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1 Introduction

Explaining the empirically observed time-variation of risk premia in asset markets has been

one of the main challenges in asset pricing research in recent decades. Evidence from in-

sample predictive regressions shows that excess returns of aggregate portfolios of equities,

bonds, currencies, and commodity futures are predictable with slow-moving predictors such

as the dividend-price ratio, yield spreads, or the futures basis. Broadly speaking, the in-

sample predicted excess returns in these regressions—which we refer to as objective risk

premia—are countercyclical, i.e., higher in recessions than in booms.

These findings sparked a large literature of rational expectations (RE) asset pricing mod-

els in which time-varying risk premia are generated via time-varying risk or time-varying

risk aversion (see Cochrane (2017) for a review). In these models, investors are endowed

with perfect knowledge of the underlying stochastic processes that generate payoffs. As a

consequence, the objective law of motion of returns that generates the data observable to the

econometrician ex post is the same as the law of motion that investors perceive in real time.

Yet, if investors are not endowed with such perfect knowledge, the dynamics of subjective

risk premia they perceive in real time may differ systematically from the dynamics of the

objective risk premia that an econometrician’s predictive regressions extract from the data

ex post. For example, if investors are learning about stochastic process parameters, there

is a wedge between their real-time posterior beliefs about risk premia and the objective risk

premia estimated by an econometrician from return data ex post with in-sample regressions.

Fading memory, behavioral biases, and other imperfections can further magnify this wedge.

In the presence of these wedges, one cannot infer perceived risks and risk aversion from

objective risk premia estimates; subjective beliefs data is required.

In this paper, we present a pervasive stylized fact about subjective risk premia dynamics

that holds true for different surveys, for expectations of individuals and professionals, for

aggregate portfolios in different asset classes (stock market, Treasury bonds, currencies, com-

modity futures), and for a variety of state variables that have appeared in the literature to
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capture the general business cycles and asset-class specific valuation cycles: Subjective risk

premia are substantially less cyclical than objective risk premia inferred from in-sample pre-

dictive regressions. This calls into question the common practice of equating time-variation in

objective risk premia with time-varying risk or time-varying risk aversion. Subjectively per-

ceived risk or risk aversion appears to be substantially less sensitive to cyclical state variables

than is assumed in RE models calibrated to match time-variation in objective risk premia.

We use survey data from a variety of different sources to construct monthly or quarterly

subjective return expectations. For stock market return expectations, we use data on indi-

viduals, CFOs, and professional forecasters. For bonds, currencies, and commodity futures,

we have professionals’ expectations only. To study the dynamics of subjective risk premia,

we focus on expected returns in excess of Treasury yields over a one-year forecast horizon in

all asset classes. We then project these subjective expected excess returns on state variables.

By projecting realized excess returns on the same state variables in predictive regressions, we

can then compare the cyclicality of subjective and objective risk premia.

In the first part of our analysis for each asset class, we focus on state variables that the

prior literature has found to be good predictors of excess returns, for example, the dividend-

price ratio for stock market returns, interest-rate cycle variables for bonds, interest rate

spreads for currencies, and the futures basis for commodity futures. In virtually all combina-

tions of state variables and different types of surveys, we find that projections of subjective

risk premia on state variables yield coefficients that are substantially smaller in magnitude

than projections of realized excess returns on the same state variables. In some cases, the

point estimate for subjective risk premia has the opposite sign as for objective risk premia,

but the overarching main regularity is that subjective risk premia vary a lot less with the

state variables than future realized excess returns do in in-sample predictive regressions.

The state variables in this first part are asset-class specific, chosen based on earlier research

that emphasized their role as significant excess return predictor for the specific asset class. On

the other hand, many macro-finance models generate time-varying risk premia for different

2



asset classes that are all tied to the state of the business cycle (Cochrane 2017). Could there

be better alignment between subjective and objective risk premia if we focus on projections of

subjective expected excess returns and realized excess returns for the different asset classes

on a common set of business cycle variables? Perhaps the misalignment is due to factors

idiosyncratic to the asset classes, not due to the common business-cycle component?

We find that this is not the case. We consider a number of commonly used business

cycle state variables, including term and default spreads, industrial production growth, a

volatility index, and a real activity factor extracted from a large number of macroeconomic

time series. Consistent with prior literature, these cyclical variables forecast excess returns

in predictive regressions in several asset classes. But for these business cycle variables, too,

we find that their association with subjective expected excess returns is much weaker than

in the in-sample predictive regressions using empirically realized returns.

Overall, combining the evidence from asset-specific predictors and the common cyclical

predictors and across all asset classes and surveys, we find that the average magnitude by

which a one standard deviation change in a predictor moves the subjective expected excess

return is only about one fifth of the average magnitude by which it moves the objective

expected excess return according to in-sample predictive regressions using realized excess

returns. This pervasive lack of cyclical movements in subjective risk premia casts doubt on

the time-varying risk or risk aversion mechanisms that have been used in many macro-finance

models to explain cyclical fluctuations in asset prices.

Does the lack of cyclicality evident in subjective excess return expectations indicate gross

mistakes on the part of investors and forecasters, or is there a plausible belief formation

mechanism that does not imply easily detectable prediction errors that could be exploited

by sophisticated investors? To shed light on this, we examine the cyclicality of out-of-sample

(OOS) excess return forecasts. At every point in time, these OOS forecasts are constructed

based on regression coefficients that are estimated using only past data. Moreover, at every

point in time, the forecaster evaluates which linear combination of the predictive regression

3



forecast and a simple trailing mean of excess returns would have done best in the past in

forecasting OOS. The OOS forecast of excess returns is then based on this optimal linear

combination. We find that these OOS forecasts are substantially less cyclical than in-sample

forecasts. Moreover, if we construct the OOS forecasts with exponential weighting of past

data to reflect fading memory as in Nagel and Xu (2022), or as combination forecasts of single-

predictor forecasts as in Rapach et al. (2010), much of the cyclicality gap to the subjective

risk premia in survey data disappears. Thus, while it is not our goal in this paper to provide

evidence on a specific belief-formation mechanism, the OOS forecast evidence shows that the

lack of cyclicality in subjective risk premia does not mean that the subjective forecasts are

unreasonable or unsophisticated.

That subjective risk premia are largely unrelated to standard business cycle indicators and

standard return predictors does not necessarily imply that subjective risk premia are constant.

Indeed, we find that time-varying subjective risk perceptions appear to have some explanatory

power for time-variation in subjective risk premia. This is in stark contrast to the literature

on time-varying objective risk premia where researchers have not had much success linking

them to time-varying risk. Due to data availability constraints, in this analysis we focus

only on stock market expectations. For all three groups of market participants (individuals,

CFOs, and professional forecasters) we find a positive link between the level of subjectively

perceived stock market risk and their subjective risk premia. In other words, in terms of

subjective beliefs, there is a positive risk-return tradeoff. The dynamics of perceived risks

are heterogeneous between different groups of market participants, though. For example,

professional investors’ subjectively perceived stock market risk is more closely related to the

VIX index than the risk perceived by respondents in the CFO survey. As documented recently

by Lochstoer and Muir (2019), the CFO survey respondents seem to put substantially more

weight on realized variance during the past year than the VIX does.

Our work connects to a number of areas in the literature. Our findings are most closely

related to earlier work by Piazzesi et al. (2015) who show that subjective bond risk premia
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of professional forecasters are less cyclical than predictive regression forecasts.1 We show

that this relative lack of cyclicality result holds for a much broader range of state variables,

not only for bonds but also for return expectations in stock market, for currencies, and for

commodity futures, and in surveys of individual investors and CFOs. We further show OOS

forecasts of excess return exhibit a similar lack of cyclicality.

Much of the earlier literature on subjective return expectations has focused on whether

the sign of subjective return forecast lines up with the sign of predictive regression forecasts.

For example, for stock market return expectations, Greenwood and Shleifer (2014) emphasize

the procyclicality of individual investor return expectations. In contrast, Dahlquist and Ibert

(2021) find that professional forecasters in the Livingston survey as well as asset managers

issue countercyclical forecasts (see, also, Wu (2018), Wang (2021)). Our results show that

these differences between surveys are overshadowed by an economically much bigger common

regularity: the general lack of sensitivity of subjective risk premia to variables that forecast

excess returns in predictive regressions (and in rational expectations models built to match

the predictive regression evidence).

The lack of cyclical movements in subjective risk premia is consistent with models that

generate volatile asset prices through time-varying subjective expectations of fundamentals

growth rather than time-varying risk aversion or time-varying perceptions of risk. Examples

include models of perpetual learning (Collin-Dufresne et al. (2017), Nagel and Xu (2022))

or diagnostic expectations (Bordalo et al. (2021)). In a similar vein, our evidence supports

models that generate bond price and exchange rate variation through subjective beliefs about

1 Other papers provide evidence that is related, but does not quite pin down the time-variation in the
subjective risk premium for aggregate asset classes. Bacchetta et al. (2009) show that at country level,
professional forecasters’ subjective expectations errors for currency excess returns are predictable with the
interest-rate differential, with the same sign and often similar magnitude as realized excess returns. However,
from these country-level results it is not clear how objective and subjective risk premia for the aggregate
currency portfolio would vary over time because the country-level results could be driven by country-specific
components of the interest-rate differential and currency excess returns. From the viewpoint of macro-finance
modeling, the properties of risk premia for aggregate strategy are arguably the most relevant. De La O and
Myers (2021) find a small positive covariance between the price-dividend ratio and total return expectations
from several surveys, but since the risk-free rate is correlated with the price-dividend ratio, their results are
not directly informative about comovement of the price-dividend ratio with the subjective risk premium.
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future interest rates, as in Piazzesi et al. (2015) and Gourinchas and Tornell (2004), respec-

tively, and commodity futures price variation through subjective beliefs about future spot

prices.

Price-growth extrapolation mechanisms as in Adam et al. (2017) and Jin and Sui (2021)

are not consistent with a complete lack of comovement between state variables that predict

realized excess returns and subjective risk premia. In these models, a positive correlation

between past returns and future subjectively expected returns is sustained in equilibrium

by a subjective risk premium that is increasing in past price growth. As a consequence, the

price level, as captured, say, by the price-dividend ratio, is positively related to the subjective

equity premium. However, as Jin and Sui (2021) show, this positive relationship can be quite

weak in a calibrated version of their model, which could be broadly consistent with the lack

of cyclicality in subjective risk premia that we find in this paper. With such a weak link

between past price growth and subjective risk premia, asset price movements largely reflect

changing expectations about future fundamentals growth, similar to models that directly

target time-varying subjective expectations of fundamentals growth.

Finally, our finding that allowing for real-time learning helps explain the dynamics of

subjective excess return expectations relates to recent work by Farmer et al. (2021). They

show that a model in which agents are learning in real time about long-run dynamics helps

explain macroeconomic forecasting anomalies in professional forecasts data.

The paper is organized as follows. Section 2 introduces the data. Section 3 presents the

main results on the cyclicality of subjective and objective risk premia. Section 4 compares

the cyclicality of subjective risk premia and OOS forecasts. Section 5 looks at the subjective

risk-return tradeoff. Section 6 concludes.

2 Data

In this section we describe the survey data and how we construct subjective return expecta-

tions in each asset market. We also describe the return predictors and business cycle variables.
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Appendix A provides more detailed information on the data sources and the exact timing

assumptions that we use to match data on returns, predictor variables, and survey data.

2.1 Subjective expectations and returns data

Table 1 below reports the sample periods and moments of subjective return expectations

in excess of risk-free rates. For comparison, we also report the moments of realized excess

returns for the full sample period. Figure 1 plots the subjective excess return expectations

in each asset market. We construct these measures as follows.

2.1.1 Stock market

For aggregate stock market return expectations we use a series of individual investor expecta-

tions, CFO expectations, and a series of professional forecaster expectations. The individual

investor series is from Nagel and Xu (2022) (NX). It covers several surveys in the period 1972

to 1977 and has continuous quarterly coverage from 1987 onward. The series is constructed

by combining information from the UBS/Gallup survey, the Conference Board survey, and

the Michigan Survey of Consumers, plus several smaller surveys of brokerage and investment

firm customers. The second source of stock return expectations is the Graham-Harvey CFO

survey (Ben-David et al. 2013) which asks about the expectations of annual S&P 500 returns.

The series is available from 2000Q3 at quarterly frequency (with gaps) and we use the mean

of respondents’ expected return each period.2 The third source is the Livingston Survey

maintained by the Federal Reserve Bank of Philadelphia. The series provides semi-annual

forecasts starting in June 1952. From June 1992 onward, we use the ratio of twelve-month to

zero-month mean level forecasts of the S&P500 stock index (or its predecessors) to measure

price growth expectations. In earlier periods, where the zero-month nowcast is not available,

we use the annualized ratio of twelve-month to six-month forecasts. We adjust these price

2 Survey forecasts in 2001Q3, 2019Q1, and 2020Q1-3 are not available.
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Table 1
Moments of Excess Returns and Excess Return Expectations

This table reports the frequencies, sample periods, means (%), and standard deviations (%) of realized one-
year excess returns and survey-implied excess return expectations in each asset market. For stock market, we
report the excess returns on the aggregate stock market. For Treasury bonds, we report the equal-weighted
average excess returns on bonds with maturities of two, five, seven, and ten years. For foreign exchange, we
report the average excess returns on a basket of developed market currencies. For commodities, we report the
buy-and-hold excess returns on metals and crude oil, respectively.

Frequency Sample Period Mean S.D.

