TAX INCIDENCE AND OPTIMAL TAXATION WITH

GENERAL EQUILIBRIUM AND TRANSITION

Yena Park

Seoul National University

July 2022, NBER-MPF

QUESTION

- What is the role of **GE** effects and transition on the tax reform incidence and optimal redistributive tax schedule?
 - Standard trickle-down effects:
 Stiglitz (1982), Rothschild & Scheuer (2013), Sachs et al. (2020)
 - Key: **complementarity** b/w different labor types
 - conventional implication: less progressive tax
- We analyze this in an **Aiyagari** GE self-insurance model.
 - GE effects: complementarity b/w K and L
 - transition: sluggish adjustment of savings ⇒ interacting with GE
- Key Questions
 - Q1. Do the GE effects favor more/less progressive reform?
 - Q2. What factors determine the direction & size of the GE effects?
 - Q3. What are the implications of the local/global transition?

What I do...

- Derive nonlinear-formulas for the tax-incidence & optimal tax
 - variational (perturbation) approach
 - under restrictive tax system (time invariant, history independent)
- Find the summary stat for the GE effects & (local) transition.
- Identify the factors for the direction & the size of the **GE effects**.
 - tax schedule to which the reform is applied
 - capital income tax

Under which conditions, does the **GE favor** *more* progressive/redistributive reform?

- Investigate the effects of the local/global transition:
 - local transition: due to a small tax reform (perturbation)
 - \bullet global transition: current US \rightarrow optimal steady state
 - Is it always desirable to account for the global transition?

Preview of Results

- Tax incidence (optimal) formula: $dW(\frac{T'}{1-T'}) = R1 + R2 + R3 + R4$
 - R1: (standard) redistribution vs behavioral
 - $\begin{array}{l} \text{ R2: welfare effects of the borrowing constrained HH} \\ \text{ R3: Pecuniary Externalities} \\ \text{ R4: Fiscal Externalities} \end{array} \right\} \Rightarrow \textbf{GE effects} \\ \end{array} \right\} \begin{array}{l} \text{interaction} \\ \text{w/ pirv MKT} \end{array}$
- R3+R4 = $\overline{dr_t}K \times (\Delta_p \Delta_f)$
 - $\Delta_p \Delta_f < 0$:
 - negative externality per unit price change $r \uparrow (w \downarrow)$
 - Which tax reform leads to $\overline{dr_t} < 0$?
 - Depends on the relative response of $K\ \&\ L$ and transition.
 - Consider $T'(z^*) \uparrow$: redistributive reform $L \downarrow \Rightarrow dr_t < 0 \text{ (short-run)}$ Vs. $K \downarrow \Rightarrow dr_t > 0 \text{ (long-run)}$
 - (e.g.) Stronger dL relative to $dK\Rightarrow$ GE favors more redistribution

Preview of Results (Findings)

- Level & progressivity of the initial tax matter for the GE effects.
 - With modest amount of existing redistribution (e.g. T'_{US}), the GE effects support less redistributive reform. (dK dominates dL)
 - With enough redistribution (e.g. T'_{opt}), the GE effects can support more redistributive tax reform.
- Second Local transition makes GE-effects favor more progressive reform.
 - The short-run labor response $(L \downarrow \Rightarrow r \downarrow)$ has positive incidences.
- **①** Considering global transition, $T'_{opt-global}$ is more progressive than T'_{opt} .
- Global transition to T_{opt}' has a huge short-run welfare gain at the cost of long-run welfare loss.

Model: Preferences & Productivity

• Continuum of workers with measure 1.

$$(1-\beta)\sum_{t=0}^{\infty}\beta^t E_0[U(c_t,l_t)]$$

 \bullet Focus on preferences without income effects in labor:

$$u(c-v(l)).$$

- Productivity x_t
 - Follows a Markov process: $f(x_{t+1}|x_t)$
 - History of realizations: $x^t = (x_0, x_1, \dots, x_t)$ with prob $f(x^t | x_0)$.
 - Invariant stationary distribution F(x) w/ density f(x). $x_0 \sim F$.
- Labor supply: $l_t(x_t)$ \Rightarrow Earnings: $z_t(x_t) = w_t x_t l_t(x_t)$.
 - Stationary earning distribution $F_z(z)$ with density $f_z(z)$.

