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Abstract

We document challenges to the notion of a trade-off between systematic risk

and expected returns when analyzing the empirical ability of stock character-

istics to predict excess returns. First, we measure individual stocks’ exposures

to all common latent factors using a novel high-dimensional method. These

latent factors appear to earn negligible risk premia despite explaining virtually

all of the common time-series variation in stock returns. Next, we use machine

learning methods to construct out-of-sample forecasts of stock returns based

on a wide range of characteristics. A zero-cost beta-neutral portfolio that ex-

ploits this predictability but hedges all undiversifiable risk delivers a Sharpe

ratio above one with no correlation with any systematic factor, thus rejecting

the central prediction of the arbitrage pricing theory.
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The central insight of asset pricing theory is that only systematic risk should be

rewarded with an average return in excess of the risk-free rate. In particular, the ar-

bitrage pricing theory (APT) of Ross (1976) posits that certain securities earn higher

expected returns than others only because they are more exposed to common (i.e.,

undiversifiable) risk factors. Conversely, the expected excess returns of portfolios

that are hedged against all systematic risk should be zero as long as these portfolios

are well-diversified, i.e., the number of securities is large enough for idiosyncratic

shocks to average out (Chamberlain and Rothschild (1983)). This logic underlies

most traditional multi-factor models that attempt to explain the cross-section of

stock returns (Eugene F. Fama and Kenneth R. French (1992), Cochrane (2005)).1

In this paper, we provide new empirical evidence that challenges this interpretation.

Our empirical approach overcomes the main obstacle to directly testing the APT:

identifying the common factors. We use a novel method to measure individual stocks’

exposure to every common latent factor in the time series of stock returns that relies

on a singular value decomposition of the return matrix. Importantly, we circumvent

the need to estimate the entire covariance matrix of stock returns, which is typically

not feasible given the large size of the cross-section of assets relative to the relatively

short length of their time series available to the econometrician. We then construct

an out-of-sample measure of expected returns for each stock based on a broad set

of public and firm-specific signals using machine learning methods trained on past

data, which help to avoid in-sample overfitting and data snooping (although, of

1. In contrast, multi-factor models that rely on either investor optimization (such as the intertem-
poral CAPM of Merton (1973) and Breeden (1979)) or optimal firm decisions (such as investment-
based models of Cochrane (1996) and Hou, Xue, and Zhang (2015)), rather than mere absence
of near-arbitrage opportunities, do not require that priced factors explain substantial amount of
common variation in asset returns over time.
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course, similar results obtain when using simpler linear models to forecast returns).

Do common factors driving the time-series variation in returns earn compensa-

tion for this undiversifiable risk? Since the systematic factors are latent, we use the

estimates of factor loadings to construct factor-mimicking portfolios (“pure-plays”),

extending the cross-sectional regression approach described by Fama (1976). These

factor-mimicking portfolios explain a considerable fraction of the time-series vari-

ation of stock returns, despite a substantial amount of idiosyncratic risk (e.g., 50

factors corresponding to the 50 largest eigenvalues of the covariance matrix together

explain just over 50 percent of the total variance of individual stocks’ excess re-

turns). However, all of these latent factors carry either negligible or zero price of risk

on average. Consequently, they explain almost none of the cross-sectional variation

in average excess returns. Furthermore, the latent factors carry a high variance by

design, implying very low Sharpe ratios.

These findings are especially problematic when combining them with cross-sectional

return predictability. We build pure-play portfolios using both factor loadings and

our measure of the expected returns. This procedure allows us to construct a trading

strategy that exploits the characteristics for the maximum out-of-sample fit that is

effectively orthogonal to all common risk factors. We show that this “beta-netural”

strategy remains profitable even after all of the ex-ante systematic risk exposure has

been captured by the former. Thus, hedging portfolios based on the out-of-sample

predictors of excess return against all systematic risk reduces their volatility without

reducing their average returns, hence increasing their Sharpe ratios, in sharp contrast

to the main prediction of the arbitrage pricing theory.

On the “bright” side, consistent with some of the existing literature, we observe a
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decline in the portfolios’ performance after the 2000s, driven by the decrease in return

predictability. On the not-so-bright side, the beta-neutral “arbitrage” portfolio is still

a superior investment, with a Sharpe ratio higher than the market’s and beating its

unhedged counterpart both in terms of standard deviation and returns. However, the

finding is especially troublesome considering that the hedged portfolios’ theoretical

excess return and Sharpe ratios should be exactly zero.

1 Related Literature

Our paper builds on and combines three notable strands of the cross-sectional asset

pricing literature: estimation of latent drivers of common variation in returns (“risk

factors”), predicting returns using stock characteristics (“anomalies”), and disen-

tangling the roles of characteristics versus covariances with risk factors in driving

expected returns.

Roll and Ross (1980), Chamberlain and Rothschild (1983), Connor and Kora-

jczyk (1986), Connor and Korajczyk (1988), Shukla and Trzcinka (1990), and Pelger

(2020), among others, show that under several different sets of assumptions that

support the APT, the factor realizations and the factor loadings can be recovered

from the covariance matrix. We build on their findings and note that the latent

factor betas for every individual stock can also be obtained using the return matrix

utilizing a singular value decomposition. We join Kim and Korajczyk (2018), Chen,

Connor, and Korajczyk (2018), Pukthuanthong and Roll (2020) in noting the ben-

efits of employing a large number of assets relative to the time period to estimate

asset pricing relationships.
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Fama and MacBeth (1973), Jacobs and Levy (1988), Lewellen (2015), Gu, Kelly,

and Xiu (2020), and Freyberger, Neuhierl, and Weber (2020), among many others,

provide ample evidence that cross-sectional returns are predictable, and machine

learning enhances these predictions.2 The APT logic has come under attack as care-

fully selected portfolios designed to exploit this characteristics-based predictability

appear to defy risk-based explanations. There are two main arguments in defense

of APT and risk-based models, more generally. First, maybe we have not found the

right risk factors. Second, perhaps the carefully selected portfolios are a product of

data snooping. We combine high-dimensional beta estimation and return prediction

to address these two critics and test APT’s implications. We take advantage of the

existing literature on expected returns and use random forest regression to forecast

returns in our main analysis.3 Random forest regression is a standard non-linear and

non-parametric ensemble method that averages multiple forecasts from (potentially)

weak predictors.4 As such, it is designed to provide an out-of-sample prediction that

is less sensitive to data snooping than traditional forecasting methods.

We further complement the literature on return predictability by combining ex-

pected returns and high dimensional covariance estimation using high-frequency

data. We then construct beta-neutral portfolios using pure-plays and show that

the resulting hedged portfolios produce the same (if not higher) expected and real-

ized returns while hedging all systematic risk exposure (in the APT sense). Thus,

2. See especially Gu, Kelly, and Xiu (2020) for an excellent survey of standard methods. See
Alti and Titman (2019) for a dynamic model that justifies the return predictability.

3. We also consider linear models as well as a Bayesian framework that combines variable selection
with shrinkage: Spike-and-slab regression. See Giannone, Lenza, and Primiceri (2021) and Bianchi,
Büchner, and Tamoni (2019) for recent applications in finance and economics of the latter.

4. See Binsbergen, Han, and Lopez-Lira (2020) for a thorough overview of random forest regres-
sion applied to earnings forecasting.
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our paper also relates to the debate of characteristics versus covariances. Daniel and

Titman (1997) — and later Back, Kapadia, and Ostdiek (2015) and Kirby (2019)

— show that the characteristics drive the risk-premium for the Fama–French three-

factor model: “It is the characteristics rather than the covariance structure of returns

that appear to explain the cross-sectional variation in stock returns.” Complement-

ing the previous findings, Eugene F Fama and Kenneth R French (2020) find that

using the cross-section regression approach of Fama and MacBeth (1973) to construct

cross-section factors, those factors provide a better description of the cross-section

of returns. Building on this observation, Daniel et al. (2020) show that we can use

this finding to improve reduced-form portfolios’ performance.

We complement their research in three critical ways. (i) Instead of building

portfolios using characteristics, we build portfolios sorted on expected returns, sum-

marizing all of the predictive information of multiple characteristics, following the

machine-learning and prediction literature. (ii) We estimate all the latent factors’

loadings and hedge against all latent factors instead of specifying an ex-ante multi-

factor model and hedging each portfolio against one beta. (iii) We focus on testing

the APT by forming portfolios sorted on expected returns with zero exposure against

all risk factors that drive the covariance.

We also complement the recent research of Giglio and Xiu (2021) and Giglio,

Xiu, and Zhang (2021) who show that standard estimators of risk premia in linear

asset pricing models are biased if some priced factors are omitted. They argue for

using a three-pass procedure that involves PCA and supervised PCA, respectively.

Related to their results, we show that the statistical significance of the magnitude of

the ‘risk premia’ of portfolios sorted on expected returns increases when restricting
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the loadings on the latent factors to be zero since the standard deviation decreases

substantially.