A. Stock

Realized Monthly 1926/12–2020/12 8.15 21.15

NX Quarterly 1972Q3–2021Q2 5.95 1.98

CFO Quarterly 2000Q3–2021Q2 3.98 1.75

Livingston Semi-annually 1952Q2–2020Q4 4.09 5.86

B. Treasury bond

Realized Monthly 1952/03–2020/12 1.32 5.08

BCFF Monthly 1988/01–2020/12 -0.76 1.70

C. Foreign exchange

Realized Monthly 1984/10–2021/06 1.78 9.76

CE & FX4casts Monthly 1986/08–2021/06 0.50 3.16

D. Commodity

Realized, Metals Monthly 1978/09–2021/06 1.53 25.54

CE, Metals Monthly 1995/08–2021/06 0.70 5.67

Realized, Oil Monthly 1984/12–2021/06 8.49 33.68

CE, Oil Monthly 1995/08–2021/06 2.46 9.70
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Figure 1
Subjective Excess Return Expectations

Each panel plots the subjective excess return expectations implied by surveys. The grey-
shaded areas indicate NBER recessions.
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growth expectations with the dividend yield to arrive at return expectations.3

For each subjective one-year expected stock return series, ẼtRt+1, we then construct the

subjective risk premium by subtracting the one-year Treasury yield Rf,t that prevailed at the

time of the survey,

ẼtRet+1 = ẼtRt+1 −Rf,t. (1)

For comparison, we also examine realized returns on the CRSP value-weighted index over

the one-year forecast period. Realized returns are also expressed as excess returns over and

above the one-year Treasury yield.

2.1.2 Treasury bond market

For bond return expectations of professional forecasters, we use the Blue Chip Financial

Forecasts (BCFF) survey. Par yield forecasts are available for 6-month, 1-year, 2-year, 5-

year, and 10-year bond maturities starting from January 1988. We take the average across

forecasters in each survey month. Survey participants forecast the quarterly average of yields

of a particular maturity for the current quarter, next quarter, and up to several quarters

ahead. We follow Kim and Orphanides (2012) and treat these forecasts as approximately

equal to a mid-quarter forecast. We interpolate linearly between these mid-quarter forecasts

to obtain forecasts at a one-year horizon. To estimate a full expected par yield curve, we fit a

Nelson-Siegel model to these forecasts period-by-period, as in Diebold and Li (2006). We then

bootstrap zero-coupon yield forecasts from these par yield forecasts. The final step for each

maturity is then to construct implied return expectations by relying on the approximation

ẼtRnt+1 ≡ Ẽt

[
(1 + Y n

t )n(
1 + Y n−1

t+1

)n−1 − 1

]
≈ (1 + Y n

t )n(
1 + ẼtY n−1

t+1

)n−1 − 1. (2)

3 We use the decomposition ẼtRt+1 = Ẽt(Pt+1/Pt) + (Dt/Pt)Ẽt (Dt+1/Dt) − 1. Similar to Adam et al.
(2017), we set the expected dividend growth Ẽt(Dt+1/Dt) equal to the sample average of S&P annual dividend
growth over the post-WWII sample period 1946–2020, which is 1.064. The dividend-price ratio is calculated
using the S&P500 Index from CRSP.
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Given the time-t one-year ahead forecast of the (n−1)-year zero-coupon yield ẼtY n−1
t+1 and the

current n-year zero-coupon yield, we can then calculate ẼtRnt+1 for n ∈ {2, 5, 7, 10}. We ag-

gregate to a bond portfolio return forecast ẼtRt+1 by taking an equal-weighted average across

maturities. Finally, we construct subjective expected excess returns, ẼtRet+1, by subtracting

the one-year Treasury yield from ẼtRt+1.

To compare the subjective risk premium with predictive regression forecasts of realized

excess returns, we use CRSP Treasury Index returns for maturities n ∈ {2, 5, 7, 10}. As for

the subjective expectations, we form an equal-weighted average of these returns and subtract

the one-year Treasury yield to obtain excess returns.

2.1.3 Foreign exchange market

In our analysis of currencies, we focus on the expected returns on a portfolio of developed

market currencies from the perspective of a US investor. We use professional forecasts of

exchange rates from FX4casts and Consensus Economics (CE) to construct subjective ex-

pected returns on this currency portfolio. We primarily use CE forecasts and supplement

with FX4casts when CE forecasts are unavailable. Consensus forecasts in CE are arithmetic

averages of individual forecasts; FX4casts uses a geometric average. With the time-t mean

forecast ẼtSit+1 of the one-year ahead spot exchange rate Sit+1 of country i (in units of foreign

currency per dollar), we approximate the subjective expected excess return on a US investor’s

position in an individual country’s currency i as

ẼtRi,et+1 ≡ Ẽt
[
F it
Sit+1

− 1

]
≈ F it

ẼtSit+1

− 1, (3)

where F it is the one-year forward rate at time t. Developed market currencies in our sample

include Australia, Canada, Denmark, Germany (replaced by the Euro from 1999 onward),

Japan, New Zealand, Norway, Sweden, Switzerland, and United Kingdom. To avoid a shift

in sample composition at the Euro introduction in 1999, we use the German Mark as the

only representative from the Eurozone currencies prior to Euro introduction. We calculate
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the expected excess return on the developed market currency portfolio as an equal-weighted

average of the individual currencies’ ẼtRi,et+1.

The realized excess returns that we compare with subjective risk premia are constructed

in similar fashion from forward and spot rates as Ri,et+1 = F it /S
i
t+1 − 1.

2.1.4 Commodity futures market

We use commodity spot price forecasts to compute subjective expected returns on buy-and-

hold futures positions. We obtain consensus spot price forecasts from CE that cover major

commodities in metals and energy. The publication was quarterly before 2012, bi-monthly

until 2015, and switched to a monthly release cycle since February 2016.4 We use the set of

commodities with the longest history and highest coverage in CE: WTI crude oil and several

metals (aluminum, copper, gold, and silver). These commodities cover the major components

of the S&P GSCI index.5 Since CE commodity forecasts are also for quarterly average, we

use the same linear interpolation as earlier for bonds to obtain one-year forecasts.

Using these spot price forecasts, we then calculate the expected excess return from entering

a one-year futures position at time t at the one-year futures price Ft and holding it until it

gets settled at maturity at t + 1 at the spot price St+1 (or a futures price very close to the

spot price shortly before maturity):

ẼtRet,t+1 ≡
ẼtSt+1

Ft
− 1. (4)

We obtain spot price and futures data from Datastream and Bloomberg. When spot price

data is not available for a commodity, we follow Koijen et al. (2018) and extrapolate spot

prices from Bloomberg generic futures data. We construct a sector-level subjective risk

premium series for metals by taking an equal-weighted average of the subjective expected

4 During the period of August 2002 to March 2004, and the third quarter of 2007, there are no forecasts
available as no surveys were undertaken by the previous owners of the publication.

5 Based on the 2021 reference percentage dollar weights, WTI crude oil accounts for 40.4% of the energy
sector and the four metals we include account for 84.4% of the metals sector.
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excess returns across metals.

We construct realized excess returns along similar lines as Ret+1 = St+1/Ft − 1, with

equal-weighted average within the metals sector.

2.2 Return Predictors and Cyclical Indicators

In this section, we introduce the main return predictors and cyclical indicators that we use

in our analysis. For each asset class, we examine several asset class-specific return predictors

that have appeared in the prior literature. We also examine a common set of business cycle

indicators. Table 2 reports the correlations of return predictors and cyclical indicators.

2.2.1 Asset-class specific predictors

The stock market return predictors are the log consumption-wealth ratio (CAY, quarterly,

starting in 1951Q1) from Lettau and Ludvigson (2001), the repurchase-adjusted log dividend-

price ratio of the CRSP value-weighted index (D/P, monthly, starting end of 1926) and

a long-run exponential average of past per-capita real aggregate dividend growth (EXPD,

quarterly, starting end of 1926) from Nagel and Xu (2022), as well as net equity expansion

(NTIS, monthly, starting from end of 1926) from Welch and Goyal (2008), calculated as the

ratio of twelve-month moving sums of net issues by NYSE-listed stocks divided by the total

market capitalization of NYSE stocks at the end of the twelve-month window.

For Treasury bonds, we use two asset-class specific predictors. The first predictor is the

macro factor from Ludvigson and Ng (2009) (LN). It is constructed as the fitted value from

regressing equal-weighted bond portfolio excess returns on lagged principal components of

a broad set of macro variables. We use the six-factor version of their model. The second

predictor is the cycle factor from Cieslak and Povala (2015) (CYCLE). To construct this

factor, we first regress zero-coupon yields of maturities between one to fifteen years from

Liu and Wu (2021) on trend inflation to obtain the short-maturity cycle and the average

longer-maturity cycles. The fitted value from regressing equal-weighted bond portfolio excess
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Table 2
Correlations of Return Predictors and Cyclical Indicators

This table reports the unconditional correlations of asset-class specific predictors and business-cycle indicators.
For countercyclical business-cycle indicators, N-IP is the negative of the 12-month log change in the U.S.
industrial production index; TERM is the spread between long interest rates from Robert Shiller’s website
and 3-month Treasury yields; DEFAULT is the spread between Moody’s Seasoned Baa and Aaa Corporate
Bond yields; F1 is the real factor from Ludvigson and Ng (2009); VIX2 is the square of the CBOE volatility
index; CAY is the aggregate log consumption-wealth ratio from Lettau and Ludvigson (2001); D/P and EXPD
are the repurchase-adjusted log dividend-price ratio and the experienced payout growth from Nagel and Xu
(2022), respectively; NTIS is the net equity expansion from Welch and Goyal (2008); LN is the macro factor
from Ludvigson and Ng (2009); CYCLE is the cycle factor from Cieslak and Povala (2015); FD is the average
forward discount on the basket of developed market currencies; BASIS is the percentage difference between
futures and spot prices and OI is futures open interest growth for metals (M) and oil (E), respectively.

N-IP TERM DEFAULT F1 VIX2 CAY D/P EXPD NTIS LN CYCLE FD BASIS (M) OI (M) BASIS (E) OI (E)

N-IP 1.00

TERM 0.05 1.00

DEFAULT 0.26 0.20 1.00

F1 0.63 0.15 0.51 1.00

VIX2 0.08 -0.00 0.31 0.31 1.00

CAY -0.17 0.22 -0.05 0.08 -0.04 1.00

D/P 0.17 0.10 0.50 0.31 0.15 -0.04 1.00

EXPD 0.15 -0.39 -0.13 -0.05 0.06 -0.11 -0.04 1.00

NTIS 0.01 -0.16 -0.18 -0.29 -0.02 0.02 -0.14 0.04 1.00

LN 0.48 0.54 0.21 0.50 0.18 1.00

CYCLE -0.19 0.50 -0.13 -0.02 -0.01 0.18 1.00

FD 0.22 0.43 0.12 0.29 0.02 1.00

BASIS (M) 0.02 -0.31 0.47 -0.00 -0.10 1.00

OI (M) -0.03 0.17 -0.14 -0.16 -0.17 -0.14 1.00

BASIS (E) 0.25 -0.04 0.28 0.20 0.28 -0.03 0.00 1.00

OI (E) -0.30 0.04 -0.19 -0.31 -0.20 -0.00 0.34 -0.43 1.00
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returns on these two cycle components then represents the cycle factor.

In our analysis of foreign exchange, we consider a US investor’s position in a portfolio

of developed market currencies as in Lustig et al. (2014). Following their analysis of excess

return predictability, we use the average one-year forward discount as predictor. For each

currency i we construct the forward discount,

FDi
t ≡

F it
Sit
− 1, (5)

from one-year forward rates F it and spot rates Sit . We then average these currency-level

forward discounts across all currencies in the portfolio (FD).

Finally, for commodities we use two asset-class specific predictors. The first predictor, as

in Hong and Yogo (2012), is the one-year futures basis defined as

Basist ≡
Ft
St
− 1, (6)

where Ft is the one-year futures price and St is the spot price (approximated by extrapolating

from generic futures if not available, as discussed above). We average the commodity-specific

bases within metals futures (BASIS). The second predictor is open interest growth following

Hong and Yogo (2012). Using CFTC Commitments of Traders data, we multiply open interest

in terms of number of outstanding contracts by the number of units per contract and the

spot price per unit to get dollar open interest.6 We then sum up dollar open interests within

each sector. As a final step, we calculate percentage growth rates over one-year periods (OI).

2.2.2 Business-cycle indicators

The first business-cycle indicator is industrial production growth constructed as the year-

over-year log growth using data from FRED database at the Federal Reserve Bank of St.

6 For Aluminum, we use open interest data from London Metal Exchange instead given the limited coverage
of Aluminum in CFTC Commitments of Traders data.
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Louis. For ease of interpretation, we take the negative of industrial production growth (N-

IP) so that the series is countercyclical. The second indicator is the term spread (TERM)

between long- and short-maturity yields. For long-maturity yields, we use the long interest

rates from Robert Shiller’s website. For short-maturity yields, we use the annualized three-

month Treasury bill yields. The third indicator is the default spread (DEFAULT) between

the Moody’s Seasoned Baa and Aaa yields, obtained from FRED. The fourth indicator is

the real factor (F1) from Ludvigson and Ng (2009) which is the first principal component of

a broad set of macroeconomic variables. The last indicator we use is the square of CBOE

Volatility Index (VIX2).7 Given its relatively short history, we supplement the series with

the news-implied volatility index (NVIX) from Manela and Moreira (2017). We estimate the

relation between VIX and NVIX in the overlapping samples and impute VIX before 1990

with the fitted coefficients from this regression.8 All cyclical indicators are available at a

monthly frequency. We lag N-IP and F1 by one-month to account for publication lags.

3 Dynamics of Subjective and Objective Risk Premia

We now examine how much subjective and objective risk premia vary with asset-class specific

predictors and the business-cycle indicators. We regress subjective expected excess returns

from surveys on the predictor variables and compare the results to regressions in which

future realized excess returns are the dependent variable. For ease of interpretation, we

standardize all predictor variables to have unit standard deviations in the full sample that

we use in the realized excess return regressions.9 With standardized predictors we can easily

compare the amount of variation in objective and subjective risk premia associated with

7 We use VIX2 instead of VIX because asset pricing theories typically relate risk premium to variance, not
standard deviation.

8 The regression uses monthly data from January 1990 to March 2016 and yields:

V IX = −2.940 + 0.919×NV IX,

with an R2 of 0.59.
9 If predictor data is available, the full sample start date is December 1925, and otherwise at the earliest

date of predictor availability.
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different predictors by comparing the magnitudes of slope coefficients. For parsimony, while

all regressions include an intercept, we omit the intercept estimates from all tables.