Tax-Transfer and Priv Insurance

[Public Insurance]

- nonlinear tax-transfer schedule: T(z).
- Restriction on T(z)
 - Time-invariant
 - On current labor income only (no history dependence)
 - No capital income tax ⇒ relaxed later
- Budget balance of the government: $\int T(z)f_z(z)dz = E$

[Self Insurance & Incomplete Market]

▶ Why Aiyagari?

- Two market frictions (Aiyagari) :
 - trade state noncontingent bond only
 - exogenous borrowing limit : <u>a</u>
- Consumer's problem: given $a_0, x_0, \text{ max } lifetime \ utility$ s.t.

$$c_t(a_0, x^t) + a_{t+1}(a_0, x^t) = w_t x_t l(x_t) - T(w_t x_t l(x_t)) + (1 + r_t) a_t(a_0, x^{t-1}),$$

$$a_{t+1}(a_0, x^t) > a$$

Production and MKT Clearing

- Production : $F(K_t, L_t)$
 - Constant Return to Scale, $F_L, F_L, F_{KL} > 0, F_{KK}, F_{LL} < 0$
- Firm's problem:

$$r_t = F_K(K_t, L_t) - \delta, \quad w_t = F_L(K_t, L_t)$$

- Aggregate state of the economy: $\Phi(a_t, x_t)$
 - Transition: $\Phi_{t+1}(B) = \int_S Q(\Phi_t, a, x, B; h^A) d\Phi_t$
 - Steady state: $\Phi' = \Phi$
- Market clear:

$$K_t = \int a_t d\Phi(a_t, x_t)$$

$$L_t = \int x_t l(x_t) f(x_t) dx_t$$

$$\int c(a_t, x_t) d\Phi(a_t, x_t) + K_{t+1} = F(K_t, L_t) + (1 - \delta) K_t$$

Social Welfare

• individual utility:

$$V(a_0, x_0) = (1 - \beta) \sum_t \beta^t f(x^t | x_0) u(x_t, a_t(a_0, x^t))$$

- social welfare: $W = \iint V(a_0, x_0) d\Phi(a_0, x_0)$
 - \Rightarrow Utilitarian SWF

• With Vs without global transition

- considered tax schedule T(z) before a small reform
 - Benchmark: without global transition

$$\Phi_0 = \Phi_{ss}(a, x; T)$$
 and $\Phi_t = \Phi_0 = \Phi, \forall t$.

• with global transition:

$$\Phi_0 = \Phi_{ss}(a, x; T^{US})$$
 and $\Phi_t(a, x; T)$ changes over time.

TAX REFORM

- Derive Formulas using "variational" approach.
 - Assume that the economy is in a steady state, given T(.).
 - \Rightarrow do not consider the global transition
 - Consider a (revenue-neutral) tax reform of T'(z).
 - Perturbed tax schedule: $T(\cdot) + \mu \tau(\cdot)$
 - Elementary tax reform : $\tau(z) = \frac{1}{1 F_z(z^*)} \mathbbm{1}_{\{z \ge z^*\}}$
 - Account for the local transition associated with this perturbation
- First-order effects of reform: (Gateaux derivative in direction τ)