Lettau and Pelger (2020) find that imposing a cross-sectional restriction that

expected excess returns are linear in factor loadings while estimating latent factors

improves their asset pricing performance. This result is not surprising given the

common factor structure documented for characteristics-based portfolios, e.g. Kozak,

Nagel, and Santosh (2018). Despite the seeming differences, we argue that our results

are compatible with theirs, since they implicitly find a trade-off between the cross-

sectional fit and the time-series fit.

In fact, Kelly, Pruitt, and Su (2019) also document an implicit trade-off between

the model’s ability to explain time-series and cross-sectional variation. The standard

principal components explain the time-series variation significantly better, but fail

entirely at explaining the cross-sectional variation. In contrast, their instrumented

principal components explain better the cross-sectional variation at the cost of cap-

turing less of the time-series variation.5 We explain this finding in detail by noting

that the latent factors are not priced and the cross-sectional variation seems to be

primarily driven by return predictability unrelated to the latent factor exposures.

Kozak, Nagel, and Santosh (2018) argue that for “typical test asset portfolios,

their return covariance structure essentially dictates that the first few principal

components must explain the cross-section of expected returns. Otherwise, near-

5. Kelly, Pruitt, and Su (2019) use ‘total R2’ as their preferred measure of time-series variation.

Total R2 is defined as Total R2 = 1−
∑

i,t(ri,t+1− ˆβi,tft+1)2∑
i,t r

2
i,t+1

: “The total R2 thus includes the explained

variation due to contemporaneous factor realizations and dynamic factor exposures, aggregated over
all assets and time periods.” We confirm in the online appendix that the results also apply when

using the average time-series R2: 1
N

∑
i

∑
t(ri,t+1−β̂ift+1)2∑

t r
2
i,t+1

.
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arbitrage opportunities would exist.” In our application, we use individual stocks

instead of portfolios, and, as a result, many principal components drive the covari-

ance structure. Nevertheless, we can hedge them, which results in portfolios with

very high Sharpe ratios.

Cooper et al. (2021) apply PCA to portfolios sorted on CAPM anomalies and note

that their resulting statistical factors produce competitive results when compared

against common reduced form factor models. We explain the differences noting that

the portfolios sorted on CAPM anomalies are selected on their ability to generate

in-sample return spreads. When using the whole cross-section without selecting the

best performing sorts we find the latent factors are not priced.

Kim, Korajczyk, and Neuhierl (2021) propose a new methodology for forming

arbitrage portfolios that utilize the information contained in firm characteristics for

both abnormal returns and factor loadings. First, they demean the returns using

rolling windows and project them into the span of characteristics. Then they apply

standard principal component analysis to the resulting matrix of characteristic-based

portfolios (see Chen, Roussanov, and Wang (2021) for a refinement of this approach

that accounts for the nonlinear relationship between characteristics and covariances).

In contrast, we use high-frequency data to estimate the latent factor loadings directly

from the matrix of returns without resorting to any preliminary dimension reduction.

Hence, we can estimate and hedge all the relevant systematic factors, and we are

not restricted to specifying the factor loadings as (linear) functions of a specific

set of characteristics. Importantly, as argued above, without hedging most of the

systematic variation, it is infeasible to test the approximate APT.
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2 Theoretical Framework

We follow closely the setup in Ross (1976) and the recent exposition in Pelger (2020).

The excess returns of the individual securities follow

ret+1 = αi,t + β′i,tft+1 + εi,t+1, (1)

where εt+1 is mean zero and sufficiently uncorrelated to permit the law of large

numbers to hold cross-sectionally. As pointed out by Hansen and Richard (1987),

assuming that factor loadings are constant, i.e. βi,t = βi, is not innocuous, since

the conditional mean-variance efficient portfolio is not necessarily unconditionally

mean-variance efficient. We follow Lewellen and Nagel (2006), and Pelger (2020)

and assume the covariance structre, and hence vector of betas, is stable within a

short time window, but otherwise allow it to vary over time.6 Without loss of gener-

ality, the elements of ft+1 are uncorrelated. APT implies that αi,t = 0. Roll and Ross

(1980), Chamberlain and Rothschild (1983), Connor and Korajczyk (1986), Connor

and Korajczyk (1988), Shukla and Trzcinka (1990), and Pelger (2020), among oth-

ers, show under different sets of assumptions that the factor realizations and the

factor loadings can be recovered from the covariance matrix: The factor loadings

correspond to the eigenvectors of the covariance matrix, and the factor realizations

to the projection of the assets into the eigenvectors.

There are two fundamental empirical challenges in testing the APT. First, iden-

tifying common factors requires estimating covariance matrices with a much larger

6. We use one year as the time period over which betas are approximately constant for our main
analysis, but our results using one month are similar.
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dimension than the length of the time series of stock returns. As a result, researchers

are often forced to use portfolios sorted on selected characteristics of assets as proxies

for common factors. Second, the econometrician does not observe expected returns,

who must resort to using variables that have shown a historical relationship with

average returns. Our approach aims to address both of these challenges.

2.1 Beta Estimation

We exploit the fact that the beta loadings with respect to the latent factors are the

right singular vectors of the (compact) singular value decomposition of the return

matrix, which allows us to estimate individual stock’s conditional betas with respect

to all the latent statistical factors driving the common time-series variation while

circumventing the covariance estimation. We use daily data to estimate conditional

factor loadings in the spirit of Lewellen and Nagel (2006).

At month t, let Rt be the demeaned matrix of size Tt × Nt with the past daily

excess returns, where Tt is the number of days of trading in the past twelve month

period, typically 252, and Nt is the number of stocks in the cross-section. We allow

for a time varying number of stocks. We demean the returns using the rolling average

return across time and stocks, since individual stock means are estimated poorly at

the daily level (Merton (1980)). We winsorize this return matrix at the 1% level to

remove outliers. We drop the time subscripts for the remaining of the section for

notational ease. We consider the case where N >> T which implies the rank of the

return matrix R is equal to T .

Using the singular value decomposition, we get R = U1S1V1
>, where U1,V1 are

orthogonal matrices with size T × T , and N ×N respectively. S1 is a (rectangular)
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diagonal matrix of size T ×N that contains the singular values in decreasing order.

Since the elements off the diagonal of S1 are zero, we can write it as S1 = [S,0]

with S1 a matrix of size T × T and instead focus on the compact singular value

decomposition: R = USV>. S is a T ×T diagonal matrix that contains the singular

values in descending order. U is a T × T orthogonal matrix. V is a N × T matrix

with the property that: V>V = IT , and I is the identity matrix of size T × T .

Let C = 1
T
R>R, with size N ×N , denote the empirical covariance matrix of the

daily returns, since N >> T , the covariance matrix is singular (the rank of C is at

most T − 1). Then

C =
1

T
R>R =

1

T
V S2 V

>
= VΛV>, (2)

where the second equality is the eigenvalue decomposition of the covariance matrix.

The eigenvectors of the covariance matrix, contained in the columns of V, are

usually called the principal directions, and we show that they correspond to the betas

of the returns with respect to the principal components. The principal loadings are

defined as VS/
√
T . The principal components, the latent factor realizations, are

given by US = RV. The variance of each principal component is contained in the

diagonal matrix Λ = 1
T
S2:

1

T
(US)>US = Λ, (3)

and they correspond to the eigenvalues, which are equal to the normalized square

singular values, λk =
s2k
T

.

Furthermore, the covariance of the returns with respect to the principal compo-
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nents is given by the following relationship:

1

T
R>(US) =

1

T
VSU>US = V

S2

T
= VΛ. (4)

Hence, the betas, in the usual sense, are contained in the columns of the V matrix.

Using the singular value decomposition, we measure individual stocks’ covariances

(betas) with respect to every latent factor driving the cross-sectional covariance of

returns, thus circumventing the need to estimate the entire covariance matrix, which

is infeasible given the large size of the cross-section relative to the length of the time

series.

The eigenvectors, and hence the betas, are orthogonal, but not (cross-sectionally)

uncorrelated. The projections of the data into the space generated by the eigenvec-

tors, the latent factors, are (time-series wise) uncorrelated.

To avoid confusion with time subscripts, we will define K ≡ T , so that the return

matrix is of size K ×N .

2.2 Normalization of the Principal Components

For ease of exposition we normalize the weights of the eigenvectors to give the first

factor a natural portfolio interpretation. Let ω1 = 1/sum(V1) where V1 is the first

eigenvector, provided the sum is non zero, which is empirically the case. Since the

k principal component is given by PCk = R>Vk, Where Vk is the kth column of the

V matrix, we define wk = Vkω1, and we normalize the factor k as: fk = R>Vkω1 =

R>wk. We also define βk = Vkω
−1
1 and the variance of the re-scaled factor is given

by σ2
k = λkω

2
1 = (skω1)2

T
.
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The factors are latent, and are only normalized up to sign. We normalize each

eigenvector to have positive cross-sectional mean at every period for consistency.

This normalization allows us to retain the usual interpretation of

λi∑n
i=1 λi

, (5)

as the fraction of total return variance explained by the given factor.