The realized returns regressions are run with monthly or quarterly data depending on

data availability for the predictor variable. To match with the one-year forecast horizon in

our subjective expected return data, we use realized excess returns compounded over one-

year periods as the dependent variable. We use a stationary block bootstrap to account for

the autocorrelations in residuals induced by the overlapping return windows in the depen-

dent variable. We also use the bootstrap to adjust coefficients for the predictive regression

bias discussed in Stambaugh (1999). Appendix B provides more details of the bootstrap

approach. In regressions where subjective expected returns are the dependent variable, we

adjust p-values for heteroskedasticity and autocorrelation in regression residuals using the

equal-weighted cosine (EWC) approach from Lazarus et al. (2018).

3.1 Stock market

To provide a basis for comparison, Table 3 first reports the results for predicting future

one-year realized excess returns. All asset-class specific predictors except NTIS are at least

marginally significant (p < 0.10) when used as sole predictor variable. The magnitude of

slope coefficient point estimates are similar and quite large for all of them. Based on bias-

adjusted slope coefficient estimates, a one standard deviation move in the predictor variable is

associated with a substantial change in objective expected returns of 3.24 to 6.44 percentage

points over a one-year forecast horizon.

For cyclical indicators, TERM and F1 are the only ones that are individually at least

marginally significant. The magnitudes of point estimates are also much more mixed than for

the asset-class specific predictors, ranging from 1.55 for N-IP to 4.54 for F1. However, without

exception, for all predictors in both groups, the point estimates indicate a countercyclical

pattern of objective risk premia: low following booms, high following downturns in asset

prices or the business cycle.

17



Table 3
Regressing Realized Stock Market Excess Returns on Predictors

Dependent variable is the one-year cumulative excess returns on the CRSP index. The full sample period
is from December 1926 to December 2020. Column variables are described in Section 2.2. Re

past denotes the
past one-year excess return. All independent variables are standardized to have unit standard deviations in
the full sample period. In each block, the first row reports the OLS estimates multiplied by 100; bootstrap
bias-adjusted coefficients are reported in braces; bootstrapped p-values are reported in parentheses. We use a
stationary bootstrap with an optimal block length determined as in Politis and White (2004).

Asset-Class Specific Business-Cycle

CAY D/P EXPD NTIS N-IP TERM DEFAULT F1 VIX2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

Coeff 4.78 5.34 6.40 6.68 -6.48 -7.29 -5.23 -5.23 1.74 1.53 4.13 4.30 3.32 3.24 4.24 3.92 1.49 1.22

{bias-adj.} {3.24} {3.71} {6.01} {5.83} {-6.44} {-7.19} {-4.87} {-4.93} {1.55} {1.26} {4.40} {4.62} {2.84} {2.51} {4.54} {4.16} {1.82} {1.48}
(p-value) (0.08) (0.10) (0.00) (0.00) (0.03) (0.04) (0.16) (0.16) (0.51) (0.49) (0.00) (0.01) (0.12) (0.13) (0.00) (0.04) (0.31) (0.39)

Re
past -3.52 0.87 -3.51 -1.25 -0.70 -1.28 -0.24 -1.07 -1.01

{bias-adj.} {-3.32} {0.36} {-3.70} {-1.47} {-1.23} {-1.39} {-0.55} {-0.65} {-1.24}
(p-value) (0.12) (0.71) (0.09) (0.51) (0.74) (0.55) (0.91) (0.69) (0.62)

Adj. R2 0.03 0.06 0.09 0.09 0.08 0.11 0.06 0.06 0.01 0.01 0.04 0.04 0.02 0.02 0.06 0.06 0.00 0.00

N 272 272 1117 1117 377 373 1117 1117 1129 1117 1129 1117 1129 1117 717 717 1129 1117
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When past one-year realized excess returns are included as an additional predictor in the

regressions, past returns are never statistically significant except marginally so when used

along with EXPD (p = 0.09).

Table 4 shows the results of regressing subjective excess return expectations from different

surveys on the same predictor variables as in Table 3. Panel A presents the results for

individual investor expectations. Results for CFO expectations are shown in Panel B. Looking

across all regressions, a striking commonality is that the magnitude of slope coefficients is

generally much smaller than in the realized excess return regressions in Table 3. For example,

in the single-predictor regressions, the biggest coefficient in Table 4 is 1.12 for TERM in Panel

B. In contrast, the largest coefficient estimate in absolute magnitude is 6.44 for EXPD in in

Table 3 (for TERM it is 4.40). Therefore, subjective expected excess returns of individual

investors and CFOs vary much less with these standard predictor variables than objective

risk premia do.

With subjective expected excess returns from the Livingston survey in Panel C, the mag-

nitudes of estimated slope coefficients for the asset-class specific predictors are also fairly

small. Only for the cyclical indicators, we obtain coefficients (5.62 for N-IP, 4.18 for DE-

FAULT) that are in the ballpark of the magnitudes that we obtained in the realized return

regressions. However, for these two predictors, the coefficients in the realized returns regres-

sion in Table 3 are actually quite small (1.55 and 2.84, respectively), so there is not a great

match between subjective and objective risk premia in these cases either.

Since evidence for extrapolation from recent past returns play an important role in earlier

studies of return expectations data, e.g., Greenwood and Shleifer (2014), we also run versions

of these regressions with past one-year excess returns as a regressor. Past returns often have

substantial explanatory power, with positive effects on subjective risk premia of individuals

and CFOs, indicating extrapolation, and negative effects for professionals in the Livingston

survey, indicating a contrarian influence of past returns. Therefore, recent past returns are

a potentially important influence on subjective return expectations that one should seek to
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Table 4
Regressing Survey Stock Market Excess Return Expectations on Predictors

Dependent variables are the one-year-ahead excess return expectations from Nagel and Xu (2022), the CFO
survey, and the Livingston survey, respectively. Column variables are described in Section 2.2. Re

past denotes
the past one-year excess return. All predictors are standardized to have unit standard deviations in the full
sample period. The first row in each block reports the OLS estimates multiplied by 100. EWC p-values
following Lazarus et al. (2018) are reported in parentheses.

Asset-Class Specific Business-Cycle

CAY D/P EXPD NTIS N-IP TERM DEFAULT F1 VIX2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

A. Individual (NX)

Coeff -0.75 -0.75 -0.24 -0.00 0.17 0.20 -0.36 -0.55 0.98 1.57 0.44 0.46 -0.30 0.57 0.15 0.63 -0.01 0.27

(p-value) (0.04) (0.03) (0.52) (1.00) (0.63) (0.54) (0.48) (0.23) (0.17) (0.01) (0.20) (0.18) (0.35) (0.13) (0.68) (0.08) (0.95) (0.14)

Re
past 0.87 0.87 0.88 0.98 1.16 0.88 1.07 1.13 1.13

(p-value) (0.01) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

Adj. R2 0.21 0.33 0.00 0.11 0.00 0.12 0.01 0.16 0.04 0.23 0.04 0.16 -0.00 0.13 -0.00 0.16 -0.01 0.15

N 142 142 142 142 142 142 142 142 143 142 143 142 143 142 142 142 143 142

B. CFO

Coeff -0.23 -0.15 -0.47 -0.41 -0.94 -0.92 0.74 0.67 0.32 1.64 1.12 1.15 -0.15 0.47 0.08 0.59 0.01 0.23

(p-value) (0.64) (0.76) (0.32) (0.31) (0.01) (0.02) (0.01) (0.03) (0.55) (0.02) (0.00) (0.00) (0.60) (0.18) (0.68) (0.07) (0.92) (0.16)

Re
past 0.35 0.30 0.16 0.20 0.89 0.39 0.63 0.85 0.73

(p-value) (0.18) (0.29) (0.60) (0.48) (0.01) (0.08) (0.08) (0.03) (0.05)

Adj. R2 -0.00 0.01 0.04 0.05 0.35 0.34 0.08 0.07 -0.01 0.12 0.37 0.44 -0.01 0.03 -0.01 0.06 -0.01 0.04

N 77 77 77 77 77 77 77 77 79 77 79 77 79 77 77 77 79 77

C. Livingston

Coeff -1.70 -1.42 1.01 0.42 -0.37 -0.59 -1.05 -0.88 5.62 5.08 1.06 1.03 4.18 3.41 2.67 2.23 1.65 1.23

(p-value) (0.08) (0.09) (0.48) (0.73) (0.40) (0.17) (0.43) (0.34) (0.00) (0.00) (0.38) (0.37) (0.03) (0.04) (0.00) (0.00) (0.00) (0.02)

Re
past -2.70 -2.78 -2.94 -2.83 -2.28 -2.87 -1.79 -1.67 -2.23

(p-value) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.05) (0.08) (0.06)

Adj. R2 0.06 0.17 0.01 0.13 -0.00 0.14 0.01 0.14 0.27 0.35 0.03 0.16 0.22 0.26 0.23 0.26 0.13 0.20

N 138 138 138 138 138 138 138 138 138 138 138 138 138 138 122 122 138 138
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understand. The heterogeneity in past returns’ influence on expectations between individ-

uals/CFOs on one hand and professional forecasters on the other hints that a model with

heterogeneous beliefs may be needed to understand the asset pricing consequences of belief

formation, perhaps as in Barberis et al. (2015) where extrapolators coexist with traders that

are rationally contrarian (although predictions from this model would be difficult to square

with the lack of predictability associated with past returns in the realized return regressions

in Table 3). However, for our purposes, the important take-away from the table is that the

inclusion of past returns does not have a substantial impact on the slope coefficient estimates

for the slower-moving asset-class specific predictors and cyclical indicators that are the focus

of our analysis. Whatever the mechanism that let past returns affect return expectations, this

mechanism seems to be largely distinct from the predictor variables and the low-frequency

valuation cycles that have been emphasized in macro-finance modeling of asset markets.

Figure 2 provides a visual summary of our results on objective and subjective risk premia

in the stock market. While our discussion above focused on estimates in single-predictor

regressions, this figure shows the coefficient estimates when past returns are included in the

regression along with the predictor. The blue bars show the coefficients from the realized

return regressions in Table 3. The other bars show the corresponding coefficients for the

same predictor with the survey expected excess returns as dependent variable from Table 4.

The figure clearly illustrates that subjective risk premia have much lower sensitivity to the

predictor variables—with the exception of the Livingston survey for N-IP and DEFAULT—

than the objective risk premia captured by the predictive regressions with realized returns.

In stark contrast to the results in Figure 2, in a RE model of time-varying risk premia,

the sensitivities of objective and subjective risk premia would be the same. Specific details

of the results for particular predictors aside, the fact that subjective risk premia do not seem

to move much with standard cyclical variables casts doubt on the empirical importance of

time-varying risk or time-varying risk aversion as a major source of aggregate stock market

price movements.
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Figure 2
Coefficients from Regressing Stock Excess Returns on Predictors

The blue bars show the slope coefficients from regressing realized stock market excess returns
on asset-class specific predictors and business-cycle indicators. The estimates are bootstrap
bias-adjusted. The red, yellow, and purple bars use survey excess return expectations from
Nagel and Xu (2022), the CFO survey, and the Livingston survey as dependent variable,
respectively. All regressions control for past one-year realized excess returns.
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Price-growth extrapolation mechanisms as in Adam et al. (2017) and Jin and Sui (2021)

produce pro-cyclical movements in subjective risk premia and hence, for example, a negative

relationship between D/P and subjective risk premia. This relationship could be sufficiently

weak to still be consistent with a largely acyclical subjective stock market risk premium. Jin

and Sui (2021) report that a one standard deviation increase in their sentiment state variable

pushes up annualized subjective expected stock market returns by about 0.60 percentage

points. This would correspond roughly to a coefficient of -0.60 for CAY or D/P in our

regressions in Table 4—which is in the ballpark of what we find for individual investor and

CFO expectations in Panels A and B. Of course, most of these point estimates are statistically

not significantly different from zero so we cannot say with much confidence whether these

coefficients are truly different from zero.

3.2 Treasury bond market

Table 5 turns to the Treasury bond market. The dependent variable in Panel A is an equal-

weighted average of one-year excess returns on CRSP Treasury Indexes with maturities of

two, five, seven, and ten years. We observe realized returns at monthly frequency, hence

as in the earlier stock market return regressions, the dependent variable is measured over

overlapping annual windows and we use block-bootstrapped p-values to account for this

overlap. In Panel B, the dependent variable is the subjective expected excess returns from

the Blue Chip survey of professional forecasters. As in the case of realized returns, we use

an equal-weighted average of subjective expected excess returns over two-, five-, seven-, and

ten-year maturities.

In Panel A, for realized excess returns, the two asset-class specific predictors LN and

CYCLE are statistically significant at conventional levels (p < 0.01 for LN; p < 0.05 for

CYCLE). If used as single predictors, they get point estimates of 1.94 and 2.29, respectively.

This means that a one standard deviation move in the predictor is associated with a roughly

2pp movement in objective expected excess returns. Among the cyclical indicators, TERM
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Table 5
Regressing Treasury Bond Average Excess Returns on Predictors

In Panel A, dependent variable is the equal-weighted average of one-year excess returns on CRSP Treasury
Indexes with maturities of two, five, seven, and ten years. The sample period is from March 1952 to December
2020. In Panel B, dependent variable is the equal-weighted average of one-year-ahead excess return expecta-
tions from BCFF with the same set of maturities as in Panel A. The sample period is from January 1988 to
December 2020. Column variables are described in Section 2.2. Re

past denotes the past one-year average excess
returns. All independent variables are standardized to have unit standard deviations in the full sample period.
The first row in each panel reports the OLS estimates multiplied by 100. In Panel A, bootstrap bias-adjusted
coefficients are reported in braces; bootstrapped p-values are reported in parentheses. We use a stationary
bootstrap with an optimal block length determined as in Politis and White (2004). In Panel B, EWC p-values
following Lazarus et al. (2018) are reported in parentheses.