Tax Incidence Formula

$$dW = R1 + R2 + R3 + R4$$

where

$$R1 = \lambda \left[\iint_{x^*}^{\infty} \left(1 - \frac{u'(a, x)}{\lambda} \right) \frac{\phi(a, x)}{1 - F(x^*)} dx da - \frac{T'(z(x^*))}{1 - T'(z(x^*))} \epsilon_{1 - T'}^l(x^*) \frac{z(x^*)}{z'(x^*)} \frac{f(x^*)}{1 - F(x^*)} \right]$$

$$R2 = -(1-\beta) \sum_{t=0}^{\infty} \beta^{t} \iint \left[u'(a,x) - \beta(1+r) E[u'(a',x')|x] \right] dh_{t+1}^{A}(a,y(x)) d\Phi(a,x)$$

$$\mathbf{R3} = (1 - \beta) \sum_{t=0}^{\infty} \beta^t \iint u'(a, x) \left[\frac{d\mathbf{r}_t \cdot a + d\mathbf{w}_t \cdot x l(x) (1 - T'(z(x)))}{d\Phi(a, x)} \right] d\Phi(a, x)$$

$$R4 = \lambda (1 - \beta) \sum_{t=0}^{\infty} \beta^{t} \cdot \frac{dw_{t}}{dw_{t}} \int (1 + \epsilon_{w}^{l}(x))xl(x)T'(z(x))f(x)dx$$

- R1= standard equity-efficiency trade-off
- R₂= borrowing constraints effects
- R3 = pecuniary externalities: welfare effects of dw & dr
- R4 = fiscal externalities: revenue effects of dw & dr

GE Effects - Summary Stat

- CRS production: $F(K, L) = (r + \delta) \cdot K + w \cdot L$
- By differentiating: $L \cdot dw_t + K \cdot dr_t = 0$

$$\Rightarrow \mathbf{R3} = \lambda (1 - \beta) \sum_{t=0}^{\infty} \beta^{t} \int \frac{u'(a, x)}{\lambda} \left[\frac{dr_{t} \cdot a + dw_{t} \cdot x l(x) (1 - T'(z(x)))}{\lambda} \right] d\Phi$$

$$= \lambda (1 - \beta) \sum_{t=0}^{\infty} \beta^{t} \frac{dr_{t}}{dr_{t}} \cdot K \int \frac{u'(a, x)}{\lambda} \left[\frac{a}{K} - \frac{x l(x) (1 - T'(z(x)))}{L} \right] d\Phi$$

$$= \lambda (1 - \beta) \sum_{t=0}^{\infty} \beta^{t} \frac{dr_{t} \cdot K}{\lambda} \int \frac{dr_{t}}{\lambda} \left[\frac{dr_{t}}{K} - \frac{dr_{t}}{\lambda} \right] d\Phi$$

$$= \lambda (1 - \beta) \sum_{t=0}^{\infty} \beta^{t} \frac{dr_{t}}{\lambda} \cdot K \left\{ \int \frac{u'(a, x)}{\lambda} \left[\frac{a}{K} - 1 \right] d\Phi - \int \frac{u'(a, x)}{\lambda} \left[\frac{xl(1 - T')}{L} - 1 \right] d\Phi \right\}$$

 $\equiv \Delta_n$: welfare effects of increasing r

$$\Rightarrow \mathbf{R4} = \lambda (1 - \beta) \sum_{t=0}^{\infty} \beta^t \frac{dw_t \cdot L}{dw_t} \underbrace{\int (1 + \epsilon_w^l(x)) \frac{xl(x)}{L} T'(z(x)) f(x) dx}_{\equiv \Delta_f: \text{ revenue effects of increasing } w}$$

$$\Rightarrow \mathbf{R3} + \mathbf{R4} = \lambda (1 - \beta) \sum_{t=0}^{\infty} \beta^t \frac{dr_t \cdot K \cdot \Delta_p}{dr_t \cdot K \cdot \Delta_p} + \lambda (1 - \beta) \sum_{t=0}^{\infty} \beta^t \frac{dw_t \cdot L \cdot \Delta_f}{dr_t \cdot K}$$
$$= \lambda (1 - \beta) \sum_{t=0}^{\infty} \beta^t \frac{dr_t \cdot K}{dr_t \cdot K} \times (\Delta_p - \Delta_f)$$

$$\therefore \ \frac{1}{\lambda}(R_3+R_4) = \overline{dr_t}K \times (\Delta_p - \Delta_f)$$
 : summary stat of the GE effects