2.3 Time-varying Beta Estimation

Let βt the matrix that contains the betas (normalized eigenvectors) of size N ×K

and βk is the vector of βi, k, t for every stock index by i at a given time t (with the

time-index omitted in the vector for notation easiness) for given factor k. Since the

betas (and the factor realizations) are latent variables, their estimate can only be

obtained ex-post, i.e., once the return is known at the end of the month. Hence,

forming portfolios based on these betas is infeasible in real-time. However, because

the betas are fairly stable over short time horizons, we can construct a “forecast” of

βt that we call β̂t, using the beta estimates obtained in the previous periods.

We use a rolling panel linear model to “forecast” the realization of the betas

using each stock beta’s previous twelve lags. We use twelve lags since we are using

twelve-month rolling windows to estimate the betas every month, which causes a

high level of autocorrelation due to the overlapping windows. We forecast the beta

for each factor separately, with a typical model of the form:

βi,k,t = ak +
12∑
j=1

λt−jβi,k,t−j + ui,k,t, (6)
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Every month, we run a regression of beta on its 12 lags using a 36-month window,

which, together with the data used to construct the lagged betas, amounts to 48

months of data. We forecast the next month’s beta using the coefficients from the

rolling regression of monthly so as not to subject our estimation to look-ahead bias.

In addition, we consider alternative window lengths of 12 months, 60 months, 120

months, and an expanding window approach.

2.4 Latent Factor Portfolios

Since the factors that we consider are latent, we need to project them onto the return

space in order to study their empirical asset pricing properties. We construct factor-

mimicking portfolios so that a portfolio tracking the k-th latent factor has a beta of

one with respect to the k factor and zero otherwise. Let w be the vector of portfolio

weights. We first consider zero-cost portfolios. The portfolio tracking each latent

factor k solves the following problem, which leads to a maximally diversified portfolios

in the sense that avoids extreme positions (either long or short) in individual stocks:

minimize
w

1

2
w′Ωw, (7)

s.t. w′ι = 0, (8)

s.t. w′βk = 1, (9)
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s.t. w′βj = 0 ∀j 6= k, (10)

with Ωii = 1
mktcapi

if value-weighting is desired (and identity matrix for equal

weighting). The returns of the portfolio k closely correspond to the coefficients of βk

in a Fama-Macbeth regression of realized returns on a constant and the betas as the

regressors, except the portfolio weights are normalized.

We additionally consider factors with weight equal one, where the problem looks

the same as above, except that

s.t. w′ι = 1. (11)

In the later case, the factors will be heavily correlated with each other, and with

the market portfolio.

2.5 Expected Returns

We now consider the problem of forecasting returns at time t + 1 using only a (strict)

subset of the information set available at time t. In practice, this amounts to model-

ing the conditional expectation as a (possibly non-linear) function of characteristics

available at time t.

E[ri,t+1|ci,t] = f(ci,t) ≡ µi,t (12)

For the main part of the paper, we use random forest regressions to forecast fu-

ture returns. Random forest regression is a non-linear and non-parametric ensemble
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method that averages multiple forecasts from (potentially) weak predictors. Thus,

the ultimate prediction is superior to a forecast following from any one individual pre-

dictor (Breiman 2001). We discuss the algorithm comprehensively in the Appendix.

We train the algorithm using 60-months rolling windows, which is analogous to a

linear rolling regression forecast. For robustness, we also consider a Bayesian frame-

work, spike-and-slab regression (Ishwaran and Rao (2005)), as well as standard linear

regressions and find similar results.

2.6 Pure Play Portfolios

Having obtained each stock’s individual betas and expected returns, we can form

hedge portfolios that deliver a pre-specified level of exposure to a particular latent

factor while being orthogonal to all of the other factors, or delivering a desired condi-

tional expected return. As such these are “pure plays” on particular factor exposures

(or expected returns). Our construction builds on Fama (1976) interpretation of the

slopes of the Fama-MacBeth cross-sectional regression (see also Back, Kapadia, and

Ostdiek (2015), Gilje, Ready, and Roussanov (2016), Kirby (2019) and Lopez-Lira

(2020)).7 We omit the time subscripts for ease of exposition. We first describe the

general approach and then consider its specific applications.

Let w be the portfolio weights. We collect the values of µi, the expected returns

at time t constructed using the characteristics, and build portfolios with a given

expected return w′µ = µ0. Furthermore, we use the betas with respect to the

common factors and target specific levels of covariances w′βk = βk,0, where βk is the

7. See Kelly, Malamud, and Pedersen (2020) for a different and novel framework that instead of
using pure-plays, uses eigenvectors of a prediction matrix to construct zero-beta portfolios.
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vector of coefficients of the projection of returns into the k-th principal component

and βk,0 is the target value, usually zero.

The portfolio weights solve the following problem, which leads to a maximally

diversified portfolio in the sense that avoids extreme positions (either long or short)

in individual stocks, by giving them as even a weight as possible, subject to the

constraints:

minimize
w

1

2
w′Ωw, (13)

where Ω is a weighting matrix, for example to make the portfolios value weighted.8

The maximization is subject to portfolios being zero cost,

s.t. w′ι = 0, (14)

delivering a pre-specified expected return,

s.t. w′µ = µ0, (15)

and, most importantly, providing the desired factor exposures,

s.t. w′βk = β0,k ∀k = 1...k̂. (16)

We collect the restrictions in a vector a0 = [0, µ0, β0]′ of size (2 + k̂)× 1 and the

8. A diagonal Ω with, Ωii = 1
mktcapi

, where mktcapi is the market capitalization for stock i results
in the value weighted portfolio in the absence of beta restrictions and expected stocks restrictions.
For the main analysis, we follow Kirby (2019) and omit stocks that are not liquid (stocks whose
market capitalization is below the 20th percentile of the NYSE as in Eugene F Fama and Kenneth
R French (2008) and run an unweighted minimization problem but we also show results using the
market capitalization as the weight.
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characteristics in a matrix A = [ι, µ, B] of size n×(2+ k̂) where k̂ ≤ K is the number

of betas to hedge and B is the matrix that contain those betas, of size n× k̂, so that

the problem can be written compactly as

minimize
w

1

2
w′Ωw (17)

subject to A′w = a0. (18)

The Lagrangian is given by:

1

2
w′Ωw + λ′(a0 − A′w), (19)

with solution

w = Ω−1A(A′Ω−1A)−1a0. (20)

When we use an identity matrix as the weighting matrix we end up with:

w = A(A′A)−1a0. (21)

These weights are very similar to those generated by using a Fama-Macbeth

Cross-sectional Regression (FM) of returns on both expected return predictors and

factor betas, with the difference that in the FM regression approach we get wk,FM =

A(A′A)−1ek, where ek is a standard basis vector in Rk̂ with a one in the k-th position

and zeros in the rest.

Notice that when β0,k = 0 ∀k = 1...k̂ then a0 = [0, µ0,0k̂×1]′ = µ0[0, 1,0k̂×1]′ =

µ0e2, where again e2 is a standard basis vector in Rk̂ with a one in the second position

and zeros in the rest. Hence it follows that the weights can be written as:
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w = µ0(Ω−1A(A′Ω−1A)−1e2). (22)

Notice the weights are linear functions of µ0. Instead of choosing an arbitrary

level of µ0, we normalize the weights so that the zero cost portfolio has the sum of

the absolute value of its weights equal to two,
∑

i |wi|/2 = 1, for comparability with

traditional long-short portfolios. The normalization, naturally, does not affect the

Sharpe ratio.

2.6.1 Unhedged and Hedged Portfolios Exploiting Expected Returns

In order to construct a zero cost portfolio that exploits return predictability but

does not attempt to eliminate any of the systematic risk we can remove the beta

constraint (16) and the portfolio problem specializes to the following:

minimize
w

1

2
w′Ωw, (23)

s.t. w′ι = 0, (24)

s.t. w′µ = µ0, (25)

with Ωii = 1
mktcapi

for value weighting or identity for equal weights.

Since the solution is, again, linear in µ0, the level of targeted expected returns,

instead of specifying an ex-ante level we normalize the weights so that the sum of

the absolute value of the weights equal to two,
∑

i |wi|/2 = 1 for comparability with
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traditional long-short portfolios. The returns of the portfolio closely correspond to

the coefficients in a Fama-Macbeth regression of realized returns on a constant and

the predicted return as the sole regressor, except the portfolio weights are normalized.

In order to construct a long-short beta-neutral portfolio, we want to hedge the

beta exposure and hence the portfolio problem is the following:

minimize
w

1

2
w′Ωw, (26)

s.t. w′ι = 0, (27)

s.t. w′µ = µ0, (28)

s.t. w′βk = 0 ∀k = 1, ..., K̂, (29)

with Ωii = 1
mktcapi

if value-weighting is desired (and identity matrix for equal weight-

ing). And K̂ the number of betas to hedge.

Since the solution is, once again, linear in µ0, the level of targeted expected

returns, instead of specifying an ex-ante level we normalize the weights so that the

sum of the absolute value of the weights equal to two,
∑

i |wi|/2 = 1 for comparability

with traditional long-short portfolios. The returns of the portfolio closely correspond

to the coefficients of the predicted return in a Fama-Macbeth regression of realized

returns on a constant, the predicted return, and the betas as the regressors, except

the portfolio weights are normalized.
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3 Empirical Analysis

3.1 Data

We use the Center for Research in Security Prices (CRSP) daily stock files to measure

individual stocks’ betas as described in the previous section. For return prediction, we

use the 62 characteristics for predicting returns constructed exactly as in Freyberger,

Neuhierl, and Weber (2020). We build the characteristics using CRSP and Standard

and Poor’s Compustat. We follow Weber (2018) in determining when the balance-

sheet data is available, typically in June of the year following the fiscal year-end.

