂P(ai = bi, ∀i ∈ [t− 1])

∂Rt−k

Rβ

Rβ + 1

+
P((a0, . . . , at−1) = (0, . . . , 0))

∂Rt−k

(
1

2
− Rβ

Rβ + 1

)
=

∂
∑

(b0,...,bt−1)∈{0,1}t P(ai = bi, ∀i ∈ [t− 1])

∂Rt−k

Rβ

Rβ + 1

= 0. (25)

Finally, (24) and (25) together lead to (13). �

Theorem 4 (Model-based learning): Assume that α ∈ (0, 1], γ = 0, β > 0, Rf = 1,
and that there are two possible allocations {0, 1}. Set Q0(0) = Q0(1) = 0. Assume that
Rm,i ≡ R for all periods i ≥ 1.
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Given these assumptions,

∂E[at]

∂Rm,t−k
=

αβRβ−1

(Rβ + 1)2
(1− α)k (26)

for 0 ≤ k < t− 1. For k = t− 1,

∂E[at]

∂Rm,1
=

βRβ−1

(Rβ + 1)2
(1− α)t−1. (27)

Proof: For t ≥ 1, we have

Qt(1)−Qt(0) = E
p
t (Rm,t+1)

= (1− α)t−1 log(Rm,1) + α

t∑
j=2

(1− α)t−jRm,j

= log(R). (28)

For 0 ≤ k < t− 1,
∂ (Qt(1)−Qt(0))

∂Rm,t−k
=

α(1− α)k

R
, (29)

and for k = t− 1,
∂ (Qt(1)−Qt(0))

∂Rm,1
=

(1− α)t−1

R
. (30)

We can express ∂E[at]
∂Rm,t−k

as follows

∂E[at]

∂Rm,t−k

=
∂
(

eβ(Qt(1)−Qt(0))

eβ(Qt(1)−Qt(0))+1

)
∂Rm,t−k

=
βeβ(Qt(1)−Qt(0))

(eβ(Qt(1)−Qt(0)) + 1)2
∂ (Qt(1)−Qt(0))

∂Rm,t−k

=
βRβ

(Rβ + 1)2
∂ (Qt(1)−Qt(0))

∂Rm,t−k

. (31)

Substituting (29) and (30) into (31) then gives (26) and (27), respectively. �

B. Updating Equations for a Multi-Asset Setting

In this section, we provide the model-free and model-based updating equations for the
setting described in Section 4.7, one with ten risky assets.

For the setting of Section 4.7, model-free and model-based learning operate in an anal-
ogous way to what is described in Section 2 for the case of one risky asset. An investor’s
action at at time t is drawn from the set {1, . . . , n}, where action at = i means that the
investor allocates his wealth to asset i at time t. If, at time t, the investor takes action i,
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then, at time t+ 1, the model-free value of this action is updated as

QMF
t+1 (i) = QMF

t (i) + αMF
t,± [logRp,t+1 + γ max

jε{1,...,n}
QMF

t (j)−QMF
t (i)],

which is analogous to equation (13) in the main text. Meanwhile, after observing the return
R from asset i at time t+ 1, the model-based system uses the update equation

pt+1(Ri = R) = αMB
t =

1

t + 1
,

analogous to (20), (21), and (26) in the main text, to create a perceived return distribution
for each asset. Its model-based estimate of the Q value of each action is given by

Qt(i) = Ep
t (logRi) +

γ

1− γ
Ep

t (logRj)

j = argmax
l

Ep
t (logRl),

where the expectation Ep
t is taken under the investor’s time t perceived distribution of each

asset’s returns.

C. SARSA: An Alternative Model-free Framework

The model-free frameworks most widely used by psychologists are Q-learning and SARSA.
In the main part of the paper, we focus on Q-learning. In this section, we consider SARSA
instead. In particular, we examine how the stock market allocation recommended by SARSA
depends on past market returns. We find that the results for SARSA are similar to those for
Q-learning: relative to model-based learning, SARSA and Q-learning both put substantially
more weight on distant past market returns.

We first describe how SARSA works. Suppose that the action space is a = {a1, a2, . . . , aN}.
At time 0, all Q values are set to zero: QMF

0 (a) = 0, ∀a. The investor chooses one of the N
allocations with equal probability; we denote this initial allocation by a0. At each subsequent
time t, the investor observes the portfolio return Rp,t generated by the stock market return
Rm,t and by at−1, his time t−1 allocation. He then chooses his allocation at probabilistically,
according to

P(at = a) =
exp[βQMF

t (a)]∑
a′ exp[βQ

MF
t (a′)]

, (32)

and given Rp,t and at, he replaces QMF
t (at−1), the Q value for his previous allocation, by

QMF
t (at−1) + αMF

t,±
[
logRp,t + γQMF

t (at)−QMF
t (at−1)

]
. (33)

Analogous to the analysis in Section 3.2, we examine how investors’ date T allocation aT
recommended by each of SARSA, Q-learning, and model-based learning depends on the past
market returns investors have been exposed to. Figure A1 presents the results and leads to
two observations. First, for SARSA and Q-learning, the weights the allocation aT puts on
past stock market returns are quantitatively similar. The only exception is the weight on the
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most recent stock market return: in the case of SARSA, the allocation aT is determined by
Q values that do not depend on the most recent return Rm,T ; this allocation therefore puts
zero weight on Rm,T . Second, the allocation recommended by model-based learning depends
primarily on recent past returns; by contrast, the allocations recommended by Q-learning
and SARSA depend significantly even on distant past returns.