GE EFFECTS:
$$\overline{dr_t}(z^*)K imes (\Delta_p - \Delta_f)$$

- (1) Sign of $\Delta_p \Delta_f < 0$
 - $\Delta_p < 0$: $r \uparrow \Rightarrow$ negative redistribution over asset inequality
 - $-\Delta_f < 0$: $w \downarrow \Rightarrow wxl \downarrow \Rightarrow T(wxl) \downarrow$
 - \Rightarrow Gov't prefers the tax reform which decreases r ($\overline{dr_t} < 0$).
- (2) Key Q: Which tax reform does imply $dr_t < 0$?
 - Consider a redistributive reform:

$$\begin{cases} T'(z^*) \uparrow & \Rightarrow & L \downarrow & \Rightarrow & r \downarrow \\ T'(z^*) \uparrow & \Rightarrow & K \downarrow & \Rightarrow & r \uparrow \end{cases}$$

- Short-run: $L \downarrow$ tends to dominate $\Rightarrow dr_t < 0, \quad dw_t > 0$ Long-run: $K \downarrow$ tends to dominate $\Rightarrow dr_t > 0, \quad dw_t < 0$
- $\Rightarrow \overline{dr_t} \leq 0$ depends on the relative response of L & K.

GE EFFECTS IN OPTIMAL TAX FORMULA

$$\begin{split} \frac{T'(z^*)}{1-T'(z^*)} &= & \frac{1+e(x^*)}{e(x^*)} \frac{1-F(x^*)}{x^*f(x^*)} \times [R1(x^*)+R2(x^*)+R3(x^*)+R4(x^*)] \\ where & R1(x^*) = \int \int_{x^*}^{\infty} \left(1-\frac{u'(a,x)}{\lambda}\right) \frac{\phi(a,x)}{1-F(x^*)} dx da \\ R2(x^*) &= -\frac{1-\beta}{\lambda} \sum_{t=0}^{\infty} \beta^t \int [u'(a,x)-\beta(1+r)E[u'(a',x')|x]] dh_{t+1}^A(a,y(x)) d\Phi(a,x) \\ R3(x^*) &= (1-\beta) \sum_{t=0}^{\infty} \beta^t dr_t K \int \frac{u'(a,x)}{\lambda} \left[\frac{a}{K} - \frac{xl(x)(1-T'(z(x)))}{L}\right] d\Phi(a,x) \\ R4(x^*) &= (1-\beta) \sum_{t=0}^{\infty} \beta^t dw_t \int (1+\epsilon_w^l(x))xl(x)T'(z(x))f(x) dx. \end{split}$$

- Optimal tax formula does not consider the global transition.
- GE has (1) direct price effects (R3,R4) & (2) indirect distribution effects (Φ).

Rest of the presentation....

Quantitative analysis on

- (1) Determinants of the Direction & Size of GE effects
 - Initial tax schedule
 - 2 Capital income tax

- (2) Role of the Local and Global Transition
 - Local transition associated with a tax perturbation
 - Global transition from the current US to the optimal steady state

Calibration for Quantitative Analysis

[Preferences]

•
$$u(c-v(l)) = \frac{1}{1-\gamma} \left(c - \frac{l^{1+\frac{1}{e}}}{1+\frac{1}{e}}\right)^{1-\gamma}, \ \gamma = 1.5, \ e = 0.5$$

• Borrowing Constraint : fraction of negative asset HH 13%

[Productivity]

•
$$\ln x' = (1 - \rho)\mu + \rho \ln x + \epsilon$$
, $\rho = 0.92$, $E(\ln x) = 2.75$ & $SD(\ln x) = 0.56$

• Pareto Tail: adjust hazard rate at top 5% = 1.6

[Technology]

• baseline: $Y = K^{\alpha}L^{1-\alpha}$, $\alpha = 0.33$, $\delta = 0.1$

[Government]

