Discussion of "Sparse Production Networks" by Bernard and Zi

Yuhei Miyauchi (Boston University)

July 12, 2022 NBER Summer Institute ITI Meeting

Paper Summary

- Balls-and-bins ("elementary") model can rationalize many stylized empirical findings of production network formation
- As data becomes more granular, we need to pay more attention to statistical uncertainty in data generating process (DGP)

- cf Dingel-Tintelnot '21, Adão-Costinot-Donaldson '22

My Discussion

- Reformulate as an econometric problem
 - Are richer models identified from elementary model?
 - If so, can we statistically reject the null hypothesis of elementary model?

- Additional comments (if time allows):
 - Bilateral covariates
 - Response to shocks

The Elementary Model

- ▶ Buyers $j \in M$ and suppliers $i \in N$
- ▶ *N* transactions ("balls") in the economy
- (*i*, *j*) pair gets each "ball" with probability $s_i b_j$
 - ▶ $\{s_i\}, \{b_j\}$: parameters
 - $\sum_{i} s_i = 1$, $\sum_{j} b_j = 1$ (slight change from paper that takes buyer-side deterministic)
- Transaction volume (number of "balls") between i and j: Y_{ij}
- ▶ Joint likelihood of "network" $\mathbb{Y} \equiv \{Y_{ij}\}$:

$$\mathcal{L}\left(\mathbb{Y}
ight)=\prod_{i,j}\left(s_{i}b_{j}
ight)^{Y_{ij}}$$

"Richer" Models of (Sparse) Production Network Formation

1. Supplier selection by buyers

e.g. Eaton-Kortum-Kramarz '22; Oberfield '18; Antras-de-Gortari '19; Boehm-Oberfield '20; Sugita-Teshima-Seira '21; Miyauchi '21; Panigrahi '21; Lenoir-Martin-Mejean '22

2. Endogenous search intensity

e.g. Chaney '14; Demir-Fieler-Xu-Yang '21; Arkolakis-Huneeus-Miyauchi '22; Huang-Manova-Perello-Pisch '22

3. Relationship-specific fixed cost

e.g. Bernard-Moxnes-Ulltveit-Moe '18; Lim '18; Huneeus '18; Dhyne-Kikkawa-Mogstad-Tintelnot '20; Zou '20; Bernard-Dhyne-Magerman-Manova-Moxnes '22

Question: Are these models identified from elementary model?

Model 1: Supplier selection by buyers (eg Eaton-Kortum-Kramarz '22)

Buyer j draws a "task" with probability b_j

Supplier *i* can undertake the task at marginal cost s_i
 Can depend on wages, *i*'s suppliers, ...

• i.i.d. Frechet shocks \Rightarrow isomorphic to elementary model

- Potential identification from...
 - introducing covariates (eg spatial decay)
 - \blacktriangleright response to shocks that endogeneously changes s_i and b_j

Model 2: Endogenous search intensity (eg Demir-Fieler-Xu-Yang '21)

- Add suppliers' and buyers' "visibility"
 - Supplier *i* is recognized by buyers w.p. v_i^s ; buyer *j* is recognized by suppliers w.p. v_i^b
- Likelihood:

$$\mathcal{L}\left(\mathbb{Y}
ight) \propto \prod_{i,j} \mathsf{v}^s_i \mathsf{v}^b_j \left(s_i b_j
ight)^{\mathsf{Y}_{ij}}$$

• Elementary model:
$$v_i^s = v_j^b = 1 \ \forall i, j$$

- Are $\{v_i^s, v_i^b\}$ identified?
 - Informative statistics: correlation between extensive margin (number of relationships) and intensive margin (transaction volume per relationship) across nodes cf. Bernard-Dhyne-Magerman-Manova-Moxnes '22, Arkolakis-Huneeus-Miyauchi '22

Model 3: Relationship-specific fixed cost (eg Bernard-Moxnes-Ulltveit-Moe '18)

$$\mathcal{L}\left(\mathbb{Y}^*
ight)=\prod_{i,j}\left(s_ib_j
ight)^{Y^*_{ij}},\quad Y_{ij}=Y^*_{ij}\mathbb{1}[Y^*_{ij}\geq {\mathcal F}],$$

i.e., link is formed if $Y_{ij}^* \ge F$

- Elementary model: F = 1
- Is F identified?