We omit stocks whose size falls below the 20th percentile of the NYSE following

Eugene F Fama and Kenneth R French (2008) and Kirby (2019) to avoid any liquidity

concerns. Our sample period is from July 1965 until June 2014, and we use the first

ten years as a training period of the first rolling forecast. Hence, we start our primary

analysis from 1974. We make sure not to use forward-looking information, so all of

our results are out-of-sample by design. We use monthly returns for the remainder

of the analysis. We elaborate on the data details in the Appendix.

3.2 Latent Factors

We begin by estimating the betas with respect to the latent factors as described in

Section 2.1. For each month we estimate the factor loadings using the previous year’s

return observations. Figure 1 plots the cumulative share of variance explained by the

first k̂ principal components (from largest to smallest),
∑k̂

i=1
λi∑K
i=1 λi

for a particular

sample month, January 1999 (the choice is arbitrary but the results are very similar

for all months).
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[Insert Figure 1 about here]

Figure 1 shows the very high-dimensional nature of the cross-section of stock

returns in a typical year. The first five largest principal components explain about

20% of the total variance of returns. We need around 50 factors to capture 50% of

the variation, 100 factors to capture 75% of the variation, and 200 factors to capture

99% of the variation. The previous result is despite the well-known fact that PCA

provides the (in-sample) solution for which the (time-series) variation explained is

the highest for a given number of factors.

Because we are interested in portfolio formation, instead of using the in-sample

betas, which are measurable at the end of the period, we ‘forecast’ them using a

rolling panel regression. Out-of-sample predictive R2 from these regressions are re-

ported in Table 1. We use 36 months for training because the length offers a good

trade-off between maximizing the out-of-sample R2 and remaining robust to time-

varying parameters. We use this window length in the following analysis, although

results remain similar when using other window lengths. The table also shows that

higher-order betas are harder to predict, which coincides with them driving less of

the time-series variation of the cross-section of returns. Reassuringly, the fitted be-

tas are almost as good as the in-sample betas in explaining the time-series variation.

For example, Figure 2 shows the cross-sectional average of the time-series R2 in a

one-year rolling regression of individual stocks into the latent factors using either the

actual betas or the predicted betas as a function of the number of factors.

[Insert Table 1 about here]
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[Insert Figure 2 about here]

Figure 3 shows the time-varying cumulative percentage of the variance explained

by the principal components. We can see that there is substantial degree of variation

in the share of total variance explained by the first ten principal components, ranging

from 10% to 40%, but it appears stationary over time. Notably, there is a lot less

variation in the fraction that is explained by the first 100 PC, which varies around

80% throughout most of our sample.

[Insert Figure 3 about here]

3.3 Factor Risk Premiums

Since the factors are latent, we construct factor-mimicking portfolio using pure-plays

as described in Section 2.4. We first consider zero-weight portfolios. For a given

factor j, each stock’s weight in this portfolio is positive if it has an above average

beta on the principal component, and negative otherwise. Each portfolio has a beta

of 1 with respect to its own factor,
∑

iw
j
itβ

j
it = 1 and zero with respect to other

factors,
∑

iw
k
itβ

k
it = 0, k 6= j. We normalize them as described in the previous

section. We also consider unit weight portfolios, which have weights that sum up

to one, in order to mimic the behavior of portfolios that are long equities, e.g. the

market portfolio. Note that technically these portfolios are still zero-weight, since

we are considering stock returns in excess of the risk free rate.

[Insert Figure 4 about here]
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Table 2 depicts the main properties of returns on the zero-weight factor mimicking

portfolios corresponding to the first five largest principal components. None of them

carry a (positive) risk-premium on average, with Sharpe ratios that are very close

to zero, e.g. 0.10 for the first principal component and 0.19 on the third (which is

the largest in terms of average return). The table also shows the average return,

and standard deviation of the latent factors. The discrepancy between the average

return of the first factor and that of the market portfolio comes from the zero-weight

nature of the projection, as we can see from table 5, which reports the correlation

matrix of the first five factor with the Fama-French 6 factors (including momentum).

The first factor has a correlation of 0.65 with the market portfolio (as well as a

positive correlation with SMB), the second factor has a correlation of −0.44 with the

market (consistent with its somewhat negative average return), and all the others

have essentially zero correlations with the market. The first latent factor is thus

similar to a long-short portfolio that exploits variation in market betas. It is well

known that the relationship between market beta and average returns is often flat

(or even inverted) in the cross-section of stock returns, which is consistent with our

evidence of a very small correlation for bearing systematic risk.9 Table 3 reports

the correlation between the zero-weight latent factors, the market portfolio and the

Fama–French five factors.

It is instructive to compare these results with those for unit-weight portfolios,

which more closely resemble that of a typical investor who is not able to take on

short positions on stocks. Table 4 presents descriptive statistics for the first five

factors. We see that now all of the five factor-mimicking portfolios earn substantial

9. See Black (1972), Blume (1975), E. Fama and K. French (1992), Baker, Bradley, and Wurgler
(2011), and Frazzini and Pedersen (2014), Herskovic, Moreira, and Muir (2019) among others.

24



and statistically significant average returns, with Sharpe ratios between 0.5 and 0.65,

as well as higher volatility than their zero-weight portfolios above. The correlation

with the market portfolio is 0.95 for the first factor, which now closely resembles

a long portfolio of all equities, but is also positive and high, around 0.5 for the

remaining four portfolios (notably smaller for second factor though, which had a large

negative correlation in its zero-weight form, but now positive at 0.35. Interestingly,

its correlation with SMB also flips from being strongly negative (at −0.49) to slightly

positive.

Yet the correlation structure of these factor mimicking portfolios is otherwise

largely unchanged. The first factor is positively correlated with SMB and negatively

with the other Fama-French factors, including momentum, both in the zero- and

unit-weight versions. The second factor is negatively correlated with momentum in

both cases. It is strongly positively correlated with HML, RMW, and CMA in the

zero-weight version, but most of these correlations go down and almost disappear in

the zero-weight version, while the other factors become more negatively correlated

to these factors but not strongly. In any case, the correlation structure of the unit-

weight factors beyond the first one or two is not particularly informative, since the

unit-weight constraint pushes them too far away from zeroing in on the indepen-

dent sources of common variation. This is evidenced by the high cross-correlations

of the unit-weight portfolios, despite the fact that they are supposed to mimic or-

thogonal factors. The zero-weight portfolios, in turn, largely fulfill their role, with

correlations close to zero, especially beyond the first two factors. The remaining cor-

relations reflect the unconditional nature of the estimated correlation matrix, since

zero conditional covariances can translate into nonzero unconditional ones if returns
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are predictable and conditional expected returns are correlated (the SVD estimation

above is done on rolling windows and thus approximates conditional betas).

Figure 4 displays cumulative returns to investing in the zero-weight factor mim-

icking portfolios over time compared to the CRSP value-weighted market return and

rolling over the risk-free bond. The returns on all the factors are much closer to the

latter than the former. Comparing this to the performance of unit-weight portfolios

in Figure 5 we see that the latter much more closely resemble the market index, some

outperforming and others underperforming it over different time periods.

[Insert Table 2 about here]

[Insert Table 3 about here]

3.4 Hedged and Unhedged Portfolios

We now consider the portfolios that are constructed to take advantage of the optimal

predictors of conditional excess returns as described in Section 2.6.1. In construct-

ing the hedged “Beta-Neutral” portfolio we consider the first 50 factors but results

remain similar with 25 or 100 factors. The fact that the latent factors are identi-

fied only up to rotation is unimportant when we hedge them, since once a factor is

hedged, any rotation is hedged as well, i.e., the null-space of implied by the betas is

invariant to rotations.

Table 6 Panel A shows our main result. We find that the beta-neutral (i.e.,

hedged) portfolio produces a significant average excess return similar to its long-
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short (i.e., unhedged) counterpart (around .7% per month or 8.5% annualized) while

typically doubling its annualized Sharpe ratio (1.51 vs 0.75). For comparison, the

average market excess return is 0.52 % per month and its annualized Sharpe ratio is

0.39 We remark that this result is in complete opposition to APT’s prediction, since

both the average return of the hedged portfolio and its the Sharpe ratio should be

zero. The return of the unhedged portfolio is not necessarily a problem for risk-based

models such as the APT. The complications result from the return patterns of the

hedged portfolio.

According to APT, all of the risk premium comes from factor exposure. We find

exactly the reverse result: the latent factors are not rewarded at all, and there is a

large unexplained excess return. To make matters more troublesome, the common

factors drive most of the time-series variation and hedging all systematic risk signif-

icantly reduces the portfolio’s variance, greatly increasing its Sharpe ratios; it even

somewhat increases its average return in the latter half of the sample.