D. Allowing for State Dependence

In the main text, we focus on the case with no state dependence – we find that this case
already delivers rich results. In this section, we incorporate an explicit state dependence into
our framework, both to show how this can be done and to check that it does not affect a
fundamental property of the framework we rely on in Section 4, namely that the model-free
system puts substantially more weight on distant past returns.

We consider an exogenous state st with the transition matrix

( st+1 = h st+1 = l

st = h 1− χ χ
st = l χ 1− χ

)
, (34)

where 0 < χ < 1 represents the probability of a transition between h and l. Suppose that
in state h, logRm,t = μh + σεt; and that in state l, logRm,t = μl + σεt. Here εt ∼ N(0, 1) is
i.i.d over time, and μh > μl.

For model-free learning, the Q-learning algorithm is

QMF
t+1 (a, st) = QMF

t (a, st) + αMF
t,±
[
logRp,t+1 + γmax

a′
QMF

t (a′, st)−QMF
t (a, st)

]
(35)

with st ∈ {h, l}.
For model-based learning, the probability estimates are updated according to

P
new(Rm = R, st) = P

old(Rm = R, st) + αMB
t,± [1− P

new(Rm = R, st)] (36)

with st ∈ {h, l}. The model-based Q values are

QMB
t (a, st = h) = E

p,h
t [log((1− a)Rf + aRm,t+1)] + γ[(1− χ)V h + χV l],

QMB
t (a, st = l) = E

p,l
t [log((1− a)Rf + aRm,t+1)] + γ[(1− χ)V l + χV h], (37)

where the superscript “p, h” denotes the time t perceived return distribution conditional on
state h, and the superscript “p, l” denotes the time t perceived return distribution conditional
on state l. The two values V h and V l represent the optimal valuations given state h or state
l. They are defined by

V h = E
p,h
t [log((1− a∗h)Rf + a∗hRm,t+1)] + γ[(1− χ)V h + χV l],

V l = E
p,l
t [log((1− a∗l )Rf + a∗lRm,t+1)] + γ[(1− χ)V l + χV h], (38)

where a∗h = argmaxa E
p,h
t [log((1− a)Rf + aRm,t+1)] and a∗l = argmaxa E

p,l
t [log((1 − a)Rf +
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aRm,t+1)]. Solving (38) for V h and V l gives

V h =
(1− γ + γχ)Ep,h

t [log((1− a∗h)Rf + a∗hRm,t+1)] + γχEp,l
t [log((1− a∗l )Rf + a∗lRm,t+1)]

(1− γ)(1− γ + 2γχ)
,

V l =
γχEp,h

t [log((1− a∗h)Rf + a∗hRm,t+1)] + (1− γ + γχ)Ep,l
t [log((1− a∗l )Rf + a∗lRm,t+1)]

(1− γ)(1− γ + 2γχ)
.

(39)

The hybrid Q values are

QHY B
t (a, st) = (1− w)QMF

t (a, st) + wQMB
t (a, st). (40)

Finally, actions are chosen probabilistically according to

P(at = a, st) =
exp[βQHYB

t (a, st)]∑
a′ exp[βQ

HY B
t (a′, st)]

. (41)

We now examine the implications of this state-dependent model by way of a numerical
example. We set μh = 0.03, μl = −0.01, and χ = 0.25. The values of all the other parameters
are the same as in the main text. We consider two cases. In the first case, investors recognize
that there are two states; they update the model-free and model-based Q values according
to (35) and (37). In the second case, investors fail to recognize the two states; they assume
that there is only one state and use the single-state models described in the main text.

For both cases, we examine how investors’ date T allocations aT depend on the past
market returns investors have been exposed to. Figure A2 presents the results for the case
where investors recognize the two states; Figure A3 presents the results for the case where
investors assume there to be only one state. Comparing Figures A2 and A3 shows that
incorporating a state structure into our framework does not alter our finding in the main
text about the way allocations depend on past returns: for both model-free and model-based
learning, the allocations put weights on past stock market returns that are positive and that
decline the further back we go into the past; importantly, the decline is much faster in the
case of model-based learning.
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Figure A1. We run a regression of investors’ allocations to the stock market aT
at time T on the past 30 years of stock market returns {Rm,T−j}j=29

j=0 investors
were exposed to and plot the coefficients for three cases: model-based learning;
model-free Q-learning; and model-free SARSA. There are 300,000 investors. We set
L = T = 30, αMF

± = αMB
± = 0.5, β = 30, γ = 0.97, μ = 0.01, σ = 0.2, and b = 0, so

that there is no generalization.
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Figure A2. We run a regression of investors’ allocations to the stock market aT
at time T on the past 30 years of stock market returns {Rm,T−j}j=29

j=0 investors were
exposed to and plot the coefficients for three cases: a model-free system, a model-
based system, and a hybrid system. There are 300,000 investors. Each investor
believes there are two states, h and l. We set L = T = 30, αMF

± = αMB
± = 0.5,

β = 30, γ = 0.97, μh = 0.03, μl = −0.01, σ = 0.2, χ = 0.25, and w = 0.5.
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Figure A3. We run a regression of investors’ allocations to the stock market aT
at time T on the past 30 years of stock market returns {Rm,T−j}j=29

j=0 investors were
exposed to and plot the coefficients for three cases: a model-free system, a model-
based system, and a hybrid system. There are 300,000 investors. Each investor
believes there is one state. We set L = T = 30, αMF

± = αMB
± = 0.5, β = 30,

γ = 0.97, μh = 0.03, μl = −0.01, σ = 0.2, χ = 0.25, and w = 0.5.
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