Model:

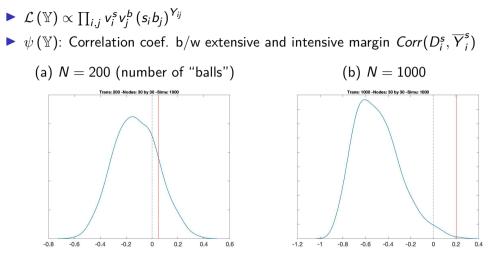
- Yes, if we know transaction volume per "ball" $(F = \min\{Y_{ij}|Y_{ij} > 0\})$
- Even if not, magnitude of negative assortativity is likely informative

Hypothesis Testing

- Consider a statistic $\psi(\mathbb{Y})$: Is it likely to be generated by the elementary model?
- Challenge: need to test elementary model for any $\{s_i, b_j\}$ (composite null)
- Solution:
 - Inspired by network econometrics literature (Graham and Pelican '22)
 - Under elementary model, distribution of total transaction amount per supplier $\{Y_i^s = \sum_j Y_{ij}\}$ and per buyer $\{Y_j^b = \sum_i Y_{ij}\}$ are sufficient statistics for likelihood

$$\mathcal{L}\left(\mathbb{Y}
ight)=\prod_{i,j}\left(s_{i}b_{j}
ight)^{Y_{ij}}=\prod_{i}\left(s_{i}
ight)^{Y_{i}^{s}}\prod_{j}\left(b_{j}
ight)^{Y_{j}^{b}}$$

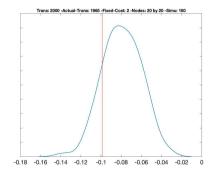
Conditional on {Y_i^s, Y_j^b}, any 𝔅 realize at equal probability under the null ⇒ null distribution of ψ (𝔅): 𝔅 ~ random network given observed {Y_i^s, Y_i^b}

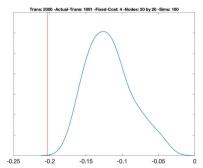

Hypothesis Testing: Comments

Close but slightly different from the "falsification test" in paper

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- estimate $\{s_i\}$ instead of conditioning on $\{Y_i^s\}$
- probably over-reject null
- No need to specify alternative model
 - unlike Bayes model selection in paper


True DGP: Model 2 (Endogenous search intensity)

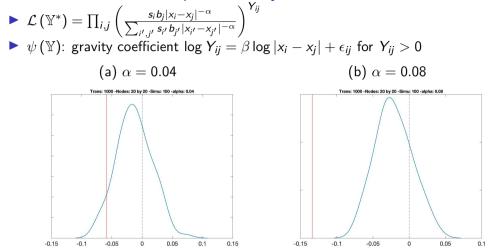


Test statistics (red); null distribution (blue); zero (dotted)

True DGP: Model 3 (Fixed Cost)

(a)
$$F = 2$$

Additional Comments


Bilateral covariates

- Statistics involving exogenous covariates (e.g. spatial decay) are informative to reject elementary model
- But granularity may still matter, see next slide

Response to shocks

- Many "richer" models emphasize "equilibrium effects" on $\{s_i, b_j\}$
 - Supplier's supplier, wages, competition, ...
- "Panel" version of the test against the elementary model with fixed $\{s_i, b_j\}$?

True DGP: Model 1 with Spatial Decay

Slight spatial decay under the null because true DGP induces larger suppliers and buyers in geographic center