[Insert Table 6 about here]

Figure 6 shows the Sharpe ratio as a function of the number of factors for the

hedged beta-neutral portfolio. The Sharpe ratios are annualized by multiplying by

the square root of twelve. We can observe the Sharpe ratios stabilize between 25 and

100 factors. While the results remain similar afterwards, the computational burden

increases and becomes potentially unstable, since, for example, when hedging 200

factors, we need to invert a 200× 200 matrix.

[Insert Figure 6 about here]
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Figure 7 shows the cumulative performance of the market, the unhedged portfolio

and the hedged portfolio. There is a marked difference in the return patterns before

and after the 2000s. Figures 8 and 9 show in the detail the periods before and after

the 2000s.

[Insert Figure 7 about here]

Table 6 Panel B shows the result of the period 1974–1999. The average return

of the long-short portfolio is 1.12% per month, and its Sharpe ratio is 1.49. For

comparison, the average return of the beta-neutral portfolio is around 1% per month,

and its Sharpe ratio is a substantial 2.32, which is very far from APT’s prediction

of zero. The market’s average excess return and Sharpe ratio are 0.65% per month

and 0.48, respectively.

[Insert Figure 8 about here]

Table 6 Panel C shows the result of the period 2000–2014. The long-short portfo-

lio’s average return is negative and equal to -0.06% per month, and its Sharpe ratio

is -0.04. We conjecture that the variables that had good forecasting power before

the in the pre-2000 period must have lost its forecasting power, perhaps because

of improved market efficiency. However, the beta-neutral portfolio’s average return

remains positive and around 0.25% per month, and its Sharpe is 0.44. For compar-

ison, the market’s average excess return is 0.28% per month and its Sharpe ratio is

0.21. In short, we observe a decline in return predictability, consistent with the ar-

gument of Mclean and Pontiff (2016) that many “anomalies” have been “discovered”

over the years, and presumably subsequently driven out due to the rise of quantita-
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tive (and factor-based!) investment management. Yet our evidence that the hedged

portfolio’s Sharpe ratio is not only positive but higher than the market’s even in the

post-2000 sample (albeit much smaller than pre-2000) is still quite problematic for

the risk-based paradigm of asset pricing.

[Insert Figure 9 about here]

3.4.1 Characteristics and Covariances

At first glance our results might seem to be in contradiction with the recent literature,

which argues that characteristics are proxies for factor betas (e.g., Kelly, Pruitt, and

Su (2019) and Lettau and Pelger (2020)). In fact, our results are consistent with

the evidence documented in those studies and the seeming differences stem from

the inherent ability of characteristics based models to explain the cross-section of

returns, albeit at a cost of explaining less of the time-series variation.

First, Kelly, Pruitt, and Su (2019) document an implicit trade-off between the

model’s ability to explain time-series and cross-sectional variation. For example,

they show that the standard principal components explain the time-series variation

significantly better than their instrumented principal components (IPCAs) with a

‘Total’ R2 of 33.8% compared to 19% for their IPCAs. In contrast, their instrumented

principal components explain better the cross-sectional variation with a ‘predictive’

R2 of 0.7 %, whereas the PCAs fail entirely at explaining the cross-sectional variation,

as evidenced by a negative predictive R2.10

10. Total R2 = 1−
∑

i,t(ri,t+1− ˆβi,tft+1)2∑
i,t r

2
i,t+1

, Predictive R2 = 1−
∑

i,t(ri,t+1− ˆβi,tE[ft+1])2∑
i,t r

2
i,t+1

29



Second, Lettau and Pelger (2020) find that imposing a cross-sectional restriction

that expected excess returns are linear in factor loadings while estimating latent

factors improves their asset pricing performance. However, they also find a trade-off

between explaining the time-series variation and the cross-sectional variation, in fact

it is inherent to their estimation approach.11

Of course, the classic APT does not contemplate such a trade-off. Kozak, Nagel,

and Santosh (2018) argue that commonality in terms of time-series comovement

of returns with factors is necessary in the absence of arbitrage opportunities (or

infinite Sharpe ratios). In fact, priced risk factors should be the high-order principal

components, i.e. the ones corresponding to the largest eigenvalues of the covariance

matrix of returns. Thus, giving up on the time-series fit in order to improve on the

cross-section makes the resulting factors difficult to interpret. Our findings reflect this

difficulty: we show that stock expected returns that are functions of characteristics

are not correlated to the largest common factors in the sense of driving the time-series

variation of returns. Uncomfortably, these factors are not useful for explaining cross-

sectional differences in mean returns, in sharp opposition to APT’s main prediction.

3.4.2 Cross-Sectional Regressions

It is natural to look at the previous results through the lens of Fama-MacBeth cross-

sectional regressions. We consider predictive regression of realized returns on our es-

11. In detail, their minimization problem is:

RP− PCA: F̂RP, Λ̂RP = argmin
Λ,F

1

NT

N∑
n=1

T∑
t=1

(Xnt − Ft Λ>n )2

︸ ︷︷ ︸
unexplained TS variation

+ γ
1

N

N∑
n=1

(
Xn − F Λ>n

)2
︸ ︷︷ ︸

XS pricing error

,

and γ > 0 is the parameter characterizing the trade-off.
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timates of conditional expected returns every period. We expect our forecast to have

a positive coefficient and be statistically significant. If we had the perfect forecast,

the value of this coefficient would be unity. APT’s prediction is that when adding

the covariance estimates to the predictive regression, the return predictability com-

ing from our forecast should decline, since according to APT, return predictability

comes only from factor exposures.

We consider regressions of the form:

ri,t+1 = at + btxit + ur,i,t, (30)

and

ri,t+1 = at + btxit +
k∑
j=1

λtβ
j
it + εr,i,t, (31)

where xit is the predicted return and βjit the exposure of the i-th stock to the j-th

factor.

We do not control for common characteristics since they are used to form the

predicted returns and consequently are correlated with it. We omit stocks whose size

falls below the 20th percentile of the NYSE following Eugene F Fama and Kenneth R

French (2008) and Kirby (2019) to avoid any concern of illiquidity.

[Insert Table 7 about here]

[Insert Table 8 about here]
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Tables 7 and 8 show the cross-sectional regression estimates. Table 7 shows

unweighted regressions and Table 8 shows weighted regressions by the market capi-

talization. As expected, the coefficient corresponding to the predicted return remains

statistically significant in almost all specifications. The exception is during the 2000-

20014 period, consistent with the time-series descriptive statistics and showing the

decline in return predictability. Since we are measuring expected returns with er-

ror, however, the estimate suffers from the usual attenuation bias, and so should be

greater than zero but less than one, as we find in the data. In agreement with the

descriptive statistics and in contrast to APT’s prediction, the predicted return’s co-

efficient increases its statistical significance when factor betas are added as controls.

3.5 Time-Series Regressions

Given the failure of latent common factors in explaining the expected returns pre-

dicted by stock characteristics, we turn to popular factor models considered in em-

pirical asset pricing literature. We test whether the long-Short (unhedged) and the

beta-neutral (hedged) strategy returns are spanned by the CAPM, the Fama–French

Five-Factor model Eugene F. Fama and Kenneth R. French (2015), the q5 model of

Hou et al. (2021) and the mispricing factors model of Stambaugh and Yuan (2017).

Tables 9 and 10 report the results. The only “traditional” factor that our trading

strategy significantly loads on is momentum - both the unhedged and the hedged

portfolios display a significantly positive betas, suggesting that momentum returns

are not compensation for undiversifiable risk. Interestingly, the hedged portfolio also

loads negatively on RMW portfolio, suggesting that the latter does relate to common

sources of risk in stock returns but its average return has the “wrong” sign.
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Needless to say, both portfolios have significantly positive alphas with respect to

all of the models that we consider. Both the long-short (unhedged) and the beta-

neutral (hedged) strategy also positively load on the expected growth factor of Hou

et al. (2021) and on the PERF factor of Stambaugh and Yuan (2017). Interestingly,

the alphas of the unhedged strategy are positive but not statistically significant

against both of these models, while the hedged portfolio is clearly not spanned by

either, with a statistically significant alpha of about 45 basis points per month with

respect to both. This suggests that at least some of the factors utilized by these

models capture important sources of common variation in stock returns as reflected

in their covariance matrix, and thus hedged out by our construction of the beta

neutral portfolio.

[Insert Table 9 about here]

[Insert Table 10 about here]

4 Conclusion

APT has had a remarkable impact on the literature of cross-sectional returns and

multi-factor models. Nevertheless, testing APT has been generally complicated since

tests using portfolios face the critic that maybe we haven’t find the right factors or

the portfolios incur in data snooping.

This paper combines high-dimensional beta estimation, return prediction, and

pure plays to address these two critics and test APT’s implications. First, we use a
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novel approach to high-dimensional beta estimation to get individual stock’s time-

varying betas with respect to all the latent statistical factors driving the covariance.

Then, we combine the betas with ex-ante forecasts of returns and use pure plays to

construct zero-beta portfolios sorted on expected returns.