Asset-Class Specific Business-Cycle

LN CYCLE N-IP TERM DEFAULT F1 VIX2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

A. Realized

Coeff 1.94 2.33 2.85 2.85 0.57 0.66 1.50 1.88 1.20 1.26 1.00 1.07 0.31 0.32

{bias-adj.} {1.94} {2.32} {2.29} {2.38} {0.75} {0.85} {1.48} {1.92} {1.36} {1.35} {1.08} {1.13} {0.30} {0.33}
(p-value) (0.00) (0.00) (0.01) (0.02) (0.61) (0.60) (0.00) (0.00) (0.12) (0.13) (0.04) (0.07) (0.22) (0.20)

Re
past -0.90 -0.16 -0.13 -0.91 -0.22 -0.22 -0.09

{bias-adj.} {-0.85} {-0.37} {-0.12} {-0.94} {-0.13} {-0.10} {0.02}
(p-value) (0.20) (0.79) (0.84) (0.08) (0.73) (0.77) (0.88)

Adj. R2 0.14 0.16 0.24 0.24 0.00 0.00 0.09 0.12 0.02 0.02 0.03 0.03 0.00 0.00

N 717 717 578 578 826 814 826 814 826 814 717 717 826 814

B. BCFF

Coeff 0.37 0.50 0.83 0.83 0.54 0.67 0.30 0.33 0.30 0.41 0.57 0.75 0.17 0.22

(p-value) (0.16) (0.05) (0.00) (0.00) (0.31) (0.22) (0.15) (0.11) (0.47) (0.35) (0.02) (0.00) (0.13) (0.07)

Re
past -0.35 0.02 -0.25 -0.22 -0.24 -0.44 -0.28

(p-value) (0.08) (0.90) (0.27) (0.26) (0.32) (0.06) (0.24)

Adj. R2 0.03 0.05 0.23 0.22 0.02 0.03 0.03 0.04 0.01 0.02 0.07 0.11 0.02 0.04

N 397 397 397 397 397 397 397 397 397 397 397 397 397 397
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and F1 are also significant predictors at conventional levels, and DEFAULT marginally so.

The magnitude of expected return variation associated with the cyclical indicators is generally

smaller than for LN and CYCLE.

Interestingly, for all of these predictor variables, we again see much smaller coefficient

estimates when subjective expected excess returns are the dependent variable in Panel B.

Here we obtain the maximum coefficient with CYCLE, but at 0.83 the magnitude is still

much smaller than in Panel A (2.29). Including excess returns over the past year as an

additional predictor variable generally has very little effect, both in Panel A and B.

Figure 3 summarizes the results, again focusing on coefficient estimates in regressions with

past returns included as controls. The figure shows very clearly the different magnitudes of

the slope coefficients in the regressions with realized excess returns, shown as blue bars, and

regressions with subjective expected excess returns, shown as red bars. Thus, in the Treasury

bond market, too, subjective risk premia are much less sensitive to cyclical predictor variables

than objective risk premia are.

3.3 Foreign exchange market

Table 6 presents results for foreign exchange. The dependent variable in Panel A is the

realized excess return on a portfolio of developed market currencies from the viewpoint of a

US-based investor. The asset-class specific predictor is the average forward discount on the

developed market currencies as in Lustig et al. (2014).

In Panel A, all predictors except TERM produce statistically significant or at least

marginally significant coefficient estimates. The magnitudes are substantial. The one stan-

dard deviation change in the average forward discount is associated with a change of 3.75pp

in predicted realized excess returns. Among the cyclical indicators, the strongest predictor

is N-IP. A one standard deviation move in N-P is associated with a change of 6.66pp in the

objective expected excess returns on a US investors’ currency portfolio.

The estimates in Panel B for subjective expected excess returns show a sharp contrast to
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Figure 3
Coefficients from Regressing Treasury Bond Average Excess Returns on Predictors

The blue bars plot the slope coefficients from regressing the equal-weighted average of realized
excess returns on CRSP Treasury Indexes on asset-class specific predictors and business-cycle
indicators. The maturities include two, five, seven, and ten years. The coefficients are bias-
adjusted using bootstrap. The red bars use the equal-weighted average of survey excess
return expectations with the same set of maturities from BCFF as dependent variable. All
regressions control for past one-year realized average excess returns.
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Panel A. Point estimates are generally much smaller and none of the coefficient estimates is

significantly different from zero according to conventional levels.

As earlier in the case of bond excess returns, controlling for the past one-year return on the

currency portfolio does not have much effect on the point estimates of the other predictors,

neither for realized excess returns, nor for subjective expected excess returns.

Figure 4 visualizes the magnitude of the coefficients, focusing on the regressions that

include past returns along with the predictor variable. The figure clearly shows the sharp

contrast between the large coefficients obtained in realized excess return prediction regressions

and the extremely small coefficients in the subjective expected excess return regressions.

There is therefore little support for the notion that the objective return premia obtained in

ex-post regressions with realized excess returns reflect ex-ante subjective risk premia from

the viewpoint of the professional forecasters.

3.4 Commodity futures market

In our analysis of commodity futures risk premia, we look at the energy and metals sectors

separately. The economic risks that the underlying commodities are exposed to could be

quite different and the dynamics of risk premia could therefore be potentially different as

well. Following Hong and Yogo (2012), the asset-class specific predictors for commodity

futures are the futures basis and past one-year open interest growth.

3.4.1 Metals

The dependent variable in Panel A of Table 7 is the average realized one-year buy-and-hold

excess return on a portfolio of metals futures. As shown in columns (1) to (4), the futures basis

and open interest growth are economically strong predictors, with one standard deviation

change in the predictor associated with around 7pp change in the predicted excess returns.

However, the commodity futures excess returns are so noisy and the sample sufficiently short

that these estimates are not statistically significantly different from zero at conventional levels
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Table 6
Regressing Foreign Exchange Average Excess Returns on Predictors

In Panel A, dependent variable is the average realized one-year excess returns on the basket of developed
currencies. The sample period is from October 1984 to June 2021. In Panel B, dependent variable is the
one-year-ahead average excess return expectations on the same basket of developed currencies from CE and
FX4casts. The sample period is from August 1986 to June 2021. Column variables are described in Section
2.2. Re

past denotes the past one-year excess returns. All independent variables are standardized to have
unit standard deviations in the full sample period. The first row in each panel reports the OLS estimates
multiplied by 100. In Panel A, bootstrap bias-adjusted coefficients are reported in braces; bootstrapped p-
values are reported in parentheses. We use a stationary bootstrap with an optimal block length determined
as in Politis and White (2004). In Panel B, EWC p-values following Lazarus et al. (2018) are reported in
parentheses.

Asset-Class Specific Business-Cycle

FD N-IP TERM DEFAULT F1 VIX2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

A. Realized

Coeff 3.83 4.25 7.43 6.74 1.84 2.06 5.75 6.79 2.51 1.94 1.24 1.29

{bias-adj.} {3.75} {3.79} {6.66} {5.55} {1.99} {2.24} {5.99} {7.05} {2.65} {2.50} {1.44} {1.24}
(p-value) (0.03) (0.08) (0.04) (0.10) (0.27) (0.29) (0.07) (0.07) (0.06) (0.14) (0.03) (0.04)

Re
past -1.27 1.00 0.07 0.65 0.82 0.89

{bias-adj.} {-1.23} {1.03} {-0.12} {0.50} {0.76} {0.75}
(p-value) (0.42) (0.62) (0.97) (0.67) (0.69) (0.66)

Adj. R2 0.15 0.13 0.10 0.07 0.03 0.04 0.11 0.15 0.04 0.02 0.03 0.04

N 442 430 442 430 442 430 442 430 442 430 442 430

B. CE & FX4casts

Coeff -0.19 0.01 0.27 0.10 -0.68 -0.62 0.27 0.23 0.06 -0.03 0.56 0.53

(p-value) (0.75) (0.99) (0.74) (0.91) (0.24) (0.25) (0.69) (0.77) (0.89) (0.94) (0.10) (0.13)

Re
past -0.41 -0.40 -0.20 -0.40 -0.43 -0.25

(p-value) (0.54) (0.57) (0.76) (0.57) (0.54) (0.71)

Adj. R2 0.00 0.01 -0.00 0.01 0.04 0.04 -0.00 0.01 -0.00 0.01 0.07 0.07

N 419 419 419 419 419 419 419 419 414 414 419 419
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Figure 4
Coefficients from Regressing Foreign Exchange Average Excess Returns on Predictors

The blue bars the slope coefficients from regressing average realized one-year excess returns
of developed currencies on asset-class specific predictors and business-cycle indicators. The
coefficients are bootstrap bias-adjusted. The red bars use average survey excess return ex-
pectations on the same basket of currencies from CE and FX4casts as dependent variable.
All regressions control for past one-year average realized excess returns.
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despite the large magnitude of the point estimates. With a p-value of 0.11, open interest

growth, when used as a single predictor, is at least close to marginally significant. Among

the cyclical indicators, only VIX2 is marginally significant on its own (p < 0.10).

Panel B shows the corresponding regressions for subjective expected excess returns. Look-

ing across all specifications, we again see the general pattern that the magnitudes of the slope

coefficient estimates for the predictors are almost all lower than in Panel A (and often of dif-

ferent sign). Figure 5 illustrates this graphically.

Interestingly, Panel B also shows that subjective risk premia of professional forecasters in

the metals futures market seem to be strongly contrarian with respect to recent past excess

returns on metals futures. A fairly large share of time-variation in subjective risk premia can

be traced to this contrarian effect, even though the relationship of past returns to objective

risk premia is, if anything, positive in Panel A.

3.4.2 The crude oil market

Table 8 presents the results for futures excess returns in the WTI crude oil market. The

results for realized excess return prediction in Panel A show that there are no statistically

significant predictors of excess returns. Some of the point estimates are large, though. For

example, the point estimate for N-IP implies that a one standard deviation fall in industrial

production growth is associated with a rise of predicted excess returns of 10.26pp. But

the p-value of 0.21 indicates that there is a very large degree of uncertainty about the true

magnitude of the effect.

Panel B presents the result for subjective expected excess returns. As in the case of metals

futures, subjective risk premia are strongly contrarian with respect to recent past excess

returns. Other than this past returns effect, there is little else in terms of a clear relationship

to predictors. The basis in column (1) shows up with a statistically significant relationship

on its own, but this goes away when past returns are controlled for. The DEFAULT variable

in column (10) is a statistically significant predictor only when past returns are controlled

30



BASIS (M) OI (M) N-IP TERM DEFAULT F1 VIX2
-6

-4

-2

0

2

4

6

8

Realized
CE

Figure 5
Coefficients from Regressing Metals Futures Excess Returns on Predictors

The blue bars plot the slope coefficients from regressing average realized one-year buy-and-
hold excess returns of metals futures on asset-class specific predictors and business-cycle
indicators. The coefficients are bootstrap bias-adjusted. The red bars use average survey
excess return expectations from CE as dependent variable. All regressions control for past
one-year average realized excess returns.
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Table 7
Regressing Metals Futures Excess Returns on Predictors

In Panel A, dependent variable is the average realized one-year buy-and-hold excess returns on metals. The
sample period is from September 1978 to June 2021. In Panel B, dependent variable is the one-year-ahead
average excess return expectations from CE. The sample period is from August 1995 to June 2021. Column
variables are described in Section 2.2. Re

past denotes the past one-year excess returns. All independent
variables are standardized to have unit standard deviations in the full sample period. In Panel A, bootstrap
bias-adjusted coefficients are reported in braces; bootstrapped p-values are reported in parentheses. We use
a stationary bootstrap with an optimal block length determined as in Politis and White (2004). In Panel B,
EWC p-values following Lazarus et al. (2018) are reported in parentheses.

Asset-Class Specific Business-Cycle

BASIS OI N-IP TERM DEFAULT F1 VIX2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

A. Realized

Coeff -6.57 -6.69 6.38 5.72 5.84 7.80 1.51 1.98 -3.51 -1.61 -1.18 0.25 3.11 3.83

{bias-adj.} {-5.86} {-4.57} {7.45} {5.51} {5.91} {7.03} {2.33} {2.48} {-5.19} {-3.78} {-0.88} {1.24} {3.80} {4.31}
(p-value) (0.20) (0.31) (0.11) (0.19) (0.55) (0.43) (0.75) (0.64) (0.69) (0.86) (0.80) (0.96) (0.06) (0.03)

Re
past 3.45 1.27 4.68 4.70 4.20 4.50 5.31

{bias-adj.} {4.50} {3.61} {5.68} {5.98} {4.58} {5.51} {6.10}
(p-value) (0.34) (0.81) (0.27) (0.20) (0.33) (0.27) (0.13)

Adj. R2 0.06 0.09 0.09 0.09 0.01 0.04 0.00 0.03 0.00 0.02 -0.00 0.02 0.03 0.07

N 516 504 441 441 516 504 516 504 516 504 516 504 516 504

B. CE

Coeff 7.27 1.79 -2.22 -0.01 -0.05 -0.89 0.47 0.41 2.28 0.65 1.24 0.38 1.09 0.68

(p-value) (0.02) (0.43) (0.01) (0.99) (0.97) (0.52) (0.52) (0.62) (0.28) (0.71) (0.32) (0.72) (0.05) (0.20)

Re
past -3.83 -4.12 -4.19 -4.12 -4.01 -3.83 -3.86

(p-value) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Adj. R2 0.12 0.35 0.13 0.34 -0.01 0.35 -0.00 0.35 0.04 0.35 0.02 0.30 0.08 0.38

N 150 150 150 150 150 150 150 150 150 150 145 145 150 150
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for. Figure 6 shows that the overall picture of absolute coefficient magnitudes in the two

panels is mixed, with no clear difference in magnitudes in the objective and subjective risk

premia specifications. This is to be expected when none of the variables really has a strong

relationship to objective or subjective risk premia.

3.5 Summary measures, variations, and statistical inference

We now construct summary measures that combine our findings across predictors and asset

classes. This also allows us to compactly report the sensitivity of our results to a number of

robustness checks. For each survey, we first calculate the following two ratios:

M1 ≡

∑
k∈K sgn

(
βAdjk

)
· βSubk∑

k∈K sgn
(
βAdjk

)
· βAdjk

, (7)

and

M2 ≡
∑

k∈K |βSubk |∑
k∈K |β

Adj
k |

, (8)

where βSubk is the slope coefficient on asset-class specific predictor or business-cycle indicator

k in the regression with survey excess return expectations, βAdjk is the bias-adjusted coefficient

in the regression with realized excess returns, and K is the group of all asset-class specific

predictors and cyclical indicators combined.