- T(z): piece-wise linear approximation
- Government purchase $\bar{E} = 0.189 \cdot Y(T^{US})$

Role of the initial tax schedule

- The initial tax schedule to which the reform is applied is crucial for the relative responses of K and L.
- Consider a HSV $T(z) = z \lambda z^{1-\tau}$.
- Role of the Level (λ) and Progressivity (τ)
 - With Higher level or progressivity (existing insurance/redist ↑),
 a redistributive reform T' ↑ leads to
 - Stronger labor response $(L \downarrow \Rightarrow r \downarrow \Rightarrow R3 + R4 > 0)$
 - Weaker savings response $(K \downarrow)$
 - Effects of the GE depends on the existing redistribution.
 - modest redistribution \Rightarrow favor less redistributive reform
 - enough redistribution \Rightarrow favor more redistributive reform

Role of initial tax level & progressivity

FIGURE: (normalized dW) R3 + R4 FIGURE: (normalized dW) R3 + R4

- $\Delta_p \Delta_f < 0$ for all λ and τ we consider.
- $(\triangleright \Delta_p \Delta_f)$
- With high E[T'], redistributive reforms lead to $\overline{dr_t} < 0 \Rightarrow +$ welfare
- With high τ , a reform of $T' \uparrow$ at the top leads to $\overline{dr_t} < 0$.

GE EFFECTS: US VS OPTIMAL

FIGURE: Marginal Tax Rates

FIGURE: Decomposition: optimal $\frac{T'}{1-T'}$

[Key difference in the tax schedule]

- Optimal: higher tax rates & higher transfer
- Local progressivity over z: regresive \Rightarrow progressive
- They are driven by R1.

GE EFFECTS: US VS OPTIMAL

FIGURE: dW through the GE effects

Table: $\Delta_p - \Delta_f$: US vs Opt

	US	optimal
$\Delta_p - \Delta_f$	-0.58	-0.72
Δ_p	-0.10	0.03
$-\Delta_f$	-0.48	-0.75
L-Gini	0.51	0.52
K-Gini	0.73	0.76
$corr(\frac{a}{K}, \frac{xl}{L})$	0.55	0.48

- Under the optimal: GE effects favor $T' \uparrow$ at the low & high income.
- $T'(z_{low}) \uparrow$: redistribution \uparrow the most \Rightarrow more sensitive response of K
- Higher progressivity at the top \Rightarrow more sensitive response of L

ALLOWING CAPITAL INCOME TAXES

- Tax-Formula result (Diamond-Mirrlees) requires the ability to tax trades
 of different goods at different rates.
 - It does not apply as long as history-dependent tax is not allowed.
- With linear capital income tax rate $\tau_k > 0$,

$$R3 + R4 = (1 - \beta) \sum_{t} \beta^{t} dr_{t} K \times \left[\Delta_{p} - \Delta_{fL} + \Delta_{fK,t} \right]$$
$$= \overline{dr_{t}} K \times \left(\underbrace{\Delta_{p} - \Delta_{fL}}_{<0} + \overline{\Delta_{fK}} \right),$$

where $\Delta_{fK,t} = \tau_k \int (1 + \epsilon_{r,t}^a(a,x)) \frac{a}{K} d\Phi > 0$: additional fiscal externality

- Quantitatively, the GE effects tend to be amplified!
 - $\Delta_p \Delta_{fL} + \overline{\Delta_{fK}} < 0$ with some mitigation

• However, the response of $\overline{dr_t}$ is amplified!

(steeper asset supply curve \Rightarrow sensitive $r\uparrow\downarrow$ for the shift of supply)

Role of the Capital income tax

FIGURE: US: dW—GE effects

FIGURE: Optimal: dW—GE effects

→ JointOpt

▶ Other Factors

Role of the Local Transition

• Local transition path associated with small tax reforms:

Role of the Local Transition

- Accounting for the local transition: GE favors more progressive reforms
 - Short-run benefit of a more progressive reform $(dr_t < 0)$ is considered.