We overwhelmingly reject APT’s main theoretical prediction that the zero-beta

portfolios’ excess returns and Sharpe ratios should be zero. We attribute the inabil-

ity of APT to explain the zero-beta portfolios to the fact that none of the latent

factors have a non-negligible price of risk on average; consequently, hedging all risk

exposure is not only harmless but also desirable. Hedging all exposures, however,

seems problematic from a general equilibrium perspective.
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Table 2: Descriptive Statistics of the Zero-Cost Latent Factors: 1974–2014

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
Mean 0.12 -0.05 0.09 -0.01 -0.06

t-statistic 0.61 -0.42 1.14 -0.14 -0.74
Std. dev 4.21 2.61 1.63 2.00 1.59

Sharpe ratio 0.10 -0.07 0.19 -0.02 -0.12

This table reports the descriptive statistics of the time-series of monthly excess-returns
(in percent) for the first five latent common factors. The projection portfolio weights are
zero-cost and have a beta of one with its respective factor and zero otherwise. The mean
is the monthly arithmetic average of excess returns. The standard deviation is calculated
monthly. The Sharpe ratios are annualized by multiplying by the square root of twelve.
We omit stocks whose size falls below the 20th percentile of the NYSE following Eugene
F Fama and Kenneth R French (2008) and Kirby (2019) to avoid any concerns about
liquidity.
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Table 3: Correlation Matrix of the Zero-Cost Latent Factors and the Fama–French
Five Factors plus Momentum: 1974–2014

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
Factor 1 1.00 -0.36 0.11 0.02 0.09
Factor 2 -0.36 1.00 -0.12 -0.14 0.02
Factor 3 0.11 -0.12 1.00 -0.11 -0.11
Factor 4 0.02 -0.14 -0.11 1.00 -0.07
Factor 5 0.09 0.02 -0.11 -0.07 1.00
Mkt-RF 0.66 -0.44 0.02 -0.00 0.05

SMB 0.18 -0.49 0.24 0.15 -0.04
HML -0.29 0.44 -0.10 -0.03 -0.03

RMW -0.16 0.35 0.01 -0.06 -0.03
CMA -0.36 0.39 -0.13 0.03 -0.04
Mom -0.11 -0.29 -0.03 0.15 -0.03

This table reports the correlation of monthly excess-returns (in percent) for the first five
latent common factors with the Fama–French five factors plus momentum. The projection
portfolio weights are zero-cost and have a beta of one with its respective factor and zero
otherwise. The mean is the monthly arithmetic average of excess returns. The standard
deviation is calculated monthly. The Sharpe ratios are annualized by multiplying by the
square root of twelve. We omit stocks whose size falls below the 20th percentile of the
NYSE following Eugene F Fama and Kenneth R French (2008) and Kirby (2019) to avoid
any concerns about liquidity.
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Table 4: Descriptive Statistics of the Unit-Cost Latent Factors: 1974–2014

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
Mean 0.85 0.67 0.81 0.71 0.67

t-statistic 3.14 3.47 3.82 3.21 3.21
Std. dev 5.62 4.03 4.44 4.61 4.33

Sharpe ratio 0.52 0.58 0.64 0.53 0.53

This table reports the descriptive statistics of the time-series of monthly excess-returns
(in percent) for the first five latent common factors. The projection portfolio weights are
unit-cost and have a beta of one with its respective factor and zero otherwise. The mean
is the monthly arithmetic average of excess returns. The standard deviation is calculated
monthly. The Sharpe ratios are annualized by multiplying by the square root of twelve.
We omit stocks whose size falls below the 20th percentile of the NYSE following Eugene
F Fama and Kenneth R French (2008) and Kirby (2019) to avoid any concerns about
liquidity.
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Table 5: Correlation Matrix of the Unit-Cost Latent Factors and the Fama–French
Five Factors plus Momentum: 1974–2014

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
Factor 1 1.00 0.34 0.65 0.61 0.64
Factor 2 0.34 1.00 0.71 0.68 0.74
Factor 3 0.65 0.71 1.00 0.82 0.85
Factor 4 0.61 0.68 0.82 1.00 0.83
Factor 5 0.64 0.74 0.85 0.83 1.00
Mkt-RF 0.95 0.35 0.58 0.55 0.61

SMB 0.45 0.12 0.48 0.45 0.39
HML -0.28 0.20 -0.12 -0.09 -0.10

RMW -0.32 -0.05 -0.25 -0.27 -0.27
CMA -0.38 0.10 -0.18 -0.12 -0.15
Mom -0.13 -0.25 -0.07 0.00 -0.07

This table reports the correlation of monthly excess-returns (in percent) for the first five
latent common factors with the Fama–French five factors plus momentum. The projection
portfolio weights are unit-cost and have a beta of one with its respective factor and zero
otherwise. The mean is the monthly arithmetic average of excess returns. The standard
deviation is calculated monthly. The Sharpe ratios are annualized by multiplying by the
square root of twelve. We omit stocks whose size falls below the 20th percentile of the
NYSE following Eugene F Fama and Kenneth R French (2008) and Kirby (2019) to avoid
any concerns about liquidity.
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Table 6: Descriptive Statistics of the Portfolios: 1974–2014

Panel A: 1974–2014
Market Long-short Beta-neutral

Mean 0.52 0.72 0.74
Std. dev 4.65 3.34 1.70

Sharpe ratio 0.39 0.75 1.51

Panel B: 1974–1999
Market Long-short Beta-neutral

Mean 0.65 1.12 0.99
Std. dev 4.64 2.61 1.48

Sharpe ratio 0.48 1.49 2.32

Panel C: 2000–2014
Market Long-short Beta-neutral

Mean 0.28 -0.06 0.25
Std. dev 4.67 4.31 1.97

Sharpe ratio 0.21 -0.04 0.44

This table reports the descriptive statistics of the time-series of monthly excess-returns
(in percent) for the market, the long short portfolio sorted on expected returns, and the
beta-neutral long-short portfolio. The later two return series are constructed using pure
plays as described in the main text. The mean is the monthly arithmetic average of excess
returns. The standard deviation is calculated monthly. The Sharpe ratios are annualized
by multiplying by the square root of twelve. We omit stocks whose size falls below the
20th percentile of the NYSE following Eugene F Fama and Kenneth R French (2008) and
Kirby (2019) to avoid any concerns about liquidity.
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Table 7: Fama–MacBeth Predictive Cross-Sectional Regressions

rei,t+1 = at + btxit +
k∑
j=1

λtβ
j
it,

Panel A: 1974–2014 Panel B: 1974–1999 Panel C: 2000–2014

(1) (2) (1) (2) (1) (2)
Intercept 0.01 0.01 0.01 0.01 0.01 0.01

(3.57) (4.37) (2.98) (3.27) (1.97) (2.92)
predicted return 0.26 0.27 0.36 0.36 0.08 0.11

(7.23) (11.61) (8.38) (12.31) (1.17) (2.92)
BetaF1 −0.00 0.00 −0.00

(−0.16) (0.52) (−0.73)
BetaF2 −0.00 −0.00 0.00

(−0.35) (−0.51) (0.09)
BetaF3 0.00 0.00 0.00

(1.62) (0.10) (2.40)
BetaF4 −0.00 −0.00 −0.00

(−0.73) (−0.42) (−0.64)
BetaF5 0.00 −0.00 0.00

(0.02) (−0.18) (0.31)
R2 0.01 0.09 0.01 0.08 0.01 0.11

Notes: This table reports the Fama-MacBeth cross-sectional regressions of monthly stocks’
excess returns on the return forecast in the periods 1974–2014, 1974–1999, 2000–2014.
“BetaFj” denotes the beta with respect to the j-th latent factor. We omit stocks whose
size falls below the 20th percentile of the NYSE following Eugene F Fama and Kenneth R
French (2008) and Kirby (2019) to avoid any concerns about liquidity. xit denotes the
predicted return of stock i at time t. (1) and (2) report the regression results with and
without control variables, respectively. The controls are limited to the risk exposures
with respect to the latent factors, since the predicted return is constructed with the usual
characteristics. We control for ten exposures, but present only the first five. All of the
coefficients in the corresponding to the exposures insignificant. We report the time-series
average of slope coefficients associated with Fama-MacBeth t-statistics (in parentheses).
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Table 8: Weighted Fama–MacBeth Predictive Cross-Sectional Regressions

rei,t+1 = at + btxit +
k∑
j=1

λtβ
j
it,

Panel A: 1974–2014 Panel B: 1974–1999 Panel C: 2000–2014

(1) (2) (1) (2) (1) (2)
Intercept 0.00 0.00 0.00 0.00 0.00 0.01

(1.54) (1.47) (1.65) (0.68) (0.47) (1.41)
predicted return 0.28 0.33 0.30 0.40 0.24 0.22