Because the sign of predictors can be arbitrary, we need to first align the signs before

we can average coefficients across predictors. Multiplying with sgn
(
βAdjk

)
in the numerator

and denominator in (7) is like switching the signs of the predictor variables such that the

coefficients in the realized return regressions are all positive, and hence the denominator of

M1 is always positive. Then, if subjective risk premia have the same variation with respect

to predictors as objective risk premia do, M1 will be about 1; if subjective risk premia have

the exact opposite variation, M1 will be about −1.
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Figure 6
Coefficients from Regressing Crude Oil Futures Excess Returns on Predictors

The blue bars plot the slope coefficients from regressing realized one-year buy-and-hold ex-
cess returns of WTI crude oil futures on asset-class specific predictors and business-cycle
indicators. The coefficients are bootstrap bias-adjusted. The red bars use survey excess re-
turn expectations from CE as dependent variable. All regressions control for past one-year
realized excess returns.
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Table 8
Regressing Crude Oil Futures Excess Returns on Predictors

In Panel A, dependent variable is the realized one-year buy-and-hold excess returns on the WTI crude oil
futures. The sample period is from December 1984 to June 2021. In Panel B, dependent variable is the
one-year-ahead buy-and-hold excess return expectations from CE. The sample period is from August 1995 to
June 2021. Column variables are described in Section 2.2. Re

past denotes the past one-year excess returns. All
independent variables are standardized to have unit standard deviations in the full sample period. In Panel A,
bootstrap bias-adjusted coefficients are reported in braces; bootstrapped p-values are reported in parentheses.
We use a stationary bootstrap with an optimal block length determined as in Politis and White (2004). In
Panel B, EWC p-values following Lazarus et al. (2018) are reported in parentheses.

Asset-Class Specific Business-Cycle

BASIS OI N-IP TERM DEFAULT F1 VIX2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

A. Realized

Coeff 1.20 -0.71 0.36 5.14 9.89 7.82 -4.25 -4.33 2.43 2.03 -0.63 -2.35 3.88 3.64

{bias-adj.} {1.74} {0.24} {-0.71} {0.45} {10.26} {9.32} {-4.46} {-5.16} {0.58} {0.66} {-0.47} {-2.98} {4.05} {4.18}
(p-value) (0.81) (0.90) (0.95) (0.58) (0.21) (0.48) (0.53) (0.57) (0.71) (0.81) (0.84) (0.51) (0.25) (0.33)

Re
past -3.30 -6.39 -1.78 -3.10 -2.53 -3.34 -2.03

{bias-adj.} {-1.38} {-2.59} {-0.66} {-2.44} {-2.19} {-2.52} {-0.51}
(p-value) (0.67) (0.55) (0.77) (0.57) (0.67) (0.55) (0.75)

Adj. R2 -0.00 -0.00 -0.00 0.00 0.01 0.01 0.01 0.02 -0.00 0.00 -0.00 0.00 0.03 0.02

N 439 427 426 426 439 427 439 427 439 427 439 427 439 427

B. CE

Coeff 2.46 -1.43 -3.61 1.98 3.82 -1.94 -1.73 -1.36 0.19 -5.05 0.22 -2.60 0.52 -0.71

(p-value) (0.04) (0.36) (0.13) (0.38) (0.23) (0.55) (0.35) (0.41) (0.95) (0.00) (0.92) (0.19) (0.52) (0.29)

Re
past -6.47 -7.14 -5.93 -5.41 -6.60 -7.24 -5.83

(p-value) (0.01) (0.00) (0.01) (0.00) (0.00) (0.00) (0.01)

Adj. R2 0.07 0.33 0.14 0.33 0.03 0.32 0.01 0.32 -0.01 0.38 -0.01 0.43 0.00 0.32

N 150 150 150 150 150 150 150 150 150 150 145 145 150 150
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It may also be of interest to simply compare the volatility of the predictor-related com-

ponents in subjective and objective risk premia, without paying attention to the direction

in which a predictor moves these premia. This is captured by ratio M2. This ratio uses the

absolute values of coefficients.

The final summary measures are calculated by first taking the average of M1 and M2

within asset classes (if there are multiple surveys) then across asset classes.10 Figure 7

presents the results.

To explore the robustness of our conclusions, we report results from several different

specifications. First, we use coefficient point estimates obtained with (Control) or without

(Single) controlling for past returns. Second, we re-run all of the analysis with a different

definition of the realized excess return sample. In our baseline analysis above, we used

the maximum sample length that was available given data availability constraints on the

predictors and returns data. With this baseline approach, one might worry that the law of

motion of objective risk premia has undergone structural change and may be different in

the samples for which we have survey data coverage, which are often much shorter than the

samples for which we have realized returns and predictor data. For this reason, we re-run all

realized excess regressions with the realized returns sample restricted to the time periods for

which we have survey data to construct subjective expected excess returns. In Figure 7, the

results from our baseline analysis with the full sample are denoted with (F), those with the

return sample matched to the survey sample are denoted with (S).

The four pairs of bars on the left-hand side of the figure show the results. The blue bars

show the summary measure of the M1 ratios, the red bars show the summary of the M2

ratios. The baseline case in the left-most blue bar shows that a one percentage point move in

the objective risk premium is associated, on average, only with 0.12 percentage point move

in the same direction of the subjective risk premium. Based on the comparison of the first

two blue bars, including or not including past returns has very little effect on the ratio of

10 We treat metals and crude oil as in the same asset class. Treating them as separate asset classes does
not quantitatively change the results.

36



Control (F) Single (F) Control (S) Single (S) Sig, Control (F) Sig, Single (F)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7
Comparing Magnitudes of Coefficients from Regressing Survey Expectations and Realized

Returns

For each blue and red bar, we first calculate the following ratios for each survey:

M1 ≡

∑
k∈K sgn

(
βAdjk

)
· βSubk∑

k∈K sgn
(
βAdjk

)
· βAdjk

, M2 ≡
∑

k∈K |βSubk |∑
k∈K |β

Adj
k |

,

respectively, where βSubk is the slope coefficient on asset-class specific predictor or business-

cycle indicator k in the regression with survey excess return expectations, βAdjk is the bias-
adjusted coefficient in the regression with realized excess returns, and K is the set of all
predictors. We then take the average ofM1 andM2 within each asset class if there are multiple
surveys and finally across asset classes. (F) denotes estimates using the full return sample;
(S) denotes estimates using the matched-to-survey return sample; Control and Single denote
estimates with and without controlling for past excess returns, respectively; Sig denotes
estimates only using predictors whose full-sample p-values are smaller than 0.05.
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coefficients for objective and subjective premia. In both cases, we get a ratio of close to 0.15.

Using the full sample for realized returns (first and second blue bar) or a shorter sample

matched to the survey data set (third and fourth blue bar) does not have much effect on the

results either, with a slight increase of about 0.05 in both Control and Single cases. Overall,

subjective risk premia vary substantially less with the predictor variables than objective risk

premia.

The red bars shows that the picture is quite similar if we ignore potential directional

mismatch between the movements of subjective and objective risk premia and just look at

the relative volatility of predictor-related components using the ratio M2. Even then, the

ratio is far below one, indicating a much smaller volatility of the cyclical-variable component

in subjective risk premia. Neither controlling for past returns nor using matched-to-survey

samples has much effect on the summary measure of the M2 ratios.

One potential concern about the analysis so far is that the set of predictors might include

ones that are simply irrelevant for risk premia. If the predictor variable represents just

irrelevant noise that is not truly related to risk premia, neither objective nor subjective, the

true slope coefficients are zero. Due to estimation error, the slope coefficient estimates will

be non-zero and they could have similar absolute magnitudes in the regressions with realized

returns and subjective expectations. This would bias the M2 ratio toward one and the M1

ratio toward zero.

For this reason, the last two pairs of bars on the right-hand side include, within each

asset class, only on predictor variables that are significant at conventional levels (p ≤ 0.05) in

predicting realized excess returns using the full available sample of realized return and pre-

dictor data. As the figure shows, for these variables, the relative magnitude of the subjective

expected excess return regression coefficients is still small. Depending on whether we include

past returns in the regression or not, we obtain ratios of slightly above or below 0.20 for both

M1 and M2 ratios.

So far we have focused on point estimates in our summary measures. However, it would
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also be useful to assess the joint statistical significance of the cyclicality wedges between sub-

jective and objective risk premium dynamics. We develop an asymptotic inference approach

in Appendix C. This is not straightforward as the regressions involve different predictors,

sample periods, data sets, and measurement frequencies. Our approach treats all these re-

gressions jointly as one big system of regression equations. We then construct a composite

estimator that aggregates the differences between realized-return-based and survey-based co-

efficient estimates as

d = e′2Bw, (9)

where the K × J matrix B horizontally concatenates the regression coefficient row vectors

from J realized-return-based and survey-based regressions. The weight column vector w is

such that the elements that multiply coefficients from the predictive regressions with excess

returns as dependent variable are positive, of equal magnitude, and sum to 1 across all

regressions within an asset class, while those that multiply coefficients from the survey data

regressions are negative, of equal magnitude, and sum to −1 within an asset class; e2 is

a vector with one as the second element and zeros otherwise to pick out the aggregated

slope coefficient differences corresponding to asset-class specific predictors and business-cycle

indicators. Thus, d represents the average wedge between realized excess returns and survey

expectations associated with a one-standard-deviation change in the predictor variable. For

the purposes of statistical inference, formulating this wedge as a difference is more tractable

than the ratio that we used in our earlier summary measures in Figure 7. Since signs of

regression coefficients matter for d, we flip the signs of predictors if necessary such that they

forecast future realized excess returns positively, as we did for the ratio M1 earlier.

The top panel in Table 9 reports the results for individual asset classes. Focusing on the

full-sample estimates in the first two columns, the point estimate for the aggregate wedge d

is between two to four times as big as the standard error, and hence statistically significant

at conventional levels, for all asset classes except metals with past return control and oil.

To further aggregate across asset classes, we construct two composite measures. The first
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one equally weights all asset classes. The first two columns of the bottom panel in Table 9

show that this composite cyclicality wedge is highly statistically significant with the point

estimate more than five times as big as the standard error. To prevent asset classes with high

return volatility from dominating, we construct a second composite measure that weights

asset classes by the inverse of their realized excess return volatility. This point estimate for

this second composite measure is smaller as it puts a higher weight on Treasury bonds, but the

standard errors shrink to a similar degree, so that it remains highly statistically significant.

As a robustness check, we also repeat the analysis using the matched-to-survey sample.

All results hold except that the cyclicality wedge narrows for Treasury bonds but widens for

metals futures.

4 Comparison with Out-of-Sample Forecasts

Our analysis so far compared the cyclicality of subjective expected excess returns with the

cyclicality of forecasts implied by estimates of in-sample predictive regressions. For evaluating

RE models, this is the appropriate comparison. In RE models, agents already know the un-

derlying data-generating process, including the values of its parameters. In-sample predictive

regressions are then the most efficient way for an econometrician to estimate what economic

agents already know. Yet, the empirical evidence on the large gap in cyclicality between

subjective expectations and in-sample predictive regression forecasts is hard to square with

RE models. This brings up the question whether non-RE belief-formation mechanisms that

do not endow agents with so much knowledge of the data-generating process could explain

the lack of cyclicality in subjective expected excess returns.

One natural possibility is that, unlike in RE models, investors do not know the parameters

of the data-generating process. Instead, they learn about these parameters from observed

data in real time. If so, an OOS forecast, not the fitted value from an in-sample regression

run ex post over the whole sample, should be close to their observed subjective expectations.

For this reason, we now examine whether OOS forecasts of excess returns are closer to the
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Table 9
Joint Statistical Significance of the Cyclicality Wedges

This table reports the point estimates and standard errors of the following measure:

d = e′
2Bw,

where the K × J matrix B horizontally concatenates the regression coefficient row vectors from J realized-
return-based and survey-based regressions. The weight column vector w is such that the elements that
multiply coefficients from the predictive regressions with excess returns as dependent variable are positive, of
equal magnitude, and sum to 1 across all regressions within an asset class, while those that multiply coefficients
from the survey data regressions are negative and sum to −1 within an asset class; e2 is a vector with one as
the second element and zeros otherwise to pick out the aggregated slope coefficient differences corresponding
to asset-class specific predictors and business cycle indicators. The composite measure either equally weights
the four asset classes or weights them in inverse proportion to the volatility of their realized excess returns σ.
We multiply the point estimates d by 100. Standard errors calculated using the EWC estimator from Lazarus
et al. (2018) are reported in parentheses (also multiplied by 100).

Full-Sample Survey-Sample

w/o Re
past with Re

past w/o Re
past with Re

past

Stock Market 3.56 3.55 3.37 3.09

(0.96) (1.01) (1.16) (1.36)

Treasury Bonds 0.90 0.95 0.40 0.62

(0.35) (0.40) (0.42) (0.45)

Foreign Exchange 3.67 3.76 3.29 3.55

(0.92) (1.00) (0.93) (0.97)

Commodities

Metals 4.97 4.25 10.43 10.70

(2.27) (2.40) (2.22) (2.46)

Oil 2.54 3.97 3.68 5.95

(1.86) (2.64) (2.49) (3.45)

Composite

Equal-weighted 2.97 3.09 3.53 3.90

(0.53) (0.61) (0.66) (0.67)

σ−1-weighted 2.23 2.31 2.04 2.29

(0.40) (0.43) (0.44) (0.44)

41



subjective excess return expectations in terms of cyclicality than the in-sample excess return

predictions.

We first construct OOS forecasts at time t based on each individual predictor xi by

performing the following predictive regressions over expanding windows:

Rek = αi,t + βi,txi,k−1 + εi,k, k = 2, . . . , t. (10)

Given the negligible role of past excess returns in predicting future excess returns in our

earlier analyses, we focus here on specifications with just a single predictor without including

past one-year excess returns. We assume that investors estimate αi,t and βi,t as

(α̂i,t, β̂i,t) ≡ argmin
α, β

t∑
k=2

ωt,k(R
e
k − α− βxi,k−1)2. (11)

Our first set of analyses sets ωt,k = 1 and hence α̂i,t and β̂i,t are simply OLS estimates from

recursively expanding windows.