 $\rightarrow \beta$ -effect

FIGURE: US: dW—GE Effects

FIGURE: Optimal: dW—GE effects

Role of the Local Transition

• W/ local transition, optimal tax becomes more progressive.

 β -effect

FIGURE: Optimal Marginal Tax Rates

GLOBAL TRANSITION TO OPTIMAL REFORM

- Typical concern of T'_{opt} not accounting for the global transition would be the welfare loss during the transition.
- But a global reform from T'_{US} to T'_{opt} has positive average welfare gain.
 - huge short-run welfare gain at the cost of long-run welfare loss

→ detail

FIGURE: Average Welfare over Time

$T_{lopt-qlobal}$ and GE effects

- $T_{opt-global}$ is more progressive than T_{opt} .
- ▶ decomp
- $T_{opt-global}$ exploits sluggish adjustment of savings (and distribution).
 - \Rightarrow Even more asymmetric welfare incidence in the short run & long run

FIGURE: Optimal Marginal Tax Rates

FIGURE: Optimal: dW—GE effects

CONCLUSION

- In an Aiyagari economy, considering GE effects can favor either more or less redistributive/progressive tax reform.
- The direction of the GE effects depends on the relative response of K
 & L.
 - Enough existing redistribution before reform implies that the GE effects favor even more redistributive reform.
 - Capital income tax tends to amplify the GE effects without changing its directoin.
- Both local and global transition make the optimal tax schedule more progressive.
 - This is because we can exploit the sluggish adjustment of savings.
- Global tax reform to the optimal tax has huge short-run welfare gain at the cost of long-run welfare loss.

Appendix

REVIEW OF CHANG AND PARK (2021)

• Why do we need to assume market structure?

- Formula with general representation of private insurance.
- Main difficulty: Need to know whether the response of private insurance to the tax reform has welfare effects.
 - ⇒ Elasticities are not sufficient!
- (e.g.) No/ Partial/ Full Envelope theorem.
 - No envelope theorem: Chetty and Saez (2010)
 - Full envelope theorem: Findeisen-Sachs (2018)
 - Partial envelope theorem: Huggett (1993), Aiyagari (1994),
 Alvarez-Jermann (2000)
 - \Rightarrow Optimal formula depends on the market structure.

SCPE-GE

- Self-Confirming Policy Eq tax: optimal tax of a government which assumes that the prices are independent of the tax system.
- In a SCPE, the optimality of the tax system is confirmed when a newly chosen tax by a gov'tt given prices generated by the existing tax coincides with the existing one.

$$\begin{split} \frac{T'_{SCPE}(z^*)}{1 - T'_{SCPE}(z^*)} &= \frac{1}{\epsilon^l_{1-T'}(z^*)} \frac{1 - F_z(z^*)}{z^* f_z(z^*)} \times \\ & \left[\iint_{z^*}^{\infty} \left(1 - \frac{u'(a,z)}{\lambda_{SCPE}} \right) \frac{\phi_{SCPE}(a,z)}{1 - F_z(z^*)} dz da \\ - \frac{1}{\lambda_{SCPE}} \int [u'(a,z) - \beta(1+r) E[u'(a',z')|z]] dh^A_{SCPE}(a,y(z)) d\Phi_{SCPE} \right] \end{split}$$

∢go back

OPTIMAL TAX FORMULA DECOMPOSITION

[Decomposition — Price & distribution effect]

$$\frac{T'(z^*)}{1 - T'(z^*)} - \frac{T'_{SCPE}(z^*)}{1 - T'_{SCPE}(z^*)} = \frac{1 + e(x^*)}{e(x^*)} \frac{1 - F(x^*)}{x^* f(x^*)} \times \left[\frac{\Omega_{price}(x^*) + \Omega_{dist}(x^*)}{\Omega_{price}(x^*) + \Omega_{dist}(x^*)} \right]$$