(4.73) (7.92) (4.93) (9.51) (2.06) (2.62)
BetaF1 0.00 0.00 −0.00

(0.14) (0.96) (−0.67)
BetaF2 −0.00 −0.00 0.00

(−0.02) (−0.68) (0.84)
BetaF3 0.00 −0.00 0.00

(1.19) (−0.42) (1.99)
BetaF4 −0.00 0.00 −0.00

(−0.25) (0.07) (−0.43)
BetaF5 0.00 −0.00 0.00

(1.66) (−0.30) (2.57)
R2 0.01 0.09 0.01 0.08 0.01 0.11

Notes: This table reports the Fama-MacBeth cross-sectional regressions weighted by mar-
ket capitalization of monthly stocks’ excess returns on the return forecast in the periods
1974–2014, 1974–1999, 2000–2014. “BetaFj” denotes the beta with respect to the j-th
latent factor. We omit stocks whose size falls below the 20th percentile of the NYSE
following Eugene F Fama and Kenneth R French (2008) and Kirby (2019) to avoid any
concerns about liquidity. xit denotes the predicted return of stock i at time t. (1) and
(2) report the regression results with and without control variables, respectively. The
controls are limited to the risk exposures with respect to the latent factors, since the pre-
dicted return is constructed with the usual characteristics. We control for ten exposures,
but present only the first five. All of the coefficients in the corresponding to the expo-
sures insignificant. We report the time-series average of slope coefficients associated with
Fama-MacBeth t-statistics (in parentheses).
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Table 9: Time Series Regression of the Long-Short and the Hedged Portfolio against
the CAPM and Fama–French Five Factors plus Momentum

Portfoliot = α +
5∑
i=1

βiFi,t + εt

Long-Short Beta-Neutral Long-Short Beta-Neutral
Intercept 0.75∗∗∗ 0.76∗∗∗ 0.53∗∗∗ 0.69∗∗∗

(4.41) (8.85) (2.95) (8.44)
Mkt-RF −0.06 −0.05∗∗ −0.04 −0.04

(−1.20) (−2.35) (−0.94) (−1.54)
SMB 0.10 −0.00

(1.23) (−0.04)
HML 0.01 −0.02

(0.14) (−0.36)
RMW −0.19 −0.15∗

(−1.36) (−1.95)
CMA −0.00 0.07

(−0.00) (0.99)
Mom 0.40∗∗∗ 0.15∗∗∗

(5.10) (5.18)
Adj. R2 0.01 0.02 0.28 0.19
Num. obs. 493 493 493 493
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Notes: This table reports the regression of monthly stock returns (in percent) of the
long-short portfolio and beta-neutral portfolio on the CAPM and the Fama–French five-
factor model. The t-statistic are shown in parenthesis. The sample period is 1974 to
2014. We omit stocks whose size falls below the 20th percentile of the NYSE following
Eugene F Fama and Kenneth R French (2008) and Kirby (2019) to avoid any concerns
about liquidity. Returns of the Fama-French five-factor model (FF5) come from Kenneth’s
French website. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 10: Time Series Regression of the Long-Short and the Hedged Portfolio
against the q5 and the Mispricing Model

Portfoliot = α +
5∑
i=1

βiFi,t + εt

Long-Short Beta-Neutral Long-Short Beta-Neutral
Intercept 0.30 0.59∗∗∗ 0.37∗ 0.63∗∗∗

(1.43) (6.85) (1.85) (6.47)
Mkt-RF −0.02 −0.03 0.03 −0.01

(−0.38) (−0.94) (0.59) (−0.42)
R ME 0.21 0.06

(1.79) (0.87)
R IA −0.03 0.03

(−0.20) (0.49)
R ROE 0.13 0.01

(0.77) (0.12)
R EG 0.38∗∗∗ 0.16∗∗

(2.52) (2.17)
SMB 0.15 0.03

(1.41) (0.48)
MGMT 0.12 0.07∗

(1.41) (1.96)
PERF 0.32∗∗∗ 0.09∗∗∗

(5.65) (4.80)
Adj. R2 0.07 0.04 0.13 0.05
Num. obs. 493 493 493 493
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Notes: This table reports the regression of monthly stock returns (in percent) of the long-
short portfolio and beta-neutral portfolio on the q5 factors from Hou et al. (2021) and the
m4 factors from Stambaugh and Yuan (2017). The t-statistic are shown in parenthesis.
The sample period is 1974 to 2014. We omit stocks whose size falls below the 20th
percentile of the NYSE following Eugene F Fama and Kenneth R French (2008) and Kirby
(2019) to avoid any concerns about liquidity. Returns of the Fama-French five-factor model
(FF5) come from Kenneth’s French website. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 11: Time Series Regression of the Value-Weighted Long-Short and the Value-
Weighted Hedged Portfolio against the CAPM and Fama–French Five Factors plus
Momentum

Portfoliot = α +
5∑
i=1

βiFi,t + εt

Long-Short Beta-Neutral Long-Short Beta-Neutral
Intercept 0.60∗∗∗ 0.55∗∗∗ 0.42∗∗ 0.52∗∗∗

(3.95) (7.77) (2.59) (7.17)
Mkt-RF −0.03 −0.03 −0.04 −0.04∗

(−0.56) (−1.81) (−1.05) (−2.02)
SMB 0.08 0.01

(1.35) (0.34)
HML 0.07 0.01

(0.93) (0.29)
RMW −0.25∗ −0.13

(−1.98) (−1.91)
CMA −0.24 −0.06

(−1.88) (−1.19)
Mom 0.48∗∗∗ 0.14∗∗∗

(6.14) (4.92)
Adj. R2 −0.00 0.01 0.36 0.18
Num. obs. 493 493 493 493
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Notes: This table reports the regression of monthly stock returns (in percent) of the value-
weighted long-short portfolio and the value-weighted beta-neutral portfolio on the CAPM
and the Fama–French five-factor model. The t-statistic are shown in parenthesis. The
sample period is 1974 to 2014. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 12: Time Series Regression of the Value-Weighted Long-Short and the Value-
Weighted Hedged Portfolio against the q5 and the Mispricing Model

Portfoliot = α +
5∑
i=1

βiFi,t + εt

Long-Short Beta-Neutral Long-Short Beta-Neutral
Intercept 0.28 0.45∗∗∗ 0.25 0.46∗∗∗

(1.33) (5.84) (1.49) (5.82)
Mkt-RF −0.02 −0.03 0.04 −0.01

(−0.44) (−1.30) (1.02) (−0.43)
R ME 0.18 0.05

(1.71) (1.06)
R IA −0.22 −0.07

(−0.96) (−0.92)
R ROE 0.13 −0.01

(0.75) (−0.09)
R EG 0.35∗ 0.14∗

(2.19) (1.98)
SMB 0.13 0.03

(1.29) (0.64)
MGMT 0.04 0.02

(0.41) (0.68)
PERF 0.37∗∗∗ 0.09∗∗∗

(5.21) (3.66)
Adj. R2 0.05 0.03 0.16 0.05
Num. obs. 493 493 493 493
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Notes: This table reports the regression of monthly stock returns (in percent) of the
value-weighted long-short portfolio and the value-weighted beta-neutral portfolio on the
factors from Hou et al. (2021) and the m4 factors from Stambaugh and Yuan (2017).
The t-statistic are shown in parenthesis. The sample period is 1974 to 2014. We omit
stocks whose size falls below the 20th percentile of the NYSE following Eugene F Fama and
Kenneth R French (2008) and Kirby (2019) to avoid any concerns about liquidity. Returns
of the Fama-French five-factor model (FF5) come from Kenneth’s French website. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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6 Figures

Figure 1:

The figure shows the percentage of the variance explained by each of the principal components of
the covariance matrix. The figure uses as en example January 1999 but the results are similar for
any other period. We omit stocks whose size falls below the 20th percentile of the NYSE to avoid
any concerns about liquidity.
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Figure 2: Average Time-Series R2 of Stock Returns against Reconstructed Latent
Factors

The figure shows the cross-sectional average of the time-series R2 in a regression of individual
stocks into the latent factors using either the actual betas or the predicted betas as a function
of the number of factors. The regression is performed in yearly rolling windows. The factors are
re-estimated every month using previous year’s returns. The sample period covers 1974–2014. We
omit stocks whose size falls below the 20th percentile of the NYSE to avoid any concerns about
liquidity.
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Figure 3:

The figure shows the time-varying percentage of the variance explained by each of the principal
components of the covariance matrix. The factors are re-estimated every month using previous
year’s returns. The sample period covers 1974–2014. We omit stocks whose size falls below the
20th percentile of the NYSE to avoid any concerns about liquidity.
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Figure 4: Performance of the zero-weight Latent Factors: 1974–2014

The figure shows the cumulative returns (in logs) of the market portfolio (green line), the risk-
free rate (black line), and the projections into the return space of the latent common factors. The
projection portfolio weights are zero-weight and have a beta of one with its respective factor and zero
otherwise. We add the risk-free rate to the plot of the zero-weight portfolios, for comparability with
the market, and assuming that the margin would be invested at the risk-free rate. The factors are
projected using pure plays. The sample period covers 1974–2014. Returns of the market portfolio
and the risk-free rate come from Kenneth’s French website. We omit stocks whose size falls below
the 20th percentile of the NYSE following Eugene F Fama and Kenneth R French (2008) and Kirby
(2019) to avoid any concerns about liquidity.
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Figure 5: Performance of the unit-weight Latent Factors: 1974–2014