An OOS forecast of t + 1 excess returns based on α̂i,t and β̂i,t would, however, impose

extreme confidence that the variable xi is truly a predictor of excess returns. In practice,

investors cannot be sure. If it’s not, then a forecast that constrains βi,t to zero could perform

better. For this reason, we assume that investors evaluate, based on the historical data that

has accumulated until time t, whether the predictive regression forecast actually adds value,

in terms of OOS forecasting, relative to simply setting the forecast equal to the historical

mean of Rek

R̄et =

∑t
k=2 ωt,kR

e
k∑t

k=2 ωt,k
. (12)

More precisely, we assume that investors check in past data until period t which combination

of R̄et and the predictive regression forecast α̂i,t + β̂i,txi,t produced the best OOS forecasts.
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Investors’ forecast is then a weighted average:

Êi,tRet+1 ≡ si,t(α̂i,t + β̂i,txi,t) + (1− si,t)R̄et , (13)

where the weight si,t is chosen to maximize the historical OOS performance starting at tmin

after a burn-in period

si,t = argmin
s

t∑
k=tmin

ωt,kuk(s)
2, (14)

uk(s) ≡ Rek − s(α̂i,k−1 + β̂i,k−1xi,k−1)− (1− s)R̄ek−1. (15)

In other words, we let investors look for the optimal degree of shrinkage of the predictive

regression forecast toward the historical mean.

In our empirical implementation, we choose tmin of 10 years as burn-in period. For foreign

exchange and commodity futures, we do not have enough data after the burn-in periods to

have much statistical power. For this reason, we focus on stock and Treasury bond markets

only in this analysis. For our cyclicality tests, we then use the OOS forecast series starting

from the dates when survey data becomes available (June 1952 for the stock market and

January 1988 for the Treasury bond market). We regress the OOS forecasts Êi,tRet+1 on xi,t,

just as we regress the subjective expected excess returns ẼtRet+1 from the survey data on xi,t.

Both of the asset-specific predictors for Treasury bond excess returns use look-ahead

information in their construction that is not available to investors in real time: the bond

excess return predictor of Ludvigson and Ng (2009) is constructed as a linear combination of

macro factors with weights chosen to maximize in-sample bond excess return predictability

subject to a model complexity penalty; the cycle factor of Cieslak and Povala (2015) is

constructed by projecting in-sample bond yields on trend inflation and then bond excess

returns on the residuals to construct the cycle factor. For the purpose of this OOS exercise,
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we therefore create real-time versions of these factors.11 Appendix D.1 describes the details

of their construction.

To parsimoniously present the results from this large number of regressions, we again use

the ratios introduced in (7) and (8), but now with numerators replaced with coefficients from

using OOS forecasts:

M∗1 ≡

∑
k∈K sgn

(
βAdjk

)
· βOOSk∑

k∈K sgn
(
βAdjk

)
· βAdjk

, M∗2 ≡
∑

k∈K |βOOSk |∑
k∈K |β

Adj
k |

. (16)

We report the detailed individual coefficients from these regressions in Appendix D.2. If the

OOS forecasts constructed in our exercise get close, in terms of cyclicality, to the subjective

expected excess returns observed in the survey data, then we should see these ratios to be

similar to the ones we reported in Figure 7 with coefficients from the subjective expected

excess return regressions in the numerators.

As a baseline for comparison, the left-most blue bars in the two panels of Figure 8 there-

fore repeat the earlier estimates from Figure 7 in the Single (F) specification, i.e., without

controlling for past excess returns, where the ratios were 0.16 for the stock market and 0.33

for the Treasury bond market. The neighboring blue bars to the right, labeled Shrink (E),

show the ratio (16) with coefficients from using OOS forecasts in the numerators. As the

figure shows, that OOS forecasts differ from in-sample forecasts goes some way of explaining

the cyclicality gap. If OOS forecasts were as cyclical as in-sample forecasts, the ratio would

be about 1.0; if the OOS forecasts were as acyclical as subjective expected excess returns in

the survey data, the ratio would be about equal to the ratio represented by the baseline bar.

The actual estimate is somewhere inbetween, with 0.46 for the stock market and 0.51 for the

Treasury bond market. Using absolute values of coefficients in calculating the measure has

11 The equity return predictor CAY and the business cycle variable F1 also use look-ahead information in
their construction. For CAY, this involves estimation of a cointegration relationship over the full sample ex
post; for F1 the estimation of principal components using full sample information. Therefore, these variables
may also be contaminated with information that was not available to investors in real time, but the concern
is perhaps less severe for CAY and F1 as their construction does not directly use realized excess returns.
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little effect, as can be seen from the red bars in the first two pairs.

That investors make use of the full historical record of asset return data in constructing

their forecasts may overstate their reliance on historical data from the distant past. In Nagel

and Xu (2022) we argued that a reasonable and empirically plausible way of representing

investors’ learning is to let memory of historical data slowly fade over time as observations

recede into the distant past. This could reflect actually fading memory or investors’ belief

that parameter drift renders data from the distant past irrelevant for forecasting. In line with

the learning model in Nagel and Xu (2022), we therefore construct an alternative series of

OOS forecasts where investors downweight past data with exponential weights ωt,k = λt−k.

We use the same value of λ = 0.982 as in Nagel and Xu (2022) for quarterly data (and its

third root for monthly data). We then repeat our earlier exercise of regressing the OOS

forecasts on each individual predictor and we compute the ratio in (16). The result is shown

in Figure 8 in the third pair of bars from the left, labeled Shrink (W). Especially for the stock

market, where the M∗1 ratio drops by about half to 0.25, the exponential weighting approach

brings the ratio substantially closer to the baseline column. For the Treasury bond market it

also drops, albeit to a lesser extent, from 0.43 to 0.33. The red bars show a similar pattern.

Another potentially relevant consideration is that investors ex-ante may not know which

one of the candidate predictor variables really is a useful OOS predictor. Rapach et al. (2010)

show that combination forecasts constructed as average individual-predictor forecasts provide

superior OOS performance. Such combination forecasts may therefore be an alternative

way of representing how investors construct excess return predictions. We therefore use the

individual-predictor OOS forecasts α̂i,t + β̂i,txi,t to construct combination OOS forecasts as

a simple equal-weighted average across the N predictors:

ÊCt R
e
t+1 =

1

N

N∑
i=1

(α̂i,t + β̂i,txi,t). (17)

We then regress these combination forecasts on the individual predictors, one at a time, to
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Figure 8
Comparing Magnitudes of Coefficients from Regressing OOS Forecasts and Realized Returns

The left-most pair of bars labeled Baseline repeats the estimates from Figure 7 in the Single
(F) specification. The next four pairs of bars plot the following ratios, respectively,

M∗1 ≡

∑
k∈K sgn

(
βAdjk

)
· βOOSk∑

k∈K sgn
(
βAdjk

)
· βAdjk

, M∗2 ≡
∑

k∈K |βOOSk |∑
k∈K |β

Adj
k |

,

where βOOSk are the slope coefficients from regressing OOS excess return forecasts on predictor
k; K is the set of all predictors. Shrink applies shrinkage to the predictive regression forecast
toward the historical mean. Comb. uses combination forecasts as an equal-weighted average
of individual-predictor forecasts. (E) denotes equal weighting historical data and (W) denotes
exponential weighting of past data with a quarterly discount factor of 0.982 (and its third
root for monthly data). 46



construct the ratio in (16). The two right-most pairs of bars in the two panels of Figure

8 present the result, one with forecasts based on equally weighting historical data, labeled

Comb. (E), the other one based on exponential weighting, labeled Comb. (W). These combi-

nation forecasts are very close, in terms of their weak cyclicality, to the subjective expected

excess returns from survey data.

Overall, the results in this section show that simply moving away from the extreme

assumption of RE models that investors know the data-generating process can go a long way

of explaining why there is a gap between subjective risk premium dynamics in survey data

and the dynamics of objective risk premia implied by in-sample predictive regressions.

5 Subjective Risk-Return Tradeoff

The evidence so far suggests that to the extent there is any substantial variation in subjective

risk premia, standard predictor variables do not capture much of it. However, this does not

imply that subjective risk premia are necessarily constant. They do seem to be largely

acyclical with regards to typical proxies for business and asset-price cycles, but they could

potentially vary systematically in a different way, unrelated to these standard proxies. As a

final step in our analysis, we explore whether time-variation in subjective perceptions of risk

could generate time-varying subjective risk premia. Due to data constraints, the analysis in

this section focuses on the stock market only.

Standard asset-pricing models predict an approximately linear and positive relation be-

tween the conditional equity premium and the conditional equity return variance (Campbell

and Cochrane 1999; Bansal and Yaron 2004). Empirically, however, evidence on the risk-

return trade-off is mixed and inconclusive (see, e.g., Lettau and Ludvigson (2010) for a recent

review). This existing evidence is based on measures of objective risk premia and objective

measures of time-varying risk. Our analysis focuses on subjective risk premia and subjective

perceptions of risk.

Following Lochstoer and Muir (2019), we construct three proxies of perceived stock market
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risk. The first measure is from the Graham-Harvey CFO survey. In this survey, respondents

provide their assessment of the 10th and 90th percentile of the stock market return distribu-

tion at a one-year horizon. We convert the range between these percentiles into an estimate

of respondents’ subjective variance by taking the square of the range and dividing by the

square of 2.56 (which would be accurate if the distribution was normal). The remaining two

measures are constructed from the United States Crash Confidence Index from the Interna-

tional Center for Finance at Yale (Shiller (2000), Goetzmann et al. (2016)). This index has

two series, one for individuals and one for institutions. They are calculated as the percent

of respondents who think there is less than 10% chance of a stock market crash in the next

six months.12 We take the negative of this index to proxy for the level of individuals’ and

institutions’ perceived crash risk. Surveys were initially conducted at six-month intervals.13

Starting in July 2001, the index reports a six-month moving average of monthly surveys. We

match this moving average to surveys in the following months. Thus, for example, the index

for November 2018 is an average of results from surveys between June 2018 and Novem-

ber 2018, and we match this index to Livingston survey subjective return expectations in

December 2018 (obtained from surveys conducted in November).

Our interest now centers on the relationship between perceived risk and subjective excess

return expectations. Figure 9 plots the subjective variance data for the CFO survey and the

subjective expected excess return series. The plot shows a clear positive relationship between

the two series. In particular, the series both increase substantially in the early 2000s, following

the technology crash and recession, in the wake of the financial crisis around 2008, and most

recently during the COVID crisis in 2020.

Table 10 presents the results in regression form. In addition to the CFO series, we also

12 The exact survey question is: “What do you think is the probability of a catastrophic stock market crash
in the U. S., like that of October 28, 1929 or October 19, 1987, in the next six months, including the case that
a crash occurred in the other countries and spreads to the U. S.?”

13 The survey dates (first mailing dates) were: July 5, 1989; January 17, 1990; July 27, 1990; January 31,
1991; August 20, 1991; January 31, 1992; August 20, 1992; February 12, 1993; August 6, 1993; February 28,
1994; September 8, 1994; March 4, 1995; September 1, 1995; March 1, 1996; July 30, 1996; March 17, 1997;
September 5, 1997; March 2, 1998; and September 9, 1998.
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Figure 9
CFO Excess Return Expectations and Variance Expectations

The blue line plots the one-year excess return expectations from the CFO survey. The red
line plots an approximate measure of the perceived variance: the square of the difference
between the mean expectations of 90th and 10th percentiles of returns from the CFO survey,
divided by the square of 2.56. The grey-shaded areas indicate NBER recessions.
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examine the relationship of individual investor and Livingston survey subjective risk premia

to the (negative of) the individual and institutional investor crash confidence indices. To

facilitate interpretation, we standardize the crash confidence series to unit standard devia-

tions. We do not standardize the subjective variance series from the CFO survey, as the slope

coefficient in a regression of subjective expected excess returns on subjective variance then

has a natural economic interpretation as a relative risk aversion coefficient (in a model where

investors’ wealth is fully invested in the stock market).

Columns (1) and (2) show a weak positive relationship between individuals investors’

perceived risk of a stock market crash and their subjective expected excess returns. The

relationship is not statistically significant, however. Controlling for past returns in column (2)

raises the magnitude of the coefficient on perceived risk, but it is still statistically insignificant

at conventional levels (p = 0.11). The coefficient of 0.60 implies that a one standard deviation

rise in the perceived risk measure is associated with an increase of 0.60pp in the subjective

risk premium. For comparison, this is somewhat weaker than the effect of past returns, where

a one standard deviation change is associated with a change of 1.01pp in the subjective risk

premium.

Columns (3) and (4) show the results for the CFO survey data. As anticipated from Figure

9, subjective variance is positively related to the subjective risk premium.14 The magnitudes

of the slope coefficient estimates are also economically plausible as they would imply a relative

risk aversion somewhere between 6 and 9. The strong link between subjective variance and

subjective risk premium may seem surprising given that columns (17) and (18) in Table 4,

Panel B show the loading of the CFO subjective risk premium on VIX2 is neither statistically

nor economically significant. This indicates that the CFO variance expectations contain

information orthogonal to VIX2 that is important for determining excess return expectations.

One potential source of such an orthogonal component is highlighted in Lochstoer and Muir

14 Lochstoer and Muir (2019) document that survey return expectations and variance expectations are
uncorrelated. This is also true in our sample period: Using return expectations instead of excess return
expectations, the adjusted R2 drops to zero in both columns (3) and (4).
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(2019). They find that CFO variance expectations load much more strongly on realized

variance several months ago than VIX2 does.

Columns (5) and (6) present the results for professional forecasters from the Livingston

survey. The relationship between subjective risk premium and subjective risk, as measured

by (the negative of) the institutional investor crash confidence index, is much stronger than

for individuals. The point estimate in column (5) implies that a one standard deviation rise

in perceived risk is associated with an increase in the subjective risk premium of 2.53pp.

Statistically, however, the magnitude of the effect is rather uncertain, as the estimate is

only marginally significant (p = 0.10). To some extent, this is due to the small number of

observations. The Livingston survey is available only semi-annually and hence we are left

with a small number of observations in the part of the sample that overlaps with the investor

crash confidence index series.