$$where \quad \Omega_{price}(x^*) = R3 + R4$$

$$\Omega_{dist}(x^*) = (R1(x^*) - R1_{SCPE}(x^*)) + (R2(x^*) - R2_{SCPE}(x^*))$$

• Numerically: Ω_{price} strongly dominates Ω_{dist}

∢go back

Decomposition of $\frac{T'_{opt}}{1-T'_{opt}} - \frac{T'_{SCPE}}{1-T'_{SCPE}}$

FIGURE: Decomposition

Role of Initial Tax: $\Delta_p - \Delta_f$

FIGURE: Externality per unit $\Delta_p - \Delta_f$

FIGURE: Externality per unit $\Delta_p - \Delta_f$

Role of initial tax level & progressivity

FIGURE: (normalized) $\overline{dr}K$

FIGURE: (normalized) $\overline{dr}K$

∢go back

Role of the Capital income tax

FIGURE: Externalitly per unit price change

JOINT OPTIMAL TAX SYSTEM

• optimal $\tau_k^* = 0.67$ (much higher than $\tau_k^{US} = 0.36$)

FIGURE: Optimal: dW—GE effects

dW through GE effects (normalized $\frac{R3+R4}{2}$) -0.02 Joint Opt -0.04 Opt $(\tau_k = 0.36)$ $\overline{dr}K\left(\frac{\overline{dr}K}{m^2\sigma^2\sigma^2}\right)$ $\Delta_p - \Delta_{fL} + \overline{\Delta_{fK,t}}$ 0.05 -0.2 0 -0.4 -0.05 -0.6 40 80 100 20 100 Productivity Productivity

FIGURE: Optimal Marginal Tax Rates

Other determinants of K & L response

- ullet Relative response of K and L to the tax reform is crucial!
- Other factors of this relative response:
 - risk aversion CRRA
 - elasticity of substitution ES
 - Additional sources of Inequality capitalist
- Lesson:
 - The role of these factors on the GE effects depends on the interaction with the initial tax schedule!

∢ go back

Role of relative risk aversion

FIGURE: Role of RA for the GE-effects

- under T'_{US} : higher RA implies
 - stronger response of savings
 - more increase in r
 - more negative GE-effects of a redistributive reform
 - \Rightarrow favor less redistributive reform
- under T'_{opt} : higher RA implies
 - higher T'_{opt}
 - stronger response of $L \Rightarrow r \downarrow$
 - more positive GE-effects
 - ⇒ favor more redistributive reform

Role of RA for the GE-effects

FIGURE: Optimal Marginal Tax Rates

FIGURE: Transition Path: under T'_{opt}

Role of elasticity of substitution

FIGURE: Role of ES for the GE-effects

- under T'_{US} : with lower ES,
 - both $dr_t < 0$ (short-run) & $dr_t > 0$ (long-run) stronger
 - \Rightarrow little impact on the GE-effect.
- under T'_{opt} : $\sigma_{es} < 1$ implies
 - small $\frac{K_{opt}}{Y_{opt}}$ leads to $\alpha = \frac{rK}{Y} \uparrow$
 - amplification of the short-run price incidence
 - ⇒ favor more redistributive reform
- Consider CES production with constant ES (σ_{es})
- $dr_t \cdot K = -\frac{(1-\alpha)\alpha}{\sigma_{es}} Y\left(\frac{dK_t}{K} \frac{dL_t}{L}\right)$, where $1 \alpha = \frac{wL}{Y}$

Role of ES for the GE-effects

FIGURE: Transition Path: under T'_{US}

FIGURE: Transition Path: under T'_{opt}

∢go back

Role of additional sources of inequality

- capitalist spirit: $u(c v(l)) + U\left(\frac{a}{K}\right)$
- mitigation of the GE effects

FIGURE: Decomposition of dW

RHS1 & RHS5 0.25 benchmark R1 0.2 capitalist R1 capitalist R5 0.15 0.1 0.05 10 20 100 RHS3+4 -0.01 benchmark R3+R4 · · · capitalist R3+R4 -0.02 -0.03 10 20 30 70 80 ٩n 100 Productivity