The figure shows the cumulative returns (in logs) of the market portfolio (green line), the risk-free
rate (black line), and the projections into the return space of the latent common factors. The
projection portfolio weights are unit-weight and have a beta of one with its respective factor and
zero otherwise. The factors are projected using pure plays. The sample period covers 1974–2014.
Returns of the market portfolio and the risk-free rate come from Kenneth’s French website. We
omit stocks whose size falls below the 20th percentile of the NYSE following Eugene F Fama and
Kenneth R French (2008) and Kirby (2019) to avoid any concerns about liquidity.
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Figure 6: Sharpe Ratio as a Function of the Number of Factors Hedged

The figure shows the Sharpe ratio as a function of the number of factors for the hedged beta-
neutral portfolio constructed using pure plays as described in the main text. The Sharpe ratios are
annualized by multiplying by the square root of twelve. We omit stocks whose size falls below the
20th percentile of the NYSE following Eugene F Fama and Kenneth R French (2008) and Kirby
(2019) to avoid any concerns about liquidity. The sample period covers 1974–2014.
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Figure 7: Cumulative performance of the portfolios: 1974–2014

The figure shows the cumulative returns (in logs) of the market portfolio (green line), the risk-free
rate (black line), the long-short portfolio sorted on expected returns (red line), and its hedged
counterpart, the beta-neutral long-short portfolio (blue line). We add the risk-free rate to the plot
of the zero-weight portfolios, for comparability with the market, and assuming that the margin
would be invested at the risk-free rate. The later two return series are constructed using pure plays
as described in the main text. According to APT, the blue line should equal the gray line. The
sample period covers 1974–2014. Returns of the market portfolio and the risk-free rate come from
Kenneth’s French website. We omit stocks whose size falls below the 20th percentile of the NYSE
following Eugene F Fama and Kenneth R French (2008) and Kirby (2019) to avoid any concerns
about liquidity.
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Figure 8: Performance of the portfolios: 1974–1999

The figure shows the cumulative returns (in logs) of the market portfolio (green line), the risk-free
rate (black line), the long-short portfolio sorted on expected returns (red line), and its hedged
counterpart, the beta-neutral long-short portfolio (blue line). We add the risk-free rate to the plot
of the zero-weight portfolios, for comparability with the market, and assuming that the margin
would be invested at the risk-free rate. The later two return series are constructed using pure plays
as described in the main text. According to APT, the blue line should equal the gray line. The
sample period covers 1974–1999. Returns of the market portfolio and the risk-free rate come from
Kenneth’s French website. We omit stocks whose size falls below the 20th percentile of the NYSE
following Eugene F Fama and Kenneth R French (2008) and Kirby (2019) to avoid any concerns
about liquidity.
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Figure 9: Performance of the portfolios: 2000–2014

The figure shows the cumulative returns (in logs) of the market portfolio (green line), the risk-free
rate (black line), the long-short portfolio sorted on expected returns (red line), and its hedged
counterpart, the beta-neutral long-short portfolio (blue line). We add the risk-free rate to the plot
of the zero-weight portfolios, for comparability with the market, and assuming that the margin
would be invested at the risk-free rate. The later two return series are constructed using pure plays
as described in the main text. According to APT, the blue line should equal the gray line. The
sample period covers 1974–1999. Returns of the market portfolio and the risk-free rate come from
Kenneth’s French website. We omit stocks whose size falls below the 20th percentile of the NYSE
following Eugene F Fama and Kenneth R French (2008) and Kirby (2019) to avoid any concerns
about liquidity.
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A Appendix

A.1 Random Forest and Return Forecasts

In this study, we use random forest regressions to forecast future returns. Random

forest regression is a non-linear and non-parametric ensemble method that averages

multiple forecasts from (potentially) weak predictors and is asymptotically unbiased

and able to approximate any function. The ultimate forecast is superior to a forecast

following from any individual predictor (Breiman 2001).

We train the random forest model using data from the most recent 60 months and

forecast returns in the following period using only the information available at the

current time, analogous to a rolling regression forecast. The forecasts are therefore

out-of-sample by design. The resulting forecasting regression is:

E[ri,t+1|ci,t] ≈ f(ci,t) ≡ µi,t, (32)

where f denotes the random forest model using data from the most recent periods

and ci,t denotes the vector of firm characteristics.

For the data, we use the 62 characteristics for predicting returns constructed

exactly as in Freyberger, Neuhierl, and Weber (2020). We standardize the char-

acteristics month by month by cross-sectionally demeaning and dividing by three

times the standard deviation.12 We replace missing values for each characteristics

month by month with the median value in that month. We use 500 trees for the

random forest regression and a maximum depth of 5. We explain the algorithm itself

12. We divide by three times the standard deviation so that most observations fall within the
interval of (−1, 1) which helps with numerical stability.
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in detail in this subsection following closely Binsbergen, Han, and Lopez-Lira (2020).

The building blocks for random forest regression are decision trees with a flowchart

structure in which the data are recursively split into non-intersecting regions. At each

step, the algorithm splits the data choosing the variable and threshold that best min-

imizes the mean squared error when the average value of the variable to be forecasted

is used as the prediction. Decision trees contain two fundamental substructures: de-

cision nodes by which the data are split, and leaves that represent the outcomes. At

the leaves, the forecast is a constant local model equal to the average for that region.

A decision tree model’s goal is to partition the data to make optimal constant

predictions in each partition (or subspace). Consequently, decision trees are fully

non-parametric and allow for arbitrary non-linear interactions. The only parameter

for training a decision tree model is the depth, i.e., the maximum length of the path

from a root node to leaves. The larger the depth, the more complex the tree, and

the more likely it will overfit the data.13

More formally, the decision tree model forecast is constant over a disjoint number

of regions Rm:

ŷ = f(x) =
∑
m

cmI{x∈Rm}, (33)

cm =
1

Nm

∑
{yi:xi∈Rm}

yi, (34)

13. The standard approach to decrease the risk of overfitting is to stop the algorithm whenever
the next split would result in a sample size smaller than a predetermined size, which is usually five
observations for the regression model. This sample threshold is called the minimum node size.
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and each region is chosen by forming rectangular hyper-regions in the space of

the predictors:

Rm = {xi ∈×
i∈I

Xi : xi ≤ kmi }, (35)

where×denotes a Cartesian product, I is the number of predictors. Thus, each

predictor xi can take values in the set Xi.

The algorithm minimizes the mean squared error numerically to best approximate

the conditional expectation by choosing the variables and thresholds, and hence

the regions Rm in a greedy fashion. Because of their non-parametric nature and

flexibility, decision tree models are prone to overfitting when the depth is large. The

most common solution is to use an ensemble of many decision trees with shorter

depth: random forest regression models.

Random forest regression models are an ensemble of decision trees that bootstrap

the predictions of different decision trees. Each tree is trained on a random sample,

usually drawn with replacement. Instead of considering all predictors, decision trees

are modified so that they use a strict random subset of features at each node to render

the individual decision trees’ predictions less correlated.14 The final prediction of a

random forest model is obtained by averaging each decision tree’s predictions.

Random forest regressions provide a natural measure of the importance of each

variable, the so-called impurity importance (Ishwaran 2015). The impurity impor-

tance for variable Xi is the sum of all mean squared error decreases of all nodes in the

14. The algorithm allows a fixed set of variables always to be considered at each split. More
generally, the algorithm enables us to specify the probability for each predictor to be considered at
each partition.
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forest at which a split on Xi has been used, normalized by the number of trees. The

impurity importance measure can be biased, and we use the correction of Nembrini,

König, and Wright 2018 to address this well-known concern. Finally, we normalize

the features’ importance of each variable as percentages for ease of interpretation.

There are two main parameters in the random forest algorithm: (1) the number

of decision trees and (2) the depth of the decision trees. Since the random forest

is a bootstrapping procedure, a high number of decision trees are recommended.

Notwithstanding computational time, there is no theoretical downside to using more

trees. That said, performance tends to plateau following a large number of trees.

The depth of each decision tree determines the overall complexity of the model. More

complex models usually over-fit. Nevertheless, because of the inherent randomiza-

tion, random forests are resilient to over-fitting in a wide variety of circumstances.

While random forest regressions are non-parametric, we can interpret them using

partial dependence plots (PDPs). PDPs explain how features influence the predic-

tions. They display the average marginal effect on the forecast for each value of

variable xs w. PDPs show the model predicts on average when each data instance

has a fixed value for that feature. While a disadvantage is that the averages cal-

culated for the partial dependence plot may include very unlikely data points, we

include confidence intervals in the figures to address the uncertainty. Formally they

are defined as:

f̂xS(xS) =
1

n

n∑
i=1

f̂(xS, x
(i)
C ) ≈ ExC

[
f̂(xS, xC)

]
=

∫
f̂(xS, xC)dP(xC), (36)
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where xS is the variable of interest, and xC are the other variables. We show an

example of a PDPs in Figure 10 .

A.2 Appendix Figures

Figure 10: Predicted Return as a Non-Linear Function of Past Returns

Notes: The figure plots the partial dependence plot of one-month-ahead realized returns on (standardized)
last month’s returns. The partial dependence plot is calculated from a random forest regression of the
linear errors on the dependent variables used in Freyberger, Neuhierl, and Weber (2020). The dependent
variables are standardized cross-sectionally every by cross-sectionally demeaning and dividing by three
times the standard deviation.
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