For the Livingston survey subjective expectations, the relationship with the risk percep-

tions captured by the institutional crash confidence index series is quantitatively quite similar

to the relationship to VIX2 in Table 4. For comparison, a one standard deviation move in

VIX2 is associated with a 1.65pp move in the subjective risk premium. In contrast to the

CFO expectations, a component of perceived risk orthogonal to the VIX2 seems to be less

important for professional forecasters than for CFOs.15

Overall, there is evidence for a positive risk-return tradeoff in subjective beliefs. At the

same time, different groups of market participants appear to form subjective beliefs about

risks in different ways. For example, using the institutional crash confidence index to explain

individuals’ subjective expected excess returns would result in a substantial deterioration

in explanatory power. Further exploration of the formation of risk perceptions for different

groups of market participants seems like a fruitful area for future research.

From the results in this section it is also clear that while subjective risk premia appear

to vary with subjective risk perception, this variation does not seem to help explain asset

15 Relatedly, Buraschi et al. (2021) find that the subjective risk premium of professional forecasters for
Treasury bonds comoves with objective measures of the quantity of risk.
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Table 10
Subjective Excess Return Expectations and Variance Expectations

The dependent variable is the one-year-ahead subjective excess return expectation from surveys. NX, CFO,
and Livingston denote survey excess return expectations from Nagel and Xu (2022), the CFO survey, and the
Livingston survey, respectively. Var. Exp. is a perceived return variance from the CFO survey and calculated
as the square of the range between reported 10th and 90th percentiles of the stock market return distribution
divided by the square of 2.56. Crash (Indiv.) and Crash (Inst.) denote the negative of standardized Crash
Confidence Index of individuals and institutions, respectively. Re

past are one-year excess returns standardized
to unit standard deviations in the full sample period. We report the OLS estimates with the coefficients for
the Crash Index variables multiplied by 100. EWC p-values following Lazarus et al. (2018) are reported in
parentheses.

NX CFO Livingston

(1) (2) (3) (4) (5) (6)

Const 0.08 0.09 0.02 0.01 0.19 0.17

(p-value) (0.00) (0.00) (0.06) (0.25) (0.03) (0.02)

Crash (Indiv.) 0.38 0.60

(p-value) (0.36) (0.11)

Var. Exp. 6.72 8.65

(p-value) (0.06) (0.04)

Crash (Inst.) 2.53 1.76

(p-value) (0.10) (0.14)

Re
past 1.01 0.74 -2.84

(p-value) (0.00) (0.02) (0.00)

Adj. R2 0.04 0.28 0.12 0.20 0.24 0.40

N 87 86 75 73 39 39
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price volatility because it is disconnected from the predictor variables that capture asset price

cycles in in Table 3.

6 Conclusion

Objective risk premia of major asset classes implied by in-sample predictive regressions of

excess returns vary over time with cyclical state variables. In stark contrast, we find that

subjective risk premia extracted from forecasts in surveys show very little movement with

these cyclical variables. This lack of cyclicality of subjective risk premia is pervasive: it holds

for stocks, bonds, currencies, and commodity futures and for subjective beliefs of individuals,

CFOs, and professional forecasters. While the properties of subjective expected excess return

forecasts differ in some respects between groups of market participants and between asset

classes—for example, whether they are extrapolative or contrarian with regards to recent

realized returns—the pervasive lack of cyclical movement with standard return predictors

and business cycle variables is shared among all of them.

Much of the cyclicality gap between subjective risk premia from survey data and statis-

tical forecasts of excess returns disappears when the latter are constructed as out-of-sample

rather than in-sample predictions. Thus, moving away from rational expectations models in

which investors know the data-generating process and its parameters to models in which they

learn about them in real time can help reconcile the evidence from statistical forecasts and

subjective excess return expectations data.

While subjective risk premia do not vary much with standard return predictors and

business cycle variables, they are not constant, though. In particular, they comove to some

extent with time-varying subjective perceptions of risk, consistent with a positive risk-return

tradeoff in subjective beliefs. However, the variation in subjective risk premia associated

with movements in perceived risk not sufficiently aligned with asset price cycles to contribute

much to an explanation of asset price fluctuations.

Therefore, to match the joint set of stylized facts of volatile asset prices, cyclical objective
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risk premia, and acyclical subjective risk premia, asset-pricing models need to have a time-

varying beliefs wedge between subjective and objective forecasts of fundamentals, such as

future dividend growth in the case of stocks or future short-term interest rates and inflation

in the case of bonds. This wedge must do most of the work in generating large persistent

movements in asset prices. Approaches that generate volatile asset prices instead through

time-variation in risk or risk aversion—or other mechanisms that induce variation in the

excess return that investors require and subjectively expect to earn—are not consistent with

the evidence that subjective risk premia are largely unrelated to the state variables that

capture asset price cycles.
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Appendix

A Data Sources and Timing Assumptions

A.1 Data sources

Interest Rates: The main interest rate we use to calculate one-year excess returns is the one-
year Treasury Constant Maturity rate. To extend the time series, we use annualized three-
month Treasury bill yields: starting from 1934, we use 3-Month Treasury Bill: Secondary
Market Rate; before 1934, we use Yields on Short-Term United States Securities, Three-Six
Month Treasury Notes and Certificates, Three Month Treasury Bills for United States. All
data are available from FRED.

Stock Returns: For monthly stock returns, we use the value-weighted returns on the
CRSP index since January 1926 from CRSP. To obtain longer-horizon returns we compound
one-month returns.

Bond Returns: Monthly returns on two-, five-, seven-, and ten-year Treasury indexes come
from CRSP. We only use realized returns starting from April 1951 after the Treasury-Fed
Accord ended the yield control. To obtain longer-horizon returns we compound one-month
returns. We subtract the one-year interest rates described in the first paragraph to obtain
excess returns.

Bond Yields: Monthly zero-coupon yields come from Liu and Wu (2021) which are avail-
able starting from June 1961.16 We use these yields to construct subjective bond return
expectations and the cycle factor from Cieslak and Povala (2015).

FX Rates and Interbank Interest Rates: Daily spot and forward exchange rates used to
construct returns are from Datastream. The main provider on Datastream is World Markets
PLC/Reuters (WMR) and we supplement data from other providers including Barclays Bank
PLC (BB), Thomson/Reuters (TR), and HSBC. The mnemonics are idisoSP for spot rates
and idiso1Y or idisoYF for 1-year forward rates.17 id corresponds to the data provider: US
for WMR, BB for BB, TD for TR, and MB for HSBC. iso is the currency ISO code of each
country. The spot rate series are also supplemented with Sterling-based quotes from WMR
(converted to USD-based).

We obtain daily interbank interest rates and Eurocurrency deposit rates from Datas-
tream and Global Financial Data. The providers of Eurocurrency deposit rates on Datas-
tream include Refinitiv and Garban Information Services. Their mnemonics are ECiso1Y and
GSiso1Y, respectively. The providers of interbank rates on Datastream are national sources
including central banks. Interbank rates from Global Financial Data have mnemonics in the
format of IBgfd12D. gfd is the ISO 3166-1 code.

Some of the series clearly contain outliers due to data errors. Following Hassan and Mano
(2019), we calculate the log forward premium across data providers, exclude observations
where deviations of the log interest rate differential exceed 50 bps, and splice data together.
Finally, we build monthly series as the end-of-calendar-month values.

16 We thank the authors for providing the data on their website.
17 Mnemonics of spot rates from WMR do not have a clear pattern. For example, AUSTDO$ corresponds

to quotes of the Australian Dollar.

55



Table A.1
Mnemonics of Commodity Futures from Bloomberg and Datastream

This table reports the mnemonics of spot and first-, second-, and third-genereic futures prices from Bloomberg.
Datastream mnemonics are reported in the second row for each metal.

Commodity Spot First Second Third

Panel A: Energy

Crude Oil CL1 Comdty CL2 Comdty CL3 Comdty

Panel B: Metals

Aluminium LMAHDY LME Comdty LMAHDS03 LME Comdty LMAHDS15 LME Comdty

LAHCASH (P) LAH3MTH (P) LAH15MT (P)

Copper LMCADY LME Comdty LMCADS03 LME Comdty LMCADS15 LME Comdty

LCPCASH (P) LCP3MTH (P) LCP15MT (P)

Gold GOLDLNPM Index GC1 Comdty GC2 Comdty GC3 Comdty

GOLDBLN (P)

Silver SLVRLND Index SI1 Comdty SI2 Comdty SI3 Comdty

SILVUSL (P)

Commodity Prices and Open Interest : Spot rates and futures prices are obtained from
Bloomberg. For metals traded on London Metal Exchange (LME), we supplement data
from Datastream. Table A.1 reports the mnemonics from these databases. For commodities
without reliable spot prices, we interpolate the futures curve to compute the synthetic spot
prices (e.g., crude oil). For metals traded on LME, only spot prices and futures prices at three-
and fifteen-month horizons are available. We interpolate the twelve-month futures prices
linearly using adjacent futures as knots. The open interest data comes from Commitments
of Traders available at the Commodity Futures Trading Commission. Open interest data
before 2010 comes from Hong and Yogo (2012).18

A.2 Survey details and timing assumptions

For each survey, its survey month is the reported calendar month in which survey results are
released. We describe in detail how surveys are conducted below:

Nagel and Xu (2022): The major surveys used are the UBS/Gallup survey, the Conference
Board survey, and the Michigan Survey of Consumers. The UBS/Gallup survey typically
interviews households during the first two weeks in the survey month. Questionnaires from
the Conference Board survey reach households around the first of each survey month. The
responses are collected before the eighteenth of the month. Interviews for the Michigan
Survey of Consumers typically begin at the beginning of the survey month or the end of
previous month.

Duke CFO : The CFO Survey is conducted quarterly within a two-week fielding period

18 We thank the authors for providing the data on their website.
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(running from Monday of the first week through Friday of the second week). (A special case
is the 2020Q1 survey, which was conducted over six weeks between February 25 and April
3.) The survey typically starts late in the middle or early in the last calendar month of each
quarter and the starting date is provided. We define the survey month as the month that
the starting date belongs to.

Livingston: Survey months for the Livingston survey are June and December. The ques-
tionnaires are mailed to participants in May and November right after the release of CPI
(typically in the last week).

BCFF : The survey is typically released on the first day of each calendar month. The
responses are collected during the last week of the month before the survey month.

Consensus Economics: For currency spot rate forecasts, the responses are recorded on
the first or second Monday in each survey month. For commodity spot price forecasts, the
survey responses are normally collected on the second Monday or third Monday in each survey
month.

FX4casts: The survey questions are usually sent out on the last Friday of the survey
month with responses collected during Friday and the following Monday and Tuesday.

This leads to the following timing assumptions: In a given survey month, we assume
participants in all surveys except the FX4casts survey have access to monthly macro infor-
mation with a two-month lag and price information with a one-month lag, e.g., June survey
participants have information of industrial production up to April and stock prices up to May.
This assumption is consistent with the Livingston Survey Documentation and the approach
in Nagel and Xu (2022). We match the one-month lags of FX4casts survey to the Consensus
Economics survey when constructing the currency forecasts, e.g., May survey from FX4casts
to June survey from the Consensus Economics.

B Bootstrap Methods for Predictive Regressions

To correct for the potential small-sample bias in the predictive regressions, we assume the
following system:

zt+1 = α+ β′xt + ηt+1, (B.1)

xt+1 = κ+ Φxt + ιt+1, (B.2)

where xt is a K × 1 vector of predictors, β is a K × 1 vector of loadings, Φ is a K × K
coefficient matrix, and ηt = ρ′ιt + ξt where ξt is independent from ιt. We implement a
bootstrap that involves the following steps:

1. We start with estimating a VAR(1) system for the predictors, xt. To correct for the
bias in the VAR estimates, we use the approach in Amihud et al. (2009) that relies on
the analytical expressions from Nicholls and Pope (1988). We denote the bias-adjusted
coefficients and shocks as κ̃, Φ̃, and {ι̃t}.

2. We then estimate the predictive regression in (B.1) with OLS. We obtain coefficient
estimates α̂, β̂ and residuals η̂t+1. We then construct pseudo samples by bootstrapping
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the time-series of residual vectors (ι̃t, η̂t) to preserve the cross-sectional correlations. To
account for the potentially autocorrelated {ηt}, we use a circular block bootstrap. For
the sample i, with bootstrapped residuals (ι̃it, η̂

i
t), we impose the null of no predictability

by generating data as

znull,it+1 = z̄ + η̂it+1, (B.3)

xt+1 = κ̃+ Φ̃xt + ι̃it+1. (B.4)

We then re-run the predictive regression in the sample i and record the t-statistic τ i.
The {τ i} are used to obtain the small-sample p-value by comparing with the sample
t-statistic τ̂ . For the sample j, with bootstrapped residuals (ι̃jt , η̂

j
t ), we generate data

under the alternative that β = β̂ as

zalter,jt+1 = α̂+ β̂′xt + η̂jt+1, (B.5)

xt+1 = κ̃+ Φ̃xt + ι̃jt+1. (B.6)

We re-run the predictive regression in the sample j and record the coefficients β̂j . By
comparing the average of the {β̂j} with β̂, we obtain the finite-sample bias in β̂.