FIGURE: Transition under the US

Role of Transition: β -effects

FIGURE: Optimal: dW—GE effects

FIGURE: Optimal Marginal Tax Rates

 $\triangleleft dW$

opt tax

GLOBAL TRANSITION TO OPTIMAL REFORM

• The average welfare gain Δ of the tax reform is measured by consumption equivalent variation (CEV).

$$\int u((1+\Delta)c^{SQ}(a,x),l^{SQ}(a,x))d\Phi(a,x) = \int E_0 \left[(1-\beta) \sum_{t=0}^{\infty} \beta^t u(c_t^R, l_t^R) \right] d\Phi(a_0, x_0)$$

Table: Average Welfare Gain (CEV)

β	high β ($r^{US} = 0.015$)			low β ($r^{US} = 0.04$)		
	optimal	optimal	joint	optimal	optimal	joint
reform to	$ w/ \ \tau_k = 0$	w/ τ_k^{US}	optimal	w/ $\tau_k = 0$	w/ τ_k^{US}	optimal
Δ	0.019	0.004	0.013	0.028	0.012	0.023

GLOBAL REFORM

FIGURE: Global Transition: Aggregates FIGURE: Global Transition: Distributio

OPTIMAL FORMULA W/ GLOBAL TRAN

- optimal formula:

$$\frac{T'(z^*)}{1 - T'(z^*)} = \frac{1 + e}{e} \times \frac{1}{(1 - \beta) \sum_{t=0}^{\infty} \beta^t \cdot \frac{x_t^* f(x_t^*)}{1 - F(x^*)} \cdot \lambda_t} \times \left[(1 - \beta) \sum_{t=0}^{\infty} \beta^t \cdot \lambda_t \cdot \frac{1 - F(x_t^*)}{1 - F(x^*)} \iint_{x_t^*} \left(1 - \frac{u'(\tilde{c}_t(a, x))}{\lambda_t} \right) \frac{\phi_t(a, x)}{1 - F(x_t^*)} dx da - (1 - \beta) \sum_{t=0}^{\infty} \beta^t \iint_{t=0} \left[u'(\tilde{c}_t(a, x)) - \beta(1 + r_{t+1}) E[u'(\tilde{c}_t(a', x')) | x] \right] dh_{t+1}^A(a, y_t(x)) d\Phi_t + (1 - \beta) \sum_{t=0}^{\infty} \beta^t dr_t K_t \iint_{t=0} u'(\tilde{c}_t(a, x)) \left[\frac{a}{K_t} - \frac{xl(x)(1 - T'(z(x)))}{L_t} \right] d\Phi_t(a, x) + (1 - \beta) \sum_{t=0}^{\infty} \beta^t \cdot \lambda_t \cdot dw_t L_t \int_{t=0}^{t} (1 + \epsilon_{w,t}^l(x)) \frac{xl_t(x)}{L_t} T'(z_t(x)) f(x) dx \right]$$

- incidence on welfare through the GE effects:

$$(1-\beta) \sum_{t=0} \beta^t dr_t K_t \times (\Delta_{p,t} - \Delta_{f,t}), \quad \text{where}$$

$$\Delta_{p,t} = \frac{\int \int u'(\tilde{c}_t(a,x)) \left[\frac{a}{K_t} - \frac{xl(x)(1-T'(z(x)))}{L_t}\right] d\Phi_t(a,x)}{(1-\beta) \sum_{s=0}^{\infty} \beta^s \lambda_s}$$

$$\Delta_{f,t} = \frac{\lambda_t \int (1+\epsilon^l_{w,t}(x)) \frac{xl_t(x)}{L_t} T'(z_t(x)) f(x) dx}{(1-\beta) \sum_{s=0}^{\infty} \beta^s \lambda_s}$$

$\frac{T'}{1-T'}$ DECOMPOSITION W/ GLOBAL TRAN

FIGURE: $\frac{T'}{1-T'}$ decomposition