C Asymptotic Inference Approach for Composite Measures
of Regression Coefficients

We develop an approach to perform statistical inference on composite measures of the differ-
ences in regression coefficients between the realized excess return regressions and the survey
data regressions. Looking across all J specifications of dependent variables (realized ex-
cess returns and survey expectations) and predictors (asset-class specific and business cycle
variables), we can stack all observations in specification j as yj,1

· · ·
yj,Nj


︸ ︷︷ ︸

yj

=

 xj,1

· · ·
xj,Nj


︸ ︷︷ ︸

Xj

bj +

 εj,1

· · ·
εj,Nj


︸ ︷︷ ︸

εj

, j = 1, 2, ..., J, (C.1)

where xj,k represents k-th observation of the 1×K dimensional predictor variable vector used
in specification j (with first element equal to unity).19 In regressions with realized excess
returns yj,k is an excess return, while in regressions with survey data, yj,k is a subjective
risk premium measured in survey data. Returns are typically from overlapping windows,
but we did not write this out explicitly here. Our statistical inference procedure takes the
overlap into account, though. Across different specifications j, the predictor variables can
be the same, but even then the sample period may be different due to different availability

19 In our specification, K = 2 or 3 depending on whether past excess return is included as an additional
control variable.
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of excess return data or survey data in different asset classes. Measurement frequency can
differ between specifications, too. We denote the corresponding calendar time of available

data points in each specification as {Tj,k}
Nj

k=1 and measure calendar time in months. Note
that

b̂j = bj + (X ′jXj)
−1X ′jεj . (C.2)

Under regularity conditions, we have√
Nj(b̂j − bj)

p−→ N (0, Qj), (C.3)

where

Q̂j =

 1

Nj

Nj∑
k=1

x′j,kxj,k

−1 Ω̂j

 1

Nj

Nj∑
k=1

x′j,kxj,k

−1 (C.4)

and Ω̂j is an estimator of long-run variance of x′j,tεt. We may write

√
T (b̂j − bj)

p→ N
(

0,
T

Nj
Qj

)
. (C.5)

Here T represents the maximum sample period length expressed in terms of monthly obser-
vations for any of our regressions. In our settings, Nj/T is either a constant (quarterly v.s.
monthly data) or converges to 1 (missing early observations) as T grows.

For two specifications i and j, we can estimate the covariance of b̂i − bi and b̂j − bj as

V̂ i,j ≡ ˆcov
(√

Ni(b̂i − bi),
√
Nj(b̂j − bj)

)
(C.6)

=

(
1

Ni

Ni∑
k=1

x′i,kxi,k

)−1
Ŝij

 1

Nj

Nj∑
k=1

x′j,kxj,k

−1 , (C.7)

where Ŝij is an estimator of long-run covariance between x′i,kεi and x′j,kεj .
We stack all bj in the K × J matrix B:

B ≡ (b1, b2, . . . , bJ). (C.8)

We treat all these regressions jointly as one big system of regression equations. We can
then construct an estimator of the difference between realized return-based and survey-based
coefficient estimates as a linear combination of coefficients as

d = e′2Bw, (C.9)

where the J × 1 weight vector w ≡ (w1, w2, . . . , wJ)′ is such that the elements that mul-
tiply coefficients from the predictive regressions with excess returns as dependent variable
are positive, of equal magnitude, and sum to 1 across all regressions within an asset class,
while those that multiply coefficients from the survey data regressions are negative, of equal
magnitude, and sum to −1 within an asset class; e2 is a K × 1 vector with one as the second
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element and zeros otherwise.20

Let B̂ and d̂ denote the estimators of B and d, respectively. We have

(B̂ −B)w =

J∑
k=1

wk(X
′
kXk)

−1(X ′kεk). (C.10)

Combining (C.5) and (C.7), we have

√
T (B̂ −B)w

p→ N (0, W ) (C.11)

where

W =

J∑
k=1

w2
k

T

Nk
Qk +

∑
i 6=j

wiwj
T√
NiNj

V i,j . (C.12)

It follows that √
T (d̂− d)

p→ N (0, e′2We2). (C.13)

To estimate Ωj and Si,j , we use HAR estimators (Sun 2013) to account for autocor-

relations in residuals. If the data were complete across all specifications, i.e., {Ti,k}Ni
k=1 =

{Tj,k}
Nj

k=1, ∀i, j, we would have

Ω̂j =
1

Nj

Nj∑
k=1

Nj∑
s=1

x′j,kεj,kKG

(
k

Nj
,
s

Nj

)
(x′j,sεj,s)

′, (C.14)

Ŝi,j =
1√
NiNj

Nj∑
k=1

Nj∑
s=1

x′i,kεi,kKG

(
k

Ni
,
s

Nj

)
(x′j,sεj,s)

′, (C.15)

where KG(r, s) ≡ 1
B

∑B
b=1 φb(r)φb(s) and the {φk} are a sequence of orthonormal basis func-

tions. We choose the EWC estimator from Lazarus et al. (2018) and use

φb

(
t

T

)
=
√

2 cos

[
πb

(
t− 1/2

T

)]
. (C.16)

To deal with missing observations, for each j ∈ {1, . . . , J}, we first project x′j,kεj,k onto the
basis functions √

2 cos

[
πb

(
t− 1/2

Tj,Nj − Tj,1 + 1

)]
, b = 1, . . . , B, (C.17)

20 As a concrete example, consider the set of regressions in the equity market which uses the dividend-price
ratio and industrial production growth as sole predictors. We have J = 8 (two predictive regressions and six
survey expectations regressions) and K = 2. We stack the results from realized excess returns in the first two
columns in B and results from survey expectations regressions in the remaining columns. The weight vector
in this case is a 8× 1 vector:

w = (
1

2
,

1

2
, −1

6
, −1

6
, −1

6
, −1

6
, −1

6
, −1

6
)′.

Then d is the linear combination of the slope coefficients from the eight regressions.
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for t ∈ T ∗j ≡ {Tj,1, Tj,1+1, . . . , Tj,Nj}. In other words, we define the time period for estimation
as the span between the earliest and latest calendar dates with non-missing observations.
Equation (C.14) is then modified to

Ω̂j =
1

Nj

Nj∑
k=1

Nj∑
s=1

x′j,kεj,kKG

(
Tj,k − Tj,1 + 1

Tj,Nj − Tj,1 + 1
,
Tj,s − Tj,1 + 1

Tj,Nj − Tj,1 + 1

)
(x′j,sεj,s)

′. (C.18)

This amounts to treating missing observations as non-serially correlated by setting missing
residuals to zero. Datta and Du (2012) show that for the Newey-West estimator this approach
has better size properties in small samples. Similarly, to estimate Si,j , we project both series
onto √

2 cos

[
πb

(
t− 1/2

Li,j

)]
, b = 1, . . . , B, (C.19)

for t ∈ T ∗i,j ≡ {min(Ti,1, Tj,1),min(Ti,1, Tj,1)+1, . . . ,max(Ti,Ni , Tj,Nj )} and Li,j ≡ max(Ti,Ni , Tj,Nj )−
min(Ti,1, Tj,1) + 1. Equation (C.15) is then modified to

Ŝi,j =
1√
NiNj

Nj∑
k=1

Nj∑
s=1

x′i,kεi,kKG

(
Ti,k −min(Ti,1, Tj,1) + 1

Li,j
,
Ti,s −min(Ti,1, Tj,1) + 1

Li,j

)
(x′j,sεj,s)

′.

(C.20)

D Construction of OOS Forecasts

D.1 Constructing real-time bond excess return predictors

To construct the real-time version of the predictor as in Ludvigson and Ng (2009), we perform
the following predictive regressions at time t over expanding windows:

R
e
k = γ0 +γ1F̂1,k−1 +γ2F̂

3
1,k−1 +γ3F̂2,k−1 +γ4F̂3,k−1 +γ5F̂4,k−1 +γ6F̂8,k−1 +uk, k = 2, . . . , t,

(D.1)
where R

e
k denotes the average bond excess returns and F̂j are the principal components of a

broad set of macro variables.21 The predictor is then calculated as

LNt = γ̂0,t + γ̂1,tF̂1,t + γ̂2,tF̂
3
1,t + γ̂3,tF̂2,t + γ̂4,tF̂3,t + γ̂5,tF̂4,t + γ̂6,tF̂8,t. (D.2)

To construct the real-time version of the predictor as in Cieslak and Povala (2015), we first
perform the following regressions at time t over expanding windows:

ynk = an + bnτ
CPI
k + ηk, k = 1, . . . , t, (D.3)

where ynk denotes the n-year nominal yield and τCPIk denotes the trend inflation. To have a
sufficiently longer time series that allows a burn-in period, here we only use bond yields with

21 Note that the estimation of F̂j still uses full-sample time series of macro variables and contains look-ahead
information. However, the constructed factor no longer uses look-ahead information in bond returns.
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Figure D.1
Real-Time Bond Excess Return Predictors

The blue line in each panel plots the bond excess return predictors estimated using full-sample
data. The red line in each panel plots the real-time versions of these predictors estimated
over expanding windows.

maturities between one to seven years.22 We then run the following predictive regressions:

R
e
k = δ0 + δ1c

1
t,k−1 + δ2ct,k−1 + ωk, k = 2, . . . , t, (D.4)

with cnt,k = ynk − ân,t + b̂n,tτ
CPI
k and ct,k = 1

6

∑7
i=2 c

i
t,k. The real-time cycle factor is then

calculated as
CY CLEt = δ̂0,t + δ̂1,tc

1
t,t + δ̂2,tct,t. (D.5)

We estimate the above regressions with an initial burn-in period of five years. Figure D.1
plots the time series of these two factors in comparison with their full-sample counterparts.

D.2 Individual regression coefficients

Table D.1 and Table D.2 report the detailed results of regressing OOS stock and bond excess
return forecasts on asset-specific predictors and cyclical indicators. The OOS forecasts are
constructed as described in Section 4.

22 Longer-maturity yields are only available starting from August 1971.
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Table D.1
Regressing OOS Stock Excess Return Forecasts on Predictors

In Panels A and B, dependent variables are the quarterly OOS stock excess returns forecasts from predictive
regressions over expanding windows with single predictors. OOS forecasts are shrunk toward the trailing
mean excess return with optimal shrinkage estimated based on historical OOS performance in earlier periods.
Forecasts in Panel A equally weight historical data in estimating predictive regressions and shrinkage, whereas
forecasts in Panel B exponentially downweight past data with a quarterly discount factor of 0.982. The
regressions in Panels A and B regress the OOS forecasts on the same predictor variable that was used to
construct the OOS forecasts. In Panels C and D, dependent variables are combination OOS forecasts that
average the forecasts (without shrinkage) obtained from different predictors. All predictors are standardized to
have unit standard deviations in the full sample period. The first row in each block reports the OLS estimates
multiplied by 100. EWC p-values following Lazarus et al. (2018) are reported in parentheses.

Asset-Class Specific Business-Cycle

CAY D/P EXPD NTIS N-IP TERM DEFAULT F1 VIX2

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A. Shrinkage, Equally Weighted

Coeff 2.58 5.29 -0.74 -2.14 1.54 3.41 0.20 0.75 -0.10

(p-value) (0.00) (0.00) (0.01) (0.09) (0.00) (0.00) (0.33) (0.01) (0.10)

Adj. R2 0.96 0.89 0.27 0.18 0.47 0.78 0.02 0.47 0.02

N 109 210 214 210 214 214 214 76 214

B. Shrinkage, Exponentially Weighted

Coeff -0.03 3.76 -0.04 -2.72 1.81 1.47 -0.41 -0.74 0.41

(p-value) (0.93) (0.02) (0.93) (0.16) (0.13) (0.02) (0.54) (0.01) (0.24)

Adj. R2 -0.01 0.39 -0.00 0.15 0.14 0.21 0.01 0.19 0.02

N 109 210 214 210 214 214 214 76 214

C. Combination Forecasts, Equally Weighted

Coeff 0.52 1.22 -0.68 -0.50 0.94 0.58 1.48 0.89 0.37

(p-value) (0.05) (0.00) (0.02) (0.25) (0.12) (0.03) (0.00) (0.00) (0.17)

Adj. R2 0.08 0.32 0.10 0.04 0.07 0.10 0.27 0.23 0.05

N 275 275 275 27 275 275 275 243 275

D. Combination Forecasts, Exponentially Weighted

Coeff 0.24 0.06 0.57 0.29 -0.61 -0.36 -0.84 -0.02 0.18

(p-value) (0.49) (0.90) (0.19) (0.62) (0.26) (0.36) (0.21) (0.94) (0.58)

Adj. R2 0.01 -0.00 0.04 0.01 0.02 0.02 0.05 -0.00 0.00

N 275 275 275 275 275 275 275 243 275
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Table D.2
Regressing OOS Treasury Bond Average Excess Return Forecasts on Predictors

In Panels A and B, dependent variables are the monthly OOS Treasury bond excess returns forecasts from
predictive regressions over expanding windows with single predictors. OOS forecasts are shrunk toward the
trailing mean excess return with optimal shrinkage estimated based on historical OOS performance in earlier
periods. Forecasts in Panel A equally weight historical data in estimating predictive regressions and shrinkage,
whereas forecasts in Panel B exponentially downweight past data with a monthly discount factor of 0.994.
The regressions in Panels A and B regress the OOS forecasts on the same predictor variable that was used
to construct the OOS forecasts. In Panels C and D, dependent variables are combination OOS forecasts that
average the forecasts (without shrinkage) obtained from different predictors. All predictors are standardized to
have unit standard deviations in the full sample period. The first row in each block reports the OLS estimates
multiplied by 100. EWC p-values following Lazarus et al. (2018) are reported in parentheses.

Asset-Class Specific Business-Cycle

LN CYCLE N-IP TERM DEFAULT F1 VIX2

(1) (2) (3) (4) (5) (6) (7)

A. Shrinkage, Equally Weighted

Coeff 0.93 1.55 0.21 1.44 0.09 0.44 0.01

(p-value) (0.00) (0.00) (0.04) (0.00) (0.14) (0.00) (0.77)

Adj. R2 0.43 0.43 0.07 0.94 0.02 0.41 -0.00

N 397 393 397 397 397 397 397

B. Shrinkage, Exponentially Weighted

Coeff 0.98 0.97 0.21 1.36 0.08 0.28 0.09

(p-value) (0.01) (0.03) (0.12) (0.00) (0.32) (0.13) (0.33)

Adj. R2 0.41 0.16 0.03 0.83 0.00 0.14 0.02

N 397 393 397 397 397 397 397

C. Combination Forecasts, Equally Weighted

Coeff 0.54 0.09 0.80 0.55 0.67 0.39 0.15

(p-value) (0.00) (0.22) (0.01) (0.00) (0.00) (0.00) (0.03)

Adj. R2 0.45 0.02 0.27 0.63 0.31 0.23 0.12

N 397 397 397 397 397 397 397

D. Combination Forecasts, Exponentially Weighted

Coeff 0.64 0.05 0.89 0.67 0.72 0.39 0.14

(p-value) (0.00) (0.59) (0.01) (0.00) (0.00) (0.03) (0.10)

Adj. R2 0.42 0.00 0.23 0.64 0.24 0.15 0.07

N 397 397 397 397 397 397 397
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